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Abstract. In this brief survey we study the categorical equivalence between 2-dimensional topo-
logical quantum field theories and commutative Frobenius algebras. To that end, we develop
some of the main tools to understand the main result, which has an extensive use of the theory
of manifolds and categories.

1. Monoidal Categories

The theory of monoidal categories plays a main role in our study of topological quantum
field theories and shall be used extensively. For a more thorough analysis see [Eti+16]. If
the reader is not acquainted with a working knowledge of category theory, a good resource
is [Bor08].

Definition 1.1. A monoidal category is a tuple (M, ⊗, 1, 𝛼,�, 𝜌) consisting of:
• A category M.
• A bifunctor ⊗: M × M→ M
• A distinguished object 1 ∈ M that is unitary with respect to ⊗, that is:

𝑚 ⊗ 1 = 𝑚 = 1 ⊗ 𝑚

for any object 𝑚 ∈ M.
• A natural isomorphism

𝛼: (− ⊗ (− ⊗ −)) ≃
=⇒ ((− ⊗ −) ⊗ −)

called associator. We call 𝛼 a natural isomorphism in the sense that given any triple of
objects (𝑎, 𝑏, 𝑐) of M, the image

𝑎 ⊗ (𝑏 ⊗ 𝑐) (𝑎 ⊗ 𝑏) ⊗ 𝑐
𝛼(𝑎,𝑏,𝑐)

≃

is an isomorphism in M.
• Two natural isomorphisms

�: (1 ⊗ −) ≃
=⇒ (−) and 𝜌: (− ⊗ 1) ≃

=⇒ (−)

called left and right unitors, respectively. In other words, given any object 𝑎 ∈ M the
arrows �𝑎: 1 ⊗ 𝑎 ≃−→ 𝑎 and 𝜌𝑎: 𝑎 ⊗ 1 ≃−→ 𝑎 are isomorphisms in M.

This data should satisfy the following two conditions:
• (Triangle identity) Given any pair (𝑎, 𝑏) of objects in M, the diagram

𝑎 ⊗ (1 ⊗ 𝑏) (𝑎 ⊗ 1) ⊗ 𝑏

𝑎 ⊗ 𝑏

𝛼(𝑎,1,𝑏)

id𝑎 ⊗𝜌𝑏 �𝑎⊗id𝑏

commutes in M.

1
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• (Pentagon identity) Given any tuple (𝑎, 𝑏, 𝑐, 𝑑) of objects in M, the diagram

(𝑎 ⊗ 𝑏) ⊗ (𝑐 ⊗ 𝑑)

𝑎 ⊗ (𝑏 ⊗ (𝑐 ⊗ 𝑑)) ((𝑎 ⊗ 𝑏) ⊗ 𝑐) ⊗ 𝑑

𝑎 ⊗ ((𝑏 ⊗ 𝑐) ⊗ 𝑑) (𝑎 ⊗ (𝑏 ⊗ 𝑐)) ⊗ 𝑑

𝛼(𝑎⊗𝑏,𝑐,𝑑)

id𝑎 ⊗𝛼(𝑏,𝑐,𝑑)

𝛼(𝑎,𝑏,𝑐⊗𝑑)

𝛼(𝑎,𝑏⊗𝑐,𝑑)

𝛼(𝑎,𝑏,𝑐)⊗id𝑑

is commutative in M.
The tuple (M, ⊗, 1, 𝛼,�, 𝜌) is said to be a strict monoidal category if the three natural isomor-

phisms 𝛼, � and 𝜌 are naturally isomorphic to the identity. If this is the case, we shall refer to
the category simply by the triple (M, ⊗, 1).

This monoidal structure can be also be carried to functors and natural transformations:

Definition 1.2 (Monoidal functor). Let (M, ⊗, 1, 𝛼,�, 𝜌) and (N, ⊗̂, 1̂, �̂�, �̂, �̂�) be two (strict)
monoidal categories. We say that a functor 𝐹: M → N is a (strict) monoidal functor if it pre-
serves the actions of the natural isomorphisms. To put concretely, we have:

• The unit of M is mapped to the unit of N, that is, 𝐹1 = 1̂.
• For any 𝑎 ∈ M one has 𝐹(�𝑎) = �̂(𝐹𝑎) and 𝐹(𝜌𝑎) = �̂�(𝐹𝑎).
• For any pair (𝑎, 𝑏) of objects in M there exists an isomorphism 𝐹(𝑎 ⊗ 𝑏) ≃ 𝐹𝑎⊗̂𝐹𝑏 in N. In

the strict case the isomorphism is replaced by an equality.
• For any triple (𝑎, 𝑏, 𝑐) of objects in Mwe have 𝐹𝛼(𝑎, 𝑏, 𝑐) = �̂�(𝐹𝑎, 𝐹𝑏, 𝐹𝑐).
• For every two maps 𝑓 and 𝑔 in M there exists an isomorphism 𝐹( 𝑓 ⊗ 𝑔) ≃ 𝐹 𝑓 ⊗̂𝐹𝑔 in N.

As before, in the strict case the isomorphism is replaced by an equality.

Definition 1.3 (Monoidal natural transformation). Let (M, ⊗, 1, 𝛼,�, 𝜌) and (N, ⊗̂, 1̂, �̂�, �̂, �̂�) be
two (strict) monoidal categories, and consider a pair of parallel (strict) monoidal functors
𝐹, 𝐺: M⇒ N. A natural transformation �: 𝐹 ⇒ 𝐺 is said to be monoidal if �1 = 1̂, and for any pair
of objects 𝑎, 𝑏 ∈ M the diagram

𝐹(𝑎 ⊗ 𝑏) 𝐺(𝑎 ⊗ 𝑏)

𝐹𝑎⊗̂𝐹𝑏 𝐺𝑎⊗̂𝐺𝑏

≃

�𝑎⊗𝑏

≃

�𝑎 ⊗̂�𝑏

commutes in the monoidal category N.

The following theorem allows one to always work with a strictified version of a given
monoidal category. Its proof, however, is extensive and would not fit in this short essay. For a
proof, the curious reader can refer to [Gei22].

Theorem 1.4. Every monoidal category is monoidally equivalent to a strict monoidal category.

As in algebraic contexts, we can also find monoids inside of a given monoidal category.

Definition 1.5. Let (M, ⊗, 1, 𝛼,�, 𝜌) be a monoidal category. We define the following objects:
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(a) A monoid in M is a triple (𝑚, �, �) where we have an object 𝑚 ∈ M, a bifunctor �:𝑚 ⊗𝑚 → 𝑚,
referred to as a multiplication, and a functor �: 1 → 𝑚, called unit, such that both diagrams

𝑚 ⊗ (𝑚 ⊗ 𝑚) (𝑚 ⊗ 𝑚) ⊗ 𝑚 𝑚 ⊗ 𝑚

𝑚 ⊗ 𝑚 𝑚

id𝑚 ⊗�

𝛼(𝑚,𝑚,𝑚) �⊗id𝑚

�

�

1 ⊗ 𝑚 𝑚 ⊗ 𝑚 𝑚 ⊗ 1

𝑚

�⊗id𝑚

𝜌
�

id𝑚 ⊗�

�

commute in M. A morphism of monoids𝜙: (𝑚, �, �) → (𝑚′, �′, �′) is a morphism𝜙:𝑚 → 𝑚′

in M satisfying 𝜙� = �′(𝜙 ⊗ 𝜙), and 𝜙� = �′. We then define the subcategory MonM of M
composed of monoidal objects in M.

(b) A comonoid in M is a triple (𝑐, �, 𝜎) where 𝑐 is an object of M, we have a bifunctor �: 𝑐 → 𝑐 ⊗ 𝑐,
called comultiplication, and a functor 𝜎: 𝑐 → 1, called counit, such that both diagrams

𝑐 ⊗ (𝑐 ⊗ 𝑐) (𝑐 ⊗ 𝑐) ⊗ 𝑐 𝑐 ⊗ 𝑐

𝑐 ⊗ 𝑐 𝑐

𝛼(𝑐,𝑐,𝑐)−1 �⊗id𝑐

id𝑐 ⊗�

�

�

1 ⊗ 𝑐 𝑐 ⊗ 𝑐 𝑐 ⊗ 1

𝑐

𝜎⊗id𝑐 id𝑐 ⊗𝜎

�
𝜌−1 �−1

commute in M. A morphism of comonoids 𝜓: (𝑐, �, 𝜎) → (𝑐′, �′, 𝜎′) is a morphism 𝜓: 𝑐 → 𝑐′

in M satisfying �′𝜓 = (𝜓 ⊗ 𝜓)�, and 𝜎 = 𝜎′𝜓. We then define the subcategory coMonM of M
composed of comonoidal objects in M.

An important example of the later is that of algebras and coalgebras in the category of vector
spaces—those are monoids and comonoids, respectively. These will appear later in the text.

Monoids, groups and the like cannot live without the core concept of actions, so now we
also define them in this abstract context.

Definition 1.6 (Monoid actions). Let (M, ⊗, 1) be a monoidal category, and (𝑚, �, �) ∈ MonM. A
left-action of the monoid (𝑚, �, �) on an object 𝑎 ∈ M is a bifunctor 𝜎:𝑚 ⊗ 𝑎 → 𝑎 such that

𝑚 ⊗ (𝑚 ⊗ 𝑎) (𝑚 ⊗ 𝑚) ⊗ 𝑎 𝑚 ⊗ 𝑎 1 ⊗ 𝑎

𝑚 ⊗ 𝑎 𝑎

𝛼(𝑚,𝑚,𝑎)

id𝑚 ⊗𝜎

�⊗id𝑎

𝜎

�⊗id𝑎

�

𝜎

commutes in M. Right-actions are defined analogously.
Given any two left-actions 𝜎:𝑚 ⊗ 𝑎 → 𝑎 and �:𝑚 ⊗ 𝑏 → 𝑏, we define a morphism of left-actions

𝜙: 𝜎 → � to be an arrow 𝜙: 𝑎 → 𝑏 in M such that the square

𝑚 ⊗ 𝑎 𝑚 ⊗ 𝑏

𝑎 𝑏

𝜎

id𝑚 ⊗𝜙

�

𝜙

commutes in M. With these notions we are able to define two categories rActMon(M,𝑚) and
lActMon(M,𝑚), composed of right and left actions of 𝑚 on objects of M, respectively, and mor-
phisms between them.

2. Braided & Symmetric Monoidal Categories

So far, we’ve only talked about monoidal structures that have a non-commutative associated
product. In our context we would also like to understand the situations where commutativity
is allowed. For instance, in the category of vector spaces we have a natural isomorphism
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𝑉 ⊗𝑊 ≃ 𝑊 ⊗𝑉 for any pair 𝑉,𝑊 ∈ Vect𝑘 . To that end, we define the concept of braiding, and
associated to it the notion of braided monoidal categories.

Definition 2.1 (Braiding). Given a monoidal category (M, ⊗, 1, 𝛼,�, 𝜌), we define a braiding of M
to be a natural isomorphism

𝛾: (− ⊗ −′) ≃
=⇒ (−′ ⊗ −),

that is coherent with associativity and unitors of M, in the sense that the diagrams

(𝑎 ⊗ 𝑏) ⊗ 𝑐 𝑐 ⊗ (𝑎 ⊗ 𝑏)

𝑎 ⊗ (𝑏 ⊗ 𝑐) (𝑐 ⊗ 𝑎) ⊗ 𝑏

𝑎 ⊗ (𝑐 ⊗ 𝑏) (𝑎 ⊗ 𝑐) ⊗ 𝑏

𝛾(𝑎⊗𝑏,𝑐)

𝛼−1(𝑎,𝑏,𝑐) 𝛼(𝑐,𝑎,𝑏)

id𝑎 ⊗𝛾(𝑏,𝑐) 𝛾(𝑐,𝑎)⊗id𝑏

𝛼(𝑎,𝑐,𝑏)

𝑎 ⊗ (𝑏 ⊗ 𝑐) (𝑏 ⊗ 𝑐) ⊗ 𝑎

(𝑎 ⊗ 𝑏) ⊗ 𝑐 𝑏 ⊗ (𝑐 ⊗ 𝑎)

(𝑏 ⊗ 𝑎) ⊗ 𝑐 𝑏 ⊗ (𝑎 ⊗ 𝑐)

𝛾(𝑎,𝑏⊗𝑐)

𝛼(𝑎,𝑏,𝑐) 𝛼(𝑏,𝑐,𝑎)−1

𝛾(𝑎,𝑏)⊗id𝑐 𝛾(𝑐,𝑎)⊗id𝑏

𝛼(𝑏,𝑎,𝑐)

𝑎 ⊗ 1 1 ⊗ 𝑎

𝑎

𝛾(𝑎,1)

� 𝜌

should commute for all triples (𝑎, 𝑏, 𝑐) of objects of M. Naturally, we say that a monoidal
category is braided if it is associated with a braiding.

A really important concept for us will be that of functors between braided monoidal cate-
gories, they will play a central role in the last sections of this essay.

Definition 2.2 (Braided monoidal functor). A monoidal functor 𝐹: (A, 𝛾) → (B, �̂�) between
braided monoidal categories is said to be a braided monoidal functor if for every pair of objects
𝑎, 𝑏 ∈ A the braiding coherence square

𝐹𝑎 ⊗ 𝐹𝑏 𝐹𝑏 ⊗ 𝐹𝑎

𝐹(𝑎 ⊗ 𝑏) 𝐹(𝑏 ⊗ 𝑎)

�̂�

≃ ≃

𝐹𝛾

commutes in B.

Now that we have both objects and functors between them, we may define a category
BrMonCat composed of braided monoidal categories and braided monoidal functors between
them. We can further restrict the objects of this category to obtain an even better behaved
category:

Definition 2.3 (Symmetric monoidal category). A braided monoidal category (M, 𝛾) is said to
be symmetric if for any two 𝑎, 𝑏 ∈ M the triangle

𝑎 ⊗ 𝑏 𝑎 ⊗ 𝑏

𝑏 ⊗ 𝑎

id𝑎⊗𝑏

𝛾(𝑎,𝑏)𝛾(𝑏,𝑎)
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commutes in M. A morphism between symmetric monoidal categories is a braided monoidal
functor between them.

Example 2.4. One of the most important symmetric monoidal categories in our context will
be (Vect𝑘 , 𝑘, ⊗), the category of 𝑘-vector spaces, where 𝑘 is the unitary object and the tensor
product plays the role of product in the category.

3. Cobordisms

We now move a bit from the categorical madness and delve into yet another idea central to
topological quantum field theories: cobordisms between manifolds.

3.1. Unoriented Cobordisms.

Definition 3.1 (Unoriented cobordism). Given a pair Σ0 and Σ1 of smooth compact (𝑛 − 1)-
manifolds without boundary, we define a cobordism between Σ0 and Σ1 to be a smooth compact
𝑛-manifold 𝑀 whose boundary is 𝜕𝑀 = Σ0 ⨿ Σ1. We thus call the manifolds Σ0 and Σ1
cobordant.

Example 3.2. Two interesting cobordisms are formed from the circle to the empty manifold,
which shall be poetically called death of a circle, and from the empty manifold to the circle, so
called birth of a circle. These are pictured as follows:

As an example of how cobordisms play in the wild, we have the following lemma—which
investigates the situation for 0-manifolds.

Lemma 3.3 (Cobordant zero and one dimensional manifolds). Two given compact 0-manifolds
without boundary are cobordant if and only if they have the same number of points modulo
2. Moreover, any two compact 1-manifolds without boundary are cobordant.

Proof. Let’s consider the case of a pair of 0-manifolds Σ0 and Σ1. Notice that since every pair of
points can be connected by a smooth curve, and every 1-manifold with boundary has an even
number of boundary points1, it follows that Σ0 and Σ1 are cobordant if and only if the disjoint
union Σ0 ⨿ Σ1 has an even number of points.

For the second statement, one should recall that a compact 1-manifold is the disjoint union
of circles. Then we can choose one of the manifolds to attach copies of the death of a circle
cobordism for each of its circles, and attach birth of a circle cobordisms for each of its respective
circles of the other 1-manifold. This construction yields a cobordism between them. ♮

3.2. Oriented Cobordisms. Consider the following setup: let Σ be a closed submanifold of 𝑀
with codimension 1, where dim 𝑀 = 𝑛. Assume both manifolds to be oriented. Our goal will
be to define the concept of orientation in a cobordism.

Definition 3.4 (Positive normal). Let [𝑣1 , . . . , 𝑣𝑛−1] be a positive basis for 𝑇𝑥Σ for any given
point 𝑥 ∈ Σ. We say that a tangent vector 𝑣 ∈ 𝑇𝑥𝑀 is a positive normal if the induced basis
[𝑣1 , . . . , 𝑣𝑛−1 , 𝑣] for 𝑇𝑥𝑀 is positive.

Positive normals grant the possibility to distinguish boundaries of a manifold by choosing
something analogous to a time arrow.

1This is due to the fact that 1-manifolds are 𝐶∞-isomorphic to a finite disjoint union of circles or intervals (see
the appendix of [Mil97]).
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Definition 3.5 (In and out boundaries). If Σ is a connected component of 𝜕𝑀, we call Σ an
in-boundary if a positive normal points inwards relative to 𝑀, and otherwise an out-boundary—
when a positive normal points outward relative to 𝑀.

The notion of an in and out boundary allows us to define the notion of an oriented cobordism.
From now on, a cobordism will always mean an oriented one, unless stated otherwise.

Definition 3.6 (Oriented cobordism). Let Σin and Σout be compact (𝑛 − 1)-manifolds without
boundary. We define an oriented cobordism between them to be a triple (𝑀, �in , �out), where 𝑀

is a smooth compact oriented 𝑛-manifold, and arrows

Σin 𝑀 Σout
�in �out

which are 𝐶∞-isomorphisms when restricted to the in and out boundary of 𝑀, respectively.
We shall denote the oriented cobordism 𝑀 as an arrow 𝑀:Σin ⇒ Σout.

To give a better explanation to what was meant by the idea of choosing a time arrow, notice
that given a cobordism one can slice the resulting manifold with a parametrization 𝐼 ≔ [0, 1],
where at 0 one has a slice containing the in-boundaries, while at 1 we have a slice forming the
out-boundary. This idea can come in handy for physical analogies.

Example 3.7 (Cylinder cobordism). An important example of cobordism is that of a cylinder—
it will play the role of an identity morphism in the category of cobordisms that we have yet to
define. Let Σ be a compact oriented (𝑛 − 1)-manifold without boundary. We define the cylinder
cobordism of Σ to be the triple (Σ × 𝐼 , �in , �out), where we have canonical inclusions

Σ × 0 Σ Σ × 1�in
≃

�out
≃

that is, the cobordism from Σ to Σ itself.

In order to distinguish between two cobordisms, it is important to know when two are
equivalent or not. We address that as follows:

Definition 3.8 (Equivalence of cobordisms). Given two cobordisms 𝑀, 𝑁 :Σin ⇒ Σout, we
say that 𝑀 is equivalent to the cobordism 𝑁 if there exists an orientation-preserving 𝐶∞-
isomorphism 𝜙: 𝑀 ≃−→ 𝑁 such that the following diagram commutes in Man:

𝑁

Σin Σout

𝑀

𝜙 ≃

4. Elements of Morse Theory

An interesting tool for dealing with cobordisms is provided by Morse theory, which we’ll
only scrap the surface and merely give some pertinent definitions for our discussions.

Definition 4.1. Let 𝑓 : 𝑀 → 𝐼 be a 𝐶∞-morphism, and 𝑝 ∈ 𝑀 be a critical point of 𝑓 . We call 𝑝 a
non-degenerate point if there exists a chart about 𝑝 for which the local Hessian of 𝑓 is invertible.
Furthermore, we define the index of 𝑓 at 𝑝 to be the number of negative eigenvalues of the local
Hessian.
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Definition 4.2 (Morse maps). Let 𝑀 be a smooth manifold. We say that a 𝐶∞-morphism
𝑓 : 𝑀 → 𝐼 is a Morse map if every critical point of 𝑓 is non-degenerate. If it happens to be the
case that 𝑀 is a manifold with boundary, we shall further require that 𝑓 −1(𝜕 𝐼) = 𝜕𝑀 and that
the boundary points 𝜕 𝐼 = {0, 1} are regular values of 𝑓—ensuring that 𝜕𝑀 has no critical
points.

The existence of Morse maps is ensured by the following theorem, which can be found
in [Hir76]:

Theorem 4.3. For any manifold 𝑀 and integer 2 ⩽ 𝑟 ⩽ ∞, the collection of Morse maps 𝑀 → 𝐼

is dense in 𝐶𝑟(𝑀, 𝐼).

4.1. Decomposing & Gluing Cobordisms. We’ll use the concept of gluing of spaces in order to
provide the concept of composition of cobordisms. For that, we have the following definition:

Definition 4.4 (Gluing). Let 𝑓 :𝑋 → 𝑌 and 𝑔:𝑋 → 𝑍 be topological morphisms. We define the
gluing of 𝑌 and 𝑍 along 𝑋 to be the pushout

𝑋 𝑌

𝑍 𝑌 ⨿𝑋 𝑍

𝑔

𝑓

⌜

Explicitly, 𝑌 ⨿𝑋 𝑍 is the quotient space of 𝑌 ⨿ 𝑍 where 𝑦 ∼ 𝑧 if and only if there exists a
common 𝑥 ∈ 𝑋 such that 𝑓 𝑥 = 𝑦 and 𝑔𝑥 = 𝑧. For notational purposes, the gluing of 𝑌 and 𝑍

along 𝑋 can also be denoted by 𝑌𝑍 when 𝑋 is implicitly understood.

Given a cobordism 𝑀:Σ0 ⇒ Σ1, one can think how to slice 𝑀 so that we get a smooth
submanifold Σ𝑡 ⊆ 𝑀 dividing 𝑀 into two. The first part should contain all in-boundaries of
𝑀, while the second should contain each out-boundary of 𝑀. To that end, take a Morse map
𝑓 : 𝑀 → 𝐼 such that 𝑓 −1(0) = Σ0 and 𝑓 −1(1) = Σ1. We shall then define Σ𝑡 as the preimage
𝑓 −1(𝑡) ⊆ 𝑀, yielding two cobordisms

𝑀[0,𝑡] ≔ 𝑓 −1([0, 𝑡]):Σ0 =⇒ Σ𝑡 and 𝑀[𝑡 ,1] ≔ 𝑓 −1([𝑡 , 1]):Σ𝑡 =⇒ Σ1.

The following theorem can be found in [Hir76] (page 153).

Theorem 4.5 (Regular interval). Let 𝑀:Σ0 ⇒ Σ1 be a cobordism, and 𝑓 : 𝑀 → 𝐼 a Morse map
admitting no critical points and such that 𝑓 −1(0) = Σ0 and 𝑓 −1(1) = Σ1. If 𝜋:Σ0 × 𝐼 ↠ 𝐼 denotes
the canonical projection, then there exists a 𝐶∞-isomorphism 𝜙:Σ0 × 𝐼 → 𝑀 such that the
following diagram commutes in Man:

Σ0 × 𝐼 𝑀

𝐼

𝜙

≃

𝜋

𝑓

A relevant consequence of the regular interval theorem is the following:

Lemma 4.6. Let 𝑀:Σ0 ⇒ Σ1 be a cobordism, and 𝑓 : 𝑀 → 𝐼 a Morse map with 𝑓 −1(0) = Σ0 and
𝑓 −1(1) = Σ1. Then there exists � > 0 and a decomposition

𝑀 = 𝑀[0,�]𝑀[�,1]

such that 𝑀[0,�] is 𝐶∞-isomorphic to Σ0 × 𝐼. Analogously, there also exists a decomposition
relating to the out-boundary Σ1.
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Proof. 𝑀 being a manifold with boundary implies that 𝑓 has no critical points at the in and out
boundaries of 𝑀. Moreover, since 𝑓 is a 𝐶∞-morphism it follows that there must exist some
pair �1 , �2 > 0 for which [0, �1] and [1 − �2 , 1] are both sets of regular point of 𝑓 . We can then
conclude that both restrictions 𝑓 |𝑀[0,�1]

and 𝑓 |𝑀[1−�2 ,1]
are maps lacking critical points, and thus

satisfy the conditions to be Morse maps. Applying Theorem 4.5, we obtain that 𝑀[0,�1] ≃ Σ0× 𝐼,
and 𝑀[1−�2 ,1] ≃ Σ1 × 𝐼, and both claimed decomposition of 𝑀. ♮

5. The Category 𝑛-cob

We would now like to construct a category of cobordisms of a given dimension 𝑛. For that, our
objects shall be compact oriented (𝑛 − 1)-manifolds, but what about the arrows? A solution for
this dilemma is to use classes of oriented cobordisms since we already know how to distinguish
one from the other. In order for that to work, we shall define the idea of composition of
cobordisms and show that if 𝑀 = 𝑀1𝑀0 is a decomposition of a cobordism 𝑀, then the
composition of 𝑀0 and 𝑀1 need to be 𝑀—that is, compositions and decompositions play
nicely with each other.

Our first step will be to define a gluing of any two cobordisms. For that, let 𝑀0:Σ0 ⇒ Σ1 and
𝑀1:Σ1 ⇒ Σ2 be two cobordisms, and consider Morse maps 𝑓0: 𝑀0 → [0, 1] and 𝑓1: 𝑀1 → [1, 2].
We’ll try to relate the topological manifold 𝑀0 ⨿Σ1 𝑀1—which also comes with a continuous
map 𝑀0 ⨿Σ1 𝑀1 → [0, 2] induced by 𝑓0 and 𝑓1—to a cobordism of the form Σ0 ⇒ Σ2. Choose
� > 0 such that the intervals [1 − �, 1] and [1, 1 + �] are regular sets of 𝑓0 and 𝑓1, respectively.
By Theorem 4.5 we conclude that there are 𝐶∞-isomorphisms 𝑀[1−�,1] ≃ Σ1 × [1 − �, 1] and
𝑀[1,1+�] ≃ Σ1 × [1, 1 + �], thus there exists a topological isomorphism

𝑀[1−�,1] ⨿Σ1 𝑀[1,1+�] ≃ Σ1 × [1 − �, 1 + �],

whose restriction to 𝑀[1−�,1] and 𝑀[1,1+�] is a 𝐶∞-isomorphism. As a by-product one gets a
smooth structure for the whole gluing space 𝑀0 ⨿ 𝑀1, which is itself a cobordism class

𝑀0 ⨿ 𝑀1:Σ0 =⇒ Σ2.

We stress that such cobordism indeed represents a class since the choice of the smooth structure
isn’t canonical.

Theorem 5.1. Let 𝑀0 and 𝑀1 be cobordisms such that Σ is the out-boundary of 𝑀0 and the
in-boundary of 𝑀1. If 𝛼 and 𝛽 are two smooth structures for the gluing 𝑀0𝑀1 along Σ, there
exists a 𝐶∞-isomorphism 𝜙: (𝑀0𝑀1 , 𝛼) ≃−→ (𝑀0𝑀1 , 𝛽) such that 𝜙 |Σ = idΣ.

An important direct consequence of this theorem is that the gluing of cobordisms has a
unique smooth structure up to smooth isomorphism. Moreover, the smooth structure should
not depend on the choice of representative of the cobordism class—and this is what we now
show. To see this, consider any two cobordisms 𝑀0:Σ0 ⇒ Σ1 and 𝑀1:Σ1 ⇒ Σ2, and suppose
there exists two cobordism equivalences 𝜙0: 𝑀0

≃−→ 𝑀′
0 and 𝜙1: 𝑀1

≃−→ 𝑀′
1—that is, we consider

any other representatives 𝑀′
0 and 𝑀′

1. Using the universal property of pushouts associated to
the gluings 𝑀0𝑀1 and 𝑀′

0𝑀
′
1, we get the following commutative diagram in Top, where 𝜙 is a
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unique topological isomorphism:

Σ1 𝑀0 𝑀′
0

𝑀1 𝑀0𝑀1

𝑀′
1 𝑀′

0𝑀
′
1

≃

≃
𝜙

≃

The resulting map 𝜙 restricts to a 𝐶∞-isomorphism between manifolds on each of its factors.
This shows that 𝜙 is, in fact, an equivalence of cobordisms:

𝑀′
0𝑀

′
1

Σ0 Σ2

𝑀0𝑀1

𝜙 ≃

From now on we shall refer to cobordisms by their classes of equivalence.
With this we are finally ready to define precisely what we mean by the composition of

cobordisms classes:

Definition 5.2 (Composition of cobordisms). Consider cobordisms classes 𝑀0:Σ0 ⇒ Σ1 and
𝑀1:Σ1 ⇒ Σ2. We define the composition cobordism of 𝑀0 with 𝑀1 as the cobordism class
𝑀0𝑀1:Σ0 ⇒ Σ2 given by the gluing of 𝑀0 and 𝑀1 along Σ1.

Lemma 5.3. The composition of cobordisms is associative.

Proof. Consider classes of cobordisms Σ0
𝑀0
=⇒ Σ1

𝑀1
=⇒ Σ2

𝑀2
=⇒ Σ3. To see that

(𝑀0𝑀1)𝑀2 = 𝑀0(𝑀1𝑀2)
it suffices to observe that: in (𝑀0𝑀1)𝑀2 we first identify the common boundary Σ1 of 𝑀0 and
𝑀1, and construct the smooth structure around Σ1 as discussed before—further we identify Σ2
in the same manner and obtain a gluing of 𝑀0 ⨿Σ1 𝑀1 with 𝑀2 along Σ2. Notice that in this
process we merely affected the smooth structure around a small neighbourhood of Σ1 and Σ2,
and since those two boundaries are disjoint, this process can be done so that the order in which
we glue does not affect the resulting structure. ♮

Back to what we anticipated at Example 3.7, we can now say in what way the cylinder
cobordisms act as an identity in the classes of cobordisms:

Lemma 5.4. Given any cobordism 𝑀:Σ0 ⇒ Σ1, if 𝐶0 and 𝐶1 denote the cylinder cobordisms of
Σ0 and Σ1 respectively, then

𝐶0𝑀 = 𝑀 = 𝑀𝐶1.

Now that we have objects and arrows that allow for composition, associativity, and identities,
we can finally define our desired category. For each 𝑛 ∈ Z>0 we’ll denote by 𝑛-cob the category
of 𝑛-dimensional cobordisms, whose objects are compact oriented (𝑛 − 1)-manifolds without
boundary, and morphisms are classes of cobordisms between them.
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6. Monoidal Structure of 𝑛-cob

Notice that the coproduct given by the disjoint union in the category of manifolds can be
extended to a bifunctor ⨿: 𝑛-cob × 𝑛-cob → 𝑛-cob by associating each pair of manifolds Σ0
and Σ1 of 𝑛-cobwith the oriented (𝑛 − 1)-manifold Σ0 ⨿ Σ1 whose orientation is the canonical
one—so that inclusions are orientation preserving. Also, given two cobordisms 𝑀:Σ0 ⇒ Σ1
and 𝑁 :Θ0 ⇒ Θ1 we naturally obtain a cobordism

𝑀 ⨿ 𝑁 :Σ0 ⨿ Θ =⇒ Σ1 ⨿ Θ1.

Denoting by ∅𝑛−1 ∈ 𝑛-cob the empty (𝑛 − 1)-manifold, we know that

∅𝑛−1 ⨿ Σ ≃ Σ ≃ Σ⨿ ∅𝑛−1

for any Σ ∈ 𝑛-cob. Furthermore, if ∅𝑛 :∅𝑛−1 ⇒ ∅𝑛−1 denotes the empty 𝑛-cobordism, we also
find that 𝑀 ⨿∅𝑛 = 𝑀 = ∅𝑛 ⨿𝑀 are the same cobordism classes. This shows that ∅𝑛−1 serves
as a unit with respect to the bifunctor ⨿ in the category 𝑛-cob. Thus we’ve obtained a monoidal
structure (𝑛-cob,⨿,∅).

Back to the construction of cylinders, one can extend the ideas of Example 3.7 to isomorphism
between manifolds. Consider the subcategory C of Man𝑛−1, whose objects are compact oriented
(𝑛 − 1)-manifolds without boundary, and 𝐶∞-isomorphisms between them. Let 𝑓 :Σ0

≃−→ Σ1
be a morphism in C, and define a cobordism (Σ0 × 𝐼 , 𝑖0 , 𝑓

−1
1 ) where 𝑖0:Σ0 → Σ0 × 𝐼 maps Σ0 to

the in-boundary of Σ0 × 𝐼 while 𝑓 −1
1 :Σ1 → Σ0 × 𝐼 maps Σ1 to the out-boundary of Σ0 × 𝐼 via

𝑥 ↦→ ( 𝑓 −1𝑥, 1). Analogously, we define a cobordism (Σ1 × 𝐼 , 𝑓 , 𝑖1). This construction is clear to
make the diagram

Σ1 × 𝐼

Σ0 Σ1

Σ0 × 𝐼

𝑓

𝑖0

𝑖1

𝑓 −1

𝑓×id𝐼 ≃

commute, showing that 𝑓 × id𝐼 is an isomorphism of cobordisms and hence Σ1 × 𝐼 ≃ Σ0 × 𝐼—
this cobordism class will be denoted by Cyl 𝑓 . This construction is functorial, which means
that we can define a functor Cyl: C → 𝑛-cob where we map the objects via inclusions and
𝑓 ↦→ Cyl 𝑓 as described above. Indeed, given another arrow 𝑔:Σ1

≃−→ Σ2 of C, one has
Cyl(𝑔)Cyl( 𝑓 ) = Cyl(𝑔 𝑓 ).

Since ⨿ is a coproduct in Man, there exists a natural isomorphism 𝛾: (− ⨿ −′) ≃
=⇒ (−′ ⨿ −)

in Man𝑛−1. This natural transformation induces, via the cylinder construction, another natural
isomorphism

𝑇 ≔ Cyl ◦𝛾: (− ⨿ −′) ≃
=⇒ (−′ ⨿ −),

this time in 𝑛-cob—which we shall refer to as the twist cobordism. The birth of 𝑇 gives to 𝑛-cob
the structure of a symmetric monoidal category (𝑛-cob,⨿,∅, 𝑇).

6.1. 2-cob. We shall be mostly interested in the case of two dimensional cobordisms, since
for 𝑛 ⩾ 3 the category 𝑛-cob has a highly non-trivial classification. We won’t prove the
classification theorem for 2-cob, which can be found in both [Koc03; Gei22] but nonetheless
we at least state it below. An important part of the proof is that any pair of 2-dimensional
cobordisms are members of the same isomorphism class if and only if they have the same
number of connected components, that is, disjoint circles. This allows us to see the skeleton of
2-cob as N, where each number 𝑚 ∈ N denotes an isomorphism class whose members have a
total of 𝑚 connected components.
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Theorem 6.1 (Classification of 2-cob). Every 2-dimensional cobordism can be decomposed into
the product of the following set of generators:

Those generators are named, from left to right, the cup, cap, cylinder, copants, pants and twist
cobordisms.

In the skeletal view of 2-cob, the cup is a map 1 ⇒ 0, the cap is the map 0 ⇒ 1, the cylinder
is 1 ⇒ 1, copants give 2 ⇒ 1, pants correspond to 1 ⇒ 2, and the twist is a map 2 ≃

=⇒ 2. An
extensive number of relations between these generators can be found in theorem 2.40 of [Gei22],
which we ask the curious reader to take a look.

7. Frobenius Algebras

We now introduce the second main character of our study: Frobenius algebras.

Definition 7.1 (Frobenius algebra). Let (M, ⊗, 1) be a monoidal category, and 𝐴 ∈ M be an object.
A tuple (𝐴, �, �, 𝛿, �) is said to be a Frobenius algebra if it satisfies the following requirements:

• The triple (𝐴, �, �) is a monoid, while (𝐴, 𝛿, �) is a comonoid—where �, �, 𝛿 and � are
arrows of M.

• The diagram, encoding the so called Frobenius relation, commutes in M:

(𝐴 ⊗ 𝐴) ⊗ 𝐴 𝐴 ⊗ 𝐴 𝐴 ⊗ (𝐴 ⊗ 𝐴)

𝐴

𝐴 ⊗ (𝐴 ⊗ 𝐴) 𝐴 ⊗ 𝐴 (𝐴 ⊗ 𝐴) ⊗ 𝐴

≃

𝛿⊗id𝐴 id𝐴 ⊗𝛿

�

≃

𝛿

id𝐴 ⊗� �⊗id𝐴

Pairings and copairings are structures that appear naturally in the context of vector spaces.
Here we’ll generalise this concept to Frobenius algebras:

Lemma 7.2. Let (𝐴, �, �, 𝛿, �) be a Frobenius algebra in (M, ⊗, 1). There exists morphisms
𝛽:𝐴 ⊗ 𝐴 → 1 and �: 1 → 𝐴 ⊗ 𝐴—respectively called pairing and copairing—such that the
following two diagrams commute in M:

𝐴 ⊗ 𝐴 ⊗ 𝐴 𝐴 ⊗ 𝐴

𝐴 ⊗ 𝐴 1

�⊗id𝐴

id𝐴 ⊗� 𝛽

𝛽

𝐴 ⊗ 𝐴 ⊗ 𝐴 𝐴 ⊗ 𝐴

𝐴 ⊗ 𝐴 1

id𝐴 ⊗𝛿

𝛿⊗id𝐴

�

�

Proof. The pairing and copairing can be defined as 𝛽 ≔ �� and � ≔ 𝛿�. Indeed, these
definitions allow for the commutativity of the diagrams, since by Definition 1.5 we have

𝛽(id𝐴 ⊗�) = (��)(id𝐴 ⊗�) = �(�(id𝐴 ⊗�)) = �(�(� ⊗ id𝐴)) = 𝛽(� ⊗ id𝐴),
(𝛿 ⊗ id𝐴)� = (𝛿 ⊗ id𝐴)(𝛿�) = ((𝛿 ⊗ id𝐴)𝛿)� = ((id𝐴 ⊗𝛿)𝛿)� = (id𝐴 ⊗𝛿)�.

♮



12 LUIZ GUSTAVO MUGNAINI ANSELMO N◦USP: 11809746

Our choice of pairing 𝛽 and copairing � in the last proof is, however, not unique. This
motivates for the further restriction of a pairing to that of a non-degenerate one: we say that
𝛽:𝐴 ⊗ 𝐴 → 1 is a non-degenerate pairing if and only if there exists �: 1 → 𝐴 ⊗ 𝐴—called a
non-degenerate copairing—such that the diagram

𝐴 ⊗ 𝐴 ⊗ 𝐴 1 ⊗ 𝐴 ≃ 𝐴

𝐴 ≃ 𝐴 ⊗ 1

𝛽⊗id𝐴

id𝐴 ⊗�

id𝐴

(1)

commutes in the ambient monoidal category M. As shown in [Gei22] lemma 3.21, given
a non-degenerate pairing 𝛽, its corresponding non-degenerate copairing � is unique up to
isomorphism. In fact, the choice of 𝛽 = �� and � = 𝛿� satisfies our non-degeneracy condition.

In our context we shall be mostly concerned with the case where the underlying monoidal
category of a Frobenius algebra is either braided or symmetric. A crucial structure for our main
theorem is that of commutative Frobenius algebras, which we now define.

Definition 7.3 (Commutative Frobenius algebra). We say that a Frobenius algebra (𝐴, �, �, 𝛿, �)
with an underlying braided monoidal category (M, ⊗, 1, 𝛾) is commutative if the following dia-
gram commutes in M:

𝐴 ⊗ 𝐴 𝐴 ⊗ 𝐴

𝐴

𝛾

�
�

Equivalently one could define 𝐴 to be commutative if and only if 𝛿𝛾 = 𝛿 (see lemma 3.27
of [Gei22]).

In order to define a category consisting of Frobenius algebras, we need first consider how
to construct morphisms between such objects. Given any two Frobenius algebras 𝐴 and 𝐴′

in a symmetric monoidal category (M, ⊗, 1, 𝛾), we shall define a Frobenius algebra morphism
𝑓 :𝐴 → 𝐴′ to be a map that is both a monoid and comonoid morphism.

With this definition at hand, we can define the category FrobM of Frobenius algebras of
the symmetric monoidal category M. An important full subcategory is that of commutative
Frobenius algebras, which we’ll denote by cFrobM.

The particular case we’ll be mostly interested in is that of Frobenius algebras in the symmetric
monoidal category Vect𝑘 . As already noted early in the text, in this ambient monoids are 𝑘-
algebras, while comonoids are 𝑘-coalgebras. Therefore, given a Frobenius algebra (𝐴, �, �, 𝛿, �)
over Vect𝑘 there exists a non-degenerate pairing 𝛽 ≔ ��:𝐴 ⊗ 𝐴 → 𝑘 and non-degenerate
copairing � ≔ 𝛿�: 𝑘 → 𝐴 ⊗ 𝐴. From lemma 2.1.13 of [Koc03] we conclude that 𝐴 must be a
finite dimensional 𝑘-vector space. With this in hands we find that a Frobenius algebra over
Vect𝑘 is simply a finite dimensional 𝑘-algebra 𝐴 equipped with an associative2 non-degenerate
pairing 𝐴 ⊗ 𝐴 → 𝑘.

8. Topological Quantum Field Theories

The end our our brief journey is nigh, and we’ll now get to know a fraction of topological
quantum field theory.

2Given a 𝑘-algebra 𝑅 and a pairing 𝑓 :𝑉 ⊗𝑊 → 𝑘 where 𝑉 is a right 𝑅-module and 𝑊 is a left 𝑅-module, we say
that 𝑓 is associative if for any pair 𝑥, 𝑦 ∈ 𝑉 and 𝑟 ∈ 𝑅 one has 𝑓 (𝑥 ⊗ (𝑟 · 𝑦)) = 𝑓 ((𝑥 · 𝑟) ⊗ 𝑦).
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Definition 8.1. An 𝑛-dimensional topological quantum field theory over a field 𝑘 is a symmetric
monoidal functor 𝑍: 𝑛-cob → Vect𝑘 . The collection of 𝑛-dimensional TQFT’s over a field 𝑘,
and monoidal natural transformations between them, forms a category

𝑛-TQFT𝑘 = SymMon(𝑛-cob, Vect𝑘).

The next theorem comes simultaneously as a great and bad news. Topological quantum
field theories can only realise finite dimensional spaces, which can be great for computational
purposes, but in general cannot withstand many important physical applications that demand
infinite dimensions.

Theorem 8.2. Let 𝑍 ∈ 𝑛-TQFT𝑘 be any topological quantum field theory. Then the image of 𝑍
is a 𝑘-vector space equipped with a non-degenerate pairing—hence finite dimensional.

Proof. Let Σ ∈ 𝑛-cob be any object, and denote by Σ ∈ 𝑛-cob the manifold with opposite
orientation. Consider cobordisms 𝑀:Σ ⨿ Σ ⇒ ∅𝑛−1 and 𝑁 :∅𝑛−1 ⇒ Σ ⨿ Σ. Since 𝑍 is a
symmetric monoidal functor, these cobordisms induce 𝑘-linear morphisms 𝑍𝑀:𝑍Σ ⊗ 𝑍Σ → 𝑘

and 𝑍𝑁 : 𝑘 → 𝑍Σ ⊗ 𝑍Σ. Notice that we can decompose the cylinder Σ × 𝐼 as

Σ × 𝐼 ≃
(
(Σ × 𝐼) ⨿ 𝑁

) (
𝑀 ⨿ (Σ × 𝐼)

)
,

thus by applying 𝑍 we obtain the equality

id𝑍Σ =
(
𝑍𝑀 ⊗ id𝑍Σ

) (
id𝑍Σ ⊗𝑍𝑁

)
which is exactly the condition of commutativity imposed by Eq. (1)—thus 𝑍𝑀 is a non-
degenerate pairing and 𝑍𝑁 its respective non-degenerate copairing. ♮

We know from Theorem 6.1 that objects of 2-cob are disjoint unions of circles and can
be uniquely assigned to natural numbers 𝑛 ∈ N corresponding to ⨿𝑛𝑆1. Since a TQFT 𝑍 is a
monoidal functor, one has 𝑍(⨿𝑛𝑆1) = (𝑍𝑆1)⊗𝑛 . From this we can see that in order to understand
how a 2-dimensional topological quantum field theory acts on a 2-dimensional cobordism it is
sufficient to understand its action on a circle. To that end, we shall define more two structures.

Definition 8.3 (Free monoidal category over a Frobenius algebra). Let (𝜒, ⊗, 0) be a monoidal
category with a skeleton generated by 1—that is, the objects of 𝜒 are of the form 𝑛 = 1⊗𝑛—
and whose morphisms are generated by arrows �: 2 → 1, 𝛿: 1 → 2, �: 0 → 1, and �: 1 → 0.
Moreover, we impose that the following relations are satisfied:

• Commutativity: �(id ⊗�) = id = �(� ⊗ id).
• Cocommutativity: (id ⊗�)𝛿 = id = (� ⊗ id)𝛿.
• Frobenius relations: (id ⊗�)(𝛿 ⊗ id) = 𝛿� = (� ⊗ id)(id ⊗𝛿).

That is, the tuple (1, �, �, 𝛿, �) is a Frobenius algebra. With these conditions being satisfied, we
shall call 𝜒 a free monoidal category over the Frobenius algebra 1.

As an immediate consequence of the imposed relations, we find that they also obey:
• Associativity: �(id ⊗�) = �(� ⊗ id).
• Coassociativity: (𝛿 ⊗ id)𝛿 = (id ⊗𝛿)𝛿.

This shows a strong relationship to the properties of the generator 𝑆1 and 2-cob. We still
however lack any kind of twist morphism. This will be solved by the next definition.

Definition 8.4 (Free symmetric monoidal category over a Frobenius algebra). Let (𝜒, ⊗, 0) be a
free monoidal category over a Frobenius algebra 1. If we equip 𝜒 with a braiding 𝛾: 2 ≃−→ 2 and
impose relations �𝛾 = � and 𝛾𝛿 = 𝛿, it follows that (1, �, �, 𝛿, �) is a commutative Frobenius
algebra, and we call 𝜒 a free symmetric monoidal category over 1.
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With this definition we have that 2-cob is equivalent to any free symmetric monoidal category
over a Frobenius algebra, where the braiding 𝛾 plays the role of the twist generator of 2-cob.

Since (symmetric) monoidal functors preserve the (symmetric) monoidal structure, in par-
ticular, for any 𝑍 ∈ 2-TQFT𝑘 , the image 𝑍𝑆1 of the commutative Frobenius algebra 𝑆1 ∈ 2-cob is
itself a commutative Frobenius algebra over the symmetric monoidal category Vect𝑘 .

9. Equivalence Theorems

At last we reached the climax, we shall now show the connections between what we’ve been
studying in the last few pages.

Theorem 9.1. Let 𝜒 be a free monoidal category over a Frobenius algebra 1. If (M, ⊗, 𝑒) is any
monoidal category, then there exists a natural isomorphism

Mon(𝜒, M) ≃ FrobM.
Proof. Let 𝐺: 𝜒 → M be any monoidal functor, and define the Frobenius algebra 𝐺(1) = 𝐹.
From the definition of 𝐺 we know that any object 𝑛 ∈ 𝜒 has an image 𝐺𝑛 = 𝐹⊗𝑛 . For the
arrow generators, we find their image under 𝐺 satisfy all the needed conditions for the tuple
(𝐹, 𝐺�, 𝐺�, 𝐺𝛿, 𝐺�) to be a Frobenius algebra.

On the other hand, if we start with the Frobenius algebra 𝐹 ∈ FrobM, we can associate to it
the monoidal functor 𝜒 → M that maps 1 to 𝐹 and the arrow generators corresponding to the
important arrows of 𝐹 as described in the last paragraph. With this we arrive exactly at the
functor 𝐺.

Let 𝑁, 𝑁′ ∈ Mon(𝜒, M) be any two monoidal functors, and consider a monoidal natural
transformation 𝜏: 𝑁 ⇒ 𝑁′ between them. Denote by 𝐹 and 𝐹′ the Frobenius algebras 𝑁(1) and
𝑁′(1), respectively. For any object 𝑛 ∈ 𝜒, the morphism 𝜏𝑛 is merely the 𝑛-th tensor product of
the map 𝜏1: 𝐹 → 𝐹′. From naturality of 𝜏, the generators of 𝜒 induce the following commutative
diagrams:

𝐹 ⊗ 𝐹 𝐹′ ⊗ 𝐹′

𝐹 𝐹′

𝜏2

𝑁� 𝑁′�

𝜏1

𝐹 𝐹′

𝑒 𝑒

𝜏1

𝑁�

𝜏0

𝑁′�

𝐹 𝐹′

𝐹 ⊗ 𝐹 𝐹′ ⊗ 𝐹′

𝜏1

𝑁𝛿 𝑁′𝛿

𝜏2

𝑒 𝑒

𝐹 𝐹′

𝜏0

𝑁�

𝜏1

𝑁′�

The first two commutative squares say that 𝜏1 is a monoid morphism, while the last two
squares say that 𝜏1 is a comonoid morphism. By definition we conclude that 𝜏1 is a morphism
of Frobenius algebras.

At last, if we start with a given morphism of Frobenius algebras, we must use the data
provided by its action on the generating arrows and the above commutative squares to construct
a monoidal natural transformation. With these steps we find again the same transformation 𝜏,
as wanted. ♮

We now include an additional requirement of symmetry to the monoidal category and
extend the proof of Theorem 9.1 to our needs.

Theorem 9.2. Let 𝜒 be a free symmetric monoidal category over a commutative Frobenius
algebra 1 with braiding 𝛾. If (M, ⊗, 𝑒 , 𝜎) is any symmetric monoidal category, then there exists
a natural isomorphism

SymMon(𝜒, M) ≃ cFrobM.
Proof. From previous considerations, for any symmetric monoidal functor 𝜏: 𝜒 → M we have
𝜏𝛾 = 𝜎 and we obtain a commutative Frobenius algebra (𝜏(1), 𝜏�, 𝜏�, 𝜏𝛿, 𝜏�).

From the proof of Theorem 9.1, any commutative Frobenius algebra in M can be used to define
a unique monoidal functor 𝜒 → M. Moreover, the braiding 𝛾 induces a symmetric structure to
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such fuctor. Therefore the chosen commutative Frobenius algebra uniquely defines a unique
object in SymMon(𝜒, M).

For arrows, given any monoidal natural transformation 𝜏: 𝑆 ⇒ 𝑆′ between symmetric
monoidal functors 𝑆, 𝑆′ ∈ SymMon(𝜒, M). Denote 𝐹 ≔ 𝑆(1) and 𝐹′ ≔ 𝑆′(1). By the last the-
orem we obtain a morphism of Frobenius algebras 𝜏1: 𝐹 → 𝐹′ which trivially satisfies the
commutativity of the square

𝐹 ⊗ 𝐹 𝐹′ ⊗ 𝐹′

𝐹 ⊗ 𝐹 𝐹′ ⊗ 𝐹′

𝑆𝛾=𝜎

𝜏2

𝑆′𝛾=𝜎

𝜏2

(2)

This shows that 𝜏1 is in fact a morphism between commutative Frobenius algebras. Now if
we start with a morphism in cFrobM we can—as described in the last proof—obtain a unique
monoidal functor 𝜒 → M. This monoidal functor will however be symmetric, due to the data
provided by the additional commutative square Eq. (2). With this we prove the wanted natural
equivalence of categories. ♮

Now our main result comes merely as a free corollary of the last theorem.

Corollary 9.3. There exists a natural isomorphism
2-TQFT𝑘 ≃ cFrobVect𝑘 .

Proof. Notice that since 2-TQFT𝑘 = SymMon(2-cob, Vect𝑘) we can apply Theorem 9.2 and obtain
the wanted natural isomorphism. ♮

With this we reach the end of our hasty expedition through the deep forest of topological
quantum field theory, of which we only ventured its borders. I’m grateful for the reader who
spent the time to read until the very end. For those who got motivated to read further, a
possible continuation would be [Lur09]—which I didn’t use as a reference, but wish I could.
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