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Chapter 1

Categories

1.1 Sets and Universes
In order to deal with size issues in the theory of categories, we shall work inside what

are called universes.

Definition 1.1.1 (Universe). A universe 𝒰 is defined as a set satisfying the following

properties

(U1) ∅ ∈ 𝒰 .

(U2) If 𝑢 ∈ 𝒰 , then 𝑢 ⊆ 𝒰 .

(U3) If 𝑢 ∈ 𝒰 , then {𝑢} ∈ 𝒰 .

(U4) If 𝑢 ∈ 𝒰 , then 2
𝑢 ∈ 𝒰 .

(U5) If we have an indexing set 𝐼 ∈ 𝒰 , for which we associate a collection {𝑢𝑖 ∈ 𝒰}𝑖∈𝐼 ,
then

⋃
𝑖∈𝐼 𝑢𝑖 ∈ 𝒰 .

(U6) N ∈ 𝒰 .

As a consequence of such properties, a universe also satisfies

(U7) If 𝑢 ∈ 𝒰 , then

⋃
𝑥∈𝑢 𝑥 ∈ 𝒰 .

(U8) Given 𝑢, 𝑣 ∈ 𝒰 , we have 𝑢 × 𝑣 ∈ 𝒰 .

(U9) If 𝑣 ∈ 𝒰 , and we have 𝑢 ⊆ 𝑣, then 𝑢 ∈ 𝒰 .

(U10) If 𝐼 ∈ 𝒰 is an idexing set with an associated collection {𝑢𝑖 ∈ 𝒰}𝑖∈𝐼 , then

∏
𝑖∈𝐼 𝑢𝑖 ∈

𝒰 .

Axiom 1.1.2 (Grothendieck’s axiom to ZF set theory). For any set 𝑋, there exists an

universe𝒰 for which 𝑋 ∈ 𝒰 .

For some commonly used terminology, we say that a set 𝑥 is a 𝒰 -set if 𝑥 ∈ 𝒰 .

Moreover, a set 𝑥 is called𝒰 -small if it is isomorphic to some set 𝑠 ∈ 𝒰 .

Orderings are another important topic when dealing with sets, we shall define now

some of these concepts.
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Definition 1.1.3. Let 𝐼 be a set. We define the following:

• An order on the set 𝐼 is a relation ⩽ satisfying the following properties:

(a) The order is reflexive — that is, for all 𝑖 ∈ 𝐼, we have 𝑖 ⩽ 𝑖.

(b) The order is transitive — given any three elements 𝑖 , 𝑗 , 𝑘 ∈ 𝐼 such that 𝑖 ⩽ 𝑗

and 𝑗 ⩽ 𝑘, it follows that 𝑖 ⩽ 𝑘.

(c) The order is anti-symmetric — given any two elements 𝑖 , 𝑗 ∈ 𝐼, if 𝑖 ⩽ 𝑗 and

𝑗 ⩽ 𝑖, then 𝑖 = 𝑗.

• An order is said to be directed, or filtrant, if 𝐼 is non-empty and, for every 𝑖 , 𝑗 ∈ 𝐼,
there exists 𝑘 ∈ 𝐼 for which 𝑖 ⩽ 𝑘 and 𝑗 ⩽ 𝑘.

• An order is said to be total if, given any 𝑖 , 𝑗 ∈ 𝐼, necessarily have at least one of

the following relations: 𝑖 ⩽ 𝑗 or 𝑗 ⩽ 𝑖.

• The set 𝐼 is said to be inductively ordered if, for any totally ordered subset 𝐽 ⊆ 𝐼, 𝐽
has an upper bound 𝑢 ∈ 𝐼 for which 𝑗 ⩽ 𝑢 for all 𝑗 ∈ 𝐽

• If 𝐼 is ordered by the relation ⩽, we define a strict relation < as, given 𝑖 , 𝑗 ∈ 𝐼, we

have 𝑖 ⩽ 𝑗 if and only if 𝑖 ⩽ 𝑗 and 𝑖 ≠ 𝑗.

1.2 Categories
Definition 1.2.1 (Category). A category C consists of the following data

(C1) A collection of objects. We say that 𝑋 is an object of C by writing 𝑋 ∈ C or

𝑋 ∈ Obj(C)1.

(C2) For every given pair of objects 𝑋,𝑌 ∈ C there exists a collection
2

of morphisms

MorC(𝑋,𝑌) with source 𝑋 and target 𝑌. The collection of morphisms between

objects of C is denoted Mor(C).

(C3) For every object 𝑋 ∈ C, there exists an identity morphism id𝑋 ∈ MorC(𝑋, 𝑋).

(C4) For every triple of given objects 𝑋,𝑌, 𝑍 ∈ C, there exists a composition map

MorC(𝑋,𝑌) ×MorC(𝑌, 𝑍) →MorC(𝑋, 𝑍).

So that for given morphisms 𝑓 ∈ MorC(𝑋,𝑌) and 𝑔 ∈ MorC(𝑌, 𝑍) there exists a

uniquely defined map 𝑔 𝑓 ∈ MorC(𝑋, 𝑍) such that the following diagram com-

mutes

𝑌 𝑍

𝑋

𝑔

𝑓
𝑔 𝑓

1
We shall adopt the former notation, which should not cause any confusion.

2
It should be stressed that this collection may well be empty.
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(C5) For every morphism 𝑓 :𝑋 → 𝑌 we have that

𝑋 𝑌
𝑓

id𝑋 id𝑌

so that id𝑌 𝑓 = 𝑓 = 𝑓 id𝑋 .

(C6) Given objects𝑊, 𝑋,𝑌, 𝑍 ∈ C, the following diagram commutes

𝑊 𝑋 𝑌 𝑍
𝑓

𝑔 𝑓

ℎ(𝑔 𝑓 )

(ℎ𝑔) 𝑓

𝑔

ℎ𝑔

ℎ

that is, ℎ(𝑔 𝑓 ) = (ℎ𝑔) 𝑓 .

Notation 1.2.2 (On arrows and diagrams). I’ll adopt throughout this whole text a series

of notations regarding morphisms, diagrams and so on, here I collect some of those:

given a category C and objects 𝑥, 𝑦, 𝑧 ∈ C

• An arrow 𝑥 ↣ 𝑦 denotes a monomorphism — to be seen in Definition 1.3.3.

• An arrow 𝑥 ↠ 𝑦 denotes an epimorphism — to be seen in Definition 1.3.4.

• An arrow 𝑥 ≃−→ 𝑦 denoted an isomorphism — to be seen in Definition 1.2.6. We say

that 𝑥 is isomorphic to 𝑦, and write 𝑥 ≃ 𝑦, if there exists an isomorphism 𝑥 ≃−→ 𝑦.

• Given arrows 𝑓 : 𝑥 → 𝑦 and 𝑔: 𝑦 → 𝑧 in C, we denote the composition of 𝑓 with 𝑔

by the juxtaposition 𝑔 𝑓 : 𝑥 → 𝑧3
.

• Let the following be a commutative diagram on C (that is, 𝑓 𝑔 = ℎ):

𝑥 𝑦

𝑧

𝑓

ℎ
𝑔

The dashed arrow 𝑔: 𝑦 → 𝑧 denotes that 𝑔 is the unique morphism between 𝑦 and

𝑧 in the category C such that 𝑓 𝑔 = ℎ.

• The diagram in C

𝑥 𝑦 𝑧
ℎ

𝑔 𝑓

denotes that 𝑓 𝑔 = 𝑓 ℎ.

Definition 1.2.3 (Small). A category C is said to be small if it is composed of a set’s

worth of morphisms.

3
When need be, we may use the symbol 𝑔 ◦ 𝑓 to denote the composition 𝑔 𝑓 .
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Definition 1.2.4 (Locally small). A category C is said to be locally small if for any objects

𝐴, 𝐵 ∈ C there exists a set’s worth of morphisms 𝐴 and 𝐵.

Corollary 1.2.5 (Unique identity). Given a category C and an object 𝑐 ∈ C, the identity

id𝑐 ∈ Mor(C) is unique.

Proof. Let 𝑓 : 𝑐 → 𝑐 be an identity of 𝑐, then 𝑓 = 𝑓 id𝑐 = id𝑐 . ♮

Definition 1.2.6 (Isomorphism). Given a category C and objects 𝐴, 𝐵 ∈ C, we define a

morphism 𝑓 ∈ Mor(𝐴, 𝐵) to be an isomorphism if and only if it has a both sided inverse,

so that exists 𝑓 −1 ∈ Mor(𝐵, 𝐴) such that 𝑓 −1 𝑓 = id𝐴 and 𝑓 𝑓 −1 = id𝐵.

Proposition 1.2.7. Given an isomorphism 𝑓 , its inverse is unique.

Proof. Suppose for instance that there are two such functions, 𝑔, ℎ ∈ Mor(𝐵, 𝐴), that

act as an inverse for 𝑓 ∈ Mor(𝐴, 𝐵). Note that

𝑔 = 𝑔 id𝐵 = 𝑔( 𝑓 ℎ) = (𝑔 𝑓 )ℎ = id𝐴 ℎ = ℎ

Thus 𝑔 = ℎ and therefore the inverse is indeed unique. ♮

Definition 1.2.8 (Non-empty category). A category is said to be non-empty if the col-

lection of objects is non-empty.

Definition 1.2.9 (Discrete category). A category is said to be discrete if all morphisms

are the identity morphisms.

Example 1.2.10. Given a set 𝐼, one can view 𝐼 as a category whose objects are the

elements of 𝐼 and morphisms are identities — that is, Mor𝐼(𝑥, 𝑦) is the identity when

𝑥 = 𝑦, while empty if 𝑥 ≠ 𝑦.

Definition 1.2.11 (Finite category). A category is said to be finite if the collection of all

morphisms is a finite set. This category will be of important use when dealing with

limits.

Definition 1.2.12 (Connected category). A category C is said to be connected if it is non-

empty and, for every pair 𝑥, 𝑦 ∈ C, there exists a finite sequence of objects (𝑥0, . . . , 𝑥𝑛),
𝑥 𝑗 ∈ 𝒞 for all 0 ⩽ 𝑗 ⩽ 𝑛, such that 𝑥0 = 𝑥, 𝑥𝑛 = 𝑦 and at least one of the collections of

morphisms MorC(𝑥 𝑗 , 𝑥 𝑗+1) or MorC(𝑥 𝑗+1, 𝑥 𝑗) is non-empty for every 0 ⩽ 𝑗 ⩽ 𝑛 − 1

Definition 1.2.13 (Monoid). A monoid is a set 𝑀 equipped with a binary operation

⊗:𝑀 ×𝑀 → 𝑀 and a neutral element 𝑒 ∈ 𝑀. The binary operation is associative and

obeys the right and left unit laws, that is

𝑥 ⊗ (𝑦 ⊗ 𝑧) = (𝑥 ⊗ 𝑦) ⊗ 𝑧 and 𝑒 ⊗ 𝑥 = 𝑥 = 𝑥 ⊗ 𝑒.

Example 1.2.14. A monoid 𝑀 defines a category with one object, denoted BM, such that

Obj(BM) = {∗} and MorBM(∗, ∗) = 𝑀. Composition of morphisms 𝑓 , 𝑔: ∗ → ∗ is defined

as 𝑔 𝑓 = 𝑔 ⊗ 𝑓 . The identity morphism is id∗ = 𝑒. Hence we have 𝑒 ∗ 𝑓 = 𝑓 = 𝑓 ∗ 𝑒 for

all morphisms 𝑓 ∈ Mor(BM).
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Definition 1.2.15 (Groupoids). A groupoid is the name given to a category in which all

of its morphisms are isomorphisms.

Definition 1.2.16 (Group). A group is a groupoid with one object.

Definition 1.2.17 (Automorphism). Given a category C and an object 𝐴 ∈ C, we define

an automorphism of 𝐴 to be an isomorphism 𝐴 → 𝐴. The set consisting of all such

automorphisms of this object is denoted Aut(𝐴), the automorphisms have properties:

i. The composition of two automorphisms is an automorphism.

ii. Composition is associative.

iii. id𝐴 ∈ Aut(𝐴).

iv. Every automorphism 𝑓 ∈ Aut(𝐴) has an inverse 𝑓 −1 ∈ Aut(𝐴).

With this, the structure Aut(𝐴) is a group, for all choices of objects 𝐴 ∈ C.

Definition 1.2.18 (Subcategory). Let C be a category. We define D ⊆ C as a subcategory

of C if: Obj(D) is a restriction of Obj(C); for all 𝐴 ∈ Obj(D) there exists id𝐴 ∈ Mor(D);
for any 𝑓 ∈ Mor(D) there exists dom( 𝑓 ), cod( 𝑓 ) ∈ Obj(D); for any composable pair of

morphisms 𝑓 , 𝑔 ∈ Mor(D) there exists 𝑓 𝑔 ∈ Mor(D).

Lemma 1.2.19. Any category C contains a subcategory containing all of the objects and

whose morphisms are only the isomorphisms. Such subcategory is called a maximal

groupoid.

Proof. We are going to prove that the maximal groupoid, name it G is indeed a sub-

category of C. Notice that Obj(G) = Obj(C), moreover every identity is an isomor-

phism, then id∗ ∈ Mor(G). Let 𝑓 ∈ Mor(G) then in particular we have 𝑓 ∈ Mor(C)
and hence dom 𝑓 , codom 𝑓 ∈ Obj(C) = Obj(G). Consider 𝑓 ∈ MorG(𝐴, 𝐵) and 𝑔 ∈
MorG(𝐵, 𝐶), composable isomorphisms, and notice that 𝑓 −1𝑔−1 ∈ MorC(𝐶, 𝐴) is such

that ( 𝑓 −1𝑔−1)(𝑔 𝑓 ) = id𝐴 and (𝑔 𝑓 )( 𝑓 −1𝑔−1) = id𝐶 , hence we conclude that 𝑔 𝑓 is an

isomorphism and therefore 𝑔 𝑓 ∈ MorG(𝐴, 𝐶). ♮

Definition 1.2.20 (Full subcategory). A subcategory D of C (see Definition 1.2.18) is

said to be a full subcategory if for all 𝑥, 𝑦 ∈ D we have MorD(𝑥, 𝑦) = MorC(𝑥, 𝑦). The full

subcategory D is said to be saturated if 𝑥 ∈ C is also an object of Dwhenever there exists

an object 𝑢 ∈ D such that 𝑥 ≃ 𝑢 in 𝒞 .

Definition 1.2.21 (Skeleton). Given a category C, we define the skeleton of C, denoted

by sk C, to be the full subcategory of C such that, for every 𝑐 ∈ C, there exists a unique
object 𝑠 ∈ sk C such that 𝑐 ≃ 𝑠 in C. Furthermore, we say that a category D is skeletal if

D = sk D.

Example 1.2.22 (Set based categories). The following are some important categories

regarding sets:

• The category Set consists of𝒰 -sets and set-maps between such objects.
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• The category consisting of finite 𝒰 -sets and set-maps between them is a full

subcategory of Set, we denote it by FinSet.

• We also define the category pSet of pointed𝒰 -sets, that is, objects are pairs (𝑋, 𝑥),
where 𝑋 is a 𝒰 -set and 𝑥 ∈ 𝑋. Morphisms 𝑓 : (𝑋, 𝑥) → (𝑌, 𝑦) are defined to be

maps 𝑓 :𝑋 → 𝑌 such that 𝑓 (𝑥) = 𝑦.

Remark 1.2.23. The structure consisting of all sets and the set-maps between them

does not shape a category, since the collection of all sets is not itself a set.

Example 1.2.24. Let (𝐼 ,⩽) be an ordered set. We define a category I associated with 𝐼

to consist of the collection of objects contained in 𝐼, and

MorI(𝑖 , 𝑗) =
{
{∗}, if 𝑖 ⩽ 𝑗

∅, otherwise

Definition 1.2.25 (Morphism category). Let C be a category. We’ll denote by Mor(C)
the category whose objects are morphisms in C and whose morphisms between given

objects 𝑓 : 𝑥 → 𝑦 and 𝑔: 𝑧 → 𝑤 are pairs of morphisms (𝑢, 𝑣), with 𝑢: 𝑥 → 𝑧 and

𝑣: 𝑦 → 𝑤 such that the following diagram commutes

𝑥 𝑧

𝑦 𝑤

𝑓

𝑢

𝑔

𝑣

That is, Mor
Mor(C)( 𝑓 , 𝑔) ≔ {(𝑢, 𝑣) ∈ MorC(𝑥, 𝑧) ×MorC(𝑦, 𝑤) : 𝑔𝑢 = 𝑣 𝑓 }.

Proposition 1.2.26 (Slice category). Given a category C and an object 𝑐 ∈ C. The

following define categories:

(SC1) (Slice under 𝑐) A category 𝑐/C, called slice category of C under 𝑐, whose objects

are morphisms 𝑓 ∈ MorC(𝑐, ∗). Given objects 𝑓 , 𝑔 ∈ 𝑐/C such that 𝑓 : 𝑐 → 𝑥

and 𝑔: 𝑐 → 𝑦, we define a morphism 𝑓 → 𝑔 as a map ℎ: 𝑥 → 𝑦 such that the

following diagram commutes

𝑐

𝑥 𝑦

𝑓 𝑔

ℎ

that is, 𝑔 = ℎ 𝑓 .

(SC2) (Slice over 𝑐) A category C/𝑐, called the slice category of C over 𝑐, whose objects

are morphisms 𝑓 ∈ MorC(∗, 𝑐). Morphisms between objects 𝑓 , 𝑔 ∈ C/𝑐 such that

𝑓 : 𝑥 → 𝑐 and 𝑔: 𝑦 → 𝑐 are maps ℎ: 𝑥 → 𝑦 such that the following diagram

commutes

𝑥 𝑦

𝑐

ℎ

𝑓 𝑔
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so that 𝑓 = 𝑔ℎ.

Proof. (SC1) Given objects 𝑓 , 𝑔 ∈ 𝑐/Cwe have from construction that

Mor𝑐/C( 𝑓 , 𝑔) = MorC(cod 𝑓 , cod 𝑔),

hence we are ensured of the existence of such morphisms between objects. Given an

object 𝑓 : 𝑐 → 𝑥, the morphism id𝑥 ∈ Mor(C) is such that 𝑓 = id𝑥 𝑓 , so that id𝑥 is

the identity morphism for 𝑓 . Let 𝑓 , 𝑔, 𝑢 ∈ 𝑐/C be objects such that 𝑓 : 𝑐 → 𝑥, 𝑔: 𝑐 →
𝑦, 𝑢: 𝑐 → 𝑧, then there exists morphisms ℎ ∈ Mor𝑐/C( 𝑓 , 𝑢) and ℓ : Mor𝑐/C(𝑢, 𝑔) so that

the following diagram commutes

𝑐

𝑥 𝑧 𝑦

𝑓
𝑢

𝑔

ℎ ℓ

so that we have a uniquely defined morphism ℓ ℎ ∈ MorC(𝑥, 𝑦), where ℓ ℎ ∈ Mor𝑐/C( 𝑓 , 𝑔)
and thus this defines a map Mor𝑐/C( 𝑓 , 𝑢)×Mor𝑐/C(𝑢, 𝑔) →Mor𝑐/C( 𝑓 , 𝑔). Since id𝑥 , id𝑧 ∈
Mor(𝑐/C) for any 𝑥, 𝑦 ∈ C, then given 𝑓 , 𝑢 ∈ 𝑐/C just as above, the morphism ℎ: 𝑥 → 𝑧

is such that id𝑧 ℎ = ℎ = ℎ id𝑥 . In addition to the objects and morphisms named above,

define 𝑣: 𝑐 → 𝑤 and the corresponding morphism 𝑡 ∈ Mor𝑐/C(𝑔, 𝑣) so that 𝑡: 𝑦 → 𝑤

and 𝑣 = 𝑡 𝑔. From the fact that C is a category, we find that (𝑡ℓ )ℎ = 𝑡(ℓ ℎ) and hence the

same is true for 𝑐/C.
(SC2) Let 𝑓 , 𝑔 ∈ C/𝑐, then from definition we have MorC/𝑐( 𝑓 , 𝑔) = MorC(dom 𝑓 , dom 𝑔),

which is well defined on C. Given an object 𝑓 : 𝑥 → 𝑐, there exists id𝑥 : 𝑥 → 𝑥 so that

𝑓 = 𝑓 id𝑥 and hence id𝑥 is the identity morphism for 𝑓 . Define objects 𝑓 , 𝑔, 𝑢 ∈ C/𝑐
such that 𝑓 : 𝑥 → 𝑐, 𝑔: 𝑦 → 𝑐, 𝑢: 𝑐 → 𝑧, and morphisms ℎ ∈ MorC/𝑐(𝑢, 𝑓 ) and

ℓ ∈ MorC/𝑐(𝑔, 𝑢). Then, the following diagram commutes

𝑥 𝑧 𝑦

𝑐

ℎ ℓ

𝑓
𝑢

𝑔

hence the morphism ℎℓ ∈ MorC(𝑦, 𝑥) defines a morphism ℎℓ ∈ MorC/𝑐(𝑔, 𝑓 ) so that

we can construct a map well defined map MorC/𝑐(𝑔, 𝑢) ×MorC/𝑐(𝑢, 𝑓 ) →MorC/𝑐(𝑔, 𝑓 ).
Moreover, given 𝑓 and 𝑢 as above, we have that there exists id𝑥 , id𝑧 ∈ Mor(C/𝑐) so

that from the category C it follows that id𝑥 ℎ = ℎ id𝑧 . In addition to the above, define

𝑣:𝑤 → 𝑐 and the morphism 𝑡 ∈ MorC/𝑐(𝑣, 𝑔) so that 𝑡:𝑤 → 𝑦. Then we have 𝑔 = 𝑡𝑣

and since C is a category, we find that (ℎℓ )𝑡 = ℎ(ℓ 𝑡). ♮

Initial & Final Objects
Definition 1.2.27 (Initial, final and zero objects). Given a category C, we define the

following objects:

9



(a) An object 𝐼 ∈ C is said to be an initial object in the category C if, for all 𝐴 ∈ C, there

exists exactly one morphism 𝑓 ∈ Mor(𝐼 , 𝐴) so that Mor(𝐼 , 𝐴) = 𝑓 .

(b) An object 𝐹 ∈ C is said to be a final object in C if there is exactly one morphism

𝑔 ∈ Mor(𝐴, 𝐹) for all given 𝐴 ∈ C and thus Mor(𝐴, 𝐹) = 𝑔.

(c) An object 𝑂 ∈ C is said to be a zero object if it is both initial and terminal.

Proposition 1.2.28. Let a category C, then initial and final objects are said to be unique

up to a unique isomorphism:

I. If 𝐼 , 𝐼′ ∈ C are initial objects of the category, then 𝐼 ≃ 𝐼′, where the isomorphism

𝜑𝐼 : 𝐼
≃−→ 𝐼′ is unique.

II. If 𝐹, 𝐹′ ∈ C are initial objects of the category, then 𝐹 ≃ 𝐹′, where the isomorphism

𝜑𝐹: 𝐹 ≃−→ 𝐹′ is unique.

Proof. Since 𝐼 , 𝐼′ are both initial objects of C then exists a unique morphism 𝑓 ∈
Mor(𝐼 , 𝐼′) and there exists a unique 𝑔 ∈ Mor(𝐼′, 𝐼) from which we can compose and

conclude that 𝑓 𝑔 = id𝐼′ and 𝑔 𝑓 = id𝐼 and thus 𝑓 and 𝑔 are isomorphisms and also

𝑓 −1 = 𝑔 and 𝑔−1 = 𝑓 . For final objects the same reasoning works and thus the proof

will be omitted. ♮

We normally say that a given construction satisfies a universal property if such con-

struction is a terminal object of the category.

1.3 Duality
Definition 1.3.1 (Opposite category). Let C be a category. We define the opposite

category of C as Cop
, such that

(COP1) Obj(Cop) = Obj(C).
(COP2) Given a morphism 𝑓 : 𝑥 → 𝑦 in C, there exists a corresponding morphism

𝑓 op
: 𝑦 → 𝑥 in the Cop

. That is dom 𝑓 = cod 𝑓 op
and cod 𝑓 = dom 𝑓 op

, these

form all of the morphisms in the category Cop
.

(COP3) For all 𝐴 ∈ Cop
, there exists an identity morphism id

op

𝐴
∈ EndCop(𝐴).

(COP4) A pair of morphisms 𝑓 op, 𝑔op ∈ Cop
is composable, so that dom 𝑔op = cod 𝑓 op

,

if and only if the pair 𝑔, 𝑓 ∈ C is composable, that is dom 𝑓 = cod 𝑔. Moreover,

we define their composition as 𝑔op 𝑓 op = ( 𝑓 𝑔)op
.

Lemma 1.3.2. The following propositions are equivalent

(a) 𝑓 : 𝑥 ≃−→ 𝑦 is an isomorphism in C.

(b) For all 𝑐 ∈ C, the map

𝑓∗: MorC(𝑐, 𝑥) →MorC(𝑐, 𝑦), 𝑔
𝑓∗↦−→ 𝑓 𝑔

is a bĳection.
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(c) For all 𝑐 ∈ C, the map

𝑓 ∗: MorC(𝑥, 𝑐) →MorC(𝑦, 𝑐), 𝑔
𝑓 ∗

↦−→ 𝑔 𝑓

is a bĳection.

Proof. ((a)⇒ (b)) Let 𝑓 : 𝑥 ≃−→ 𝑦 be an isomorphism and 𝑐 ∈ C be an object and define

ℓ : 𝑦 ≃−→ 𝑥 to be its inverse. Given 𝑐 ∈ C, define ℓ∗: MorC(𝑐, 𝑦) → MorC(𝑐, 𝑥). Notice that

𝑓∗ℓ∗: MorC(𝑐, 𝑦) →MorC(𝑐, 𝑦)mapping 𝑔 ↦→ 𝑓∗(ℓ∗(𝑔)) = 𝑓 ℓ 𝑔 = 𝑔, hence 𝑓∗ℓ∗ = id
MorC(𝑐,𝑦).

Moreover, we have ℓ∗ 𝑓∗: MorC(𝑐, 𝑥) → MorC(𝑐, 𝑥) mapping ℎ ↦→ ℓ∗( 𝑓∗(ℎ)) = ℎ 𝑓 ℓ = ℎ,

hence ℓ∗ 𝑓∗ = id
MorC(𝑐,𝑥). This shows that ℓ∗ is the inverse of 𝑓∗ and therefore 𝑓∗ is an

isomorphism. ((b)⇒ (a)) Suppose the contrary, so that 𝑓∗ is an isomorphism. In par-

ticular, we can take 𝑐 = 𝑦 so that 𝑓∗: MorC(𝑦, 𝑥) → MorC(𝑦, 𝑦). From the isomorphism

property, there exists ℓ ∈ MorC(𝑦, 𝑥) such that 𝑓∗(ℓ ) = 𝑓 ℓ = id𝑦 . Consider now that

𝑐 = 𝑥, then 𝑓∗: MorC(𝑥, 𝑥) → MorC(𝑥, 𝑦). Notice that 𝑓∗(ℓ 𝑓 ) = 𝑓 ℓ 𝑓 = id𝑦 𝑓 = 𝑓 and

𝑓∗(id𝑥) = 𝑓 id𝑥 = 𝑓 . Since 𝑓∗ is supposed to be an isomorphism, it follows that id𝑥 = ℓ 𝑓 .

With this we conclude that ℓ is the inverse of 𝑓 and hence 𝑓 is an isomorphism.

((a)⇔ (c)) Suppose that 𝑓 op
: 𝑦 → 𝑥 ∈ Mor(Cop), then from the last paragraph we

have that 𝑓 op
is an isomorphism if and only if ( 𝑓 op)∗: MorCop(𝑐, 𝑦) →MorCop(𝑐, 𝑥) is an

isomorphism. Therefore the dual of such statement is that 𝑓 : 𝑥 → 𝑦 ∈ Mor(C) is an

isomorphism if and only if ( 𝑓 op)op

∗ = 𝑓 ∗: MorC(𝑥, 𝑐) → MorC(𝑦, 𝑐) is an isomorphism,

since MorCop(∗, ∗′) = MorC(∗′, ∗). ♮

Definition 1.3.3 (Monomorphism). Let a category C. We say that 𝑓 ∈ MorC(𝑥, 𝑦) is a

monomorphism if for all 𝑐 ∈ C, and for all 𝛼, 𝛽 ∈ Hom(𝑐, 𝑥)we have that 𝑓 𝛼 = 𝑓 𝛽 implies

𝛼 = 𝛽. Equivalently, for all 𝑐 ∈ C the map 𝑓∗: MorC(𝑐, 𝑥) →MorC(𝑐, 𝑦) is injective.

Definition 1.3.4 (Epimorphism). Let a categoryC. We say that morphism 𝑔 ∈ HomC(𝑥, 𝑦)
to be an epimorphism if for all 𝑐 ∈ C, and for all 𝛾, 𝛿 ∈ HomC(𝑦, 𝑐)we have that 𝛾𝑔 = 𝛿𝑔
implies 𝛾 = 𝛿. Equivalently, for all 𝑐 ∈ C the map 𝑔∗: MorC(𝑦, 𝑐) → MorC(𝑥, 𝑐) is

injective.

Proposition 1.3.5. LetCbe a category. The following are properties regarding monomor-

phisms and epimorphisms in C:

(a) Every identity morphism is a monomorphism and an epimorphism

(b) The composite of two monomorphisms (or epimorphisms) is a monomorphism

(or epimorphism).

(c) If the composition 𝑘 𝑓 is a monomorphism, then 𝑓 is a monomorphism. Conversely,

if 𝑓 𝑘 is an epimorphism, then 𝑓 is an epimorphism.

Proof. We prove the assertions about monomorphisms, the respective ones for epimor-

phisms are dually true from the former.

(a) Identities are isomorphism, so clearly they are monomorphisms and epimor-

phisms.
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(b) Let 𝑓 and 𝑔 be composable monomorphisms, then if 𝑔 𝑓 𝑝 = 𝑔 𝑓 𝑞 for two given

morphisms 𝑝 and 𝑞, for since 𝑔 is a monomorphism then 𝑓 𝑝 = 𝑓 𝑞 — then using

the fact that 𝑓 is a monomorphism we obtain 𝑝 = 𝑞.

(c) Suppose 𝑘 𝑓 is a monomorphism and consider morphisms 𝑔 and ℎ such that 𝑓 𝑔 =

𝑓 ℎ. Composing with 𝑘 one sees that 𝑘 𝑓 𝑔 = 𝑘 𝑓 ℎ but since 𝑘 𝑓 is a monomorphism,

it follows that 𝑔 = ℎ.

♮

Definition 1.3.6. Let 𝑥
𝑠−→ 𝑦

𝑟−→ 𝑥 be morphisms such that 𝑟𝑠 = id𝑥 . We define the

following terms

(a) 𝑠 is said to be a section of 𝑟. The morphism 𝑠 is always a monomorphism, being

called a split monomorphism.

(b) 𝑟 is said to be the retraction of 𝑠. The morphism 𝑟 is always an epimorphism, being

called a split epimorphism.

(c) 𝑥 is the retract of 𝑦.

Proposition 1.3.7. A morphism 𝑓 ∈ MorC(𝑥, 𝑦) is a split epimorphism if and only if

for all 𝑐 ∈ C the map 𝑓∗: MorC(𝑐, 𝑥) → MorC(𝑐, 𝑦) is surjective. Dually, 𝑓 is a split

monomorphism if and only if for all 𝑐 ∈ C the map 𝑓 ∗: MorC(𝑥, 𝑐) → MorC(𝑦, 𝑐) is

surjective.

Proof. (⇒) Suppose 𝑓 : 𝑥 → 𝑦 is a split epimorphism and define 𝑔: 𝑦 → 𝑥 as a section

of 𝑓 , that is 𝑓 𝑔 = id𝑦 . Let 𝑐 ∈ C, and 𝛼 ∈ MorC(𝑐, 𝑦) be any morphism. Notice that

𝑔𝛼 ∈ MorC(𝑐, 𝑥), hence we find that 𝑓∗(𝑔𝛼) = 𝑓 𝑔𝛼 = 𝛼 and therefore 𝑓∗ is surjective. (⇐)

Suppose 𝑓∗ is surjective, then in particular for 𝑐 = 𝑦we have that id𝑦 ∈ im 𝑓∗ and hence 𝑓

is a split epimorphism. (Dual) Let 𝑓 op
: 𝑦 → 𝑥, then from the above proposition 𝑓 op

is a

split epimorphism if and only if ( 𝑓 op)∗: MorCop(𝑦, 𝑐) →MorCop(𝑥, 𝑐) is surjective. Dually

we have that 𝑓 is a monomorphism if and only if ( 𝑓 op)op

∗ = 𝑓 ∗: MorC(𝑐, 𝑥) →MorC(𝑐, 𝑦),
which proves the last part. ♮

Proposition 1.3.8. Let 𝑓 ∈ Mor(C). If 𝑓 is a monomorphism and also a split epi-

morphism, then 𝑓 is an isomorphism. Dually, if 𝑓 is an epimorphism and a split

monomorphism, then 𝑓 is an isomorphism.

Proof. Suppose 𝑓 : 𝑥 → 𝑦 is a split epimorphism and 𝑔: 𝑦 → 𝑥 be a section of 𝑓 , then

𝑓 𝑔 = id𝑦 and, moreover 𝑓 𝑔 𝑓 = id𝑦 𝑓 = 𝑓 hence from if 𝑓 is a monomorphism we

conclude that 𝑔 𝑓 = id𝑥 . Thus 𝑔 is the inverse of 𝑓 and hence 𝑓 is an isomorphism.

Dually, let 𝑓 op
: 𝑦 → 𝑥 be a monomorphism and split epimorphism, then 𝑓 op

is an

isomorphism, which dually means that 𝑓 is an epimorphism and split monomorphism,

then 𝑓 is an isomorphism. ♮

Lemma 1.3.9. Let 𝑓 : 𝑥 → 𝑦 and 𝑔: 𝑦 → 𝑧. The following propositions hold

(a). If 𝑓 and 𝑔 are monomorphisms, so is 𝑔 𝑓 : 𝑥 ↣ 𝑧. For the dual proposition, if 𝑓

and 𝑔 are epimorphisms, then 𝑔 𝑓 : 𝑥 ↠ 𝑧 is an epimorphism.
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(b). If 𝑔 𝑓 : 𝑥 ↣ 𝑧 is a monomorphism, then 𝑓 is also monomorphism. Dually, if

𝑔 𝑓 : 𝑥 ↠ 𝑧 is an epimorphism, then 𝑔 is an epimorphism.

Proof. (a) Suppose that 𝑓 , 𝑔 are both monomorphisms. Given any 𝑐 ∈ C, let 𝛼, 𝛽 ∈
MorC(𝑐, 𝑥) be such that 𝑔 𝑓 𝛼 = 𝑔 𝑓 𝛽. In particular, since 𝑔 is monic, then 𝑓 𝛼 = 𝑓 𝛽, but 𝑓

is also monic, hence 𝛼 = 𝛽. For the dual part, suppose that 𝑓 op
: 𝑦 → 𝑥 and 𝑔op

: 𝑧 → 𝑦

be monic, then from above we have 𝑓 op𝑔op = (𝑔 𝑓 )op
monic, which dually implies that

𝑔 𝑓 is epic.

(b) Let 𝑔 𝑓 be monic. Then given 𝑐 ∈ C and 𝛼, 𝛽 ∈ MorC(𝑐, 𝑥) such that 𝑓 𝛼 = 𝑓 𝛽,

then in particular 𝑔( 𝑓 𝛼) = 𝑔( 𝑓 𝛽), then from the monic property we have 𝛼 = 𝛽. Dually,

suppose that (𝑔 𝑓 )op = 𝑓 op𝑔op ∈ Mor(Cop) is monic, then from above we find that 𝑔op

is monic, which dually implies that 𝑔 is epic. ♮

1.4 Functors
Definition 1.4.1 (Covariant functor). Let C and D be categories. A covariant functor

𝐹: C→ D has the following data:

(DF1) For all 𝑐 ∈ C exists a corresponding 𝐹𝑐 ∈ D4
.

(DF2) For all 𝑓 : 𝑐 → 𝑐′ ∈ Mor(C) there exists a morphism 𝐹 𝑓 : 𝐹𝑐 → 𝐹𝑐′ ∈ Mor(D).

Such data satisfies the two following axioms:

(AF1) For all composable 𝑓 , 𝑔 ∈ Mor(C), we have 𝐹𝑔 ◦ 𝐹 𝑓 = 𝐹(𝑔 ◦ 𝑓 ).

(AF2) For all 𝑐 ∈ Cwe have 𝐹 id𝑐 = id𝐹𝑐 ∈ Mor(D).

Definition 1.4.2 (Contravariant functor). A contravariant functor from categories C to

D is a functor 𝐹: Cop → D together with the following data:

(DCF1) For all 𝑐 ∈ C exists 𝐹𝑐 ∈ D.

(DCF2) For all 𝑓 : 𝑐 → 𝑐′ ∈ Mor(C)we have 𝐹 𝑓 : 𝐹𝑐′→ 𝐹𝑐 ∈ Mor(D).

Moreover, a contravariant functor satisfies the following axioms:

(ACF1) For all composable 𝑓 , 𝑔 ∈ Mor(C)we have 𝐹 𝑓 ◦ 𝐹𝑔 = 𝐹(𝑔 ◦ 𝑓 ).

(ACF2) For all 𝑐 ∈ Cwe have 𝐹 id𝑐 = id𝐹𝑐 .

4
When convenient, we may discard the use of parenthesis, but in occasions where the use of

parenthesis brings more clarity to the situation, we shall use it.
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This can all be comprised diagrammatically as:

Cop D

𝑐 𝐹𝑐

𝑐′ 𝐹𝑐′

𝑐′′ 𝐹𝑐′′

𝐹

𝑓

𝑔 𝑓

𝑔

𝐹 𝑓

𝐹𝑔

𝐹 𝑓 ◦𝐹𝑔=𝐹(𝑔 𝑓 )

Definition 1.4.3 (Composition of functors). Let 𝐹: C → D and 𝐺: D → B be functors.

We define their composition 𝐺𝐹: C → B by (𝐺𝐹)(𝑥) = 𝐺(𝐹(𝑥)), for all 𝑥 ∈ C, and

(𝐺𝐹)( 𝑓 ) = 𝐺(𝐹( 𝑓 )) for all morphism 𝑓 ∈ Mor(C).

Example 1.4.4. An important example of contravariant functor is op: C → Cop
, where

C is some category, defined by the identity on objects and morphisms.

Definition 1.4.5 (Forgetful functor). A functor is said to be forgetful if the functor

“forgets” some object, structure or property of its domain category.

Example 1.4.6. We have some classical examples of forgetful functors, for instance, the

following are functors that forget the structure of their domain categories:

• The functor 𝐺: Grp→ Setmapping groups to its corresponding underlying set.

• The functor 𝑇: Top→ Setmaps any topological space to its corresponding set of

points.

• The functor 𝑉, 𝐸: Graph→ Setmaps the vertices and edges of a graph to the set

of such vertices an edges.

Example 1.4.7 (Topop → Ring). Let 𝐶: Topop → Ring be a contravariant functor such

that for all 𝑋 ∈ Top, let 𝐶𝑋 be the ring of continuous functions 𝑋 → R. The ring

operations on 𝐶𝑋 are defined pointwise, that is, given 𝑝, 𝑞:𝑋 → R ∈ 𝐶𝑋 we have

(𝑝 · 𝑞)(𝑥) = 𝑝(𝑥) · 𝑞(𝑥) and (𝑝 + 𝑞)(𝑥) = 𝑝(𝑥) + 𝑞(𝑥) for all 𝑥 ∈ 𝑋. Moreover, given

a morphism 𝑓 :𝑋 → 𝑌 ∈ Mor(Top) we define 𝐶 𝑓 :𝐶𝑌 → 𝐶𝑋 as the composition

(𝐶 𝑓 )(𝑞) = 𝑞 𝑓 ∈ Mor(𝐶𝑋) for all 𝑞 ∈ 𝐶𝑌, that is

𝑋 𝑌 R
𝑓

𝐶 𝑓 (𝑞)=𝑞 𝑓

𝑞
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We now show that the axioms for the contravariant functor are satisfied by 𝐶. Let

𝑓 :𝑋 → 𝑌 and 𝑔:𝑌 → 𝑍, then given any 𝑝 ∈ 𝐶𝑍 we have

𝑋 𝑌 𝑍 R
𝑓

𝐶 𝑓 (𝐶𝑔(𝑝))

𝐶(𝑔 𝑓 )(𝑝)

𝑔

𝐶𝑔(𝑝)

𝑝

hence 𝐶( 𝑓 )𝐶(𝑔) = 𝐶(𝑔 𝑓 ). Moreover, given any 𝑋 ∈ Topop
we find that 𝐶 id𝑋 :𝐶𝑋 →

𝐶𝑋 is such that for all 𝑞 ∈ 𝐶𝑋, 𝐶 id𝑋(𝑞) = 𝑞 id𝑋 = 𝑞 hence 𝐶 id𝑋 = id𝐶𝑋 . This finishes

the proof that 𝐶: Topop → Ring is a contravariant functor.

Definition 1.4.8 (Presheaf). Let C be a 𝒰 -small category. A contravariant functor

Cop → Set is called a presheaf on C.

Example 1.4.9 (𝒪(𝑋)op → Set). Let 𝑋 ∈ Top we define 𝒪(𝑋) to be the poset category

whose objects are open sets of 𝑋. That is, for sets 𝑈,𝑈 ′ ∈ 𝒪(𝑋), if 𝑈 ⊆ 𝑈 ′, then

there exists a morphism 𝑈 → 𝑈 ′ in Mor(𝒪(𝑋)). A presheaf on the category 𝒪(𝑋)
is a functor 𝐹:𝒪(𝑋)op → Set that assigns 𝐹𝑈 = { 𝑓 :𝑈 → R : 𝑓 continuous} for all

𝑈 ∈ 𝒪(𝑋). Moreover, for maps 𝑔:𝑈 → 𝑈 ′ (that is 𝑈 ⊆ 𝑈 ′) we have 𝐹𝑔: 𝐹𝑈 ′ → 𝐹𝑈

such that 𝐹𝑔( 𝑓 ) = 𝑓 |𝑈 :𝑈 → R for all 𝑓 :𝑈 ′ → R continuous. Since the restriction of a

continuous map is continuous, then 𝑓 |𝑈 ∈ 𝐹𝑈

Example 1.4.10 (Simplex category). The simplex category Δ comprises objects that

are finite non-empty ordinals and order-preserving morphisms. Simplicial sets are

defined as presheaves Δop → Set.

Lemma 1.4.11. Functors preserve isomorphisms. Let C and Dbe categories and 𝐹: C→ D
be a functor. Given an isomorphism 𝑓 : 𝑐 ≃−→ 𝑐′ ∈ Mor(C), we have that 𝐹 𝑓 : 𝐹𝑐 ≃−→ 𝑐′ is

an isomorphism.

Proof. Denote by 𝑓 −1
: 𝑐′ ≃−→ 𝑐 the inverse of 𝑓 . By the composition axiom we have

𝐹( 𝑓 −1)𝐹( 𝑓 ) = 𝐹( 𝑓 −1 𝑓 ) = 𝐹 id𝑐 = id𝐹𝑐 ,

𝐹( 𝑓 )𝐹( 𝑓 −1) = 𝐹( 𝑓 𝑓 −1) = 𝐹 id𝑐′ = id𝐹𝑐′ .

This shows that 𝐹 𝑓 −1
is the right and left inverse of 𝐹 𝑓 , hence 𝐹 𝑓 : 𝐹𝑐 ≃−→ 𝐹𝑐′ is indeed

an isomorphism. ♮

Example 1.4.12 (Group action). Let 𝐺 be any group and consider the category B𝐺

generated by 𝐺 — that is, B𝐺 consists of a unique object ∗ and the morphisms of the

category are automorphisms ∗ → ∗ given by the elements of 𝐺. Given a category C,

a functor 𝑋: B𝐺 → C — given by mapping 𝑋∗ ≔ 𝑋 ∈ C and each object 𝑔 ∈ 𝐺 to an

endomorphism 𝑋𝑔 ≔ 𝑔∗:𝑋 → 𝑋 — is said to define a left group action on the object

𝑋 ∈ C. Moreover, the functor 𝑋 has to obey
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• Composition preserving: for any ℎ, 𝑔 ∈ 𝐺, we have (ℎ𝑔)∗ = ℎ∗𝑔∗.

• Identity: 𝑒∗ = id𝑋 .

Since functors preserve isomorphisms and every morphism of B𝐺 is an automorphism,

it follows that, for all 𝑔 ∈ 𝐺, the map 𝑔∗:𝑋 → 𝑋 is an automorphism — in particular,

this implies that (𝑔−1)∗ = 𝑔−1

∗ .

Some particular cases of interest are the following:

• If C = Set, then the set 𝑋 together with the actions {𝑔∗ : 𝑔 ∈ 𝐺} is called a 𝐺-set.

• If C = Vect𝑘 , then the 𝑘-vector space 𝑋 together with the actions generated by 𝐺

is said to be a 𝐺-representation.

• If C = Top, then the topological space 𝑋 endowed with the actions generated by

𝐺 is called a 𝐺-space.

A right group action is nothing more than a contravariant functor 𝑋: B𝐺op → C
such that 𝑋∗ ≔ 𝑋 and 𝑋𝑔 ≔ 𝑔∗:𝑋 → 𝑋 are endomorphisms. The rules for such a

functor are the contravariant preservation of compositions, that is, (ℎ𝑔)∗ = 𝑔∗ℎ∗, and

that 𝑒∗ = id𝑋 as before.

Example 1.4.13 (Skeletal functor). Let C be a category. The inclusion functor 𝐽: sk C→ C
equivalence of categories, indeed, one can define a quasi-inverse functor 𝐹: C → sk C

by mapping 𝑎 ∈ C to the unique object 𝐹𝑎 ∈ sk C for which there exists an isomorphism

𝑎 ≃ 𝐹𝑎. Choosing a collection (𝛼𝑎 : 𝑎 ≃−→ 𝐹𝑎)𝑎∈C of isomorphisms where 𝛼𝑎 = id𝑎

whenever 𝐹𝑎 = 𝑎, we can map each morphism 𝑓 : 𝑎 → 𝑏 of C to the morphism 𝐹 𝑓 ≔

𝛼𝑏 𝑓 𝛼−1

𝑎 : 𝐹𝑎 → 𝐹𝑏. From this construction one gets 𝐹𝐽 = id and the collection (𝛼𝑎)𝑎∈A
of chosen isomorphisms define a natural isomorphism 𝛼: id

≃
=⇒ 𝐽𝐹.

Lemma 1.4.14. Functors preserve split monomorphisms and split epimorphisms.

Proof. Let C and D be categories and consider a functor 𝐹: C → D. Define morphisms

𝑥
𝑠−→ 𝑦

𝑟−→ 𝑥 in Mor(C) such that 𝑟𝑠 = id𝑥 , that is, 𝑠 is a split monomorphism and 𝑟 is a

split epimorphism. Consider the morphisms 𝐹𝑠: 𝐹𝑥 → 𝐹𝑦 and 𝐹𝑟: 𝐹𝑦 → 𝐹𝑥 in Mor(D).
Notice that 𝐹(𝑠)𝐹(𝑟) = 𝐹(𝑠𝑟) = 𝐹(id𝑥) = id𝐹𝑥 . Hence 𝐹𝑠 is a split monomorphism and

𝐹𝑟 is a split epimorphism. ♮

Definition 1.4.15 (Mor functors). Let C be a𝒰 -category. Given any 𝑐 ∈ C, there exists a

pair of covariant and contravariant functors, Mor(𝑐,−) and Mor(−, 𝑐), respectively —

represented by the object 𝑐. That is:

C Set

𝑥 Mor(𝑐, 𝑥)

𝑦 Mor(𝑐, 𝑦)

Mor (𝑐,−)

𝑓 𝑓∗

Cop Set

𝑥 Mor(𝑥, 𝑐)

𝑦 Mor(𝑦, 𝑐)

Mor (−,𝑐)

𝑓 𝑓 ∗
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We now prove that such definition indeed satisfies the axioms for covariant and

contravariant functors. Given morphisms 𝑓 : 𝑥 → 𝑦 and 𝑔: 𝑦 → 𝑧 in Mor(C), we see that

𝑔∗ 𝑓∗ = (𝑔 𝑓 )∗, moreover 𝑓 ∗𝑔∗ = ( 𝑓 𝑔)∗. Let 𝑥 ∈ C be any object, then id𝑥∗ = id
Mor(𝑐,𝑥) = id

∗
𝑥 .

This proves that Mor(𝑐,−) is covariant and Mor(−, 𝑐) is contravariant.

Definition 1.4.16 (Faithful, full & its friends). Let C and D be categories. A functor

𝐹: C→ D is said to be

(a) Faithful if for all 𝑥, 𝑦 ∈ C the map MorC(𝑥, 𝑦)↣ MorD(𝐹𝑥, 𝐹𝑦) is injective.

(b) Full if for all 𝑥, 𝑦 ∈ C the map MorC(𝑥, 𝑦)↠ MorD(𝐹𝑥, 𝐹𝑦) is surjective.

(c) Fully faithful if for all 𝑥, 𝑦 ∈ C the map MorC(𝑥, 𝑦) ≃−→MorD(𝐹𝑥, 𝐹𝑦) is a bĳection.

(d) Essentially surjective if for each 𝑦 ∈ D there exists 𝑥 ∈ C and an isomorphism 𝐹𝑥 ≃−→ 𝑦

in D.

(e) Conservative if, given a morphism 𝑓 in C, if 𝐹 𝑓 is an isomorphism in D, then 𝑓 is an

isomorphism in C.

Proposition 1.4.17 (Fully faithful functors and isomorphisms). Let 𝐹: C→ D be a fully
faithful functor. If 𝐹𝑥 ≃ 𝐹𝑦 in D, for some 𝑥, 𝑦 ∈ C, then 𝑥 ≃ 𝑦 in C for a unique
isomorphism.

Proof. If 𝐹𝑥 ≃ 𝐹𝑦, let 𝜙: 𝐹𝑥 ≃−→ 𝐹𝑦 be an isomorphism in D. Since 𝐹 is fully faithful,

there exists unique morphisms 𝑓 : 𝑥 → 𝑦 and 𝑔: 𝑦 → 𝑥 in C for which 𝐹 𝑓 = 𝜙 and

𝐹𝑔 = 𝜙−1
. In particular, one has

id𝐹𝑥 = 𝜙−1𝜙 = 𝐹𝑔 ◦ 𝐹 𝑓 = 𝐹(𝑔 𝑓 ).

From the faithfulness of 𝐹, since 𝐹 id𝑥 = id𝐹𝑥 , then 𝑔 𝑓 = id𝑥 . On the other hand, one

also has

id𝐹𝑦 = 𝜙𝜙−1 = 𝐹 𝑓 ◦ 𝐹𝑔 = 𝐹( 𝑓 𝑔),
therefore, since 𝐹 id𝑦 = id𝐹𝑦 we obtain 𝑓 𝑔 = id𝑦 . We can now finally conclude that 𝑓

is an isomorphism and its inverse is 𝑔. ♮

Definition 1.4.18 (Product & disjoint union categories). Let 𝐼 be an indexing set and

{C𝑖}𝑖∈𝐼 be a collection of categories associated with 𝐼. We define the following cate-

gories:

(a) The product category

∏
𝑖∈𝐼 C𝑖 consists of objects Obj(∏𝑖∈𝐼 C𝑖) ≔

∏
𝑖∈𝐼 Obj(C𝑖), and

morphisms Mor
∏

𝑖∈𝐼 C𝑖 ((𝑥𝑖)𝑖∈𝐼 , (𝑦𝑖)𝑖∈𝐼) ≔
∏

𝑖∈𝐼 MorC𝑖 (𝑥𝑖 , 𝑦𝑖) between any two objects

(𝑥𝑖)𝑖∈𝐼 and (𝑦𝑖)𝑖∈𝐼 in the category. Composable morphisms ( 𝑓𝑖)𝑖∈𝐼 and (𝑔𝑖)𝑖∈𝐼 have

composition defined component-wise — that is, ( 𝑓𝑖)𝑖∈𝐼(𝑔𝑖)𝑖∈𝐼 ≔ ( 𝑓𝑖𝑔𝑖)𝑖∈𝐼 .
(b) The disjoint union category

∐
𝑖∈𝐼 C𝑖 consists of objects

Obj

(∐
𝑖∈𝐼
C𝑖

)
≔

∐
𝑖∈𝐼
{(𝑥, 𝑖) : 𝑖 ∈ 𝐼 and 𝑥 ∈ C𝑖},
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and morphisms

Mor
∐

𝑖∈𝐼 C𝑖 ((𝑥, 𝑖), (𝑦, 𝑗)) ≔
{

MorC𝑖 (𝑥, 𝑦), if 𝑖 = 𝑗

∅, otherwise

for any objects (𝑥, 𝑖) and (𝑦, 𝑗) in the category.

Moreover, if {D𝑖}𝑖∈𝐼 is another collection of categories, and {𝐹𝑖 : C𝑖 → D𝑖}𝑖∈𝐼 is a collection

of functors, we associate to each of the above categories the functors

∏
𝑖∈𝐼 𝐹𝑖 and

∐
𝑖∈𝐼 𝐹𝑖 .

Example 1.4.19 (Orbit category). Let 𝐺 be a group. We define the orbit category

associated to 𝐺 as 𝒪𝐺 whose objects are subgroups 𝐻 ⊆ 𝐺, identified by the left 𝐺-set

𝐺/𝐻 of left cosets of 𝐻. The morphisms 𝜙:𝐺/𝐻 → 𝐺/𝑄 are maps commuting with

the left 𝐺-action, that is, 𝜙(𝑔∗ℎ) = 𝑔∗𝜙(ℎ)— such maps are called 𝐺-equivariant.

Proposition 1.4.20 (Bifunctor). Let A, B and C be any categories. A functor

𝐹: A × B −→ C

is called a bifunctor. The functor 𝐹 is defined so that, given any objects 𝑥 ∈ A and 𝑦 ∈ B,

𝐹(𝑥,−): B −→ C and 𝐹(−, 𝑦): A −→ C

are both functors. Moreover, given any morphisms 𝑓 : 𝑥 → 𝑦 in A and 𝑔: 𝑥′ → 𝑦′ in B,
the following diagram commutes

𝐹(𝑥, 𝑥′) 𝐹(𝑥, 𝑦′)

𝐹(𝑦, 𝑥′) 𝐹(𝑦, 𝑦′)

𝐹(𝑥,𝑔)

𝐹( 𝑓 ,𝑥′) 𝐹( 𝑓 ,𝑦′)
𝐹(𝑦,𝑔)

Notice that the product of small categories can also be understood as a bifunctor

×: Cat × Cat −→ Cat

which associates to each pair of small categories (A, B) the product category A × B, and

any pair of functors (𝐹: A→ B, 𝐺: C→ D) is mapped to a bifunctor

𝐹 × 𝐺: A × C→ B × D

such that (𝐹 × 𝐺)( 𝑓 , 𝑔) ≔ (𝐹 𝑓 , 𝐺𝑔) and (𝐹 × 𝐺)(𝐴, 𝐶) ≔ (𝐹𝐴, 𝐺𝐶), for any pair of

morphisms ( 𝑓 , 𝑔) ∈ Mor(A) ×Mor(C) and pair of objects (𝐴, 𝐶) ∈ A × C.

Definition 1.4.21 (Functor-induced categories). Let 𝐹: C → D be a functor between

categories C and D, and let 𝑦 ∈ D. We define the following two categories:
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(a) The category C𝑦 is defined to consist of objects

Obj(C𝑦) ≔ {(𝑥, 𝑠) : 𝑥 ∈ C and 𝑠: 𝐹𝑥 → 𝑦 in D},

and morphisms between any objects (𝑎, 𝑠), (𝑏, 𝑡) ∈ C𝑦 are defined to be

MorC𝑦 ((𝑎, 𝑠), (𝑏, 𝑡)) ≔ { 𝑓 ∈ MorC(𝑎, 𝑏) : 𝑠 = 𝑡𝐹( 𝑓 ) in D},

that is, a morphism 𝑓 : (𝑎, 𝑠) → (𝑏, 𝑡)makes to following diagram commute

𝐹𝑎 𝑦

𝐹𝑏

𝑠

𝐹 𝑓
𝑡

Together with such category, we define a faithful functor 𝑗𝑦 : C𝑦 → C by 𝑗𝑦(𝑥, 𝑠) ≔ 𝑥,

acting as a projection.

(b) The category C𝑦 is defined to consist of objects

Obj(C𝑦) ≔ {(𝑥, 𝑠) : 𝑥 ∈ C and 𝑠: 𝑦 → 𝐹𝑥 in D},

and morphisms between any objects (𝑎, 𝑠), (𝑏, 𝑡) ∈ C𝑦 are defined to be

MorC𝑦 ((𝑎, 𝑠), (𝑏, 𝑡)) ≔ { 𝑓 ∈ MorC(𝑎, 𝑏) : 𝑡 = 𝐹( 𝑓 )𝑠 in D},

that is, a morphism 𝑓 : (𝑎, 𝑠) → (𝑏, 𝑡)makes to following diagram commute

𝑦 𝐹𝑎

𝐹𝑏

𝑠

𝑡
𝐹 𝑓

Together with such category, we define a faithful functor 𝑗𝑦 : C𝑦 → C by 𝑗𝑦(𝑥, 𝑠) ≔ 𝑥,

which acts as a projection.

Definition 1.4.22 (Equivalence classes). LetCbe a category and∼denote an equivalence

relation on the objects of C— where 𝑥 ∼ 𝑦 if MorC(𝑥, 𝑦) ≠ ∅. We denote the collection

of all equivalence classes on the objects of C by 𝜋0(C).

Corollary 1.4.23. A category C is connected if and only if 𝜋0(C) consists of a single

element.

Proof. If 𝜋0(C) is a single object, every equivalence class on C is such that every element

is equivalent to each other, which implies that the collection of morphisms MorC(𝑥, 𝑦),
between any two elements 𝑥, 𝑦 ∈ C, is non-empty — thus clearly C is connected. ♮

Definition 1.4.24 (Isomorphisms of monomorphisms & epimorphisms). Let C be a

category and 𝑥, 𝑦, 𝑧 ∈ C be any objects. We define the following concepts:
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(a) Two monomorphisms 𝑓 : 𝑥 ↣ 𝑧 and 𝑔: 𝑦 ↣ 𝑧 in C are said to be isomorphic in C if

there exists an isomorphism ℎ: 𝑥 ≃−→ 𝑦 for which the following diagram commutes

in

𝑧

𝑥 𝑦
ℎ

≃

𝑓 𝑔

This is equivalent to 𝑓 and 𝑔 being isomorphic in C𝑧 .

(b) Two epimorphisms 𝑓 : 𝑥 ↠ 𝑧 and 𝑔: 𝑦 ↠ 𝑧 in C are said to be isomorphic in C if there

exists an isomorphism ℎ: 𝑥 ≃−→ 𝑦 for which the following diagram commutes in

𝑥 𝑦

𝑧

ℎ

≃

𝑓 𝑔

This is equivalent to 𝑓 and 𝑔 being isomorphic in C𝑧 .

Definition 1.4.25. Let C be a category and 𝑥 ∈ C be any object. We define the following:

(a) An isomorphism class of a monomorphism with target 𝑥 is called a subobject of 𝑥.

(b) An isomorphism class of an epimorphism with source 𝑥 is called a quotient of 𝑥.

These isomorphism classes are given in the sense of Definition 1.4.24.

Example 1.4.26 (Ordering subobject). One can order the collection of subobjects of a

given object 𝑥 ∈ C by defining a relation [ 𝑓 : 𝑦 ↣ 𝑥] ⩽ [𝑔: 𝑧 ↣ 𝑥] if there exists ℎ: 𝑦 → 𝑧

such that

𝑦 𝑥

𝑧

𝑓

ℎ
𝑔

Moreover, if ℎ exists, then it’s unique.

1.5 Natural Transformations
Definition 1.5.1 (Natural transformation). Let C and D be categories, and consider

functors 𝐹, 𝐺: C⇒ D. A natural transformation 𝛼: 𝐹⇒ 𝐺 consists of morphisms 𝛼𝑥 : 𝐹𝑥 →
𝐺𝑥, for all 𝑥 ∈ C, such that, for any morphism 𝑓 : 𝑥 → 𝑦 in C, the following diagram

commutes

𝐹𝑥 𝐺𝑥

𝐹𝑦 𝐺𝑦

𝛼𝑥

𝐹 𝑓 𝐺 𝑓

𝛼𝑦
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Moreover, if 𝐿: C→ D is another functor, and 𝛽:𝐺⇒ 𝐿 is a natural transformation, we

define the composition of natural transformations 𝛼 and 𝛽 as the map 𝛽𝛼: 𝐹 ⇒ 𝐿 such

that (𝛽𝛼)𝑥 ≔ 𝛽𝑥𝛼𝑥 for every 𝑥 ∈ C.

Definition 1.5.2 (Functor category). Let C and D be categories. We define a category

Fct(C, D)whose objects are functors C→ D, and morphisms are natural transformations

between functors.

Proposition 1.5.3 (Horizontal composition). Let A, B and C be categories. Consider

functors 𝐹, 𝐹′: A ⇒ B, and 𝐺, 𝐺′: B ⇒ C. Let 𝛼: 𝐹 ⇒ 𝐹′ and 𝛽:𝐺 ⇒ 𝐺′ be natural

transformations — that is,

A B C

𝐹

𝐹′

𝐺

𝐺′

𝛼 𝛽

There exists an induced natural transformation 𝛽 ∗𝛼:𝐺𝐹⇒ 𝐺′𝐹′— called the horizontal
composition, also called Godement product, of 𝛼 and 𝛽 — such that, for all 𝑎 ∈ A,

(𝛽 ∗ 𝛼)𝑎 = 𝛽𝐹′𝑎𝐺(𝛼𝑎) = 𝐺′(𝛼𝑎)𝛽𝐹𝑎 .

The horizontal composition can be depicted by the following diagram

A C

𝐺𝐹

𝐺′𝐹′

𝛽∗𝛼

Proof. Notice that the naturality of 𝛽 ∗ 𝛼 solely depends on the naturality of both 𝛼 and

𝛽. Indeed, for every 𝑎 ∈ A and morphism 𝑓 : 𝑎 → 𝑎′ in A the following diagram

𝐺𝐹𝑎 𝐺𝐹′𝑎 𝐺′𝐹′𝑎

𝐺𝐹𝑎′ 𝐺𝐹′𝑎′ 𝐺′𝐹′𝑎′

𝐺𝐹 𝑓

𝐺𝛼𝑎

(𝛽∗𝛼)𝑎

𝛽𝐹′𝑎

𝐺𝐹′ 𝑓 𝐺′𝐹′ 𝑓

𝐺𝛼𝑎′

(𝛽∗𝛼)𝑎′

𝛽𝐹′𝑎′

is commutative, which proves that 𝛽 ∗ 𝛼 is a natural transformation. ♮

Notation 1.5.4. For the ease of notation, we denote the vertical composition 𝛼 ∗ id𝐹 by

𝛼 ∗ 𝐹.
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Definition 1.5.5 (Vertical composition). Let C and D be categories, and consider functors

and natural transformations given in the following diagram

C D

𝐹

𝐻

𝐺

𝛼

𝛽

We define the vertical composition of 𝛽 with 𝛼 as the natural transformation 𝛽◦𝛼: 𝐹⇒ 𝐺

— diagrammatically,

C D

𝐹

𝐺

𝛽◦𝛼

Proposition 1.5.6. Consider the following diagram, with categories A, B and C, functors

𝐹, 𝐺, 𝐻, 𝐾, 𝐿, 𝑀, and natural transformations 𝛼, 𝛽, 𝛾 and 𝛿:

A B C

𝐹

𝐻

𝐿

𝐺

𝐾

𝑀

𝛼

𝛾

𝛽

𝛿

This diagram is such that the following equality holds:

(𝛿 ∗ 𝛾) ◦ (𝛽 ∗ 𝛼) = (𝛿 ◦ 𝛽) ∗ (𝛾 ◦ 𝛼)

Where by ◦ we denote the vertical composition and by ∗ we denote the horizontal compo-
sition.

Proof. The composition (𝛿 ∗ 𝛾) ◦ (𝛽 ∗ 𝛼):𝐺𝐹⇒ 𝑀𝐿 is given by the following diagrams

A C

𝐺𝐹

𝐻𝐾

𝑀𝐿

𝛽∗𝛼

𝛿∗𝛾
↦−→ A C

𝐺𝐹

𝑀𝐿

(𝛿∗𝛾)◦(𝛽∗𝛼)

On the other hand, the composition (𝛿◦𝛽) ∗ (𝛾◦𝛼):𝐺𝐹⇒ 𝑀𝐿 is given by the following

diagrams

A B C

𝐹

𝐿

𝐺

𝑀

𝛾◦𝛼 𝛿◦𝛽 ↦−→ A C

𝐺𝐹

𝑀𝐿

(𝛿◦𝛽)∗(𝛾◦𝛼)

This is sufficient to prove the assertion. ♮
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Notice that, given a functor 𝜙: C→ D between categories C and D, for every category

A, there arises a natural functor

𝜙∗: Fct(A, C) −→ Fct(I, D), mapping 𝐹 ↦−→ 𝜙𝐹.

Lemma 1.5.7. If 𝜙 is a faithful functor (respectively, fully faithful), then so is the functor

𝜙∗ for any category A.

Proof. Given any two functors 𝐹, 𝐺: A⇒ C, let 𝜂: 𝐹⇒ 𝐺 be any natural transformation.

If we apply 𝜙∗, we get the following commutative diagram — for every pair 𝑥, 𝑦 ∈ A
and every morphism 𝑓 : 𝑥 → 𝑦 in A,

𝜙𝐹𝑥 𝜙𝐺𝑥

𝜙𝐹𝑦 𝜙𝐺𝑦

𝜙𝜂𝑥

𝜙𝐹( 𝑓 ) 𝜙𝐺( 𝑓 )
𝜙𝜂𝑦

Since 𝜙 is faithful (or fully faithful), the mappings 𝜂𝑥 ↦→ 𝜙𝜂𝑥 and 𝜂𝑦 ↦→ 𝜙𝜂𝑦 are both

injective (or bĳective), thus the natural map

Mor
Fct(A,C)(𝐹, 𝐺) −→Mor

Fct(A,D)(𝜙𝐹, 𝜙𝐺), mapping 𝜂 ↦→ 𝜙∗𝜂,

is ensured to be injective (or bĳective). ♮

We consider now the category consisting of𝒰 -small categories and the morphisms

are functors between them, we denote this category by𝒰 -Cat. Notice that, given any

two 𝒰 -small categories C and D, the collection of functors between them also forms a

category Mor𝒰 -Cat(C, D) = Fct(C, D)— this emergent structure gives birth to the concept

of a 2-category.

Definition 1.5.8 (Isomorphism of categories). Let C and D be categories. We say that C

is isomorphic to D if there are morphisms 𝐹: C → D and 𝐺: D → C such that 𝐺𝐹 = idC,

and 𝐹𝐺 = idD.

A weaker and even more important concept it that of an equivalence between

categories.

Definition 1.5.9 (Equivalence of categories). Let C and D be categories. We say that

a functor 𝐹: C ≃−→ D is an equivalence of the categories C and D if there exists a functor

𝐺: D→ C, and two natural isomorphisms 𝛼:𝐺𝐹 ≃=⇒ idC and 𝛽: 𝐹𝐺 ≃=⇒ idD. If this is the

case, we say that 𝐹 and 𝐺 are quasi-inverses of each other.

Lemma 1.5.10. Let 𝐹: C ≃−→ D and 𝐺: D ≃−→ C be equivalences of given categories C and

D, and suppose that 𝐹 and 𝐺 are quasi-inverses. Then there are natural isomorphisms

𝛼:𝐺𝐹 ≃=⇒ idC and 𝛽: 𝐹𝐺 ≃=⇒ idD for which

𝐹𝛼 = 𝛽𝐹 and 𝛼𝐺 = 𝐺𝛽.
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Proof. Let 𝑥 ∈ C be any object. Notice that, since idC 𝑥 = 𝑥 and idD 𝐹𝑥 = 𝐹𝑥, it follows

that

𝐺𝐹𝑥 𝑥

𝐹𝐺(𝐹𝑥) 𝐹𝑥

𝛼𝑥
≃

𝐹 𝐹

𝛽𝐹𝑥

≃

is commutative — thus indeed 𝐹𝛼 = 𝛽𝐹. Now if we let 𝑦 ∈ D be any other object, since

idD 𝑦 = 𝑦 and idC 𝐺𝑦 = 𝐺𝑦, we get the following commutative diagram

𝐺𝐹(𝐺𝑦) 𝐺𝑦

𝐹𝐺𝑦 𝑦

𝛼𝐺𝑦

≃

𝐺

𝛽𝑦

≃
𝐺

therefore 𝛼𝐺 = 𝐺𝛽 as wanted. ♮

Lemma 1.5.11. Let 𝐹: C → D be a functor, and D0 be a full subcategory of D such that,

for all 𝑥 ∈ C, there exists 𝑦 ∈ D0 and an isomorphism 𝐹𝑥 ≃ 𝑦.

Denote by 𝜄: D0 ↩→ D the canonical embedding functor. Then there exists a functor

𝐹0: C → D0 and a natural isomorphism 𝛼: 𝐹 ≃=⇒ 𝜄𝐹0. Moreover, 𝐹0 is unique up to

unique isomorphism
5
. This can be diagrammatically expressed by the following quasi-

commutative diagram
6

C D

D0

𝐹

𝐹0

𝜄

Proof. We first build the functor 𝐹0: C→ D0:

• Let 𝑥 ∈ C be any object. By means of Zorn’s Lemma (see Lemma 5.6.5), we choose

𝑎 ∈ D0 for which exists an isomorphism 𝜙𝑥 : 𝑎 ≃−→ 𝐹(𝑥) in D— and consequently

we let 𝐹0𝑥 ≔ 𝑎.

• Given any morphism 𝑓 : 𝑥 → 𝑦 in C, we know from construction that the objects

𝐹0𝑥 ≔ 𝑎 and 𝐹0𝑦 ≔ 𝑏 are defined so that there exists isomorphisms 𝜙𝑥 : 𝑎 ≃−→ 𝐹𝑥

and 𝜙𝑦 : 𝑏 ≃−→ 𝐹𝑦 in the category D. This allows us to define the morphism

𝐹0 𝑓 : 𝐹0𝑥 → 𝐹0𝑦 in D as the mapping 𝐹 𝑓 ≔ 𝜙−1

𝑦 (𝐹 𝑓 )𝜙𝑥 — that is, so that the

5
We say that 𝐹0 is unique up to unique isomorphism when, given another functor 𝐺: C→ D0 and natural

isomorphism 𝛽: 𝐹 ≃=⇒ 𝜄𝐺, there exists a unique natural isomorphism 𝜂:𝐺 ≃=⇒ 𝐹0 for which 𝛼 = 𝜄𝜂𝛽.

6
A diagram whose nodes are categories an arrows are morphisms is said to be quasi-commutative if

it commutes up to natural isomorphism of functors.
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following diagram commutes

𝐹0𝑥 𝐹0𝑦

𝐹𝑥 𝐹𝑦

𝐹0 𝑓

≃𝜙𝑥 ≃ 𝜙𝑦

𝐹 𝑓

Notice that from this definition we find naturally that the composition condition

is met — given any other morphism 𝑔: 𝑦 → 𝑧 in C have that 𝐹0(𝑔 𝑓 ) = (𝐹0𝑔)(𝐹0 𝑓 ).

This proves the existence of 𝐹0 as a functor. For the isomorphism 𝛼, we can define

for each pair 𝑥, 𝑦 ∈ C the morphisms 𝛼𝑥 ≔ 𝜙−1

𝑥 and 𝛼𝑦 ≔ 𝜙−1

𝑦 , so that the following

diagram commutes

𝐹𝑥 𝜄𝐹0(𝑥) = 𝑎

𝐹𝑦 𝜄𝐹0(𝑦) = 𝑏

𝛼𝑥
≃

𝐹 𝑓 𝜄𝐹0( 𝑓 )

𝛼𝑦
≃

For the uniqueness of 𝐹0 up to unique isomorphism, let 𝐺: C→ D0 be another functor,

together with a natural isomorphism 𝛽: 𝐹 ≃=⇒ 𝜄𝐺. Define 𝜂:𝐺 ≃=⇒ 𝐹0 so that, for each

𝑥 ∈ C, we have 𝜂𝑥 ≔ 𝛼𝑥𝛽−1

𝑥 — then, 𝜂 is clearly an isomorphism and also uniquely

defined, thus the proposition follows. ♮

Lemma 1.5.12. Let C be any category. There exists a full subcategory C0 of C such that the

embedding functor 𝜄: C0 ↩→ C is a category equivalence and any two isomorphic elements

in C0 are equal to each other.

Proof. Let ∼ be the equivalence relation on the set Obj(C) where 𝑥 ∼ 𝑦 if and only

if we have 𝑥 ≃ 𝑦 in C. By means of Zorn’s lemma, choose for each equivalence

class a representative — and define C0 as the full subcategory of C consisting of such

representatives. In this way, if 𝑥, 𝑦 ∈ Obj(C0) satisfy 𝑥 ≃ 𝑦 in C, then necessarily 𝑥 = 𝑦.

If we apply Lemma 1.5.11 to the identity functor idC, we find the existence of a

unique functor 𝐹0: C→ C0 and a natural isomorphism 𝛼: idC
≃
=⇒ 𝜄𝐹0 for which 𝜄𝐹0 ≃ idC.

Moreover, we have the chain of isomorphisms:

𝜄(𝐹0𝜄) = (𝜄𝐹0)𝜄 ≃ idC 𝜄 ≃ 𝜄 ≃ 𝜄 idC0
.

From the fact that 𝜄 is fully faithful, we obtain 𝐹0𝜄 ≃ idC0
. ♮

Proposition 1.5.13. A functor 𝐹: C→ D is an equivalence of categories if and only if 𝐹 is

fully faithful and essentially surjective.

Proof. Suppose 𝐹 is an equivalence of categories, then exists a quasi inverse 𝐺: D→ C
and natural isomorphisms 𝛼:𝐺𝐹 ≃=⇒ idC and 𝛽: 𝐹𝐺 ≃=⇒ idD. We now prove that 𝐹 is

both fully faithful and essentially surjective.
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• (Fully Faithful) Let 𝑔: 𝐹𝑥 → 𝐹𝑦 be any morphism in D, thus if there exists an

𝑓 : 𝑥 → 𝑦 in C for which 𝐹 𝑓 = 𝑔, it must be the case that 𝑓 = 𝛼𝑦(𝐺𝐹 𝑓 )𝛼−1

𝑥 =

𝛼𝑦(𝐺𝑔)𝛼−1

𝑥 . Indeed, if 𝑓 = 𝛼𝑦(𝐺𝑔)𝛼−1

𝑥 : 𝑥 → 𝑦 is a morphism in C, from the

distributivity over composition, we have

𝐺𝐹 𝑓 = 𝐺𝐹𝛼𝑦 ◦ 𝐺𝐹(𝐺𝑔) ◦ 𝐺𝐹𝛼−1

𝑥

then by the naturality of 𝛼 on the map 𝛼−1

𝑥 implies

𝐺𝐹𝑥 𝑥

𝐺𝐹(𝐺𝐹𝑥) 𝐺𝐹𝑥

𝐺𝐹𝛼−1

𝑥

𝛼𝑥

𝛼−1

𝑥

𝛼𝐺𝐹𝑥

but since 𝛼−1

𝑥 is an isomorphism, then 𝐺𝐹𝛼−1

𝑥 𝛼−1

𝑥 = 𝛼−1

𝐺𝐹𝑥
𝛼−1

𝑥 implies in

𝐺𝐹𝛼−1

𝑥 = 𝛼−1

𝐺𝐹𝑥 .

On the other hand, the same can be done for 𝐺𝐹𝛼𝑦 , yielding 𝐺𝐹𝛼𝑦 = 𝛼𝐺𝐹𝑦 ,
therefore

𝐺𝐹 𝑓 = 𝛼𝐺𝐹𝑦(𝐺𝐹𝐺𝑔)𝛼−1

𝐺𝐹𝑥 . (1.1)

The naturality of 𝛼 on the map 𝐺𝑔 gives

𝐺𝐹(𝐺𝐹𝑥) 𝐺𝐹𝑥

𝐺𝐹(𝐺𝐹𝑦) 𝐺𝐹𝑦

𝛼𝐺𝐹𝑥

𝐺𝐹(𝐺𝑔) 𝐺𝑔

𝛼𝐺𝐹𝑦

that is, 𝐺𝐹(𝐺𝑔)𝛼−1

𝐺𝐹𝑥
= 𝛼−1

𝐺𝐹𝑦
𝐺𝑔, thus substituting in Eq. (1.1) we obtain finally

that

𝐺𝐹 𝑓 = 𝐺𝑔.

From this we conclude that 𝐹 is fully faithful.

• (Essentially surjective) Let 𝑎 ∈ D be any element and simply consider 𝑥 = 𝐺𝑎 ∈ D
then from 𝛽 we obtain that 𝐹𝑥 = 𝐹𝐺𝑎 ≃ 𝑎.

For the converse, suppose 𝐹 is both fully faithful and essentially surjective. Using

Lemma 1.5.12, let C0 be the full subcategory of C such that 𝜄C: C0 ↩→ C is an equivalence

and if 𝑥 ≃ 𝑦 in C then 𝑥 = 𝑦 in C0. Let 𝜅C be a quasi-inverse of 𝜄C. Apply Lemma 1.5.12

again, but now to the category D, yielding a category D0, an embedding 𝜄D and a quasi-

inverse 𝜅D. Notice that the composition of functors 𝜅D𝐹𝜄C: C0

≃−→ D0 is an isomorphism.

Let 𝐻 be the inverse of 𝜅D𝐹𝜄C, and define 𝐺 ≔ 𝜄C𝐻𝜅D, then 𝐺 is a quasi-inverse of 𝐹. ♮

Corollary 1.5.14. Let 𝐹: C → D be a fully faithful functor. Then there exists a full
subcategory D0 of D and an equivalence of categories 𝐺: C ≃−→ D0 for which 𝐹 is isomorphic
to 𝜄D𝐺 — where 𝜄D: D0 ↩→ D is the embedding functor.
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Proof. Define D0 to be the full category with Obj(D0) ≔ {𝐹𝑥 : 𝑥 ∈ C}. Now define

𝐺: D→ D0 to be the functor 𝐺 = 𝐹, we find that clearly 𝐹 ≃ 𝜄D𝐺. ♮

Example 1.5.15. For any two given categories C and D, there is an isomorphism of

categories Fct(C, D)op ≃ Fct(Cop, Dop). Explicitly, such isomorphism maps 𝐹 ↦→ op𝐹op.

Definition 1.5.16 (Essentially 𝒰 -small). A category C is said to be essentially 𝒰 -small
if it is equivalent to a 𝒰 -small category. Equivalently, C is essentially 𝒰 -small if and

only if C is a𝒰 -category and there exists a subset 𝑆 ⊆ Obj(C) that is𝒰 -small for which,

given any 𝑥 ∈ C, there exists 𝑦 ∈ 𝑆 such that 𝑥 ≃ 𝑦.

Definition 1.5.17 (Half-full). We define the concepts of half-fullness for functors and

subcategories:

(a) A functor 𝐹: C→ D is said to be half-full if for any two 𝑥, 𝑦 ∈ C for which 𝐹𝑥 ≃ 𝐹𝑦
in D, there exists an isomorphism 𝑥 ≃ 𝑦 in C.

(b) A subcategory C0 of C is said to be half-full if the embedding functor 𝜄: C0 ↩→ C is

half-full.

An analogous but less strict proposition when compared to Corollary 1.5.14 is done

by substituting the condition of fully faithfulness to only that of faithful and half-full.

It goes as follows.

Proposition 1.5.18. Let 𝐹: C → D be a faithful and half-full functor. Then there exists a

subcategory D0 of D for which

𝐹(Obj(C)) ⊆ Obj(D0), and 𝐹(Mor(C)) ⊆ Mor(D0).

Moreover, 𝐹 induces an equivalence of categories C ≃ D0 and the embedding D0 ↩→ D is

faithful and half-full.

Proof. Let D0 be the category with Obj(D0) ≔ {𝐹(𝑥) : 𝑥 ∈ C}, and for each two 𝑥, 𝑦 ∈ C
define MorD0

(𝐹𝑥, 𝐹𝑦) ≔ 𝐹(MorC(𝑥, 𝑦))— so that MorD0
(𝐹𝑥, 𝐹𝑦) ⊆ MorD(𝐹𝑥, 𝐹𝑦). Since

𝐹 is half-full, the definition of MorD0
(𝐹𝑥, 𝐹𝑦) is independent of the initial choice of

𝑥, 𝑦 ∈ C— indeed, if 𝑥′, 𝑦′ ∈ C are such that 𝐹𝑥′ ≃ 𝐹𝑥 and 𝐹𝑦′ ≃ 𝐹𝑦 in D0, then 𝑥′ ≃ 𝑥
and 𝑦′ ≃ 𝑦 in C, thus MorC0

(𝑥, 𝑦) ≃MorC0
(𝑥′, 𝑦′).

Restricting the codomain of 𝐹 to D0, we find that the induced functor 𝐹: C → D0 is

fully faithful and essentially surjective — thus by Proposition 1.5.13 𝐹 is an equivalence

of categories. ♮

1.6 Comma Categories
Definition 1.6.1 (Comma category). Let 𝐹: A → C and 𝐺: B → C be two functors. The

comma category 𝐹 ↓ 𝐺 induced by the functors 𝐹 and 𝐺 is defined as follows:

• The objects of 𝐹 ↓ 𝐺 are triples (𝑎, 𝑓 , 𝑏)— where 𝑎 ∈ A, 𝑏 ∈ B, and 𝑓 : 𝐹𝑎 → 𝐺𝑏 is

a morphism of C.
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• A morphism 𝜙: (𝑎, 𝑓 , 𝑏) → (𝑎′, 𝑓 ′, 𝑏′) in 𝐹 ↓ 𝐺 is a pair of (𝛼, 𝛽)where 𝛼: 𝑎 → 𝑎′ is
a morphism of A, while 𝛽: 𝑏 → 𝑏′ is a morphism of B— moreover, such morphisms

are such that the following diagram commutes

𝐹𝑎 𝐺𝑏

𝐹𝑎′ 𝐺𝑏′

𝑓

𝐹𝛼 𝐺𝛽

𝑓 ′

• The composition of compatible morphisms (𝛼, 𝛽) and (𝛼′, 𝛽′) in 𝐹 ↓ 𝐺 is induced

by the composition law of A and B as follows:

(𝛼′, 𝛽′) ◦ (𝛼, 𝛽) ≔ (𝛼′𝛼, 𝛽′𝛽).

Proposition 1.6.2 (Projection functors in 𝐹 ↓ 𝐺). Let 𝐹: A→ C and 𝐺: B→ C be functors.

There are two functors 𝐴: 𝐹 ↓ 𝐺 → A and 𝐵: 𝐹 ↓ 𝐺 → B, and a canonical natural

transformation 𝜂: 𝐹𝐴⇒ 𝐺𝐵. The scenario can be depicted in the following diagram

𝐹 ↓ 𝐺 B

A C

𝐵

𝐺𝐵

𝐹𝐴

𝐴 𝐺

𝐹

𝜂

It is to be noted that such diagram does not commute in general — that is, we may have

comma categories where 𝐹𝐴 ≠ 𝐺𝐵.

Proof. Define the functors 𝐴 and 𝐵 as follows — for every object (𝑎, 𝑓 , 𝑏) ∈ 𝐹 ↓ 𝐺 and

morphism (𝛼, 𝛽) ∈ Mor(𝐹 ↓ 𝐺):

• Map 𝐴(𝑎, 𝑓 , 𝑏) ≔ 𝑎, and 𝐴(𝛼, 𝛽) ≔ 𝛼.

• Map 𝐵(𝑎, 𝑓 , 𝑏) ≔ 𝑏, and 𝐴(𝛼, 𝛽) ≔ 𝛽.

For the natural transformation, simply define 𝜂(𝑎, 𝑓 ,𝑏) ≔ 𝑓 : 𝐹𝑎 → 𝐹𝑏 which must be

natural from the construction of comma categories. ♮

Proposition 1.6.3 (Comma category property). Let 𝐹: A → C and 𝐺: B → C be two

functors. If there exists a category D with two functors 𝐴′: D→ A and 𝐵′: D→ B, and a

natural transformation 𝜂′: 𝐹𝐴′⇒ 𝐺𝐵′— then there exists a unique functor𝑊 : D→ 𝐹 ↓ 𝐺
such that

𝛼 ∗𝑊 = 𝛼′,
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and that the following diagram commutes

D

𝐹 ↓ 𝐺

A B

𝐵′𝐴′
𝑊

𝐵𝐴

Proof. For every 𝑑 ∈ 𝐷, define𝑊𝑑 ≔ (𝐴′𝑑, 𝜂′
𝑑
, 𝐵′𝑑), and for each morphism 𝑓 ∈ Mor(D),

we define 𝑊 𝑓 ≔ (𝐴′ 𝑓 , 𝐵′ 𝑓 ). This completely determines 𝑊 and thus shows that, if it

exists, it is unique. To show that𝑊 : D→ 𝐹 ↓ 𝐺 is indeed a functor, we note that:

• Given morphisms 𝑓 : 𝑥 → 𝑦 and 𝑔: 𝑥 → 𝑧 of D, we have

𝑊𝑔 ◦𝑊 𝑓 = (𝐴′𝑔, 𝐵′𝑔) ◦ (𝐴′ 𝑓 , 𝐵′ 𝑓 )
= (𝐴′𝑔 ◦ 𝐴′ 𝑓 , 𝐵′𝑔 ◦ 𝐵′ 𝑓 )
= (𝐴′(𝑔 𝑓 ), 𝐵′(𝑔 𝑓 ))
=𝑊(𝑔 𝑓 ).

Note that although we used the same symbol ◦ for composition, one should note

that they have different laws.

• Moreover, for any 𝑑 ∈ 𝐷 we have

𝑊 id𝑑 = (𝐴′ id𝑑 , 𝐵′ id𝑑) = (id𝐴′𝑑 , id𝐵′𝑑) = id𝑊𝑑 .

♮

Definition 1.6.4 (Category of elements). Let 𝐹: C → Set be a covariant functor. The

category of elements of C associated to 𝐹 is denoted by El𝐹(C)whose objects are pairs (𝑐, 𝑠)
for 𝑐 ∈ C and 𝑠 ∈ 𝐹𝑐, and morphisms between any two objects (𝑐, 𝑠), (𝑐′, 𝑠′) ∈ El𝐹(C) is
defined as

Mor
El𝐹(C)((𝑐, 𝑠), (𝑐′, 𝑠′)) ≔ {𝑢 ∈ MorC(𝑐, 𝑐′) : 𝐹(𝑢)(𝑠) = 𝑠′}.

For a contravariant 𝐺: Cop → Set, the category of elements of C associated to 𝐺

is composed of objects (𝑐, 𝑠) for 𝑐 ∈ C and 𝑠 ∈ 𝐺𝑐, and the collection of morphisms

between objects (𝑐, 𝑠), (𝑐′, 𝑠′) ∈ El𝐺(C) is given by

Mor
El𝐺(C)((𝑐, 𝑠), (𝑐′, 𝑠′)) ≔ {𝑢 ∈ MorC(𝑐′, 𝑐) : 𝐹(𝑢)(𝑠′) = 𝑠}.

Corollary 1.6.5. Let 𝐹: C → D be a functor. The category of elements El𝐹(C) is exactly

the comma category 1 ↓ 𝐹— where 1: 1→ Set is the functor from the discrete category

1 with a single object ★ to the category of sets, mapping ★ ↦→ {∗}.
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1.7 Yoneda Lemma
Remark 1.7.1. I again stress that Set, for us, is defined to be the category whose objects

are 𝒰 -sets for a given universe 𝒰 and set-functions between these sets — this is a

relevant remark, since confusions with that would lead one to undesirable size issues.

Definition 1.7.2 (Category of presheaves & Yoneda functors). Given a 𝒰 -category C,

we define the big category of presheaves Psh(C) and a big category of functors Psh(Cop) =
[𝐶, Set]. Together with such categories we define functors

𝐻C: C −→ Psh(C), mapping 𝑥 ↦→MorC(−, 𝑥) and 𝑓 ↦→ 𝑓∗,

𝐻′C: C −→ Psh(Cop), mapping 𝑥 ↦→MorC(𝑥,−) and 𝑓 ↦→ 𝑓 ∗.

The functors 𝐻C and 𝐻′C are called Yoneda functors.

Remark 1.7.3 ( 𝑓∗ and 𝑓 ∗ as natural transformations). The attentive reader may note

that setting 𝐻C 𝑓 = 𝑓∗ is not quite right since 𝑓∗ is not a morphism in the category

of presheaves Psh(C) according to our definition that roots from Lemma 1.3.2 — you

are right, but we are being sloppy here just to simplify how we treat our objects and

notations. The arrow 𝑓∗ (and 𝑓 ∗) is to be interpreted as the natural transformation
𝑓∗:𝐻C𝑥 ⇒ 𝐻C𝑦, where 𝑓 : 𝑥 → 𝑦 — for which we define, for every object 𝑧 ∈ C, the

morphism 𝑓∗: MorC(𝑧, 𝑥) →MorC(𝑧, 𝑦)mapping 𝑔 ↦→ 𝑓 𝑔.

Remark 1.7.4 (Size issues). Although C is a 𝒰 -category, its categories of presheaves

described above need not be a𝒰 -category — however, if C happens to be𝒰 -small, then

Psh(C) and Psh(Cop) are both𝒰 -categories.

Lemma 1.7.5 (Yoneda). The Yoneda lemma states that:

(a) For all functors 𝐹: Cop → Set and 𝑥 ∈ C, there is a natural isomorphism:

MorPsh(C)(𝐻C𝑥, 𝐹) ≃ 𝐹𝑥.

(b) For all functors 𝐺: C→ Set and 𝑥 ∈ C, there is a natural isomorphism:

MorPsh(Cop)(𝐺, 𝐻′C𝑥) ≃ 𝐺𝑥.

These natural isomorphisms have a functorial nature — they define, respectively, func-

tors Cop × Psh(C) → Set and Psh(Cop)op × C→ Set
Proof. By means of ?? one only needs to prove one of the two statements, since the

other follows from duality. We prove the item (a).

Let 𝜙 be the morphism making

MorPsh(C)(𝐻C𝑥, 𝐹) MorSet(MorC(𝑥, 𝑥), 𝐹𝑥) 𝐹𝑥

𝜂 𝜂𝑥 𝜂𝑥(id𝑥)

𝜙
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commute. Notice that the choice of id𝑥 ∈ MorC(𝑥, 𝑥) = 𝐻C𝑥(𝑥) is done so that we can

define a distinguished point 𝜂𝑥(id𝑥) from the set 𝐹𝑥 .

Define now 𝜓: 𝐹𝑥 → MorPsh(C)(𝐻C(𝑥), 𝐹) to be the map 𝐹𝑥 ∋ 𝑎 ↦→ 𝜂𝑎 :𝐻C𝑥 ⇒ 𝐹,

where the natural transformation 𝜂𝑎 associated to 𝑎 is defined, for every object 𝑦 ∈ C,
by the map 𝜂𝑎𝑦 : MorC(𝑦, 𝑥) → 𝐹𝑥 sending 𝑓 ↦→ 𝐹( 𝑓 )(𝑎).

Notice that any natural transformation 𝜂 ∈ MorPsh(C)(𝐻C𝑥, 𝐹) is completely deter-

mined by 𝜂𝑥(id𝑥). Indeed, given 𝑓 ∈ MorC(𝑦, 𝑥) one has the following diagram, which

comes from the naturality of 𝜂:

MorC(𝑥, 𝑥) 𝐹𝑥

MorC(𝑦, 𝑥) 𝐹𝑦

𝜂𝑥

𝑓 ∗ 𝐹 𝑓

𝜂𝑦

Thus we have 𝜂𝑦( 𝑓 ) = (𝐹 𝑓 )(𝜂𝑥(id𝑥)) since 𝑓 ∗(id𝑥) = id𝑥 𝑓 = 𝑓 — which shows that 𝜂 is

determined by the distinguished map id𝑥 . That is, 𝜓 is determined, for each 𝑎 ∈ 𝐹𝑥 by

𝜂𝑎𝑥(id𝑥). This is thus sufficient to prove that 𝜙 and 𝜓 are mutual inverses and therefore

stablish the wanted isomorphism. ♮

Corollary 1.7.6. The Yoneda functors 𝐻 and 𝐻′ are fully faithful.

Proof. From duality, we only check that the map MorC(𝑥, 𝑦) → MorPsh(C)(𝐻C𝑥, 𝐻C𝑦)
sending 𝑓 ↦→ 𝜂 𝑓 , where 𝜂

𝑓
𝑧 (𝑔) = 𝑓∗(𝑔) = 𝑓 𝑔 for every 𝑧 ∈ C and map 𝑔 ∈ MorC(𝑧, 𝑥)—

is a bĳection for all 𝑥, 𝑦 ∈ C. Such map is certainly injective, since given two distinct

maps 𝑓 , ℎ ∈ MorC(𝑥, 𝑦)we have 𝑓∗ ≠ ℎ∗. Moreover, we have the isomorphism

MorPsh(C)(𝐻C𝑥, 𝐻C𝑦) ≃ 𝐻C𝑦(𝑥) = MorC(𝑥, 𝑦)

from Lemma 1.7.5. Let 𝜂:𝐻C𝑥 ⇒ 𝐻C𝑦 be any natural transformation — we wish to find

𝑓 ∈ MorC(𝑥, 𝑦) for which 𝜂𝑧(𝑔) = 𝑓 𝑔 for every 𝑧 ∈ C and 𝑔 ∈ MorC(𝑧, 𝑥). The natural

choice is given by 𝑓 ≔ 𝜂𝑥(id𝑥). By the naturality of 𝜂 we have, for any 𝑤 ∈ C

MorC(𝑤, 𝑥) MorC(𝑤, 𝑦)

MorC(𝑧, 𝑥) MorC(𝑧, 𝑦)

𝜂𝑤

𝑔∗ 𝑔∗

𝜂𝑧

Thus given ℎ:𝑤 → 𝑥 in Cwe have the equality

𝜂𝑤(ℎ)𝑔 = 𝜂𝑧(ℎ𝑔).

Therefore, if we restrict 𝑤 = 𝑥 and ℎ = id𝑥 we get 𝜂𝑥(id𝑥)𝑔 = 𝑓 𝑔 = 𝜂𝑧(𝑔)— which is

what we wanted, because this means that 𝑓 will have image 𝜂 under our mapping. ♮

Remark 1.7.7 (Full subcategory of the presheaf category). From Corollary 1.7.6 one

can conclude that C can be viewed as a full subcategory of the presheaf category Psh(C)
(or of the category Psh(Cop)).
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The following corollary establishes the main idea of the Yoneda lemma — one

knows about an object by knowing how it interacts with other objects.

Corollary 1.7.8. Given a category C and two objects 𝑥, 𝑦 ∈ C. Then there exists an

isomorphism 𝑥 ≃ 𝑦 if and only if there exists an isomorphism MorC(−, 𝑥) ≃MorC(−, 𝑦)
— or, for the covariant version, MorC(𝑥,−) ≃MorC(𝑦,−).

Proof. Since functors preserve isomorphisms, if 𝑥 ≃ 𝑦 for any two objects 𝑥, 𝑦 ∈ C, we

obtain that 𝐻C𝑥 ≃ 𝐻C𝑦. From Proposition 1.4.17 and since 𝐻C is fully faithful we find

that 𝐻C𝑥 ≃ 𝐻C𝑦 implies 𝑥 ≃ 𝑦. ♮

Corollary 1.7.9. Let 𝐹: C→ Dbe a functor of𝒰 -categories and assume that C is𝒰 -small.

For every functor 𝐴 ∈ Psh(C), the category C𝐴 associated7
with the functor

C D Psh(C)𝐹 𝐻D

is 𝒰 -small. Analogously, given a functor 𝐵 ∈ Psh(Cop), the category C𝐵 associated with

the functor

C D Psh(Cop)𝐹 𝐻′D

is𝒰 -small.

Proof. Recalling the definition, the category C𝐴 associated with 𝐻C𝐹 is given by the

following collections:

Obj(C𝐴) = {(𝑥, 𝜙) : 𝑥 ∈ C and 𝜙:𝐻C𝐹𝑥 → 𝐴 in D},
MorC𝐴((𝑥, 𝜙), (𝑦,𝜓)) = { 𝑓 ∈ MorC(𝑥, 𝑦) : 𝜙 = 𝜓𝐻C𝐹( 𝑓 )},

where (𝑥, 𝜙), (𝑦,𝜓) ∈ C𝐴 are any two objects, in other words, the collection of mor-

phisms so that

𝐻C𝐹𝑥 𝐴

𝐻C𝐹𝑦

𝜙

𝐻C𝐹( 𝑓 )

𝜓

commutes in D. Since C is assumed to be 𝒰 -small by hypothesis, it follows that the

collection of arrows ∐
𝑥∈C

MorC(𝐹𝑥, 𝐴)

is a disjoint union of 𝒰 -small sets, thus is itself 𝒰 -small. The same proof can be

analogously constructed for the covariant case C𝐵. ♮

Corollary 1.7.10. Let C be a category and 𝑓 : 𝑥 → 𝑦 a morphism in C. If for every 𝑧 ∈ C
the morphism

𝑓∗: MorC(𝑧, 𝑥) →MorC(𝑧, 𝑦)

7
Recall Definition 1.4.21.
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is an isomorphism (or 𝑓 ∗: MorC(𝑥, 𝑧) → MorC(𝑦, 𝑧) for the covariant case), then 𝑓 is an

isomorphism.

Proof. If the condition is met, then 𝐻C 𝑓 :𝐻C𝑥 → 𝐻C𝑦 is an isomorphism. Since 𝐻C is

fully faithful, then 𝑓 is an isomorphism. Notice that we already stated this proposition

back when we were studying dual categories, with the Yoneda lemma we were able to

prove it functorially — see Lemma 1.3.2. ♮

Functor Representation
Definition 1.7.11 (Representable functor). A presheaf 𝐹: Cop → Set (or a functor C→
Set) is said to be representable if there exists a natural isomorphism 𝐻C𝑥

≃
===⇒ 𝐹 (or

𝐹 ≃=⇒ 𝐻′C𝑥) for some 𝑥 ∈ C— the object 𝑥 is called a representative of 𝐹.

Corollary 1.7.12 (Representative uniqueness). The representative of a representable

functor is unique up to unique isomorphism.

Proof. Since 𝐻C (and 𝐻′C) is fully faithful, it follows that, if 𝑥, 𝑦 ∈ C are representatives

of 𝐹, then there exists a natural isomorphism 𝐻C𝑥 ≃ 𝐻C𝑦 hence, evoking Proposi-

tion 1.4.17, we find a unique isomorphism 𝑥 ≃ 𝑦. ♮

Corollary 1.7.13 (Universal element). Let 𝐹: Cop → Set (or C → Set) be any repre-

sentable presheaf, with representative object 𝑥0 ∈ C. Then the natural isomorphism

𝜂:𝐻C𝑥0

≃
===⇒ 𝐹

is uniquely determined by an element 𝑠0 ∈ 𝐹𝑥0 — such an element is called a universal
element of 𝐹.

Proof. Indeed, if 𝐹 is represented by 𝑥0, then by the Yoneda lemma we obtain an

isomorphism

MorPsh(C)(𝐻C𝑥0, 𝐹) ≃ 𝐹𝑥0,

therefore for each 𝑠0 ∈ 𝐹𝑥0 there exists a unique corresponding natural transformation

𝜂:𝐻C𝑥0 ⇒ 𝐹 (notice we didn’t require it to be an isomorphism) and 𝜂 is completely

determined by 𝑠0 in the sense that, for every 𝑦 ∈ C and element 𝑡 ∈ 𝐹𝑦, there exists a

unique morphism 𝑓 : 𝑥0 → 𝑦 such that 𝐹( 𝑓 )(𝑠0) = 𝑡. ♮

Corollary 1.7.14. Let 𝐹: C → Psh(D) be a functor. If, for every 𝑐 ∈ C, there exists an

object 𝑑 ∈ D such that 𝐹𝑐 ≃ 𝑑, then there exists a unique — up to unique isomorphism

— functor 𝐹0: C→ D for which

𝐹 ≃ 𝐻D𝐹0.

Proof. From Remark 1.7.7 we know that D is a full subcategory of the presheaf category

Psh(D). Since 𝐻D:𝐷 → Psh(D) is fully faithful, by means of Lemma 1.5.11 one finds
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that there exists a unique functor 𝐹0: C→ D (up to unique isomorphism) and a natural

isomorphism 𝐹 ≃ 𝐻D𝐹0. In other words, the following diagram is quasi-commutative

C Psh(D)

D

𝐹

𝐹0

𝐻D

♮

Properties of the Category of Elements
Proposition 1.7.15. Let 𝐹: Cop → Set be a functor (or 𝐹: C→ Set for the covariant case).

Then 𝐹 is representable if and only if the category of elements El𝐹(C) has a final object

(or initial object for the covariant case).

Proof. We prove the proposition for the contravariant case, the covariant case has a

completely analogous construction and can be obtained by duality. Let 𝐹 be repre-

sentable, with representative 𝑥0 ∈ C, and universal element 𝑠0 — that is, defining a

natural isomorphism𝐻C𝑥0 ≃ 𝐹. Consider any element (𝑥, 𝑠) ∈ El𝐹(C)— the morphisms

(𝑥, 𝑠) → (𝑥0, 𝑠0) in El𝐹(C) are arrows 𝑓 : 𝑥 → 𝑥0 in C for which 𝐹( 𝑓 )(𝑠0) = 𝑠. Nonethe-

less, since 𝐻C is fully faithful the morphism 𝑓 satisfying such condition is unique —

therefore (𝑥0, 𝑠0) is final in the category of elements El𝐹(C).
On the other hand, assume that El𝐹(C) has a final object (𝑥0, 𝑠0). We construct a

natural transformation 𝜃: 𝐹 ⇒ 𝐻C𝑥0 by the maps 𝜃𝑥 : 𝐹𝑥 → MorC(𝑥, 𝑥0), for 𝑥 ∈ C,
sending 𝑠 ↦→ 𝑓 where 𝐹( 𝑓 )(𝑠0) = 𝑠 — this is well defined since (𝑥0, 𝑠0) is final and

thus 𝑓 : 𝑥 → 𝑥0 is the unique morphism in C with such property. Moreover, 𝜃𝑥 is

clearly injective: if 𝑠, 𝑠′ ∈ 𝐹𝑥 are any two elements such that 𝜃𝑥(𝑠) = 𝜃𝑥(𝑠′) = 𝑓 , then

𝐹( 𝑓 )(𝑠0) = 𝑠 and also 𝐹( 𝑓 )(𝑠0) = 𝑠′ — which can only be the case for 𝑠 = 𝑠′. The

surjectivity of 𝜃𝑥 is ensured by the fact that, given a morphism 𝑓 : 𝑥 → 𝑥0 in C, one can

choose the element 𝐹( 𝑓 )(𝑠0) ∈ 𝐹𝑥 so that 𝜃𝑥(𝐹( 𝑓 )(𝑠0)) = 𝑓 . We conclude that 𝜃𝑥 is a

bĳection and hence 𝜃 is a natural isomorphism 𝐹 ≃ 𝐻C𝑥0. ♮

Definition 1.7.16 (Two sided represented functor). Let C be a 𝒰 -category, then there

is a functor Mor(−,−): Cop × C → Set defined by mapping objects (𝑥, 𝑦) ↦→ Mor(𝑥, 𝑦)
and morphisms ( 𝑓 , 𝑔): (𝑎, 𝑦) → (𝑥, 𝑏) to a set-function ( 𝑓 ∗, 𝑔∗): Mor(𝑥, 𝑦) → Mor(𝑎, 𝑏)
given by the mapping 𝑔 ↦→ ℎ𝑔 𝑓 .
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Chapter 2

Limits

2.1 Products
Definition 2.1.1 (Product). Let 𝐽 be a set, and (𝐶 𝑗)𝑗∈𝐼 be a collection of objects in a

category C.

A product of such collection, if it exists, is a pair (𝑃, (𝜋 𝑗)𝑗∈𝐽)—where 𝑃 is an object of

C, and for every 𝑗 ∈ 𝐽, 𝜋 𝑗 :𝑃 → 𝐶 𝑗 is a morphism of C.

Furthermore, this pair has to satisfy the following universal property: for every pair

(𝑄, (𝑞 𝑗)𝑗∈𝐽)—where 𝑄 ∈ C and for every 𝑗 ∈ 𝐽, 𝑞 𝑗 :𝑄 → 𝐶 𝑗 is a morphism in C—there

exists a unique morphism 𝑓 :𝑄 → 𝑃 of C such that, for every 𝑗 ∈ 𝐽 the following diagram

commutes

𝑄

𝑃 𝐶 𝑗

𝑞 𝑗

𝑓

𝜋𝑗

Proposition 2.1.2 (Uniqueness). The product of a collection of objects, if existent, is

unique up to isomorphism.

Proof. Let C be a category admitting the product of a collection (𝐶 𝑗)𝑗∈𝐽 of objects of C,

and 𝐽 is a set. Let (𝑃, (𝑝 𝑗)𝑗∈𝐽) and (𝑄, (𝑞 𝑗)𝑗∈𝐽) be products of (𝐶 𝑗)𝑗∈𝐽 in the category C.

Since 𝑃 and 𝑄 are products, there exists unique morphisms 𝑓 :𝑄 → 𝑃 and 𝑔:𝑃 → 𝑄

such that, for all 𝑗 ∈ 𝐽, we have 𝑞 𝑗 = 𝑝 𝑗 𝑓 and 𝑝 𝑗 = 𝑞 𝑗𝑔.

Moreover, one can apply the product property of 𝑃 to 𝑃 itself: there exists a unique

morphism ℎ:𝑃 → 𝑃 such that, for all 𝑗 ∈ 𝐽, we have 𝑝 𝑗 = 𝑝 𝑗ℎ. For that to be true, it is

clear that we must have ℎ = id𝑃 . Note, however, that for each 𝑗 ∈ 𝐽,

𝑝 𝑗 = 𝑞 𝑗𝑔 = 𝑝 𝑗 𝑓 𝑔.

Since ℎ is unique, we obtain 𝑓 𝑔 = ℎ = id𝑃 . On the other hand, applying the product

property of 𝑄 in 𝑄 will yield 𝑔 𝑓 = id𝑄 . This shows that 𝑄 ≃ 𝑃 in C, via 𝑓 and 𝑔. ♮

Proposition 2.1.3 (Products are independent of ordering). Let 𝐼 be a set and (𝐽𝑘)𝑘∈𝐾
be a partition of 𝐼 by disjoint subsets 𝐽𝑘 ⊆ 𝐼. Let (𝐶𝑖)𝑖∈𝐼 be a collection of objects in a
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category C. Then, if all the products presented below exist in C, they are isomorphic:∏
𝑖∈𝐼

𝐶𝑖 ≃
∏
𝑘∈𝐾

(∏
𝑗∈𝐽𝑘

𝐶 𝑗

)
.

Proof. Define the following collections:

• Let (𝑞𝑘)𝑘∈𝐾 be the collection of morphisms 𝑞𝑘0
:

∏
𝑘∈𝐾

(∏
𝑗∈𝐽𝑘 𝐶 𝑗

)
→ 𝐶𝑘0

, for each

𝑘0 ∈ 𝐾, associated with the product

∏
𝑘∈𝐾

(∏
𝑗∈𝐽𝑘 𝐶 𝑗

)
in C.

• For all 𝑘 ∈ 𝐾, let (𝑝 𝑗)𝑗∈𝐽𝑘 be the collection of morphisms 𝑝 𝑗0 :

∏
𝑗∈𝐽𝑘 𝐶 𝑗 → 𝐶 𝑗0 , for

each 𝑗0 ∈ 𝐽𝑘 associated with the product

∏
𝑗∈𝐽𝑘 𝐶 𝑗 in C.

Let (𝐿, (ℓ )𝑖∈𝐼) be a pair where 𝐿 ∈ C and ℓ𝑖 : 𝐿→ 𝐶𝑖 is a morphism in C for each 𝑖 ∈ 𝐼.
Define a collection (𝑔𝑘)𝑘∈𝐾 where, for each 𝑘0 ∈ 𝐾, we let 𝑔𝑘0

: 𝐿→ ∏
𝑗∈𝐽𝑘

0

𝐶 𝑗 be the

unique morphism of C such that ℓ𝑖 = 𝑔𝑘0
𝑝𝑖 for every 𝑖 ∈ 𝐽𝑘 . Let 𝑓 :

∏
𝑘∈𝐾

(∏
𝑗∈𝐽𝑘 𝐶 𝑗

)
be

the unique morphism of C such that 𝑔𝑘 = 𝑞𝑘 𝑓 .

We see that the following diagram commutes for every 𝑘0 ∈ 𝐾 and 𝑖 ∈ 𝐽𝑘 :

𝐿

∏
𝑘∈𝐾

(∏
𝑗∈𝐽𝑘 𝐶 𝑗

) ∏
𝑗∈𝐽𝑘

0

𝐶 𝑗 𝐶𝑖

ℓ𝑖

𝑓 𝑔𝑘
0

𝑞𝑘
0

𝑝𝑖

Since 𝐼 =
⋃
𝑘∈𝐾 𝐽𝑘 , the diagram commutes for any 𝑖 ∈ 𝐼—thus

∏
𝑘∈𝐾

(∏
𝑗∈𝐽𝑘 𝐶 𝑗

)
is a

product of the collection (𝐶𝑖)𝑖∈𝐼 . Now, Proposition 2.1.2 finishes the proof. ♮

2.2 Coproducts
Definition 2.2.1 (Coproduct). Let 𝐽 be a set, and (𝐶 𝑗)𝑗∈𝐼 be a collection of objects in a

category C.

A coproduct of such collection, if it exists, is a pair (𝑃, (𝜄 𝑗)𝑗∈𝐽)—where 𝑃 is an object

of C, and for every 𝑗 ∈ 𝐽, 𝜄 𝑗 :𝑃 → 𝐶 𝑗 is a morphism of C.

Furthermore, this pair has to satisfy the following universal property: for every pair

(𝑄, (𝑞 𝑗)𝑗∈𝐽)—where 𝑄 ∈ C and for every 𝑗 ∈ 𝐽, 𝑞 𝑗 :𝐶 𝑗 → 𝑄 is a morphism in C—there

exists a unique morphism 𝑓 :𝑃 → 𝑄 of C such that, for every 𝑗 ∈ 𝐽 the following diagram
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commutes

𝑃 𝐶 𝑗

𝑄

𝑓

𝜄 𝑗

𝑞 𝑗

We can see right away that coproducts are dual to products, yielding the following

two dual properties.

Proposition 2.2.2 (Uniqueness). If a coproduct of a collection of objects of a category

exists, then this coproduct is unique up to isomorphism.

Proposition 2.2.3 (Coproducts are independent of ordering). Let 𝐼 be a set and (𝐽𝑘)𝑘∈𝐾
be a partition of 𝐼 by disjoint subsets 𝐽𝑘 ⊆ 𝐼. Let (𝐶𝑖)𝑖∈𝐼 be a collection of objects in a

category C. Then, if all the coproducts presented below exist in C, they are isomorphic:∐
𝑖∈𝐼

𝐶𝑖 ≃
∐
𝑘∈𝐾

(∐
𝑗∈𝐽𝑘

𝐶 𝑗

)
.

Remark 2.2.4 (Duality). Coproducts are dual to products in the following sense: if 𝑃 is

a product in a category C, then 𝑃op
is a coproduct in the opposite category Cop

. Notice

however that one cannot simply reverses the arrows of a product in C and end up with a

coproduct in C—in fact, there are categories where product do exist, while coproducts

do not.

2.3 Equalizers and Coequalizers
Definition 2.3.1 (Equalizer). Let 𝑓 , 𝑔:𝐴 ⇒ 𝐵 be parallel morphisms in a category C.

An equalizer of 𝑓 and 𝑔 is a pair (𝐾, 𝑘)—where 𝐾 ∈ C is an object and 𝑘:𝐾 → 𝐴 is a

morphism of C for which 𝑓 𝑘 = 𝑔𝑘—such that, for any object 𝑀 ∈ C and morphism

𝑚:𝑀 → 𝐴 of C satisfying 𝑓 𝑚 = 𝑔𝑚, there exists a unique morphism 𝑛:𝑀 → 𝐾 such

that the following diagram commutes

𝑀

𝐾 𝐴 𝐵

𝑛

𝑚

𝑘

𝑓

𝑔

Just as with products and coproducts, one has a dual notion of an equalizer, we call

it a coequalizer. For the sake of later reference, we write down its definition.

Definition 2.3.2 (Coequalizer). Let 𝑓 , 𝑔:𝐴 ⇒ 𝐵 be parallel morphisms in a category

C. An equalizer of 𝑓 and 𝑔 is a pair (𝐶, 𝑐)—where 𝐶 ∈ C is an object and 𝑐: 𝐵 → 𝐶 is

a morphism of C for which 𝑐 𝑓 = 𝑐𝑔—such that, for any object 𝑀 ∈ C and morphism
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𝑚: 𝐵 → 𝑀 of C satisfying 𝑚 𝑓 = 𝑚𝑔, there exists a unique morphism 𝑛:𝐶 → 𝑀 such

that the following diagram commutes

𝐶 𝐵 𝐴

𝑀

𝑛

𝑐

𝑚

𝑔

𝑓

Proposition 2.3.3 (Uniqueness). Given two parallel morphisms 𝑓 , 𝑔:𝐴 ⇒ 𝐵 in a cate-

gory C, if the (co)equalizer of them exists, then it is unique up to isomorphism. We denote

the equalizer of 𝑓 and 𝑔 by eq( 𝑓 , 𝑔) and the coequalizer of 𝑓 and 𝑔 by coeq( 𝑓 , 𝑔).

Proof. We prove for equalizers. Let (𝐾, 𝑘) and (𝐾′, 𝑘′) be equalizers of 𝑓 and 𝑔. If

we apply the equalizer property of (𝐾′, 𝑘′) in (𝐾, 𝑘) and vice versa, we obtain unique

morphisms 𝑛′:𝐾 → 𝐾′ and 𝑛:𝐾′→ 𝐾 such that 𝑘 = 𝑘′𝑛′ and 𝑘′ = 𝑘𝑛.

Moreover, applying the equalizer property of (𝐾, 𝑘) in itself we obtain a unique

𝑡:𝐾 → 𝐾 such that 𝑘 = 𝑘𝑡—therefore 𝑡 = id𝐾 . Since 𝑘 = 𝑘′𝑛 = 𝑘 id𝐾 and id𝐾 is

unique with such property, it follows that, since 𝑘 = 𝑘′𝑛′ = (𝑘𝑛)𝑛′ = 𝑘(𝑛𝑛′) we find

that 𝑛𝑛′ = id𝐾 . On the other hand, doing the same for (𝐾′, 𝑘′) implies in 𝑛′𝑛 = id𝐾′.

Therefore 𝐾 ≃ 𝐾′ in C, via 𝑛 and 𝑛′. ♮

Corollary 2.3.4. Given a morphism 𝑓 :𝐴 → 𝐵 in a category C, the (co)equalizer of 𝑓

with itself always exists—in fact eq( 𝑓 , 𝑓 ) = (𝐴, id𝐴) and coeq( 𝑓 , 𝑓 ) = (𝐵, id𝐵).

Proposition 2.3.5. Let C be a category and 𝑓 , 𝑔:𝐴⇒ 𝐵 be parallel morphisms in C. The

following are properties concerning equalizers and coequalizers:

1. If 𝑓 and 𝑔 have an equalizer eq( 𝑓 , 𝑔) in C, the morphism eq( 𝑓 , 𝑔)↣ 𝐴 associated

to the equalizer is a monomorphism.

2. If 𝑓 and 𝑔 have an coequalizer coeq( 𝑓 , 𝑔) in C, the morphism 𝐵 ↠ coeq( 𝑓 , 𝑔)
associated to the coequalizer is an epimorphism.

Proof. The properties are dual to each other, thus we may simply prove the one concern-

ing equalizers. Let 𝑘: eq( 𝑓 , 𝑔) → 𝐴 be the morphism in C associated to the equalizer.

Consider any two parallel morphisms 𝑥, 𝑦:𝐶 ⇒ eq( 𝑓 , 𝑔) such that 𝑘𝑥 = 𝑘𝑦—therefore,

the following diagram commutes

𝐶 eq( 𝑓 , 𝑔) 𝐴 𝐵
𝑥

𝑦

𝑘
𝑓

𝑔

From the diagram we obtain the relation 𝑓 (𝑘𝑥) = 𝑔(𝑘𝑥). Since 𝑘𝑥:𝐶 → 𝐴, the universal

property implies that 𝑥 must be the unique—hence 𝑦 = 𝑥. ♮

Proposition 2.3.6. Let 𝑓 :𝐴 → 𝐵 be a morphism of a category C. If 𝑓 is both an

epimorphism and equalizer1
, then 𝑓 is an isomorphism.

1
This is clearly an abuse of language, the equalizer is in fact 𝐴 and 𝑓 is the morphism associated

with 𝐴.
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Proof. Let 𝑥, 𝑦: 𝐵⇒ 𝐶 be parallel morphisms in Cwith eq(𝑥, 𝑦) = 𝑓 , then

𝐴 𝐵 𝐶
𝑓

𝑔

𝑓

which implies in 𝑥 𝑓 = 𝑦 𝑓 . By hypothesis 𝑓 is an epimorphism, thus 𝑥 = 𝑦. Notice

however that the equalizer of a morphism 𝐵→ 𝐶 with itself is the identity on 𝐵. Since

equalizers are unique up to isomorphism, it follows that 𝑓 ≃ id𝐵—thus 𝑓 itself is an

isomorphism (and 𝐴 ≃ 𝐵). ♮

2.4 Pullbacks & Pushouts
Definition 2.4.1 (Pullback). Let 𝑓 :𝐴 → 𝐶 and 𝑔: 𝐵 → 𝐶 be any two morphisms in a

category C. A pullback of ( 𝑓 , 𝑔) is a triple (𝑃, 𝑓 ′, 𝑔′)where the diagram

𝑃 𝐵

𝐴 𝐶

𝑓 ′

𝑔′ 𝑔

𝑓

commutes in C, and for every other triple (𝑄, 𝑓 ′′, 𝑔′′)making the diagram

𝑄 𝐵

𝐴 𝐶

𝑓 ′′

𝑔′′ 𝑔

𝑓

commute in C, there exists a unique morphism ℓ :𝑄 → 𝑃 in C such that the following

diagram commutes

𝑄

𝑃 𝐵

𝐴 𝐶

ℓ

𝑓 ′′

𝑔′′

𝑓 ′

𝑔′ 𝑔

𝑓

We usually denote that a square is a pullback in C by marking it as follows

𝑃 𝐵

𝐴 𝐶

𝑓 ′

𝑔′
⌟

𝑔

𝑓

The dual notion of a pullback is that of a pushout, just as before, we’ll write it down

just for the sake of later reference.
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Definition 2.4.2 (Pushout). Let 𝑓 :𝐶 → 𝐴 and 𝑔:𝐶 → 𝐵 be any two morphisms in a

category C. A pushout of ( 𝑓 , 𝑔) is a triple (𝑃, 𝑓 ′, 𝑔′)where the diagram

𝐶 𝐴

𝐵 𝑃

𝑓

𝑔 𝑔′

𝑓 ′

commutes in C, and for every other triple (𝑄, 𝑓 ′′, 𝑔′′)making the diagram

𝐶 𝐴

𝐵 𝑄

𝑓

𝑔 𝑔′′

𝑓 ′′

commute in C, there exists a unique morphism ℓ :𝑃 → 𝑄 in C such that the following

diagram commutes

𝐶 𝐴

𝐵 𝑃

𝑄

𝑓

𝑔 𝑔′
𝑔′′

𝑓 ′

𝑓 ′′

ℓ

Analogously, if we want to visually say that a square is a pushout in C, we mark it

as follows

𝐶 𝐴

𝐵 𝑃

𝑓

𝑔 𝑔′

𝑓 ′

⌜

Proposition 2.4.3 (Uniqueness). The pullback (or pushout) of two morphisms, if exis-

tent, is unique up to isomorphism.

Proof. Let 𝑓 :𝐴 → 𝐶 and 𝑔: 𝐵 → 𝐶 be two morphisms in a category C. Suppose there

exists two pullbacks of ( 𝑓 , 𝑔), namely (𝑃, 𝑓 ′, 𝑔′′) and (𝑄, 𝑓 ′′, 𝑔′′). Let 𝜙:𝑃 → 𝑄 and

𝜓:𝑄 → 𝑃 be the uniquely defined morphisms given by the universal property of the
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pullback. Consider the following two commutative diagrams

𝑃

𝑄

𝑃 𝐵

𝐴 𝐶

𝜙

𝑓 ′

𝑔′

𝜓

𝑓 ′′

𝑔′′

𝑓 ′

𝑔′ 𝑔

𝑓

𝑄

𝑃

𝑄 𝐵

𝐴 𝐶

𝜓

𝑓 ′′

𝑔′′

𝜙

𝑓 ′

𝑔′

𝑓 ′′

𝑔′′ 𝑔

𝑓

Notice, however, that since id𝑃 :𝑃 → 𝑃 and id𝑄 :𝑄 → 𝑄 also make them commute—

respectively, the left and right diagrams. From uniqueness we obtain 𝜙𝜓 = id𝑃 and

𝜓𝜙 = id𝑄—therefore 𝑃 ≃ 𝑄 in C, via 𝜙 and 𝜓. ♮

Proposition 2.4.4. Let (𝑃, 𝑓 ′, 𝑔′) be the pullback of a pair of morphisms ( 𝑓 , 𝑔) in a

category C, then:

(a) If 𝑔 is a monomorphism, then 𝑔′ is also a monomorphism.

(b) If 𝑔 is an isomorphism, then 𝑔′ is also an isomorphism.

Dually, if (𝐵, 𝑓 ′′, 𝑔′′) is the pushout of the pair ( 𝑓 , 𝑔), then:

(c) If 𝑔 is an epimorphism, then 𝑔′′ is also an epimorphism.

(d) If 𝑔 is an isomorphism, then 𝑔′′ is also an isomorphism.

Proof. We only prove items (a) and (b), since (c) and (d) are merely dual consequences

of the former items.

(a) Let 𝑔 be a monomorphism and consider parallel morphisms 𝑢, 𝑣:𝑄 ⇒ 𝑃 such

that 𝑔′𝑢 = 𝑔′𝑣—we want to prove that 𝑢 = 𝑣. Take into account the following

commutative diagram

𝑄

𝑃 𝐵

𝐴 𝐶

𝑢

𝑣
𝑓 ′

𝑔′
⌟

𝑔

𝑓

Lets first consider the morphism 𝑢. Notice that 𝑝 ≔ 𝑔′𝑢 and 𝑞 ≔ 𝑓 ′𝑢 are such that

𝑓 𝑝 = 𝑔𝑞. From the universal property of the pullback we have that 𝑢 is the unique

morphism factorizing (𝑝, 𝑞) through (𝑔, 𝑓 ).
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On the other hand, if we consider the arrow 𝑣, one can define 𝑝′ ≔ 𝑔′𝑣 and

𝑞′ ≔ 𝑓 ′𝑣 so that 𝑓 𝑝′ = 𝑔𝑞′—thus 𝑣 is the unique factorization of (𝑝′, 𝑞′) through

(𝑔, 𝑓 ). Notice, however, that from construction 𝑝′ = 𝑔′𝑣 = 𝑔′𝑢 = 𝑝. Moreover,

𝑔𝑞′ = 𝑓 𝑝′ = 𝑓 (𝑔′𝑣) = 𝑓 (𝑔′𝑢) = 𝑓 𝑝 = 𝑔𝑞,

since 𝑔 is a monomorphism, it follows that 𝑔𝑞′ = 𝑔𝑞 implies 𝑞′ = 𝑞. Therefore both

𝑢 and 𝑣 are factorizations of the same pair of morphisms—and from uniqueness,

it can only be the case that 𝑢 = 𝑣.

(b) Suppose 𝑔 is an isomorphism and consider the following commutative diagram

𝐴

𝑃 𝐵

𝐴 𝐶

𝑔−1 𝑓

id𝐴

ℓ

𝑓 ′

𝑔′ 𝑔

𝑓

Thus 𝑔′ℓ = id𝐴 is already given. We can now consider the diagram

𝑃

𝑃 𝐵

𝐴 𝐶

𝑓 ′(ℓ 𝑔′)

𝑔′(ℓ 𝑔′)

ℓ 𝑔′

𝑓 ′

𝑔′ 𝑔

𝑓

(2.1)

Moreover, we consider the following composition

𝑔′(ℓ 𝑔′) = (𝑔′ℓ )𝑔′ = id𝐴 𝑔
′ = 𝑔′ = 𝑔′ id𝑃 ,

on the other hand we have

𝑓 ′(ℓ 𝑔′) = ( 𝑓 ′ℓ )𝑔′ = (𝑔−1 𝑓 )𝑔′ = 𝑔−1( 𝑓 𝑔′) = 𝑔−1(𝑔 𝑓 ′) = 𝑓 ′ = 𝑓 ′ id𝑃 .

Therefore 𝑔′(ℓ 𝑔′) = 𝑔′ id𝑃 and 𝑓 ′(ℓ 𝑔′) = 𝑓 ′ id𝑃 but by uniqueness, since id𝑃 also

makes Eq. (2.1) commute, it follows that ℓ 𝑔′ = id𝑃 . Thus 𝑔′ is an isomorphism

with inverse ℓ .

♮

Definition 2.4.5 (Kernel & cokernel). Let 𝑓 :𝐴→ 𝐵 be a morphism in a category C. The

(co)kernel of 𝑓 , if existent, is defined to be the pullback of 𝑓 with itself—or pushout in

the case of cokernels.
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Proposition 2.4.6. Let C be a category and 𝑓 :𝐴 → 𝐵 be a morphism of C. If the

(co)kernel of 𝑓 exists, its associated morphisms are both epimorphisms (monomor-

phisms for the case of cokernels).

Proof. Let ker 𝑓 ≔ (𝐾, 𝛼, 𝛽) and consider𝐴 itself, together with the identity morphisms.

Since 𝐾 is a pullback of 𝑓 with itself, there exists a unique morphism 𝛾:𝐴 → 𝐾 such

that 𝛽𝛾 = id𝐴 = 𝛼𝛾—therefore 𝛾 is a split monomorphism and both 𝛼 and 𝛽 are split

epimorphisms. ♮

Proposition 2.4.7. Let 𝑓 :𝐴 → 𝐵 be a morphism in a category C. Then the following

properties are equivalent:

(a) The morphism 𝑓 is monic (conversely, epic).

(b) The kernel of 𝑓 exists, furthermore ker 𝑓 = (𝐴, id𝐴 , id𝐴) (conversely we have

coker 𝑓 = (𝐵, id𝐵 , id𝐵)).
(c) The (co)kernel (𝐾, 𝛼, 𝛽) of 𝑓 exists, and 𝛼 = 𝛽.

Proof. • (a) ⇒ (b): Since 𝑓 is monic, if 𝑃 is any object together with morphisms

𝜙,𝜓:𝑃 ⇒ 𝐴 such that 𝑓 𝜙 = 𝑓𝜓 then 𝜙 = 𝜓 and we may simply take 𝐴 to be the

kernel of 𝑓 together with the identity morphisms—while the unique morphism

𝑃 → 𝐴 is given by 𝜙 = 𝜓.

• (b)⇒ (c): If (𝐾, 𝛼, 𝛽) is a kernel for 𝑓 then in particular there exists an isomorphism

𝜙:𝐴 → 𝐾 and therefore 𝛼𝜙 = id𝐴 and 𝛽𝜙 = id𝐴. Since 𝜙 is epic, it follows that

𝛼 = 𝛽.

• (c)⇒ (a): Suppose (𝐾, 𝛼, 𝛼) is kernel for 𝑓 , then for all objects 𝑃 and morphisms

𝑔, ℎ:𝑃 ⇒ 𝐴 such that 𝑓 𝑔 = 𝑓 ℎ, we have a unique 𝜙:𝑃 → 𝐾 such that 𝛼𝜙 = 𝑔 and

𝛼𝜙 = ℎ—thus 𝑔 = ℎ.

♮

Proposition 2.4.8 (Coequalizers & kernels). Let C be a category. The following prop-

erties relate coequalizers and kernels:

(a) Consider parallel morphisms 𝑥, 𝑦:𝑋 ⇒ 𝐴. If the coequalizer 𝑓 = coeq(𝑥, 𝑦) exists

and has a kernel pair ker 𝑓 = (𝛼, 𝛽), then coeq(𝑥, 𝑦) is the coequalizer of ker 𝑓 .

(b) Consider a morphism ℎ:𝐴 → 𝐵. If the kernel ker ℎ = (𝜀, 𝛿) exists and has a

coequalizer 𝑤 = coeq(𝜀, 𝛿), then ker ℎ is the kernel of coeq(𝜀, 𝛿).

Proof. (a) Since 𝑓 is the coequalizer of 𝑥 and 𝑦, it cleartly satisfies 𝑓 𝑥 = 𝑓 𝑦. Therefore,

the triple (𝑋, 𝑥, 𝑦) can be used to apply the universal property of the pullback of

ker 𝑓 to obtain a unique factorization 𝜙:𝑋 → ker 𝑓 such that 𝑥 = 𝛼𝜙 and 𝑦 = 𝛽𝜙.

Notice that 𝛼, 𝛽: ker 𝑓 ⇒ 𝐴 are parallel morphisms, so one can be tempted to find

its coequalizer—we shall prove that coeq(𝛼, 𝛽) = coeq(𝑥, 𝑦). Let 𝐶 be an object

together with a morphism 𝑔:𝐴→ 𝐶 such that 𝑔𝛼 = 𝑔𝛽. We may precompose this

morphism with 𝜙, obtaining 𝑔𝛼𝜙 = 𝑔𝛽𝜙, but using the result for the last paragraph

we conclude that 𝑔𝑥 = 𝑔𝑦. Using the universal property for the coequalizer of
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𝑥 and 𝑦, we find a unique factorization morphism 𝜓: coeq(𝑥, 𝑦) → 𝐶 such that

𝑔 = 𝜓 𝑓 . Therefore, coeq(𝑥, 𝑦) satisfies the universal property for the coequalizer

of the kernel pair (𝛼, 𝛽) of 𝑓 . The whole construction of this item’s proof can be

seen in the following commutative diagram:

𝑋

ker 𝑓 𝐴

𝐴 coeq(𝑥, 𝑦)

𝐶

𝜙

𝑥

𝑦

𝛼

⌟
𝛽 𝑓 𝑔

𝑓

𝑔

𝜓

(b) From the pullback definition, we know that ℎ𝜀 = ℎ𝛿—since 𝑤 is the coequalizer of

(𝜀, 𝛿), it follows that there exists a unique morphism 𝛾: 𝐵 → coeq(𝜀, 𝛿) such that

𝛾𝑤 = ℎ.

Consider now two parallel morphisms 𝑎, 𝑏:𝑌 ⇒ 𝐴 such that 𝑤𝑎 = 𝑤𝑏. Then we

have that ℎ𝑎 = (𝛾𝑤)𝑎, and ℎ𝑏 = (𝛾𝑤)𝑏 since𝑤𝑏 = 𝑤𝑎 by assumption, it follows that

ℎ𝑎 = ℎ𝑏. From the kernel property, there must exist a unique morphism 𝜂:𝑌 →
ker ℎ such that 𝜀𝜂 = 𝑎 and 𝛿𝜂 = 𝑏. Therefore ker𝑤 = ker ℎ. All constructions can

be visualized in the following commutative diagram:

𝑌

ker ℎ 𝐴

𝐴 𝐵

coeq(𝜀, 𝛿)

𝜂

𝑎

𝑏

𝜀

⌟
𝛿 ℎ 𝑤

ℎ

𝑤

𝛾

♮

Proposition 2.4.9 (Associativity property). Let C be a category and consider the fol-

lowing commutative diagram in C:

𝐴 𝐵 𝐶

𝐷 𝐸 𝐹

𝑎

𝑐

𝑏

𝑑 𝑒

𝑓 𝑔

The following are properties which regard pullbacks of such commutative squares:
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(a) If both squares are pullbacks, then the outer-square

𝐴 𝐶

𝐷 𝐹

𝑏𝑎

𝑐
⌟

𝑒

𝑔 𝑓

(2.2)

is a pullback.

(b) If the second square is a pullback and the outer diagram Eq. (2.2) is a pullback,

then the first square is a pullback.

Proof. (a) Let 𝑥:𝑍 → 𝐷 and 𝑦:𝑍 → 𝐶 be two morphisms of C such that 𝑔 𝑓 𝑥 = 𝑒𝑦.

From the pullback property of the second square, there exists a unique morphism

𝑧:𝑍 → 𝐵 such that 𝑏𝑧 = 𝑦 and 𝑑𝑧 = 𝑓 𝑥. Using the pullback property of the first

square on the morphisms 𝑧 and 𝑥 we find a unique 𝑤:𝑍 → 𝐴 such that 𝑎𝑤 = 𝑧

and 𝑐𝑤 = 𝑥.

Notice that since 𝑎𝑤 = 𝑧 then 𝑏(𝑎𝑤) = 𝑏𝑧 = 𝑦—we’ll show that 𝑤 is the unique

morphism of C such that (𝑏𝑎)𝑤 = 𝑦 and 𝑐𝑤 = 𝑥. Suppose the existence of another

morphism 𝑤′:𝑍 → 𝐴 such that (𝑏𝑎)𝑤′ = 𝑦 and 𝑐𝑤′ = 𝑥. In particular, it follows

that 𝑏(𝑎𝑤′) = 𝑏(𝑎𝑤), and

𝑑(𝑎𝑤′) = 𝑓 (𝑐𝑤′) = 𝑓 𝑥 = 𝑓 (𝑐𝑤) = 𝑑(𝑎𝑤).

By the uniqueness of the morphism 𝑍 → 𝐵 from the second pullback square

diagram, 𝑎𝑤′ = 𝑧 = 𝑎𝑤. Using this last equality and the fact that 𝑐𝑤′ = 𝑥 = 𝑐𝑤, by

the pullback property of the first square we obtain 𝑤′ = 𝑤—which finally settles

that 𝑤 is unique and the outer-square is indeed a pullback.

(b) We assume the existence of a pullback (𝐴′, 𝑐′, 𝑎′) of ( 𝑓 , 𝑑) and show that 𝐴′ must

be isomorphic to 𝐴. From the commutativity of the diagram, since 𝑑𝑎 = 𝑐 𝑓 , we

use the pullback property of (𝐴′, 𝑐′, 𝑎′) to get a unique morphism ℎ:𝐴→ 𝐴′—we’ll

show that ℎ is the required isomorphism. Via the result of item (a), we know that

(𝐴′, 𝑐, 𝑏𝑎′) is a pullback for the outer-square, therefore it follows that 𝑐′ℎ = 𝑐 and

𝑏𝑎′ℎ = 𝑏𝑎. Hence from the last two equalities one concludes that ℎ is a factorization

between two pullbacks of the outer-square. Since ℎ is unique and pullbacks are

unique up to isomorphism, it must be the case that ℎ is an isomorphism—thus

𝐴 ≃ 𝐴′, then (𝐴, 𝑐, 𝑎) is a pullback for the first square.

♮

2.5 Limits & Colimits

(Co)Cones & (Co)Limits
Definition 2.5.1 (Cone). Let 𝐹: D→ C be a functor. We define a cone on 𝐹 to consist of

the following data:
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• An object 𝐶 ∈ C.
• For each object 𝐷 ∈ D, a corresponding morphism 𝑝𝐷 :𝐶 → 𝐹𝐷 in C. Moreover,

for every morphism 𝑑:𝐷 → 𝐷′ in D, one has that 𝑝𝐷′ = 𝐹𝑑 ◦ 𝑝𝐷 .

Definition 2.5.2 (Limit of a functor). Let 𝐹: D→ C be a functor. We define a limit of 𝐹

to be a cone lim 𝐹 = (𝐿, (𝑝𝐷)𝐷∈D)with the property that, for any cone (𝑀, (𝑞𝐷)𝐷∈D) on 𝐹,

there exists a unique morphism𝑚:𝑀 → 𝐿 of C such that, for every𝐷 ∈ D, the following

diagram commutes

𝑀

lim 𝐹 𝐹𝐷

𝑚

𝑞𝐷

𝑝𝐷

Proposition 2.5.3 (Uniqueness). The limit of a functor, when existent, is unique up to

isomorphism.

Proof. Let 𝐹: D → C be a functor admitting limit cones (𝐿, (𝑝𝐷)𝐷∈D) and (𝐿′, (𝑝′
𝐷
)𝐷∈D).

Then there exists unique morphisms𝑚: 𝐿′→ 𝐿 and𝑚: 𝐿→ 𝐿′ such that 𝑝𝐷𝑚 = 𝑝′
𝐷

and

𝑚′𝑝′
𝐷
= 𝑝𝐷 . Stacking these two we find that 𝑚𝑚′: 𝐿 → 𝐿 is such that 𝑝𝐷(𝑚𝑚′) = 𝑝𝐷 ,

but since id𝐿 has the same property, by the uniqueness of the factoring morphism,

it follows that 𝑚𝑚′ = id𝐿. The same analogous argument goes for 𝑚′𝑚 = id𝐿′. We

conclude that 𝐿 ≃ 𝐿′ in C via 𝑚 and 𝑚′. ♮

Proposition 2.5.4 (Parallel factorizations). Let 𝐹: D→ C be a functor admitting a limit,

and let 𝑀 be any object in C. Two parallel morphisms 𝑓 , 𝑔:𝑀 ⇒ lim 𝐹 in C are equal if,

for every 𝐷 ∈ D, one has 𝑝𝐷 𝑓 = 𝑝𝐷𝑔.

Proof. Notice that (𝑀, (𝑝𝐷 𝑓 )𝐷∈D) forms a cone on 𝐹, therefore, from the universal

property of the limit of 𝐹, we obtain 𝑓 = 𝑔. ♮

Definition 2.5.5 (Cocone). Let 𝐹: D→ C be a functor. We define a cocone on 𝐹 to consist

of the following data:

• An object 𝐶 ∈ C.
• For each object 𝐷 ∈ D, a corresponding morphism 𝑠𝐶 : 𝐹𝐷 → 𝐶 of C such that, for

every morphism 𝑑:𝐷′→ 𝐷 in D, we have that 𝑠𝐷′ = 𝑠𝐷 ◦ 𝐹𝑑.

Definition 2.5.6 (Colimit). Let 𝐹: D → C be a functor. We define a colimit on 𝐹 to be

a cocone colim 𝐹 = (𝐿, (𝑠𝐷)𝐷∈D) such that, for every cocone (𝑀, (𝑡𝐷)𝐷∈D) on 𝐹, there

exists a unique morphism 𝑚: 𝐿→ 𝑀 such that, for every 𝐷 ∈ D, the following diagram

commutes

𝑀 𝐹𝐷

𝐿

𝑡𝐷

𝑠𝐷

𝑚
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Example 2.5.7 (Products). Consider a set 𝐼 as a discrete category (as in Example 1.2.10),

and any category C. The limit of a functor 𝐹: 𝐼 → C, if existent, is simply a product in C,

that is

lim 𝐹 ≃
∏
𝑖∈𝐼

𝐹𝑖.

Example 2.5.8 (Inverse & direct limit). The limit of a functor 𝐹: 𝜔op → C is commonly

referred to as an inverse limit:

lim 𝐹

. . . 𝐹(2) 𝐹(1) 𝐹(0)

The dual of this concept is that of the direct limit, which is the colimit of a functor

𝐺: 𝜔→ C, visually given by:

𝐺(0) 𝐺(1) 𝐺(2) . . .

colim𝐺

Complete Categories
Proposition 2.5.9 (All limits). Let C be a 𝒰 -category. If for all 𝒰 -categories D and

functors 𝐹: D→ C, the limit of 𝐹 exists in C—that is, the category admits all limits—then

C is a preorder class.

Proof. For C to be a preorder, there must exist at most one morphism between every

pair of objects of C, so this is what we settle to do. Let 𝐴, 𝐵 ∈ C be any two objects and

suppose there exists a pair of distinct parallel morphisms 𝑓 , 𝑔:𝐴⇒ 𝐵. Since every limit

exists, then in particular the product 𝐵|Mor(C)|
is a well defined object of C. From 𝑓 and

𝑔, one can create 2
|Mor(C)|

distinct collections of morphisms (ℎ:𝐴→ 𝐵)|Mor(C)|—where

each ℎ is either 𝑓 or 𝑔—which are cones over an “inclusion” functor 𝐹: A→ C, where

A is composed of objects 𝐴 and 𝐵, and morphisms are 𝑓 , 𝑔:𝐴 ⇒ 𝐵. The admittance

of a limit over this functor is to state the existence of 2
|Mor(C)|

distinct factorizations of

𝐴→ 𝐵|Mor(C)|
in C. Since all of these factorizations are morphisms of C, it should be the

case that 2
|Mor(C)| < |Mor(C)|, which contradicts Cantor’s theorem (see Theorem B.1.1)

since C is a 𝒰 -category. If follows that there cannot exist more than one morphism

between the objects of C, proving that it is a preorder. ♮

Definition 2.5.10 (Completeness). We define the following notions concerning cate-

gories and the existence of limits:
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(a) A category C is said to be (co)complete if, for every small category D, any functor

𝐹: D→ C has a (co)limit in C.

(b) A category C is said to be finitely (co)complete if, for every finite category D, any functor

𝐹: D→ C has a (co)limit in C.

Existence Theorem for Limits
Theorem 2.5.11. A category C is complete if and only if each collection of objects, indexed

by a set, has a product and each pair of parallel morphisms has an equalizer.

Proof. Let C be complete and 𝐼 be any set, which defines a small category. If (𝐶𝑖)𝑖∈𝐼 is

any collection of objects in C, one can define a functor 𝐹: 𝐼 → C by 𝐹𝑖 ≔ 𝐶𝑖 and, since

𝐹 has a limit by hypothesis, it follows that

∏
𝑖∈𝐼 𝐹𝑖 =

∏
𝑖∈𝐼 𝐶𝑖 is a product in C. For the

equalizer, let 𝑓 , 𝑔:𝐴 ⇒ 𝐵 be two parallel morphisms in C. Define a category D whose

objects are 𝐴 and 𝐵, and morphisms are the identities together with both 𝑓 and 𝑔.

Defining 𝐹: D→ C to be simply an inclusion, since 𝐹 has a limit, then there exists lim 𝐹

such that

lim 𝐹 𝐴 𝐵
𝑓

𝑔

is an equalizer in C, which proves the first proposition.

For the second proposition, suppose that C admits products and equalizers. Let D

be a small category and 𝐹: D→ C be any functor. Define the following:

• Consider two pairs of products(∏
𝐷∈D

𝐹𝐷, (𝑟𝐷)𝐷∈D
)

and

( ∏
𝑓 ∈Mor(D)

𝐹(cod 𝑓 ), (𝑞 𝑓 ) 𝑓 ∈Mor(D)

)
,

where 𝑟𝐷′:
∏

𝐷∈D 𝐹𝐷 → 𝐹𝐷′ and 𝑞 𝑓 ′:
∏

𝑓 ∈Mor(D) 𝐹(cod 𝑓 ) → 𝐹(cod 𝑓 ′) are the pro-

jections associated with the products.

• Let 𝛼, 𝛽:

∏
𝐷∈D 𝐹𝐷 ⇒

∏
𝑓 ∈Mor(D) 𝐹(cod 𝑓 ) be the unique factorizations such that

𝑞 𝑓 𝛼 = 𝑟cod 𝑓 and 𝑞 𝑓 𝛽 = 𝐹 𝑓 ◦ 𝑟dom 𝑓

for all 𝑓 ∈ Mor(D).
• Since equalizers always exist on C, let (𝐿, ℓ ) ≔ eq(𝛼, 𝛽). Define a collection (𝑝𝐷)𝐷∈D

for which 𝑝𝐷 ≔ 𝑟𝐷ℓ . We shall prove that lim 𝐹 = (𝐿, (𝑝𝐷)𝐷∈D).

We first prove that (𝐿, (𝑝𝐷)𝐷∈D) is a cone on 𝐹. To that end, consider any morphism

𝑓 :𝐷 → 𝐷′ in D. From the construction of the collection of morphisms, we have that

𝐹 𝑓 ◦ 𝑝𝐷 = 𝐹 𝑓 ◦ (𝑟𝐷ℓ ) = (𝐹 𝑓 ◦ 𝑟𝐷)ℓ
= (𝑞 𝑓 𝛽)ℓ = 𝑞 𝑓 (𝛽ℓ )
= 𝑞 𝑓 (𝛼ℓ ) = (𝑞 𝑓 𝛼)ℓ
= 𝑟𝐷′ℓ

= 𝑝𝐷′
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therefore, (𝑝𝐷)𝐷∈D satisfies the conditions of a cone on 𝐹.

Let (𝑀, (ℎ𝐷)𝐷∈D) be a cone on 𝐹. From the product universal property, there exists

a unique factorization 𝛾:𝑀 → ∏
𝐷∈D 𝐹𝐷 such that 𝑟𝐷𝛾 = ℎ𝐷 . On the other hand, for

any morphism 𝑓 :𝐷 → 𝐷′ of Dwe have

(𝑞 𝑓 𝛼)𝛾 = 𝑟𝐷′𝛾 = ℎ𝐷′ = 𝐹 𝑓 ◦ ℎ𝐷 = 𝐹 𝑓 ◦ (𝑟𝐷𝛾) = (𝐹 𝑓 ◦ 𝑟𝐷)𝛾 = (𝑞 𝑓 𝛽)𝛾

Since the factorization on the product

∏
𝑓 ∈Mor(C) 𝐹(cod 𝑓 ) is unique, it follows that

𝛼𝛾 = 𝛽𝛾. Since 𝐿 is the object of the equalizer of eq(𝛾, 𝛽), there must exist a unique

factorization 𝑢:𝑀 → 𝐿 such that ℓ𝑢 = 𝛾. Therefore, one has

𝑝𝐷𝑢 = (𝑟𝐷ℓ )𝑢 = 𝑟𝐷(ℓ𝑢) = 𝑟𝐷𝛾 = ℎ𝐷 ,

showing that 𝑢 is a factorization of of the cone 𝑀 via the cone 𝐿 on 𝐹.

We must show that the factorization 𝑢 is unique, so that 𝐿 is the limit of 𝐹. Suppose

𝑣:𝑀 → 𝐿 is another factorization, that is, 𝑝𝐷𝑣 = ℎ𝐷 for all 𝐷 ∈ D. Notice that

𝑟𝐷(ℓ𝑢) = (𝑟𝐷ℓ )𝑢 = 𝑝𝐷𝑢 = ℎ𝐷 = 𝑝𝐷𝑣 = (𝑟𝐷ℓ )𝑣 = 𝑟𝐷(ℓ𝑣)

holds for all 𝐷 ∈ D, therefore both ℓ𝑢 and ℓ𝑣 are parallel factorizations—which by

Proposition 2.5.4 implies ℓ𝑢 = ℓ𝑣. From Proposition 2.3.5 we know that ℓ is monic,

therefore 𝑢 = 𝑣. This shows the uniqueness of 𝑢, thus we may conclude that

lim 𝐹 = (𝐿, (𝑝𝐷)𝐷∈D).

♮

Proposition 2.5.12 (Finite completeness). Let C be a category. The following properties

are equivalent:

(a) The category C is finitely complete.

(b) The category C has a terminal object, binary products and equalizers.

(c) The category C has a terminal object, and pullbacks.

Proof. • If C is finitely complete, then from definition items (b) and (c) hold.

• If (b) holds, then by Proposition 2.1.3 we find that any finite collection has a

product. Since C has equalizers, by Theorem 2.5.11 and taking the particular case

where D is a finite category, we conclude that C is finitely complete, therefore (b)

implies (a).

• If (c) holds, let 1 ∈ C be the terminal object. For any two objects 𝐴, 𝐵 ∈ C, the

pullback

𝑃 𝐴

𝐵 1

⌟
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is the product of 𝐴 with 𝐵 in C—thus binary products exist. Now consider two

parallel morphisms 𝑓 , 𝑔:𝐴⇒ 𝐵 in C. In this case, one can consider the pullback

𝐸 𝐴

𝐴 𝐴 × 𝐵

𝑘

ℓ

⌟
id𝐴 × 𝑓

id𝐴 × 𝑓

Then for 𝐸 to be the equalizer of ( 𝑓 , 𝑔) it suffices to show that 𝑘 = ℓ and 𝑓 𝑘 = 𝑔𝑘.

For the former, notice that

𝑘 = 𝜋𝐴 ◦ (id𝐴 × 𝑓 ) ◦ 𝑘 = 𝜋𝐴 ◦ (id𝐴 ×𝑔) ◦ ℓ = ℓ .
For the last equality, we proceed with a similar argument

𝑓 𝑘 = 𝜋𝐵 ◦ (id𝐴 × 𝑓 ) ◦ 𝑘 = 𝜋𝐵 ◦ (id𝐴 ×𝑔) ◦ ℓ 𝑔ℓ = 𝑔𝑘.

Therefore eq( 𝑓 , 𝑔) = (𝐸, 𝑘), and C has equalizers. This proves that (c) implies (b).

♮

Proposition 2.5.13. Let 𝐹: D → C be a functor, and suppose there exists a collection

( 𝑓𝑗)𝑗∈𝐽 of morphisms of D generating every other morphism of D—that is, if 𝑔 is a

morphism in D, then 𝑔 can be written as the composition of finitely many arrows of

( 𝑓𝑗)𝑗∈𝐽 . A cone on the functor 𝐹 is a pair (𝐿, (𝑝𝐷 : 𝐿 → 𝐹𝐷)𝐷∈D) such that, for any

morphism 𝑓𝑗 :𝐷 → 𝐷′, we have 𝑝𝐷′ = 𝐹 𝑓𝑗 ◦ 𝑝𝐷 .

Proof. To see that this is equivalent to the definition of a cone is simple since, given any

𝑔:𝐷 → D′ in D, one has 𝑔 = 𝑓𝑗𝑛 . . . 𝑓𝑗1 for a finite collection of maps 𝑓𝑗𝑖 ∈ ( 𝑓𝑗)𝑗∈𝐽 where

𝑓𝑗𝑖 :𝐷𝑖−1 → 𝐷𝑖 with 𝐷0 = 𝐷 and 𝐷𝑛 = 𝐷′. Then

𝐹𝑔 ◦ 𝑝𝐷 = 𝐹( 𝑓𝑗𝑛 . . . 𝑓𝑗1) ◦ 𝑝𝐷
= (𝐹 𝑓𝑗𝑛 ◦ · · · ◦ 𝐹 𝑓𝑗1) ◦ 𝑝𝐷
= (𝐹 𝑓𝑗𝑛 ◦ · · · ◦ 𝐹 𝑓𝑗2) ◦ (𝐹 𝑓𝑗1 ◦ 𝑝𝐷)
= (𝐹 𝑓𝑗𝑛 ◦ · · · ◦ 𝐹 𝑓𝑗2) ◦ 𝑝𝐷1

= . . .

= 𝐹 𝑓𝑗𝑛 ◦ 𝑝𝐷𝑛−1

= 𝑝𝐷′ ,

which proves the equivalence. ♮

Definition 2.5.14 (Finitely generated categories). A category C is said to be finitely gener-
ated if C is comprised of finitely many objects, and there exists a finite set of morphisms

{ 𝑓1, . . . , 𝑓𝑛} of C such that every morphism of C can be written as a composition of

finitely many arrows 𝑓𝑗 .

Proposition 2.5.15. Let D be finitely generated and C be finitely complete, then any functor

𝐹: D→ C has a limit.

Proof. Since C is finitely complete, we can recycle the proof of Theorem 2.5.11 replacing

the pair of products with the finite products

∏
𝐷∈D 𝐹𝐷 and

∏𝑛
𝑗=1
𝐹(cod 𝑓𝑗). ♮
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Limit Preserving Functors
Definition 2.5.16 (Limit preserving functor). A functor 𝐹: B→ C is said to preserve limits
if—for every small category A and functor 𝐺: A→ B—the limit of 𝐺 exists and the limit

of 𝐹𝐺: A→ C exists and is given by

lim(𝐹𝐺) = 𝐹(lim𝐺).

To put more concretely, if (𝐿, (𝑝𝐴)𝐴∈A) is the limit of 𝐺, then the limit of 𝐹𝐺 is given by

(𝐹𝐿, (𝐹𝑝𝐴)𝐴∈A).

Proposition 2.5.17. Let D be a (finitely) complete category and C be any category. A

functor 𝐹: D→ C preserves (finite) limits if and only if it preserves (finite) products and

equalizers.

Proof. Suppose 𝐹 preserves (finite) limits, then in particular it preserves both (finite)

products and equalizers. Now, we assume that 𝐹 preserves both (finite) products and

equalizers. Since D is (finitely) complete, for any small (finite) category A and functor

𝐺: A → D, there exists lim𝐺 in D. Moreover, since lim𝐺 can be build out of products

and equalizers (see Theorem 2.5.11), it follows that, since 𝐹 preserves products and

equalizers, it must also preserve the limit of 𝐺—and lim(𝐹𝐺) = 𝐹(lim𝐺). ♮

Proposition 2.5.18. A functor that preserves pullbacks does preserve monomorphisms.

Proof. Let 𝐹: B → C be a functor preserving pullbacks, and consider any monomor-

phism 𝑓 : 𝐵→ 𝐵′ in B. From Proposition 2.4.7 we find that ker 𝑓 = (𝐵, id𝐵 , id𝐵). Define

A to be a category whose objects are 𝐵 and 𝐵′, and morphisms are identities together

with 𝑓 : 𝐵 → 𝐵′. The limit of the inclusion functor 𝐼: A → D is simply the pullback of

𝑓 with itself, namely, ker 𝑓 . Since 𝐹 preserves pullbacks, then 𝐹𝐼: A → C has a limit

lim(𝐹𝐼) = 𝐹 ker 𝑓 , which is the the pullback of 𝐹𝐼 𝑓 = 𝐹 𝑓 : 𝐹𝐵 → 𝐹𝐵′. This implies

in ker(𝐹 𝑓 ) = (𝐹𝐵, id𝐹𝐵 , id𝐹𝐵), which is equivalent to 𝐹 𝑓 being a monomorphism in C.

Therefore 𝐹 preserves monomorphisms. ♮

Proposition 2.5.19. Let C be a category and 𝐶 ∈ C be any object. The covariant functor

MorC(𝐶,−): C → Set preserves all existing limits, including large ones. In particular it

preserves monomorphisms.

Proof. Let 𝐹: D→ C be a functor admitting a limit (𝐿, (𝑝𝐷)𝐷∈D). Our goal is to show that

the functor MorC(𝐶, 𝐹(−)): D → Set—mapping 𝐷 ↦→ MorC(𝐶, 𝐹𝐷) and morphisms

( 𝑓 :𝐷 → 𝐷′) ↦→ ((𝐹 𝑓 )∗: MorC(𝐶, 𝐹𝐷) →MorC(𝐶, 𝐹𝐷′))—has a limit

lim Mor(𝐶, 𝐹(−)) = (MorC(𝐶, 𝐿), (MorC(𝐶, 𝑝𝐷))𝐷∈D).

Consider any cone (𝑞𝐷 : 𝑆→MorC(𝐶, 𝐹𝐷))𝐷∈D, on Set, over the said composite functor.

Notice that every element 𝑠 ∈ 𝑆 induces a cone over 𝐹 given by (𝑞𝐷(𝑠):𝐶 → 𝐹𝐷)𝐷∈D.
Since 𝐹 has a limit, there must exist a unique morphism 𝑞𝑠 :𝐶 → 𝐿 in C such that

𝑝𝐷𝑞𝑠 = 𝑞𝐷(𝑠) for all objects 𝐷 ∈ D. Since 𝑠 ∈ 𝑆 was chosen arbitrarily, we can define a

uniquely induced set-function 𝑞: 𝑆→MorC(𝐶, 𝐿) given by 𝑞(𝑠) ≔ 𝑞𝑠 . By the properties

of 𝑞𝑠 , the map 𝑞 also satisfies (𝐹𝑝𝐷)∗ ◦ 𝑞 = 𝑞𝐷 for all 𝐷 ∈ D. ♮
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Corollary 2.5.20. Given a category C and an object 𝐶 ∈ C, the contravariant functor

MorC(−, 𝐶): C → Set transforms existing colimits into limits. In particular, it transforms

epimorphisms into monomorphisms.

Limit Reflection

Definition 2.5.21. A functor 𝐹: B→ C is said to reflect limits if—for all small categories

A, and all functors 𝐺: A→ B, and every cone (𝐿, (𝑔𝐴)𝐴∈A) over 𝐺—the limit of 𝐹𝐺: A→ C
is given by lim(𝐹𝐺) = (𝐹𝐿, (𝐹𝑔𝐴)A), then lim𝐺 = (𝐿, (𝑔𝐴)𝐴∈A).

Proposition 2.5.22. Let 𝐹: A → B be a limit preserving functor. If A is complete, and 𝐹

reflects isomorphisms, then 𝐹 reflects limits.

Proof. Let 𝐺: D → A be a functor with lim𝐺 = (𝐿, (𝑔𝐷)𝐷∈D). Since 𝐹 preserves limits,

then

lim(𝐹𝐺) = (𝐹𝐿, (𝐹𝑔𝐷)𝐷∈D).

Suppose that (𝐹𝑀, (𝐹 𝑓𝐷)𝐷∈D) is also a limit of the composite 𝐹𝐺. We want to show that

it must be the case that (𝐿, (𝑔𝐷)𝐷∈D) ≃ (𝑀, ( 𝑓𝐷)𝐷∈D).
From the limit property in A, there exists a unique factorization 𝑢:𝑀 → 𝐿 such that

for all 𝐷 ∈ D we have 𝑔𝐷𝑢 = 𝑓𝐷 . Notice that 𝐹𝑢: 𝐹𝑀 → 𝐹𝐿 is a factorization between

limits of the composite 𝐹𝐺. From the uniqueness of the factorization and since 𝐹𝑀 ≃
𝐹𝐿 in B, it follows that 𝐹𝑢 is an isomorphism. Since 𝐹 reflects isomorphisms, it must

be the case that 𝑢 is an isomorphism and hence 𝑀 ≃ 𝐿, showing that (𝐿, (𝑔𝐷)𝐷∈D) ≃
(𝑀, ( 𝑓𝐷)𝐷∈D) via 𝑢. ♮

Proposition 2.5.23. Let 𝐹: A → B be a functor between finitely generated complete cate-

gories A and B. If the functor 𝐹 preserves (or reflects) finite limits, then 𝐹 preserves (or

reflects) finitely generated limits.

Proof. By Proposition 2.5.15 we have that finitely generated limits can be expressed as

finite products and equalizers. Therefore 𝐹 preserves (or reflects) all existent finitely

generated limits. ♮

Proposition 2.5.24. A fully faithful functor 𝐹: C→ D reflects limits.

Proof. Let 𝐺: E → C be any functor from a small category E. Since 𝐹 is fully faithful,

there exists a unique collection of morphisms (𝑔𝐸: 𝐿→ 𝐺𝐸)𝐸∈E—which is a cone over

𝐺—such that the collection (𝐹𝑔𝐸: 𝐹𝐿 → 𝐹𝐺𝐸)𝐸∈E is a limit cone over 𝐹𝐺. From the

limit property, if ( 𝑓𝐸:𝑀 → 𝐺𝐸)𝐸∈E is another cone over 𝐺, the corresponding cone

(𝐹 𝑓𝐸: 𝐹𝑀 → 𝐹𝐺𝐸)𝐸∈E over 𝐹𝐺 has a unique factorization 𝑢: 𝐹𝑀 → 𝐹𝐿 in D such that

for all 𝐸 ∈ E we have 𝐹𝑔𝐸 ◦ 𝑢 = 𝐹 𝑓𝐸. From the fully faithfulness of 𝐹, there exists a

unique morphism ℓ :𝑀 → 𝐿 in E such that 𝐹ℓ = 𝑢—which in this case satisfies 𝑔𝐸ℓ = 𝑓𝐸,

showing that ℓ is the unique factorization between the cones (𝑔𝐸)𝐸∈E and ( 𝑓𝐸)𝐸∈E. This

implies in lim𝐺 = (𝐿, (𝑔𝐸)𝐸∈E) as wanted. ♮
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Absolute (Co)Limits
Definition 2.5.25 (Absolute (co)limit). Let 𝐺: A → B be a functor admitting a colimit

colim𝐺. We say that such colimit is absolute if, for every functor 𝐹: B→ C, we have

colim(𝐹𝐺) = 𝐹(colim𝐺).

Proposition 2.5.26. Let C be a category and consider the following commutative dia-

gram in C:

𝐴 𝐵 𝐶
𝑓

𝑔

𝑞

that is, 𝑞 𝑓 = 𝑞𝑔. If 𝑔 and 𝑞 are both split epimorphisms with sections 𝑠𝑔 and 𝑠𝑞 ,

respectively, and the diagram

𝐵 𝐶

𝐴 𝐵

𝑞

𝑠𝑔 𝑠𝑞

𝑓

commutes in C—that is, 𝑠𝑞𝑞 = 𝑓 𝑠𝑔—then

coeq( 𝑓 , 𝑔) = (𝐶, 𝑞).

Moreover, this coequalizer is absolute.

Proof. Let 𝑝: 𝐵 → 𝐷 be any morphism in C such that 𝑝 𝑓 = 𝑝𝑔. Define a morphism

ℓ ≔ 𝑝𝑠𝑞 :𝐶 → 𝐷, then

ℓ 𝑞 = (𝑝𝑠𝑞)𝑞 = 𝑝(𝑠𝑞𝑞) = 𝑝( 𝑓 𝑠𝑔) = (𝑝 𝑓 )𝑠𝑔 = (𝑝𝑔)𝑠𝑔 = 𝑝(𝑔𝑠𝑔) = 𝑝 id𝐴 = 𝑝.

To show the uniqueness of ℓ , suppose 𝑘:𝐶 → 𝐷 satisfies 𝑘𝑞 = 𝑝. Then we have

𝑘 = 𝑘(𝑞𝑠𝑞) = (𝑘𝑞)𝑠𝑞 = 𝑝𝑠𝑞 = ℓ ,

which proves that coeq( 𝑓 , 𝑔) = (𝐶, 𝑞). Since any functor preserves retracts and sections,

it follows that the coequalizer is preserved under any given functor. ♮

Proposition 2.5.27 (Absolute pushout). Let C be a category, and consider the following

commutative square in C:

𝐴 𝐵

𝐶 𝐷

𝑓

𝑔 𝑟

ℎ

If 𝑔 and 𝑟 are both split epimorphisms with corresponding sections 𝛼 and 𝛽 that are com-

patible with the square—meaning, 𝑓 𝛼 = 𝛽ℎ— then the square is an absolute pushout.
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Proof. We first show that the square is indeed a pushout. Let 𝑋 ∈ C be any object and

consider morphisms 𝑝: 𝐵 → 𝑋 and 𝑞:𝐶 → 𝑋 such that 𝑝 𝑓 = 𝑞𝑔. Define a morphism

ℓ :𝐷 → 𝑋 by ℓ ≔ 𝑝𝛽. Note that

ℓ ℎ = (𝑝𝛽)ℎ = 𝑝(𝛽ℎ) = 𝑝( 𝑓 𝛼) = (𝑝 𝑓 )𝛼 = (𝑞𝑔)𝛼 = 𝑞(𝑔𝛼) = 𝑞 id𝐴 = 𝑞,

ℓ 𝑟 = (𝑝𝛽)𝑟 = 𝑝(𝛽𝑟) = 𝑝 id𝐵 = 𝑝.

To show uniqueness of ℓ , suppose 𝑘:𝐷 → 𝑋 is another morphism such that 𝑘ℎ = 𝑞

and 𝑘𝑟 = 𝑝—then in particular 𝑘𝑟 = ℓ 𝑟 but since 𝑟 is an epimorphism it follows that

𝑘 = ℓ . With this we have proved that the square is indeed a pushout. Since split

epimorphisms and commutative diagrams are preserved by any functor, it follows

that the pushout is absolute. ♮
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Chapter 3

Adjoint Functors

3.1 Reflections
Definition 3.1.1 (Reflection along a functor). Let 𝐹: C → D be any functor and 𝐷 ∈ D.
We define a reflection of 𝐷 along 𝐹 to be a pair (𝑅𝐷 , 𝜂𝐷) where 𝑅𝐷 ∈ C is an object, and

𝜂𝐷 :𝐷 → 𝐹𝑅𝐷 is a morphism of D such that: if 𝐶 ∈ C is any object and 𝛿:𝐷 → 𝐹𝐶

is a morphism of D, then there exists a unique morphism 𝜀:𝑅𝐷 → 𝐶 in C such that the

diagram

𝐷 𝐹𝐶

𝐹𝑅𝐷

𝜂𝐷

𝛿

𝐹𝜀

commutes in the category D.

Proposition 3.1.2 (Uniqueness of reflections). Let 𝐹: C→ D be a functor and 𝐷 ∈ D be

an object. If the reflection of 𝐷 along 𝐹 exists, then it is unique up to isomorphism.

Proof. Suppose the reflection of 𝐷 along 𝐹 exists and let (𝑅𝐷 , 𝜂𝐷) and (𝑅′
𝐷
, 𝜂′

𝐷
) be two

such reflections. From definition:

• Choose the object 𝑅𝐷 ∈ C and the morphism 𝜂𝐷 :𝐷 → 𝐹𝑅𝐷 in D. Since (𝑅′
𝐷
, 𝜂′

𝐷
)

is a reflection, there exists a unique 𝜀′:𝑅′
𝐷
→ 𝑅𝐷 such that 𝐹(𝜀′)𝜂′

𝐷
= 𝜂𝐷 .

• Analogously, choose the object 𝑅′
𝐷
∈ C and the morphism 𝜂′

𝐷
:𝐷 → 𝐹𝑅′

𝐷
in

D. Since (𝑅𝐷 , 𝜂𝐷) is a reflection, there exists a unique 𝜀:𝑅𝐷 → 𝑅′
𝐷

such that

𝐹(𝜀)𝜂𝐷 = 𝜂′
𝐷

.

With 𝜀 and 𝜀′ in hands, notice that

𝐹(𝜀𝜀′)𝜂′𝐷 = 𝐹(𝜀)𝐹(𝜀′)𝜂′𝐷 = 𝐹(𝜀)𝜂𝐷 = 𝜂′𝐷 = id𝐹𝑅′
𝐷
𝜂′𝐷 = 𝐹(id𝑅′

𝐷
)𝜂′𝐷

and since the composition 𝜀𝜀′ is unique satisfying such equation, it must be the case

that 𝜀𝜀′ = id𝑅′
𝐷
. Analogously we obtain that 𝜀′𝜀 = id𝑅𝐷 , showing that 𝑅𝐷 ≃ 𝑅′𝐷 . ♮
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Proposition 3.1.3. Let 𝐹: C→ Dbe a functor and assume that for any𝐷 ∈ D the reflection

of 𝐷 along 𝐹 exists and is (𝑅𝐷 , 𝜂𝐷). Then there exists a unique functor 𝑅: D → C such

that the following two properties are satisfied:

(a) For any 𝐷 ∈ Dwe have 𝑅𝐷 = 𝑅𝐷 .

(b) The map 𝜂: idD⇒ 𝐹𝑅 given by (𝜂𝐷 :𝐷 → 𝐹𝑅𝐷)𝐷∈D is a natural transformation.

Proof. Let 𝑅: D→ C be defined as above—we want to prove that 𝑅 is indeed a functor.

Lets define how 𝑅 acts on Mor(D). Consider a morphism 𝛿:𝐷 → 𝐷′ in D. The

reflection pair (𝑅𝐷 , 𝜂𝐷) says that there exists a unique morphism 𝜀:𝑅𝐷 → 𝑅𝐷′ such

that the following diagram commutes

𝐷 𝐷′ 𝐹𝑅𝐷′

𝐹𝑅𝐷

𝛿

𝜂𝐷

𝜂𝐷′

𝐹𝜀

We shall define 𝑅𝛿 ≔ 𝜀. If 𝛿′:𝐷′ → 𝐷′′ is yet another morphism in D, then from

construction one has

𝐹(𝑅(𝛿′)𝑅(𝛿))𝜂𝐷 = 𝐹𝑅(𝛿′)𝐹𝑅(𝛿)𝜂𝐷 = 𝐹(𝜀′)𝐹(𝜀)𝜂𝐷 = 𝐹(𝜀′)𝜂𝐷′𝛿 = 𝜂𝐷′′𝛿
′𝛿.

On the other hand we have

𝐹𝑅(𝛿′𝛿)𝜂𝐷 = 𝜂𝐷′′(𝛿′𝛿),

therefore, from uniqueness we obtain 𝑅(𝛿′)𝑅(𝛿) = 𝑅(𝛿′𝛿). ♮

Definition 3.1.4 (Left adjoint). A functor 𝑅: D→ C is a left adjoint of a functor 𝐹: C→ D
if there exists a natural transformation 𝜂: idD ⇒ 𝐹𝑅 for which (𝑅𝐷, 𝜂𝐷) is a reflection

of 𝐷 along 𝐹 for any 𝐷 ∈ D.

Definition 3.1.5 (Coreflection). Let 𝐹: C → D be a functor and 𝐷 ∈ D be any object. A

pair (𝑅𝐷 , 𝜈𝐷) is said to be a coreflection of 𝐷 along 𝐹 if 𝑅𝐷 ∈ C and 𝜈𝐷 : 𝐹𝑅𝐷 → 𝐷 is a

morphism of D such that: for any 𝐶 ∈ C and morphism 𝛿: 𝐹𝐶 → 𝐷 in D there exists a

unique morphism 𝜀:𝐶 → 𝑅𝐷 for which the triangle

𝐹𝐶 𝐷

𝐹𝑅𝐷

𝛿

𝐹𝜀 𝜈𝐷

commutes in D.

Definition 3.1.6 (Right adjoint). A functor 𝑅: D → C is a right adjoint of a functor

𝐹: C→ D if there exists a natural transformation 𝜈: 𝐹𝑅⇒ idD such that: for each 𝐷 ∈ D
the pair (𝑅𝐷, 𝜈𝐷) is a coreflection of 𝐷 along 𝐹.
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Theorem 3.1.7 (Equivalent definitions). Let 𝐹 : C ⇄ D : 𝐺 be two functors. The

following properties are equivalent:

(a) The functor 𝐺 is left adjoint to 𝐹.

(b) There exists a pair of natural transformations 𝜂: idD ⇒ 𝐹𝐺 and 𝜈:𝐺𝐹 ⇒ idC for

which

(𝐹𝜈)(𝜂𝐹) = id𝐹 , and (𝜈𝐺)(𝐺𝜂) = id𝐺 .

(c) For every pair of objects 𝐶 ∈ C and 𝐷 ∈ D there exists a natural bĳection

𝜃𝐶𝐷 : MorC(𝐺𝐷, 𝐶) ≃−→MorD(𝐷, 𝐹𝐶).

The naturality of 𝜃 over the choice of 𝐶 and 𝐷 can be expressed as follows: for any

two other objects 𝐶′ ∈ C and 𝐷′ ∈ D together with morphisms 𝑐 ∈ MorC(𝐶′, 𝐶) and

𝑑 ∈ MorD(𝐷′, 𝐷) the following two squares commute

MorC(𝐺𝐷, 𝐶) MorC(𝐺𝐷, 𝐶′)

MorD(𝐷, 𝐹𝐶) MorD(𝐷, 𝐹𝐶′)

𝑐∗

𝜃𝐶𝐷 𝜃𝐶′𝐷

(𝐹𝑐)∗

MorC(𝐺𝐷, 𝐶) MorC(𝐺𝐷′, 𝐶)

MorD(𝐷, 𝐹𝐶) MorD(𝐷′, 𝐹𝐶)

(𝐺𝑑)∗

𝜃𝐶𝐷 𝜃𝐶𝐷′

𝑑∗

(d) The functor 𝐹 is right adjoint to 𝐺.

Notation 3.1.8. Let 𝐹 : C⇄ D : 𝐺 be functors forming a pair (𝐺, 𝐹) of adjoint functors.

We shall denote that 𝐺 is a left adjoint of 𝐹 (or, which is equivalent, 𝐹 is right adjoint

of 𝐺) by 𝐺 ⊣ 𝐹.
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Chapter 4

Abelian Categories

4.1 𝑘-Linear Categories
Definition 4.1.1 (𝑘-linear category). Let 𝑘 be a commutative ring. A category C is said

to be 𝑘-linear if:

(a) For any pair of objects 𝑋,𝑌 ∈ C the morphism collection MorC(𝑋,𝑌) is a 𝑘-module.

(b) Consider the following diagram in C:

𝑋 𝐴 𝐵 𝑌
𝑢

𝑓

𝑔

𝑣

Then the following relations are satisfied, which mimic the familiar distributive:

given any two scalars 𝑟, 𝑡 ∈ 𝑘 we have equalities

𝑣(𝑟 𝑓 + 𝑡 𝑔) = 𝑟(𝑣 𝑓 ) + 𝑡(𝑣𝑔),
(𝑟 𝑓 + 𝑡 𝑔)𝑢 = 𝑟( 𝑓 𝑢) + 𝑡(𝑔𝑢).

(c) The category C admits finite products and finite coproducts.

A category D is said to be an additive category if D is Z-linear.

Corollary 4.1.2 (Initial and final objects). If C is a 𝑘-linear category, then C has an initial
and final object.

Proof. Since C has all finite products and coproduct, the product 𝐹 of the empty family

of objects of C is the final object of C, and the coproduct 𝐼 of the empty family is the

initial object of C. ♮

Definition 4.1.3 (𝑘-linear functor). Given 𝑘-categories C and D, we define a 𝑘-linear
functor between C → D to be a functor 𝐹: C → D such that for all parallel morphisms

𝑓 , 𝑔:𝐴⇒ 𝐵 and scalars 𝑟, 𝑡 ∈ 𝑘 we have

𝐹(𝑟 𝑓 + 𝑡 𝑔) = 𝑟(𝐹 𝑓 ) + 𝑡(𝐹𝑔),

for any 𝐴, 𝐵 ∈ C. In other words, the induced map MorC(𝐴, 𝐵) → MorD(𝐹𝐴, 𝐹𝐵) is a

morphism of abelian groups.
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Corollary 4.1.4. If C is a 𝑘-linear category for some commutative ring 𝑘 then Cop
is

𝑘-linear.

Definition 4.1.5 (Biproduct). Let (𝑋1, . . . , 𝑋𝑛) be a finite family of objects of a 𝑘-linear

category C. A pair (𝑋, (𝑝 𝑗 , 𝑞 𝑗)𝑛𝑗=1
) is said to be a biproduct of the family (𝑋𝑗)𝑗 if:

(a) 𝑋 is an object of C.

(b) 𝑝 𝑗 :𝑋 → 𝑋𝑗 and 𝑞 𝑗 :𝑋𝑗 → 𝑋 are morphisms in C for each 1 ⩽ 𝑗 ⩽ 𝑛.

(c) The pairs (𝑝 𝑗 , 𝑞 𝑗)𝑗 satisfy the following rules:

(1)

∑𝑛
𝑗=1

𝑞 𝑗𝑝 𝑗 = id𝑋 .

(2) For each 1 ⩽ 𝑖 ≠ 𝑗 ⩽ 𝑛 we have 𝑝𝑖𝑞 𝑗 = 0, and on the other hand 𝑝 𝑗𝑞 𝑗 = id𝑋𝑗 .

In other words, 𝑋 is both a product and a coproduct of the family in a compatible way.

Theorem 4.1.6. Let (𝑋1, . . . , 𝑋𝑛) be a finite family of objects of a 𝑘-linear category C.

(a) A pair (𝑃, (𝑝 𝑗 :𝑃 → 𝑋𝑗)𝑛𝑗=1
) is a product of (𝑋𝑗)𝑗 if and only if there exists a family of

morphisms (𝑞 𝑗 :𝑋𝑗 → 𝑃)𝑛
𝑗=1

in C such that (𝑃, (𝑝 𝑗 , 𝑞 𝑗)𝑗) is the biproduct of (𝑋𝑗)𝑗 .
(b) A pair (𝐶, (𝑞 𝑗 :𝑋𝑗 → 𝑋)𝑛

𝑗=1
) is a coproduct of the family (𝑋𝑗)𝑗 if and only if there

exists a collection of morphisms (𝑝 𝑗 :𝐶 → 𝑋𝑗)𝑛𝑗=1
for which the pair (𝐶, (𝑝 𝑗 , 𝑞 𝑗)𝑗) is

the biproduct of (𝑋𝑗)𝑗 .

Proof. We shall prove only the first item since the second is merely its dual. Suppose

that 𝑃 is a product, and define morphisms 𝛿 𝑗𝑖 :𝑋𝑖 → 𝑋𝑗 for each pair 1 ⩽ 𝑖 , 𝑗 ⩽ 𝑛 where

𝛿 𝑗𝑖 =

{
id𝑋𝑗 , if 𝑖 = 𝑗

0, if 𝑖 ≠ 𝑗.

By the product universal property, for each 1 ⩽ 𝑖 ⩽ 𝑛 there exists a unique morphism

𝑞𝑖 :𝑋𝑖 → 𝑃 making the following diagram commute for all 1 ⩽ 𝑗 ⩽ 𝑛:

𝑋𝑖

𝑋 𝑋𝑗

𝑞𝑖

𝛿 𝑗𝑖

𝑝 𝑗

Now that we have constructed a family (𝑞 𝑗 :𝑋𝑗 → 𝑃)𝑗 notice that for each 1 ⩽ 𝑗 ⩽ 𝑛

one has

𝑝 𝑗

𝑛∑
𝑖=1

𝑞𝑖𝑝𝑖 =

𝑛∑
𝑖=1

𝑝 𝑗(𝑞𝑖𝑝𝑖) =
𝑛∑
𝑖=1

(𝑝 𝑗𝑞𝑖)𝑝𝑖 =
𝑛∑
𝑖=1

𝛿 𝑗𝑖𝑝𝑖 = 𝑝 𝑗 = 𝑝 𝑗 id𝑃

Notice that since both id𝑃 and

∑𝑛
𝑖=1

𝑞𝑖𝑝𝑖 satisfy the commutativity property specified

above for any 1 ⩽ 𝑗 ⩽ 𝑛, we can use the universal property of 𝑃 to obtain that

𝑛∑
𝑖=1

𝑞𝑖𝑝𝑖 = id𝑃 .
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Therefore the pair (𝑃, (𝑝 𝑗 , 𝑞 𝑗)𝑗) satisfies all the requirements to be the biproduct of (𝑋𝑗)𝑗 .
Suppose, on the contrary, that there exists a family (𝑞 𝑗 :𝑋𝑗 → 𝑃)𝑗 of morphisms

such that (𝑃, (𝑝 𝑗 , 𝑞 𝑗)𝑗) is a biproduct of (𝑋𝑗)𝑗 . Let 𝑌 ∈ C be any object, and consider a

collection of morphisms ( 𝑓𝑗 :𝑌 → 𝑋𝑗)𝑛𝑗=1
. Notice that the map

∑𝑛
𝑖=1

𝑞𝑖 𝑓𝑖 :𝑌 → 𝑋 is such

that

𝑝 𝑗

𝑛∑
𝑖=1

𝑞𝑖 𝑓𝑖 =

𝑛∑
𝑖=1

𝑝 𝑗(𝑞𝑖 𝑓𝑖) =
𝑛∑
𝑖=1

(𝑝 𝑗𝑞𝑖) 𝑓𝑖 = 𝑓𝑗

for each 1 ⩽ 𝑗 ⩽ 𝑛. Moreover, if 𝑓 :𝑌 → 𝑋 is another morphism such that 𝑝 𝑗 𝑓 = 𝑓𝑗 for

each 𝑗, then

𝑓 = id𝑋 𝑓 =
( 𝑛∑
𝑖=1

𝑞𝑖𝑝𝑖

)
𝑓 =

𝑛∑
𝑖=1

(𝑞𝑖𝑝𝑖) 𝑓 =
𝑛∑
𝑖=1

𝑞𝑖(𝑝𝑖 𝑓 ) =
𝑛∑
𝑖=1

𝑞𝑖 𝑓𝑖 .

This shows that 𝑃 enjoys the universal property of a product. ♮

Corollary 4.1.7 (Finite products and coproducts are isomorphic). Let C be a 𝑘-linear

category. Every finite collection of objects of C has isomorphic product and coproduct.

Corollary 4.1.8 (Zero object). A 𝑘-linear category has a zero object.

4.2 Properties of 𝑘-Linear Categories
Definition 4.2.1 (Kernels & cokernels). Let 𝑓 :𝑋 → 𝑌 be a morphism in a 𝑘-linear

category C. A kernel of 𝑓 , if it exists, is a pair (𝑈, 𝑢) where 𝑈 ∈ C and 𝑢:𝑈 → 𝑋 is a

morphism such that

(a) 𝑓 𝑢 = 0.

(b) For any morphisms 𝑢′:𝑈 ′ → 𝑋 in C such that 𝑓 𝑢′ = 0, there exists a unique

morphism 𝜙:𝑈 ′→ 𝑈 such that 𝑢′ = 𝑢𝑔:

𝑈 𝑋 𝑌

𝑈 ′

𝑢

0

𝑓

𝜙
𝑢′

0

A cokernel of 𝑓 , if it exists, is a pair (𝐶, 𝑐)where 𝐶 ∈ C and 𝑐:𝑌 → 𝐶 such that

(a) 𝑐 𝑓 = 0.
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(b) If 𝑐′:𝑌 → 𝐶′ is a morphism such that 𝑐′ 𝑓 = 0, then there exists a unique 𝜓:𝐶 → 𝐶′

for which the following diagram commutes:

𝑋 𝑌 𝐶

𝐶′

𝑓

0

0

𝑐

𝑐′
𝜓

Corollary 4.2.2 (Kernel is subobject & cokernel is quotient). Given a morphism 𝑓 :𝑋 →
𝑌 admitting kernel (𝑈, 𝑢) and cokernel (𝐶, 𝑐) in a 𝑘-linear category C. Then the

isomorphism class of (𝑈, 𝑢) is a subobject of 𝑋, on the other hand, the isomorphism

class of (𝐶, 𝑐) is a quotient of 𝑌.

Proof. Indeed, given a morphism 𝑣:𝑉 → 𝑈 such that 𝑢𝑣 = 0 then 𝑢𝑣 = 0 = 𝑢0 and by

the universal property of the kernel, the unicity of 𝑣 and 0 yields 𝑣 = 0. Let 𝑤:𝐶 → 𝑍

be a morphism such that 𝑤𝑐 = 0, then 𝑤𝑐 = 0 = 0𝑐 but then by the universal property

of cokernels we obtain 𝑤 = 0. ♮

Lemma 4.2.3. In a 𝑘-linear category C:

(a) A morphism 𝑓 is monic if and only if ker 𝑓 = 0.

(b) A morphism 𝑔 is epic if and only if coker 𝑓 = 0.

Definition 4.2.4 ((Co)image). Let C be a 𝑘-category and 𝑓 :𝑋 → 𝑌 a morphism of C.

We define, whenever possible
1
, the following objects:

(a) The image of 𝑓 is given by im 𝑓 = ker(coker 𝑓 )2.

(b) The coimage of 𝑓 is given by coim 𝑓 = coker(ker 𝑓 ).

In other words, we have the following commutative diagram:

ker 𝑓 𝑋 𝑌 coker 𝑓

coim 𝑓 im 𝑓

𝑓

𝑓

which describes the canonical decomposition of 𝑓 .

Definition 4.2.5 (Abelian category). A 𝑘-linear category is said to be 𝑘-abelian if:

1
Not all morphisms admit an image or coimage in a 𝑘-linear category since these constructions

depend on the existence of kernels and cokernels of certain maps—which cannot be always ensured in

this case.

2
Here we are abusing the notation: coker 𝑓 stands for the morphism associated to the cokernel of 𝑓 ,

while ker(coker 𝑓 ) is the kernel object associated to the morphism coker 𝑓 . The same analogous abuse

of notation is used while defining the coimage of 𝑓 .
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(a) Every morphism of C admits both kernel and cokernel.

(b) Every morphism 𝑓 ∈ Chas an associated canonical isomorphism 𝑓 : coim 𝑓 ≃−→ im 𝑓 .

Corollary 4.2.6. A category C is 𝑘-abelian if and only if the opposite category Cop
is

𝑘-abelian.

Lemma 4.2.7 (Isomorphisms in abelian categories). In a 𝑘-abelian category, a morphism

is an isomorphism if and only if it is monic and epic.

Proof. It is trivial that an isomorphism is both monic and epic, we shall prove the

converse Let 𝑓 :𝑋 → 𝑌 be both monic and epic in a 𝑘-abelian category C. Since 𝑓 is

monic then ker 𝑓 = 0 and therefore

coim 𝑓 = coker(ker 𝑓 ) = coker(0) = (𝑋, id𝑋).

On the other hand, since 𝑓 is epic then coker 𝑓 = 0 and thus

im 𝑓 = ker(coker 𝑓 ) = ker(0) = (𝑌, id𝑌).

This shows that 𝑓 = 𝑓 . Now since 𝑓 is an isomorphism due to the fact that C is abelian,

then 𝑓 is an isomorphism. ♮

Theorem 4.2.8. Let C be a 𝑘-linear category:

(a) If C is such that every morphism admits a kernel. Then every pair of compatible

morphisms of C admit a pullback.

(b) If C is such that every morphism admits a cokernel. Then every pair of compatible

morphisms of C admit a pushout.

Proof. (a) Let 𝑓 :𝑌 → 𝑋 and 𝑔:𝑍 → 𝑋 be morphisms and let 𝜋𝑌 :𝑌 × 𝑍 → 𝑌 and

𝜋𝑍:𝑌 × 𝑍 → 𝑍 be the canonical projections. Let (𝑈, 𝑢) be the kernel of the

morphism 𝑓𝜋𝑌 − 𝑔𝜋𝑍:𝑌 × 𝑍 → 𝑋. Defining 𝑢𝑌 :𝑈 → 𝑌 as 𝑢𝑌 ≔ 𝜋𝑌𝑢 and

𝑢𝑍:𝑈 → 𝑍 as 𝑢𝑍 ≔ 𝜋𝑍𝑢, we have from definition that ( 𝑓𝜋𝑌 − 𝑔𝜋𝑍)𝑢 = 0 and

therefore 𝑓 𝑢𝑌 = 𝑔𝑢𝑍. Hence the following diagram commutes

𝑈

𝑌 × 𝑍 𝑍

𝑌 𝑋

𝑢𝑍

𝑢𝑌

𝑢

𝜋𝑍

𝜋𝑌 𝑔

𝑓

To see that (𝑈, 𝑢𝑌 , 𝑢𝑍) is the pullback of ( 𝑓 , 𝑔), let (𝑊,𝑤𝑌 :𝑊 → 𝑌, 𝑤𝑍:𝑊 → 𝑍) be

a triple in C satisfying 𝑓 𝑤𝑌 = 𝑔𝑤𝑍. From the product universal property we have
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a unique morphism 𝑤′:𝑊 → 𝑌 × 𝑍 such that the following diagram commutes

𝑊

𝑌 × 𝑍

𝑌 𝑍

𝑤𝑍𝑤𝑌
𝑤′

𝜋𝑌 𝜋𝑍

Therefore

( 𝑓𝜋𝑌 − 𝑔𝜋𝑍)𝑤′ = 𝑓𝜋𝑌𝑤
′ − 𝑔𝜋𝑍𝑤′ = 𝑓 𝑤𝑌 − 𝑔𝑤𝑍 = 0.

Hence from the universal property of the kernel of 𝑓𝜋𝑌 − 𝑔𝜋𝑍 there exists a unique

morphism 𝑤:𝑊 → 𝑈 such that the following diagram commutes:

𝑊

𝑈 𝑌 × 𝑍 𝑋

𝑤
𝑤′

𝑢 𝑓𝜋𝑌−𝑔𝜋𝑍

This shows that the following diagram commutes:

𝑊

𝑈 𝑍

𝑌 𝑋

𝑤𝑍

𝑤𝑌

𝑤

𝑢𝑍

𝑢𝑌
⌟

𝑔

𝑓

(b) The proof of this second fact becomes dual to item (a) as soon as we use Corol-

lary 4.1.7.

♮

Corollary 4.2.9. In a 𝑘-abelian category, every pair of compatible morphisms admit a

pullback and pushout.

Lemma 4.2.10. Let C be a 𝑘-abelian category:

(a) Let

𝑃 𝑋2

𝑋1 𝑋

𝑝2

𝑝1

⌟
𝑓2

𝑓1

be a pullback square in C, then:

(i) If 𝑓1 is a monomorphism, then so is 𝑝2.
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(ii) If 𝑓1 is an epimorphism, then so is 𝑝2.

(b) Let

𝑌 𝑌2

𝑌1 𝑄

𝑔2

𝑔1 𝑞2

𝑞1

⌜

be a pushout square in C, then:

(i) If 𝑔2 is a monomorphism, then so is 𝑞1.

(ii) If 𝑔2 is an epimorphism, then so is 𝑞1.

Proof. (a) (i) Suppose 𝑓1 is a monomorphism. Let 𝑢:𝑈 → 𝑃 be a morphism in C

such that 𝑝2𝑢 = 0, then

( 𝑓1𝑝1)𝑢 = ( 𝑓2𝑝2)𝑢 = 𝑓2(𝑝2𝑢) = 𝑓20 = 0.

However, since 𝑓1(𝑝1𝑢) = 0 = 𝑓10 and 𝑓1 is monic, then 𝑝1𝑢 = 0. This shows

that the triple (𝑈, 0:𝑈 → 𝑋1, 0:𝑈 → 𝑋2) has 𝑢 as its unique corresponding

morphism associated to the universal property of the pullback. Since 𝑢 is

unique and 0:𝑈 → 𝑃 also satisfies the needed conditions, it follows that

𝑢 = 0. This shows that 𝑝2𝑢 = 0 implies 𝑢 = 0—which is equivalent to 𝑝2 being

monic.

(ii) Suppose 𝑓2 is an epimorphism. From definition the following sequence is

short exact:

0 𝑃 𝑋1 × 𝑋2 𝑋 0

𝑝 𝑓1𝜋1− 𝑓2𝜋2

Let 𝑤:𝑋2 → 𝑊 be any morphism such that 𝑤𝑝2 = 0, and using the fact

that 𝑝2 = 𝜋2𝑝 we find that 𝑤𝜋2𝑝 = 0. This implies in the existence of a

morphism 𝑔:𝑋 → 𝑊 such that 𝑔( 𝑓1𝜋1 − 𝑓2𝜋2) = 𝑤𝜋2. On the other hand, if

𝜄1:𝑋1 ↩→ 𝑋1 × 𝑋2 is the canonical inclusion, then

𝑔 𝑓1 = 𝑔( 𝑓1𝜋1 − 𝑓2𝜋2)𝜄1 = 𝑤𝜋2𝜄1 = 𝑤0 = 0.

Since 𝑓1 is assumed to be epic then 𝑔 = 0, which in turn implies in 𝑤𝜋2 = 0.

Now using the fact that the canonical projection 𝜋2 is also epic we conclude

that 𝑤 = 0. This shows that for any morphism with 𝑤𝑝2 = 0 one has 𝑤 = 0,

therefore 𝑝2 is an epimorphism.

(b) The proof of (b-i) is dual to the proof of (a-ii), while (b-ii) is dual to the proof of

(a-i).

♮

Definition 4.2.11 (Exact sequence). Let C be an abelian category and consider a se-

quence inside C:

· · · 𝑋𝑗+1 𝑋𝑗 𝑋𝑗−1 · · ·
𝑓𝑗+1 𝑓𝑗
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Such sequence is said to be a complex if 𝑓𝑗 𝑓𝑗+1 = 0 for every index 𝑗. On the other hand,

if im 𝑓𝑗+1 = ker 𝑓𝑗 then we say that the sequence is exact in 𝑋𝑗 .

Definition 4.2.12 (Split short exact sequence). Let C be an abelian category. A short

exact sequence

0 𝑋 𝑌 𝑍 0

𝑓 𝑔

is split if there exists an isomorphism 𝑌 ≃ 𝑋 ⊕ 𝑍 such that the following diagram

commutes:

0 𝑋 𝑌 𝑍 0

0 𝑋 𝑋 ⊕ 𝑍 𝑍 0

𝑓 𝑔

≃

Theorem 4.2.13. Let C be an abelian category and consider the following short exact

sequence:

0 𝑋 𝑌 𝑍 0

𝑓 𝑔

The following conditions are equivalent:

(a) The sequence is split.

(b) The morphism 𝑓 is a split monomorphism.

(c) The morphism 𝑔 is a split epimorphism.

Lemma 4.2.14. Let C be an abelian category and consider the following commutative

diagram with short exact rows:

0 𝐴 𝐵 𝐶 0

0 𝐴′ 𝐵′ 𝐶′ 0

𝛼 𝛽 𝛾

If 𝛼 and 𝛾 are isomorphisms, then so is 𝛽.

Theorem 4.2.15. Let C be an abelian category.

(a) Given a diagram in Cwith an exact bottom row:

𝑋2

0 𝑋0 𝑋1 𝑋 0

𝑓2

𝑓0 𝑓1

Then we can complete this diagram with the pullback (𝑃, 𝑝1, 𝑝2) of the pair ( 𝑓1, 𝑓2):

0 𝑋0 𝑃 𝑋2 0

0 𝑋0 𝑋1 𝑋 0

𝑝0

⌟

𝑝2

𝑝1 𝑓2

𝑓0 𝑓1
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Reciprocally, given a commutative diagram with exact rows:

0 𝑋0 𝑃′ 𝑋2 0

0 𝑋0 𝑋1 𝑋 0

𝑝′
0

𝑝′
2

𝑝′
1

𝑓2

𝑓0 𝑓1

Then there exists an isomorphism 𝑓 :𝑃′ ≃−→ 𝑃 such that the following diagram

commutes:

0 𝑋0 𝑃 𝑋2 0

𝑃′

0 𝑋0 𝑋1 𝑋 0

𝑝0

𝑝′
0

𝑝2

𝑝1 𝑓2

𝑓≃
𝑝′

2

𝑝′
1

𝑓0 𝑓1

(b) Given a diagram in Cwith an exact bottom row:

0 𝑌 𝑌1 𝑌 0

𝑌2

𝑔1

𝑔2

𝑔0

Then we can complete this diagram with the pushout (𝑄, 𝑞1, 𝑞2) of the pair (𝑔1, 𝑔2):

0 𝑌 𝑌1 𝑌0 0

0 𝑌2 𝑄 𝑌0 0

𝑔2

𝑔1 𝑔0

𝑞1

𝑞2 𝑞0

⌜

Reciprocally, given a commutative diagram with exact rows:

0 𝑌 𝑌1 𝑌0 0

0 𝑌2 𝑄′ 𝑌0 0

𝑔2

𝑔1 𝑔0

𝑞′
1

𝑞′
2

𝑞′
0
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Then there exists an isomorphism 𝑔:𝑃′ ≃−→ 𝑃 such that the following diagram

commutes:

0 𝑌 𝑌1 𝑌0 0

𝑄′

0 𝑌2 𝑄 𝑌0 0

𝑔1

𝑔2

𝑔0

𝑞1

𝑞′
1

𝑔≃
𝑞′

0

𝑞2

𝑞′
2

𝑞0

Proof. We shall only prove item (a) since item (b) follows from duality. Using the

universal property for the triple (𝑋0, 𝑓0:𝑋0 → 𝑋1, 0:𝑋0 → 𝑋2)—which satisfies 𝑓1 𝑓0 =

0 = 𝑓20—we have a unique morphism 𝑝0:𝑋0 → 𝑃 for which satisfies 𝑝1𝑝0 = 𝑓0 and

𝑝2𝑝0 = 0. It suffices for us to prove that 𝑝0 = ker 𝑝2: let 𝑢:𝑈 → 𝑃 be such that 𝑝2𝑢 = 0,

then

𝑓1𝑝1𝑢 = 𝑓2𝑝2𝑢 = 𝑓20 = 0.

Therefore there exists 𝑢′:𝑈 → 𝑋0 such that 𝑓0𝑢
′ = 𝑝1𝑢, moreover, we have

𝑝2𝑝0𝑢
′ = 0 = 𝑝2𝑢 and 𝑝1𝑝0𝑢

′ = 𝑓0𝑢
′ = 𝑝1𝑢.

By the pullback universal property we can use unicity to obtain 𝑢 = 𝑝0𝑢
′
. Notice that

since 𝑓0 = 𝑝1𝑝0 is a monomorphism, then 𝑝0 is also a monomorphism.

For the reciprocal, notice that the triple (𝑃′, 𝑝′
1
, 𝑝′

2
) induces a unique morphism

𝑓 :𝑃′ → 𝑃 such that 𝑝1 𝑓 = 𝑝′
1

and 𝑝2 𝑓 = 𝑝′
2
. On the other hand, if we consider the

triple (𝑋0, 𝑓0:𝑋0 → 𝑋1, 0:𝑋0 → 𝑋2) one has that the map 𝑓 𝑝′
0
:𝑋0 → 𝑃 satisfies the

commutativity conditions:

𝑝1( 𝑓 𝑝′
0
) = (𝑝1 𝑓 )𝑝′

0
= 𝑝′

1
𝑝′

0
= 𝑓0 = 𝑝1𝑝0,

𝑝2( 𝑓 𝑝′
0
) = (𝑝2 𝑓 )𝑝′

0
= 𝑝′

2
𝑝′

0
= 0 = 𝑝2𝑝0,

as does the map 𝑝0:𝑋0 → 𝑃, hence by uniqueness we find that 𝑓 𝑝′
0
= 𝑝0. Now by

Lemma 4.2.14 we obtain that 𝑓 is an isomorphism. ♮

4.3 Ideals
Definition 4.3.1 (Bilateral ideal). Let C be a 𝑘-linear category. We define a bilateral
ideal of C to be a category ℐ with Obj ℐ ⊆ Obj C and where ℐ (𝑋,𝑌) ⊆ MorC(𝑋,𝑌) is a

submodule for any two 𝑋,𝑌 ∈ C such that:

(a) If 𝑓 ∈ ℐ (𝑋,𝑌) and 𝑔 ∈ MorC(𝑌, 𝑍) then 𝑔 𝑓 ∈ ℐ (𝑋, 𝑍).
(b) If 𝑓 ∈ ℐ (𝑋,𝑌) and ℎ ∈ MorC(𝑊, 𝑋) then 𝑓 ℎ ∈ ℐ (𝑊,𝑌).

68



Definition 4.3.2 (Quotient category). Let C be a 𝑘-linear category and ℐ be a bilateral

ideal of C. We define the quotient category C/ℐ to be the 𝑘-linear category composed of

the objects of C and for each 𝑋,𝑌 ∈ C/ℐ we have

MorC/ℐ (𝑋,𝑌) ≔ MorC(𝑋,𝑌)/ℐ (𝑋,𝑌).

Definition 4.3.3 (Functor kernel). Let 𝐹: C → D be a 𝑘-linear functor. We define the

kernel of 𝐹 to be the bilateral ideal ker 𝐹 of C given by the morphisms 𝑓 ∈ Mor C such

that 𝐹 𝑓 = 0.

Proposition 4.3.4. Let 𝐹: C → D be a 𝑘-linear functor that is both full and essentially

surjective. Then there exists a unique equivalence of categories 𝐹: C/ker 𝐹 ≃−→ D such

that the following diagram quasi-commutes:

C D

C/ker 𝐹

𝑃

𝐹

𝐹

where 𝑃: C→ C/ker 𝐹 is the canonical projection functor.

Proof. Let 𝐹: C/ker 𝐹 → D be the functor given by 𝐹𝑋 ≔ 𝐹𝑋 for any 𝑋 ∈ C/ker 𝐹 and

for each morphism 𝑓 :𝑋 → 𝑌 in Cwe define

𝐹( 𝑓 + (ker 𝐹)(𝑋,𝑌)) = 𝐹 𝑓 .

So that indeed 𝐹𝑃 = 𝐹. Moreover, it is clear that 𝐹 inherits the properties of being full

and essentially surjective from 𝐹. On the other hand, if 𝐹(𝑔 + (ker 𝐹)(𝑍,𝑊)) = 0 then

𝐹𝑔 = 0 and hence 𝑔 ∈ (ker 𝐹)(𝑍,𝑊), thus 𝐹 is faithful. ♮

4.4 Exact Functors
Proposition 4.4.1. Let 𝐹: C→ D be a 𝑘-linear functor between 𝑘-abelian categories:

(a) If 𝐹 is covariant, then 𝐹 is left exact if it preserves kernels—that is, 𝐹(ker 𝑔) = ker(𝐹𝑔)
for any 𝑔 ∈ Mor C. On the other hand, 𝐹 is said to be right exact if it preserves

cokernels—for any 𝑔 ∈ Mor Cwe have 𝐹(coker 𝑔) = coker(𝐹𝑔).
(b) If 𝐹 is contravariant, then 𝐹 is left exact if it transforms kernels into cokernels—that

is, 𝐹(ker 𝑔) = coker(𝐹𝑔) for any 𝑔 ∈ Mor C. Moreover, 𝐹 is right exact if it transforms

cokernels into kernels—that is, 𝐹(coker 𝑔) = ker(𝐹𝑔) for any 𝑔 ∈ Mor C.
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Chapter 5

Vector Spaces

5.1 Vector Spaces and Subspaces

Vector Spaces
Definition 5.1.1 (Vector Space). A set𝑉 is called a vector space over a field 𝑘 (or 𝑘-space)

if it is equipped with an internal operation +:𝑉 ×𝑉 → 𝑉 where (𝑎, 𝑏) ↦→ 𝑎 + 𝑏 and the

external operation ·: 𝑘 ×𝑉 → 𝑉 where (𝑟, 𝑎) ↦→ 𝑟 · 𝑎. We normally call the elements of

𝑉 as vectors, and the elements of 𝑘 as scalars. Also, these operations satisfy

I. (𝑉,+) is an abelian group.

II. Multiplication of vectors by scalars is associative and distributive and is unitary

(that is, 1 · 𝑎 = 𝑎 for every 𝑎 ∈ 𝑉).

Subspaces
Definition 5.1.2 (Subspaces). Let 𝑉 be a vector space. A set 𝑆 ⊆ 𝑉 is called a subspace
of 𝑉 if it satisfies all properties of a vector space. Also 𝑆 is called a proper subspace if it

is not equal to the original vector space.

Theorem 5.1.3 (Cover Avoidance). A non-zero vector space 𝑉 over an infinite field 𝑘

is not the union of a finite number of proper subspaces.

Proof. Suppose, for the sake of contradiction, that 𝑉 =
⋃
𝑖∈𝐼 𝑆𝑖 where 𝐼 is a finite

indexing set and 𝑆𝑖 are all proper subspaces of 𝑉 . Then, let 𝑆1 be such that it is not

contained in any other subspace 𝑆𝑖 . Define elements 𝑎 ∈ 𝑆1∖
⋃
𝑖∈𝐼∖{1} 𝑆𝑖 and 𝑏 ∈ 𝑉 ∖𝑆1

and construct the set 𝐴 ≔ {𝑟𝑎 + 𝑏 : 𝑟 ∈ 𝑘}. Notice that if we have that one element

𝑟𝑎+𝑏 ∈ 𝑆1, the fact that 𝑎 ∈ 𝑆1 makes (𝑟𝑎+𝑏)−𝑟𝑎 = 𝑏 ∈ 𝑆1, contradicting the assumption

of 𝑏 ∉ 𝑆1 thus, we can’t have 𝑟𝑎 + 𝑏 ∈ 𝑆1. Suppose now that we let 𝑟𝑎 + 𝑏, 𝑟′𝑎 + 𝑏 ∈ 𝑆𝑖
different elements, for some 𝑖 > 1, then (𝑟𝑎 + 𝑏) − (𝑟′𝑎 + 𝑏) = (𝑟 − 𝑟′)𝑎 ∈ 𝑆𝑖 but since

𝑘 is a field, then 𝑎 ∈ 𝑆𝑖 contradicting again the construction and therefore we cannot

have more than one element of 𝐴 contained in 𝑆𝑖 . Now, since 𝐴 is an infinite set and

is contained in 𝑉 , then we cannot have the equality between 𝑉 and the finite union⋃
𝑖∈𝐼 𝑆𝑖 . ♮
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Definition 5.1.4 (Lattice). A poset 𝑃 is called a lattice if for every pair of elements of

𝑃 there exists a join (or a least upper bound) and a meet (greatest lower bound). The

set 𝑃 is called a complete lattice if there exists a join and a meet for every collection of

sets and also every collection contains smallest and larger elements under the partial

order.

Proposition 5.1.5 (Intersection of subspaces). The intersection of any collection of

subspaces of a given vector space is a subspace of the original vector space. This

intersection contains the greatest lower bound of subspace that is contained in every

subspace of the intersection, then, we denote it by⋂
𝑖∈𝐼
𝑆𝑖 = Glb{𝑆𝑖 : 𝑖 ∈ 𝐼}.

Proof. Let 𝑉 be a 𝑘-space and 𝑆𝑖 be an arbitrary subspace. Notice that 0 ∈ ⋃
𝑖∈𝐼 𝑆𝑖 . Let

elements 𝑢, 𝑣 ∈ ⋂
𝑖∈𝐼 𝑆𝑖 so that for all subspace we have that the element 𝑢 + 𝑣𝑡 ∈ 𝑆𝑖 for

any given 𝑡 ∈ 𝑘, thus 𝑢 + 𝑣𝑡 ∈ ⋂
𝑖∈𝐼 𝑆𝑖 , which makes the union a vector space by itself.

The claim follows. ♮

Definition 5.1.6 (Sum of subspaces). Let𝑉 be a vector space and 𝑆𝑖 be subspaces of𝑉 .

We define the sum of such subspaces as

∑
𝑖∈𝐼

𝑆𝑖 ≔


∑
𝑗

𝑠 𝑗 : 𝑠 𝑗 ∈
⋃
𝑖∈𝐼
𝑆𝑖

 .
Therefore the least upper bound under set inclusion as

Lub{𝑆𝑖 : 𝑖 ∈ 𝐼} =
∑
𝑖∈𝐼

𝑆𝑖 .

Theorem 5.1.7 (Subspaces form a complete lattice). The set containing all subspaces of

𝑉 , denoted by 𝒮(𝑉), is a complete lattice under set inclusion (partial order of the set),

with smallest element {0} (the zero subspace) and largest element 𝑉 . The meet of any

collection of sets {𝑆𝑖 : 𝑖 ∈ 𝐼}, where 𝐼 is a finite indexing set, is⋂
𝑖∈𝐼
𝑆𝑖 = Glb{𝑆𝑖 : 𝑖 ∈ 𝐼}

and the join is defined as ∑
𝑖∈𝐼

𝑆𝑖 = Lub{𝑆𝑖 : 𝑖 ∈ 𝐼}.

Morphisms of Vector Spaces
Definition 5.1.8 (Morphisms). Let 𝑉, 𝐿 be 𝑘-vector spaces. We say that 𝜑:𝑉 → 𝐿 is a

morphism of vector spaces if it satisfies

I. 𝜑(0) = 0, that is 𝑉 ∋ 0 ↦→ 0 ∈ 𝐿.
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II. For all 𝑢, 𝑣 ∈ 𝑉 , 𝜑(𝑢 + 𝑏) = 𝜑(𝑢) + 𝜑(𝑣).

III. For all 𝑎 ∈ 𝑘 and 𝑢 ∈ 𝑉 we have 𝜑(𝑎𝑢) = 𝑎𝜑(𝑢).
Notice in fact that the first property of the morphism is in fact redundant. By means

of item two we can see that 𝜑(0) = 𝜑(0) + 𝜑(0), for which the item one is obtained.

Definition 5.1.9. A 𝑘-linear morphism 𝑓 :𝑉 → 𝑉 is called a linear operator.

Proposition 5.1.10. The 𝑘-vector spaces, together with morphism between such vector

spaces, form a category, of which we’ll denote by Vect𝑘 .

Proof. Certainly, the identity map id𝑉 :𝑉 → 𝑉 is a morphism of 𝑘-vector spaces and all

of the properties come directly from the fact that 𝑉 is a vector space.

Another important feature of morphism between vector spaces is that they are

closed under composition. Let 𝜑:𝑉 → 𝐿 and 𝜓: 𝐿 → 𝑈 be morphism between 𝑘-

vector spaces, then the composition 𝜓𝜑:𝑉 → 𝑈 is such that, given any 𝑢, 𝑣 ∈ 𝑉
then

𝜓(𝜑(𝑢 + 𝑣)) = 𝜓(𝜑(𝑢) + 𝜑(𝑣)) = 𝜓(𝜑(𝑢)) + 𝜓(𝜑(𝑣))
and also, being 𝑎 ∈ 𝑘, we have

𝜓(𝜑(𝑎𝑢)) = 𝜓(𝑎𝜑(𝑢)) = 𝑎𝜓(𝜑(𝑢)).
Which proves the closure under composition.

We now prove that the composition of morphism of vector spaces is associative.

Let the morphisms be as before and define yet another morphism ℓ :𝑊 → 𝑉 , then

(𝜓(𝜑ℓ ))(𝑤) = 𝜓(𝜑(ℓ (𝑤)) = (𝜓𝜑)(ℓ (𝑤)) = ((𝜓𝜑)ℓ )(𝑤).
Consider the morphism 𝜑:𝑉 → 𝐿, then clearly 𝜑 id𝑉 = 𝜑 = id𝐿 𝜑. Together

with the fact that the collection of morphisms between 𝑘-vector spaces 𝑉, 𝐿 and the

collection of morphisms between 𝑘-vector spaces𝑈,𝑊 , these two collections are clearly

disjoint for 𝑉 ≠ 𝑈 and 𝐿 ≠ 𝑊 . This finishes the proof of the properties needed for a

category. ♮

Proposition 5.1.11 (Initial and Final object). The 𝑘-vector space 0 is a initial and final

object of Vect𝑘 .

Proof. Essentially, we need to prove that for all 𝑉 ∈ Obj(Vect𝑘) there exists unique

morphisms 𝜑 and 𝜓 where

0 𝑉

𝜓

𝜑

Notice that, since 𝜑 is a morphism of 𝑘-vector spaces, we’ll need to impose 𝜑(0) = 0

and thus this morphism is clearly unique and satisfies the properties needed for a

morphism. Moreover, the morphism has a unique target element, thus the image

of 𝜓 is the singleton {0} which is also clearly unique and satisfies the properties of

morphism. ♮

Definition 5.1.12 (Isomorphism). Let 𝑉, 𝐿 ∈ Obj(Vect𝑘). We say that 𝐿 and 𝑉 are

isomorphic, that is 𝐿 ≃ 𝑉 , if there exists an isomorphism 𝐿→ 𝑉 in Mor(𝐿,𝑉).
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5.2 Matrices
Definition 5.2.1 (Matrix). We define a 𝑚 × 𝑛 matrix with entries in 𝑘 as morphism

𝑘𝑛 → 𝑘𝑚 in the category Vect𝑘 , that is, regarding 𝑘𝑛 , 𝑘𝑚 as 𝑘-vector spaces.

Classifying Matrices
Let 𝑒 𝑗 be defined the be a tuple whose 𝑗-th element is 1 ∈ 𝑘 and all of the other

elements of the tuple are 0 ∈ 𝑘, moreover, if 𝑒 𝑗 ∈ 𝑘𝑛 it is an 𝑛-tuple. Let the morphism

𝜑 ∈ MorVect𝑘 (𝑘𝑛 , 𝑘𝑚) and define for all 1 ⩽ 𝑗 ⩽ 𝑛 the image

𝜑(𝑒 𝑗) ≔ (𝑡1𝑗 , 𝑡2𝑗 , . . . , 𝑡𝑚𝑗) =
𝑚∑
𝑖=1

𝑡𝑖 𝑗𝑒𝑖 ∈ 𝑘𝑚 .

We now prove that in fact the 𝑚𝑛 elements 𝑡𝑖 𝑗 ∈ 𝑘 determine completely the

behaviour of 𝜑, since for any element (𝑎 𝑗)𝑛𝑗=1
∈ 𝑘𝑛 we have

𝜑((𝑎 𝑗)𝑛𝑗=1
) = 𝜑

(
𝑛∑
𝑗=1

𝑎 𝑗𝑒 𝑗

)
=

𝑛∑
𝑗=1

𝑎 𝑗𝜑(𝑒 𝑗) =
𝑛∑
𝑗=1

(
𝑚∑
𝑖=1

𝑎 𝑗𝑡𝑖 𝑗𝑒𝑖

)
∈ 𝑘𝑚 .

Moreover, it can trivially be seen that the mapping (𝑎 𝑗)𝑛𝑗=1
↦→ ∑𝑛

𝑗=1

∑𝑚
𝑖=1

𝑎 𝑗𝑡𝑖 𝑗𝑒𝑖is indeed

a morphism of vector spaces since, for another (𝑏 𝑗)𝑛𝑗=1
∈ 𝑘𝑛 , we have

𝜑((𝑎 𝑗 + 𝑏 𝑗)𝑛𝑗=1
) = 𝜑((𝑎 𝑗)𝑛𝑗=1

) + 𝜑((𝑏 𝑗)𝑛𝑗=1
)

also, given 𝑐 ∈ 𝑘 we have

𝜑((𝑐𝑎 𝑗)𝑛𝑗=1
) = 𝑐𝜑((𝑎 𝑗)𝑛𝑗=1

).

Since the matrix 𝑘𝑛 → 𝑘𝑚 can be identified and completely determined with el-

ements (𝑡𝑖 𝑗)𝑖 , 𝑗 where 1 ⩽ 𝑖 ⩽ 𝑚 and 1 ⩽ 𝑗 ⩽ 𝑛, then we visually can represent it

by

𝜑 =
©«
𝑡11 . . . 𝑡1𝑛
...

. . .
...

𝑡𝑚1 . . . 𝑡𝑚𝑛

ª®®¬
Also, we can regard the fact that 𝜑((𝑎𝑖)𝑛𝑖=1

) = (𝑏𝑖)𝑚𝑖=1
visually as a system of equations

©«
𝑡11 . . . 𝑡1𝑛
...

. . .
...

𝑡𝑚1 . . . 𝑡𝑚𝑛

ª®®¬
©«
𝑎1

...

𝑎𝑛

ª®®¬ =
©«
𝑏1

...

𝑏𝑚

ª®®¬
Definition 5.2.2 (Square diagonal Matrix). We define a 𝑛 × 𝑛 matrix 𝐴 to be diagonal

if for all 𝑖 ≠ 𝑗 indices we have 𝑎𝑖 𝑗 = 0.
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Definition 5.2.3 (Matrix for a linear map). Suppose 𝑉 ≃ 𝑘𝑛 and 𝑊 ≃ 𝑘𝑚 are 𝑘-vector

spaces and 𝐿:𝑉 → 𝑊 is a linear morphism. Let also {𝑣 𝑗}𝑛𝑗=1
and {𝑤𝑖}𝑚𝑖=1

be basis for

the respective given finite dimensional vector spaces. By the isomorphism, we can

represent 𝐿 as a matrix 𝑘𝑛 → 𝑘𝑚 whose components 𝑡𝑖 , 𝑗 with 1 ⩽ 𝑖 ⩽ 𝑚 and 1 ⩽ 𝑖 ⩽ 𝑛

are defined with respect to the given basis as

𝐿𝑣 𝑗 =

𝑚∑
𝑖=1

𝑡𝑖 , 𝑗𝑤𝑖

Matrix multiplication
Definition 5.2.4 (Multiplication of matrices). Let𝐴 = [𝑎𝑖 , 𝑗]: 𝑘𝑛 → 𝑘𝑚 and𝐵 = [𝑏𝑖 , 𝑗]: 𝑘ℓ →
𝑘𝑛 be matrices. Then, the product of the matrices 𝐴 and 𝐵 is defined as 𝐴𝐵: 𝑘𝑛 → 𝑘ℓ

with coefficients

𝑐𝑖 , 𝑗 =

𝑛∑
𝑘=1

𝑎𝑖 ,𝑘𝑏𝑘,𝑗

Proposition 5.2.5 (Composition of morphisms matrix). Let 𝑘-linear morphisms 𝑉
𝑔
−→

𝑊
𝑓
−→ 𝐿 of finite 𝑘-dimensional vector spaces, and choose basis {𝑣 𝑗}, {𝑤𝑘}, {𝑙𝑖} to be

basis of 𝑉,𝑊, 𝐿 respectively, and let 𝐴𝑔 and 𝐴 𝑓 be the matrix representation of the

morphisms 𝑔 and 𝑓 with respect to the given basis. Then the matrix representation of

the composition 𝑓 𝑔:𝑉 → 𝐿 is given by 𝐴 𝑓 𝑔 = 𝐴 𝑓𝐴𝑔 .

Proof. Let 𝐴 𝑓 ≔ [𝑎𝑖 ,𝑘], and 𝐴𝑔 ≔ [𝑏𝑘,𝑗], and 𝐴 𝑓 𝑔 = [𝑐𝑖 , 𝑗]. Then, since from definition

we have 𝑔(𝑣 𝑗) =
∑
𝑘 𝑏𝑘,𝑗𝑤𝑘 , hence

𝑓 𝑔(𝑣 𝑗) =
∑
𝑘

𝑏𝑘,𝑗 𝑓 (𝑤𝑘) =
∑
𝑘

(
𝑏𝑘,𝑗

(∑
𝑖

𝑎𝑖 ,𝑘 𝑙𝑖

))
=

∑
𝑖

(∑
𝑘

𝑎𝑖 ,𝑘𝑏𝑘,𝑗

)
𝑙𝑖 =

∑
𝑖

𝑐𝑖 , 𝑗 𝑙𝑖

thus 𝑐𝑖 , 𝑗 =
∑
𝑘 𝑎𝑘 𝑖 , 𝑘𝑏𝑘,𝑗 and thus 𝐴 𝑓 𝑔 = 𝐴 𝑓𝐴𝑔 as wanted. ♮

Definition 5.2.6 (Conjugation). Let 𝑀𝑛(𝑘) be the collection of matrices 𝑘𝑛 → 𝑘𝑛 . We

define a matrix conjugation as the linear morphism 𝑀𝑛(𝑘) → 𝑀𝑛(𝑘)with the mapping

𝐴 ↦→ 𝐵−1𝐴𝐵, where 𝐵 is an invertible matrix.

Proposition 5.2.7. Every conjugation is an automorphism of the matrix algebra 𝑀𝑛(𝑘).

5.3 Product and Direct Sum of Vector Spaces

Free Vector Spaces
Proposition 5.3.1. Let 𝑆 be a set and define the power set 𝑘𝑆 with addition and scalar

multiplication, that is, given 𝑓 , 𝑔 ∈ 𝑘𝑆 and 𝑎 ∈ 𝑘 we have ( 𝑓 + 𝑔)(𝑥) = 𝑓 (𝑥) + 𝑔(𝑥) and

(𝑎 𝑓 )(𝑥) = 𝑎 𝑓 (𝑥). Then the set 𝑘𝑆 is a 𝑘-vector space.
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Proof. Notice that clearly (𝑘𝑆 ,+) is an abelian group from the construction of the addi-

tive structure, moreover, since 𝑘 is a field, it inherit the associativity and distributivity

of scalar multiplication. The 0 vector can be regarded as the map whose image is the

singleton {0}. ♮

Proposition 5.3.2 (Functoriality of 𝑘𝑆). Let sets 𝑆, 𝑆′ and a map 𝛼: 𝑆→ 𝑆′, then

𝛼∗: 𝑘𝑆
′ → 𝑘𝑆 mapping ( 𝑓 : 𝑆′→ 𝑘) ↦→ ( 𝑓 𝛼: 𝑆→ 𝑘)

is a morphism of 𝑘-vector spaces. Moreover if 𝛽: 𝑆′→ 𝑆′′ then (𝛽𝛼)∗ = 𝛼∗𝛽∗.

Proof. Let maps 𝑓 , 𝑔: 𝑆′→ 𝑘, then

( 𝑓 + 𝑔: 𝑆′→ 𝑘) 𝛼∗↦−→
(
( 𝑓 + 𝑔)𝛼: 𝑆→ 𝑘

)
,

but for every 𝑠 ∈ 𝑆 we have ( 𝑓 + 𝑔)(𝛼(𝑠)) = 𝑓 (𝛼(𝑠)) + 𝑔(𝛼(𝑠)), which shows the first

property. For the second property, let 𝑎 ∈ 𝑘, then we get the map

((𝑎 · 𝑓 ): 𝑆′→ 𝑘) 𝛼∗↦−→ ((𝑎 · 𝑓 )𝛼: 𝑆→ 𝑘),

but for each 𝑠 ∈ 𝑆 we have (𝑎 · 𝑓 )(𝛼(𝑠)) = 𝑎 · 𝑓 (𝛼(𝑠)), proving the second property,

which finishes the proof. ♮

Definition 5.3.3 (Free vector space). Let 𝑆 be a set, we define the free vector space on

𝑆 to be the object

𝑘⊕𝑆 = { 𝑓 ∈ 𝑘𝑆 : 𝑓 (𝑠) ≠ 0 only for finitely many 𝑠 ∈ 𝑆},

together with an additive structure and scalar multiplication, satisfying for all 𝑓 , 𝑔 ∈
𝑘⊕𝑆, 𝑠 ∈ 𝑆 and 𝑎 ∈ 𝑘:

( 𝑓 + 𝑔)(𝑠) = 𝑓 (𝑠) + 𝑔(𝑠) and (𝑎 · 𝑓 )(𝑠) = 𝑎 · 𝑓 (𝑠).

Proposition 5.3.4. The object 𝑘⊕𝑆 is a 𝑘-vector space.

Proof. Let the maps 𝑓 , 𝑔 ∈ 𝑘⊕𝑆, so that the specification of finiteness of non-zero values

is satisfied. Denote 𝐴, 𝐵 the finite sets containing the non-zero elements of 𝑆 under,

respectively, 𝑓 and 𝑔. Notice now that the map 𝑓 + 𝑔 ∈ 𝑘𝑆 is such that for all 𝑠 ∈ 𝐴∪ 𝐵
then ( 𝑓 + 𝑔)(𝑠) = 𝑓 (𝑠) + 𝑔(𝑠) ≠ 0 thus, denoting 𝐶 as the set containing all non-zero

elements of 𝑆 under 𝑓 + 𝑔, we see that 𝐴 ∪ 𝐵 ⊆ 𝐶. The converse is trivial since if 𝑠 ∈ 𝐶
then 𝑓 (𝑠) + 𝑔(𝑠) ≠ 0 and thus at least one of the images is non-zero, thus 𝑠 ∈ 𝐴∪ 𝐵 and

then 𝐶 ⊆ 𝐴 ∪ 𝐵, which implies that 𝐴 ∪ 𝐵 = 𝐶 and, in particular, 𝐶 is finite. Therefore

𝑓 + 𝑔 ∈ 𝑘⊕𝑆. Note now that for any 𝑐 ∈ R ∖ {0}, then 𝑐 · 𝑓 has non-zero values only

in 𝐴 ⊆ 𝑆, in the case 𝑐 = 0 then 𝑐 · 𝑓 is zero all over 𝑆, which makes 𝑐 · 𝑓 ∈ 𝑘⊕𝑆. Thus

indeed 𝑘⊕𝑆 is a vector space. ♮
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For each 𝑠 ∈ 𝑆 we can define a map s: 𝑆→ 𝑘 such that

s(𝑥) ≔
{

1, for 𝑥 = 𝑠

0, for 𝑥 ≠ 𝑠

Also, this notion comes together with the natural monomorphism

𝜄: 𝑆 ↩→ 𝑘⊕𝑆 mapping 𝑠 ↦→ s

which allow us to write any element 𝑣 ∈ 𝑘⊕𝑆 as a linear combination, with non-zero

scalars 𝑎𝑖 ∈ 𝑘, of the form

𝑣 =

𝑛∑
𝑖=1

𝑎𝑖s𝑖 ∈ 𝑘⊕𝑆 , mapping 𝑠 ↦→
{
𝑎𝑖 , if 𝑠 = 𝑠𝑖 for some 𝑖

0, if 𝑠 ≠ 𝑠𝑖 for all 𝑖

Proposition 5.3.5 (Universal property of the free vector spaces). Let 𝑆 be a set, and

𝑉 be a 𝑘-vector space, and a function 𝑓 : 𝑆 → 𝑉 . Then there exists a unique 𝑘-linear

morphism ℓ : 𝑘⊕𝑆 → 𝑉 such that the diagram commutes:

𝑆 𝑉

𝑘⊕𝑆

𝑓

𝜄
ℓ

Proof. (Uniqueness) Notice that for all 𝛼 ∈ 𝑘⊕𝑆 we can write it as a finite sum 𝛼 =∑
𝑠∈𝑆 𝛼(𝑠)s (the finiteness comes from the fact that only finitely may s will actually

appear, since there are only finite non-zero values under 𝛼). Let now 𝐿: 𝑘⊕𝑆 → 𝑉 be a

morphism of 𝑘-vector spaces such that 𝑓 = 𝐿𝜄 for a given 𝑓 : 𝑆→ 𝑉 . Then

𝐿(𝛼) =
∑
𝑠∈𝑆

𝐿(𝛼(𝑠)s) =
∑
𝑠∈𝑆

𝛼(𝑠)𝐿(s) =
∑
𝑠∈𝑆

𝛼(𝑠)(𝐿𝜄)(𝑠) =
∑
𝑠∈𝑆

𝛼(𝑠) 𝑓 (𝑠),

which implies that the morphism 𝐿 is indeed unique.

To prove the existence of 𝐿, consider its definition as above. Notice that for any

𝛼, 𝛽 ∈ 𝑘⊕𝑆 we have

𝐿(𝛼 + 𝛽) =
∑
𝑠∈𝑆
(𝛼 + 𝛽)(𝑠) 𝑓 (𝑠) =

∑
𝑠∈𝑆

𝛼(𝑠) 𝑓 (𝑠) +
∑
𝑠∈𝑆

𝛽(𝑠) 𝑓 (𝑠) = 𝐿(𝛼) + 𝐿(𝛽).

Moreover, if 𝑎 ∈ 𝑘, then 𝑘𝛼 = 𝑘
∑
𝑠∈𝑆 𝛼(𝑠)s, thus indeed

𝐿(𝑘𝛼) =
∑
𝑠∈𝑆
(𝑘𝛼)(𝑠) 𝑓 (𝑠) = 𝑘

∑
𝑠∈𝑆

𝛼(𝑠) 𝑓 (𝑠) = 𝑘𝐿(𝛼),

proving the last condition in order to be a morphism of 𝑘-vector spaces, ♮
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This way we find that actually

MorSet(𝑆,𝑉) ≃MorVect𝑘 (𝑘⊕𝑆 , 𝑉).

We now want in some way to construct a morphism that maps 𝑘⊕𝑆
′ → 𝑘⊕𝑆, where

𝑆, 𝑆′ are sets, just as we’ve done for the case 𝑘𝑆
′ → 𝑘𝑆. To do so, we can first consider the

maps 𝛼: 𝑆→ 𝑆′, and the inclusion maps 𝜄𝑆: 𝑆→ 𝑘⊕𝑆 and 𝜄𝑆′: 𝑆′ ↩→ 𝑘⊕𝑆
′
, and construct

the map

ℓ = 𝜄𝑆′𝛼: 𝑆→ 𝑘⊕𝑆
′
.

Then, by means of the universal property for free vector spaces, we find that there

exists a unique morphism of 𝑘-vector spaces 𝛼∗: 𝑘⊕𝑆 → 𝑘⊕𝑆
′
such that ℓ = 𝛼∗𝜄𝑆, that is,

the following diagram commutes

𝑆 𝑆′

𝑘⊕𝑆 𝑘⊕𝑆
′

𝛼

𝜄𝑆
ℓ

𝜄𝑆′

𝛼∗

Product
Definition 5.3.6 (Pair product). Let 𝐿,𝑉 be 𝑘-vector spaces. Then the product

𝐿 ×𝑉 = {(ℓ , 𝑣) : ℓ ∈ 𝐿, 𝑣 ∈ 𝑉},

equipped with pairwise sum and product by scalar is a 𝑘-vector space.

Definition 5.3.7 (General product). Let {𝑉𝑖}𝑖∈𝐼 be a set of 𝑘-vector spaces, with an

indexing set 𝐼. The product of these vector spaces is defined as∏
𝑖∈𝐼

𝑉𝑖 = {(𝑣𝑖)𝑖∈𝐼 : 𝑣𝑖 ∈ 𝑉𝑖}

equipped with addition and multiplication by scalar as

(𝑣𝑖)𝑖∈𝐼 + (𝑢𝑖)𝑖∈𝐼 = (𝑣𝑖 + 𝑢𝑖)𝑖∈𝐼 and 𝑎(𝑣𝑖)𝑖∈𝐼 = (𝑎𝑣𝑖)𝑖∈𝐼

is a 𝑘-vector space.

Proposition 5.3.8. Let 𝑆 be a set. Then there exists a natural isomorphism

𝑘𝑆 ≃
∏
𝑠∈𝑆

𝑘,

so that

∏
𝑠∈𝑆 𝑘 generalizes the power set.

Proof. For any 𝑓 ∈ 𝑘𝑆 map ( 𝑓 : 𝑆→ 𝑘) ↦→ ( 𝑓 (𝑠))𝑠∈𝑆. Notice that the mapping is obviously

a monomorphism, since the maps 𝑆→ 𝑘 are well defined, and is also an epimorphism

because we just need to create a function fitting such an image. ♮
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Proposition 5.3.9 (Universal property for products). Let the indexed set of 𝑘-vector

spaces {𝑉𝑖}𝑖∈𝐼 . For any given 𝑘-vector space 𝐿, together with a morphism 𝜑 𝑗 : 𝐿 → 𝑉 ,

there exists a unique morphism ℓ : 𝐿→∏
𝑖∈𝐼 𝑉𝑖 such that the diagram commutes:

𝐿
∏

𝑖∈𝐼 𝑉𝑖

𝑉𝑗

ℓ

𝜑 𝑗
𝜋𝑗

Proof. Notice that this is simply the product universal product restricted for only one

branch of the product 𝑉𝑗 ×
∏

𝑖≠𝑗 𝑉𝑖 . For the uniqueness, notice that since we want

𝜑 𝑗 = 𝜋 𝑗ℓ , then it ought to be the case that

𝐿 ∋ 𝑥 ℓ↦−→ (𝜑 𝑗(𝑥))𝑖∈𝐼 ∈
∏
𝑖∈𝐼

𝑉𝑖

since the composition needs to be satisfied for any index 𝑗 ∈ 𝐼. Therefore the morphism

ℓ is indeed unique, if it exists. Now we show its existence. Notice that since 𝜑 𝑗 is a 𝑘-

linear map, then indeed for any 𝑥, 𝑦 ∈ 𝐿 and 𝑎 ∈ 𝑘 we have ℓ (𝑥+ 𝑎𝑦) = (𝜑𝑖(𝑥+ 𝑎𝑦))𝑖∈𝐼 =
(𝜑𝑖(𝑥))𝑖∈𝐼 + 𝑎(𝜑𝑖(𝑦))𝑖∈𝐼 = ℓ (𝑥) + 𝑎ℓ (𝑦), which shows the linearity and the existence. ♮

Definition 5.3.10 (Direct sum). Given an indexed collection of 𝑘-vector spaces {𝑉𝑖}𝑖∈𝐼 ,
we define the direct sum of them as⊕

𝑖∈𝐼
𝑉𝑖 ≔ {(𝑣𝑖)𝑖∈𝐼 : 𝑣𝑖 ∈ 𝑉𝑖 , where 𝑣𝑖 ≠ 0 finitely many times in 𝐼}

together with addition and scalar multiplication being defined component-wise.

Proposition 5.3.11. The direct sum of 𝑘-vector spaces is again a 𝑘-vector space.

Proposition 5.3.12. Let a set 𝑆. Then, the exists natural isomorphism

⊕
𝑠∈𝑆 𝑘 ≃ 𝑘⊕𝑆.

Proof. Notice that if we make the morphism ℓ :
⊕

𝑠∈𝑆 𝑘 → 𝑘⊕𝑆 defined as the mapping⊕
𝑠∈𝑆

𝑘 ∋ (𝑎𝑠)𝑠∈𝑆
ℓ↦−→ (𝑠

𝑓
↦−→ 𝑎𝑠) ∈ 𝑘⊕𝑆

then we see that no information is lost since this is surely injective, because the mor-

phisms of 𝑘⊕𝑆 are well defined, and given any morphism 𝑓 ∈ 𝑘⊕𝑆 we know that its

non-zero values are finite, thus we can construct its image as a tuple in

⊕
𝑠∈𝑆 𝑘, which

allow us to say that such mapping is also surjective. Therefore, the morphism ℓ is

an isomorphism. We now show that it is indeed 𝑘-linear. Let the tuples (𝑎𝑠)𝑠∈𝑆 and

(𝑏𝑠)𝑠∈𝑆, then

(𝑎𝑠)𝑠 + (𝑏𝑠)𝑠 = (𝑎𝑠 + 𝑏𝑠)𝑠
ℓ↦−→ (𝑠

𝑓
↦−→ 𝑎𝑠 + 𝑏𝑠) = (𝑠

𝑔
↦−→ 𝑎𝑠) + (𝑠

ℎ↦−→ 𝑏𝑠).

Moreover, if 𝑐 ∈ 𝑘 is any scalar, then (𝑐𝑎𝑠)𝑠 ↦−→ (𝑠 ↦→ 𝑐𝑎𝑠) = 𝑐(𝑠 ↦→ 𝑎𝑠), which shows

the last property for ℓ being a 𝑘-linear morphism. ♮
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Proposition 5.3.13 (Universal property for the direct sum). Let the collection of 𝑘-vector

spaces {𝑉𝑖}𝑖∈𝐼 and for every 𝑗 ∈ 𝐼 define the inclusion 𝜄 𝑗 :𝑉𝑗 →
⊕

𝑖∈𝐼 𝑉𝑖 , where

𝑣
𝜄 𝑗↦−→ (𝑣𝑖)𝑖∈𝐼 , where 𝑣𝑖 =

{
𝑣, 𝑖 = 𝑗

0, 𝑖 ≠ 𝑗
.

Then, for any arbitrary 𝑘-vector space 𝐿, together with 𝑘-linear morphisms ( 𝑓𝑖 :𝑉𝑖 →
𝐿)𝑖∈𝐼 , there exists a unique 𝑘-linear morphism ℓ :

⊕
𝑖∈𝐼 𝑉𝑖 → 𝐿 such that the diagram

commutes for every 𝑗 ∈ 𝐼:

𝐿
⊕

𝑖∈𝐼 𝑉𝑖

𝑉𝑗

ℓ

𝜄 𝑗
𝑓𝑗

Proof. Since we want to have ℓ 𝜄 𝑗 = 𝑓𝑗 , it must be the case for any 𝑣 ∈ 𝑣 𝑗 that, being

𝜄 𝑗(𝑣) ≔ (𝑣𝑖)𝑖 , then

ℓ ((𝑣𝑖)𝑖∈𝑖) = ℓ
(∑
𝑖∈𝑖

𝜄𝑖(𝑣𝑖)
)
=

∑
𝑖∈𝑖
ℓ (𝜄𝑖(𝑣𝑖)) =

∑
𝑖∈𝑖

𝑓𝑖(𝑣𝑖)

thus indeed necessarily, if such a map exists, then ℓ is unique. We now check that ℓ is

indeed a 𝑘-linear morphism.

ℓ ((𝑣𝑖 + 𝑤𝑖)𝑖) =
∑
𝑖

𝑓𝑖(𝑣𝑖 + 𝑤𝑖) =
∑
𝑖

𝑓𝑖(𝑣𝑖) +
∑
𝑖

𝑓𝑖(𝑤𝑖)

ℓ ((𝑎𝑣𝑖)𝑖) =
∑
𝑖

𝑓𝑖(𝑎𝑣𝑖) = 𝑎
∑
𝑖

𝑓𝑖(𝑣𝑖)

Which proves that ℓ is indeed a morphism of 𝑘 vector spaces as wanted. ♮

Proposition 5.3.14. Let {𝑆𝑖}𝑖∈𝑆 be a collection of sets. There exists a canonical isomor-

phism ⊕
𝑖∈𝐼

𝑘⊕𝑆𝑖 ≃ 𝑘⊕(
∐

𝑖∈𝐼 𝑆𝑖)

Proof. Just use both universal properties for coproduct and free vector spaces, this

establishes a two way unique morphism, which proves the canonical isomorphism. ♮

Proposition 5.3.15. Let the 𝑘-linear morphism 𝑇: 𝑘𝑛 → 𝑘𝑚 and 𝑆: 𝑘𝑛 → 𝑘ℓ . If we

consider their matrix representation, they induce the 𝑘-linear morphism

𝑀: 𝑘𝑛 → 𝑘𝑚+ℓ represented by 𝑀 =

(
𝑇

𝑆

)
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Proof. Notice that from the universal property of products we have

𝑘𝑛 𝑘𝑚

𝑘ℓ 𝑘𝑚 × 𝑘ℓ ≃ 𝑘𝑚+ℓ

𝑇

𝑀
𝑆

𝜋ℓ

𝜋𝑚

Where the isomorphism 𝑘𝑚 × 𝑘ℓ ≃ 𝑘𝑚+ℓ is induced by the mapping ((𝑎𝑖)𝑚𝑖=1
, (𝑏𝑖)ℓ𝑖=1

) =
(𝑐𝑖)𝑚+ℓ𝑖=1

where 𝑐𝑖 ≔ 𝑎𝑖 for all 1 ⩽ 𝑖 ⩽ 𝑚 and 𝑐𝑖 ≔ 𝑏𝑖 for all 𝑚 + 1 ⩽ 𝑖 ⩽ 𝑚 + ℓ . Notice

then that the morphism 𝑀 is induced by the morphism 𝑇, 𝑆 so that 𝑇 = 𝜋𝑚𝑀 and

𝑆 = 𝜋ℓ𝑀, so that we need to have 𝑀(𝑣) = (𝑇(𝑣), 𝑆(𝑣)) for all 𝑣 ∈ 𝑘𝑚 , but notice that

𝑀: 𝑘𝑛 → 𝑘𝑚 × 𝑘ℓ is in fact isomorphic to a 𝑘-linear map 𝑘𝑛 → 𝑘𝑚+ℓ , so that we can

encode the transformation of 𝑀, without losing, information as follows. Suppose that

𝑇 =


𝑎11 . . . 𝑎1𝑛
...

. . .
...

𝑎𝑚1 . . . 𝑎𝑚𝑛

 and 𝑆 =


𝑏11 . . . 𝑏1𝑛
...

. . .
...

𝑏ℓ1 . . . 𝑏ℓ𝑛


then we can say that 𝑀 can be isomorphically represented by

𝑀(𝑣) =
(
(𝑢𝑖)𝑚𝑖=1

, (𝑢𝑖)𝑚+ℓ𝑖=𝑚+1

)
≃



𝑎11 . . . 𝑎1𝑛
...

. . .
...

𝑎𝑚1 . . . 𝑎𝑚𝑛
𝑏(𝑚+1)1 . . . 𝑏(𝑚+1)𝑛
...

. . .
...

𝑏(𝑚+ℓ )1 . . . 𝑏(𝑚+ℓ )𝑛



𝑣1

...

𝑣𝑛

 =


𝑢1

...

𝑢𝑚+ℓ


where (𝑢𝑖)𝑚𝑖=1

= 𝑇(𝑣) and (𝑢𝑖)𝑚+ℓ𝑖=𝑚+1
= 𝑆(𝑣). ♮

Proposition 5.3.16. Let the 𝑘-linear morphism𝑇: 𝑘𝑛 → 𝑘ℓ and 𝑆: 𝑘𝑚 → 𝑘ℓ . They induce

the 𝑘-linear morphism

𝑀: 𝑘𝑛+𝑚 ≃ 𝑘𝑛 ⊕ 𝑘𝑚 → 𝑘ℓ represented by 𝑀 =
(
𝑇 𝑆

)
Proof. From the universal property of the coproduct we have that

𝑘𝑛

𝑘𝑛+𝑚 ≃ 𝑘𝑛 ⊕ 𝑘𝑚 𝑘ℓ

𝑘𝑚

𝜄𝑛 𝑇

𝑀

𝜄𝑚
𝑆

Where 𝑘𝑛 , 𝑘𝑚 are both finite, then 𝑘𝑛 ⊕ 𝑘𝑚 ≃ 𝑘𝑛 × 𝑘𝑚 ≃ 𝑘𝑛+𝑚 , which proves the

isomorphism written. Therefore𝑀: 𝑘𝑛⊕ 𝑘𝑚 → 𝑘ℓ is isomorphic to a 𝑘-linear morphism
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𝑘𝑛+𝑚 → 𝑘ℓ . Moreover, if 𝑇 and 𝑆 are represented by

𝑇 =


𝑎11 . . . 𝑎1𝑛
...

. . .
...

𝑎ℓ1 . . . 𝑎ℓ𝑛

 and 𝑆 =


𝑏11 . . . 𝑏1𝑚
...

. . .
...

𝑏ℓ1 . . . 𝑏ℓ𝑚


Then from the construction 𝑇 = 𝑀𝜄𝑛 and 𝑆 = 𝑀𝜄𝑚 we conclude that for all element

𝑎 = (𝑎𝑖)𝑛𝑖=1
∈ 𝑘𝑛 and every 𝑏 = (𝑏𝑖)𝑚𝑖=1

∈ 𝑘𝑚 , will be such that

𝑘𝑛 ∋ (𝑎𝑖)𝑛𝑖=1

𝜄𝑛↦−→ (𝑎1, . . . , 𝑎𝑛 , 0, . . . , 0)
𝑀↦−→ (𝑎′𝑖)ℓ𝑖=1

= 𝑇(𝑎) ∈ 𝑘ℓ

𝑘𝑚 ∋ (𝑏𝑖)𝑚𝑖=1

𝜄𝑚↦−→ (𝑏1, . . . , 𝑏𝑚 , 0, . . . , 0)
𝑀↦−→ (𝑏′𝑖)ℓ𝑖=1

= 𝑆(𝑏) ∈ 𝑘ℓ

therefore, if we have the element

(𝑎1, . . . , 𝑎𝑛 , 𝑏1, . . . , 𝑏𝑚) ≃ ((𝑎1, . . . , 𝑎𝑛), (𝑏1, . . . , 𝑏𝑚))
𝑀↦−→ (𝑎′𝑖 + 𝑏′𝑖)ℓ𝑖=1

= 𝑇(𝑎) + 𝑆(𝑏)

which shows that indeed

𝑀 =


𝑎11 . . . 𝑎1𝑛 𝑏

1(𝑛+1) . . . 𝑏
1(𝑛+𝑚)

...
. . .

...
...

. . .
...

𝑎ℓ1 . . . 𝑎ℓ𝑛 𝑏ℓ (𝑛+1) . . . 𝑏ℓ (𝑛+𝑚)

 =
[
𝑇 𝑆

]
.

♮

5.4 Quotients and Subspaces
Definition 5.4.1 (Subspace). Let𝑉 be 𝑘-vector space. We say that𝑊 ⊆ 𝑉 is a subspace

of 𝑉 if

I. 0 ∈𝑊 .

II. If 𝑣, 𝑢 ∈𝑊 then 𝑣 + 𝑢 ∈𝑊 .

III. For all 𝑐 ∈ 𝑘 and for all 𝑣 ∈𝑊 , we have 𝑐𝑣 ∈𝑊 .

Definition 5.4.2 (Quotient). Let 𝑉 be a 𝑘-vector space and 𝑊 ⊆ 𝑉 a subspace. The

quotient of 𝑉 by𝑊 is defined as 𝑉/𝑊 = 𝑉/∼where 𝑣 ∼ 𝑢 ⇔ 𝑣 − 𝑢 ∈𝑊 .

Theorem 5.4.3 (Universal property for quotients). Let𝑉 be a 𝑘-vector space and𝑊 ⊆ 𝑉
be a subspace. Let also 𝐿 be any 𝑘-vector space and a 𝑘-linear morphism 𝑓 :𝑉 → 𝐿

such that for all 𝑤 ∈ 𝑊 we have 𝑓 (𝑤) = 0, that is 𝑊 ⊆ ker 𝑓 . There exists a unique

𝑘-linear morphism ℓ :𝑉/𝑊 → 𝐿 such that the following diagram commutes

𝑉 𝐿

𝑉/𝑊

𝑓

𝜋
ℓ

Moreover, ker ℓ = ker 𝑓 /𝑊 and im(ℓ ) = im( 𝑓 ).

84



Proof. Since we need ℓ𝜋 = 𝑓 then ℓ𝜋: 𝑣
𝜋↦−→ [𝑣] ℓ↦−→ 𝑓 (𝑣). We first show that it is indeed

well defined. For that, suppose 𝑣 ∼ 𝑢, that is [𝑣] = [𝑢], then we know that since they

belong to the same class, they must have the same image under the mapping ℓ . Notice

that since 𝑣 ∼ 𝑢 ⇔ 𝑣 − 𝑢 ∈ 𝑊 ⊆ ker 𝑓 then 𝑓 (𝑣 − 𝑢) = 𝑓 (𝑣) − 𝑓 (𝑢) = 0 and therefore

indeed 𝑓 (𝑣) = 𝑓 (𝑢) whenever [𝑣] = [𝑢]. The uniqueness of ℓ comes from the fact that

its image depends strictly on the unique image of 𝑓 .

Now we show the last two propositions. For the first one, notice that ker ℓ = {[𝑣] ∈
𝑉/𝑊 : 𝑣 ∈ ker 𝑓 } = ker 𝑓 /𝑊 . For the last statement of the theorem we have that since

ℓ𝜋 = 𝑓 then im( 𝑓 ) ⊆ im(ℓ ) and also 𝜋 is surjective, thus im(ℓ ) ⊆ im( 𝑓 ), which proves

what is proposed at last. ♮

Theorem 5.4.4 (First Isomorphism). Let 𝑓 :𝑉 → 𝑊 be a 𝑘-linear morphism, then the

injective 𝑘-linear morphism ℓ :𝑉/ker 𝑓 ↩→𝑊 is such that

𝑉/ker 𝑓 ≃ im( 𝑓 ).

is an isomorphism of 𝑘-vector spaces.

Proof. This is just a special case of the universal property. ♮

Theorem 5.4.5 (Second Isomorphism). Let 𝑉 be a 𝑘-vector space and 𝑈,𝑊 ⊆ 𝑉 be

subspaces. Then there is a natural isomorphism

(𝑊 +𝑈)/𝑈 ≃𝑊/(𝑊 ∩𝑈).

Proof. Notice that this isomorphism needs to be the mapping

(𝑊 +𝑈)/𝑈 ∋ [𝑤 + 𝑢] ↦−→ [𝑤] ∈𝑊/(𝑊 ∩𝑈)

Notice that we have the mappings

[𝑤 + 𝑢] + [𝑤′ + 𝑢′] = [(𝑤 + 𝑤′) + (𝑢 + 𝑢′)] ↦−→ [𝑤 + 𝑤′] = [𝑤] + [𝑤′]
𝑐[𝑤 + 𝑢] = [𝑐𝑤 + 𝑐𝑢] ↦−→ [𝑐𝑤] = 𝑐[𝑤]

which shows the conditions for the mapping to be a 𝑘-linear morphism. Now notice

that the mapping is clearly surjective, since given any class [𝑤] ∈ 𝑊/(𝑊 ∩ 𝑈) we

have the element [𝑤 + 𝑢] ∈ (𝑊 + 𝑈)/𝑈 , where 𝑢 is any element of 𝑈 and moreover

[𝑤 + 𝑢] ↦→ [𝑤] from construction, showing the surjective character of the mapping.

Moreover, notice that [𝑤] ∈ 𝑊/(𝑊 ∩𝑈) ⇔ 𝑤 ∈ 𝑈 , thus the kernel of the mapping is

equal to𝑈 . Now by means of the first isomorphism theorem shows that the mapping

is also injective. ♮

Theorem 5.4.6 (Third Isomorphism). Let 𝑉 be a 𝑘-vector space and let the subspaces

𝑈 ⊆ 𝑊 ⊆ 𝑉 . Then there exists an embedding 𝑊/𝑈 ↩→ 𝑉/𝑈 with a mapping [𝑤] ↦→
[𝑤] such that𝑊/𝑈 can be regarded as a subspace of𝑉/𝑈 . Moreover, we have a natural

isomorphism

𝑉/𝑊 ≃ (𝑉/𝑈)
/
(𝑊/𝑈).
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Proof. Consider the morphism 𝜑:𝑉/𝑈 → 𝑉/𝑊 with the mapping [𝑣]
𝜑
↦−→ [𝑣]. Since

𝑈 ⊆ 𝑊 then we have that [𝑣] = [𝑣′] ∈ 𝑉/𝑈 implies [𝑣] = [𝑣′] ∈ 𝑉/𝑊 , which shows

that 𝜑 is well defined. Moreover, given a class [𝑣] ∈ 𝑉/𝑊 we have the corresponding

class [𝑣] ∈ 𝑉/𝑈 such that [𝑣]
𝜑
↦−→ [𝑣], thus 𝜑 is surjective.

Moreover, notice that if [𝑤] ∈ 𝑊/𝑈 then from the embedding we have the corre-

sponding class [𝑤] ∈ 𝑉/𝑈 , we’ll have two possibilities, if [𝑤] = [0], then the 𝑘-linear

morphism 𝜑 will map it to [0], on the other hand, if [𝑤] ≠ [0] then 𝑤 ∈ 𝑊 implies

that [𝑤]
𝜑
↦−→ [𝑤] = [0] ∈ 𝑉/𝑊 so that in both cases we have [𝑤] ∈ 𝑊/𝑈 ⇒ [𝑤] ∈ ker 𝜑

so that 𝑊/𝑈 ⊆ ker 𝜑. Moreover, if 𝑉/𝑈 ∋ [𝑣] ∈ ker 𝜑, then [𝑣] = [0] ∈ 𝑉/𝑊 which

means that 𝑣 ∈ 𝑊 and therefore we have the corresponding class [𝑣] ∈ 𝑊/𝑈 , which

sums up to ker 𝜑 ⊆ 𝑊/𝑈 and thus ker 𝜑 =𝑊/𝑈 . From the first isomorphism theorem

we have that

(𝑉/𝑈)
/
(𝑊/𝑈) ≃ 𝑉/𝑊

since the image of 𝜑 is equal to 𝑉/𝑊 , settling the proof. ♮

5.5 Vector Spaces from Linear Morphism
Proposition 5.5.1. Given 𝑘-vector spaces 𝑉 and 𝑊 , consider the 𝑘-linear morphism

𝜑:𝑉 →𝑊 . Then 𝜑 is injective if and only if ker 𝜑 = {0}.

Proof. (⇒) Suppose 𝜑 is injective, then, since 0

𝜑
↦−→ 0, it follows that ker 𝜑 = {0}. (⇐)

Suppose now that ker 𝜑 = {0}, then from the universal property of quotients we find

that 𝑉/ker 𝜑 ↣ 𝑊 is injective, since the only possible element in 𝑉 that generates

the zero class is 0 ∈ 𝑉 , therefore, we can regard the above mapping as [𝑣] ↦→ 𝜑(𝑣),
therefore we conclude that 𝜑 is injective. ♮

Theorem 5.5.2 (Universal property for kernels). Let 𝑉,𝑊 be 𝑘-vector spaces and con-

sider the 𝑘-linear morphism 𝜑:𝑉 → 𝑊 . Denote 𝜄: ker 𝜑 ↩→ 𝑉 the embedding mor-

phism. Then, for any given 𝑘-vector space 𝐿 and 𝑘-linear morphism𝜓: 𝐿→ 𝑉 such that

𝜑𝜓 = 0, there exists a unique 𝑘-linear morphism ℓ : 𝐿→ ker 𝜑 such that the following

diagram commutes

𝐿

ker 𝜑 𝑉 𝑊

ℓ
𝜓

0

𝜄 𝜑

Proof. The condition for the commutativity of the diagram is 𝜓 = 𝜄ℓ . Notice that since

the definition of 𝜓 depends uniquely in the condition 𝜑𝜓 = 0, we find that since

im(ℓ ) ⊆ ker 𝜑 it follows that indeed 𝜑(𝜄ℓ ) = 0 and therefore the uniqueness of ℓ comes

by defining it as ℓ (𝑙) = 𝜓(𝑙) and the existence comes merely by the fact that 𝜓 is already

a 𝑘-linear morphism. ♮
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Definition 5.5.3 (Cokernel). Let 𝑘-vector spaces 𝑉 and 𝑊 and consider the linear

morphism 𝜑:𝑉 →𝑊 . We define the cokernel of 𝜑 as

coker 𝜑 =𝑊/im(𝜑).

Theorem 5.5.4 (Universal property for cokernels). Let 𝑘-vector spaces 𝑉 and 𝑊 and

the linear morphism 𝜑:𝑉 →𝑊 . Denote by 𝜋:𝑊 → coker 𝜑 the projection morphism.

For any given 𝑘-vector space 𝐿 and linear morphism 𝜓:𝑊 → 𝐿 for which 𝜓𝜑 = 0, there

exists a unique linear morphism ℓ : coker 𝜑→ 𝐿 such that the diagram commutes

𝑉 𝑊 coker 𝜑

𝐿0

𝜑 𝜋

𝜓
ℓ

Proof. The condition for the diagram to commute is that ℓ𝜋 = 𝜓. For that, notice that

since coker 𝜑 = 𝑊/im(𝜑) it follows that ℓ𝜋𝜑(𝑣) = ℓ ([𝜑(𝑣)]) but notice that obviously

𝜑(𝑣) ∈ im(𝜑) thus [𝜑(𝑣)] = 0 ∈ coker 𝜑 thus indeed ℓ𝜋𝜑 = 0. Moreover, in order to

define ℓ we ought to have ℓ ([𝑤]) = 𝜓(𝑤), which is well defined since [𝑤] = 𝑤 + im(𝜑)
and ∀𝑤′ ∈ im(𝜑) we have 𝜓(𝑤′) = 0 and therefore 𝜓(𝑤 + 𝑤′) = 𝜓(𝑤), which ends the

proof since ℓ gets the linear structure of 𝜓 and also is unique from construction. ♮

Proposition 5.5.5. Let 𝑘-vector spaces𝑉 and𝑊 and define any linear morphism𝜑:𝑉 →
𝑊 , then there are natural isomorphisms

ker(𝑊 𝜋−→ coker 𝜑) ≃ coker(ker 𝜑
𝜄−→ 𝑉) ≃ im(𝜑)

Proof. First we show the existence of the isomorphism ker𝜋 ≃ im(𝜑), which is ob-

tained by taking the mapping 𝑤 ↦→ 𝑤, since ker𝜋 = im(𝜋), establishing an obvious

isomorphism between the two given objects. Now we focus on showing the isomor-

phism coker 𝜄 = 𝑉/ker 𝜑 ≃ im(𝜑), which can be obtained by considering the mapping

[𝑣] ↦→ 𝜑(𝑣), which is well defined from the same reasoning as in the above theorem. ♮

Consider the collections of 𝑘-vector spaces {𝑉𝑖}𝑖 and {𝑊𝑖}𝑖 with a corresponding

collection of morphism { 𝑓𝑖 :𝑉𝑖 →𝑊𝑖}𝑖 and {𝜑𝑖 :𝑉𝑖 → 𝑉𝑖+1}𝑖 and {𝜓𝑖 :𝑊𝑖 →𝑊𝑖+1} such

that for any index 𝑖 the following diagram commutes

𝑉𝑖 𝑊𝑖

𝑉𝑖+1 𝑊𝑖+1

𝑓𝑖

𝜑𝑖 𝜓𝑖

𝑓𝑖+1

By defining the morphisms 𝜄𝑖 : ker 𝑓𝑖 → 𝑉 and 𝜋𝑖 :𝑊 → coker 𝑓𝑖 we find that since

𝑓𝑖+1𝜑𝑖 𝜄𝑖 = 𝜓𝑖 𝑓𝑖 𝜄𝑖 = 𝜓𝑖0 = 0
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then we can use the universal property of kernels in order to find the existence of a

unique morphism ker 𝑓𝑖 → ker 𝑓𝑖+1, that is

ker 𝑓𝑖

ker 𝑓𝑖+1 𝑉𝑖+1 𝑊𝑖+1

𝜑𝑖 𝜄𝑖

0

𝜄𝑖+1
𝑓𝑖+1

On the other hand we have that

𝜋𝑖+1𝜓𝑖 𝑓𝑖 = 𝜋𝑖+1 𝑓𝑖+1𝜑𝑖 = 0𝜑𝑖 = 0

thus by means of the universal property for cokernels we find that there exists a unique

morphism coker 𝑓𝑖 → coker 𝑓𝑖+1, that is

𝑉𝑖 𝑊𝑖 coker 𝑓𝑖

coker 𝑓𝑖+1

𝑓𝑖

0

𝜋𝑖

𝜋𝑖+1𝜓𝑖

Binding both results together we find that in general we have the following diagram

...
...

...
...

ker 𝑓𝑖 𝑉𝑖 𝑊𝑖 coker 𝑓𝑖

ker 𝑓𝑖+1 𝑉𝑖+1 𝑊𝑖+1 coker 𝑓𝑖+1

...
...

...
...

𝜄𝑖 𝑓𝑖

𝜑𝑖 𝜓𝑖

𝜋𝑖

𝜄𝑖+1
𝑓𝑖+1 𝜋𝑖+1

Definition 5.5.6 (Exact sequence). Given a collection of 𝑘-vector spaces {𝑉𝑖}𝑖 and 𝑘-

linear morphisms { 𝑓𝑖 :𝑉𝑖 → 𝑉𝑖+1}, we say that the sequence

𝑉0 𝑉1 . . . 𝑉𝑛
𝑓0 𝑓1 𝑓𝑛−1

is exact if ker 𝑓𝑖 = im( 𝑓𝑖−1) for all index.

Proposition 5.5.7. Let the 𝑘-linear morphism 𝑓 :𝑉 → 𝑊 . Then 𝑓 is injective if and

only if the sequence 0 𝑉 𝑊
𝑓

is exact. On the other hand, the morphism 𝑓

is surjective if and only if the sequence 𝑉 𝑊 0

𝑓
is exact.
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Proof. (⇒) Suppose 𝑓 is injective, then ker 𝑓 = {0}, moreover, surely im(0) = ker 𝑓 thus

the sequence is exact. (⇐) Suppose the sequence is exact, so that im(0) = ker 𝑓 but

then ker 𝑓 = {0}which, as we already have proven above, implies in 𝑓 injective.

(⇒) Suppose 𝑓 is surjective, then im( 𝑓 ) =𝑊 = ker 0 and thus the sequence is exact.

(⇐) Suppose the sequence is exact, so that im( 𝑓 ) =𝑊 = ker 0, then given any element

𝑤 ∈ 𝑊 there exists at least one corresponding 𝑣 ∈ 𝑉 such that 𝑓 (𝑣) = 𝑤 and therefore

the morphism is surjective. ♮

Definition 5.5.8 (Short exact sequence). Let the 𝑘-vector spaces 𝑉,𝑊 and 𝐿. A exact

sequence

0 𝑊 𝑉 𝐿 0

𝑓 𝑔

that is, with ker 𝑔 = im( 𝑓 ), is said to be a short exact sequence of 𝑘-vector spaces.

Proposition 5.5.9. In the short exact sequence 0 𝑊 𝑉 𝐿 0

𝑓 𝑔
we have 𝐿 ≃

𝑉/𝑊 .

Proof. Firstly, notice that since𝑊 ↣ 𝑉 is injective, we can regard𝑊 as a subspace of𝑉 ,

so that taking the quotient𝑉/𝑊 is possible. Moreover, notice that since 𝑔 is surjective,

from the first isomorphism theorem we find that𝑉/ker 𝑔 ≃ 𝐿 which from the fact that

the sequence is exact, is the same as 𝑉/im 𝑓 ≃ 𝐿 but this is exactly what we meant by

𝑉/𝑊 since𝑊 was regarded as a subspace of 𝑉 via the embedding 𝑓 . ♮

Proposition 5.5.10. Let 𝑓 :𝑉 →𝑊 be a 𝑘-linear morphism, then the following is true

(a). The sequence 0→ ker 𝑓 → 𝑉 → im 𝑓 → 0 is exact.

(b). The sequence 0→ im 𝑓 →𝑊 → coker 𝑓 → 0 is exact.

(c). The sequence 0→ ker 𝑓 → 𝑉 →𝑊 → coker 𝑓 → 0 is exact.

Proof. For (I) notice that trivially ker(ker 𝑓 → 𝑉) = im(0) = {0}, since ker 𝑓 ⊆ 𝑉 ;

moreover, im(ker 𝑓 → 𝑉) = ker 𝑓 = ker(𝑉 → im( 𝑓 )) from the mere definition of

kernel; finally, it is to be noticed that im(𝑉 → im( 𝑓 )) = ker(im( 𝑓 ) → 0) because the

zero morphism has its whole domain as its kernel. For (II) we have that im(0 →
im( 𝑓 )) = {0} ⊆ 𝑊 , thus indeed ker(im( 𝑓 ) → 𝑊) = im(0 → im( 𝑓 )); after that, notice

im(im( 𝑓 ) → 𝑊) = im( 𝑓 ) but from definition we have coker 𝑓 = 𝑊/im( 𝑓 ) thus we

really get im( 𝑓 ) = ker(coker 𝑓 ); the next morphism trivially obeys im(𝑊 → coker 𝑓 ) =
ker(coker 𝑓 → 0). For (III) the part 0→ ker 𝑓 → 𝑉 is already exact, also from definition

im(ker 𝑓 → 𝑉) = ker 𝑓 = ker(𝑉 →𝑊); then, im(𝑉 →𝑊) = im( 𝑓 ) = ker(coker 𝑓 ); and

finally im(𝑊 → coker 𝑓 ) = ker(coker 𝑓 → 0). ♮

Definition 5.5.11 (The Mor space). Let the 𝑘-vector spaces 𝑉,𝑊 . Then the collection

of morphisms MorVect𝑘 (𝑉,𝑊) is a 𝑘-vector space with structure given by

( 𝑓 + 𝑔)(𝑣) = 𝑓 (𝑣) + 𝑔(𝑣), ∀ 𝑓 , 𝑔 ∈ MorVect𝑘 (𝑉,𝑊)
(𝑐 𝑓 )(𝑣) = 𝑐 𝑓 (𝑣), ∀ 𝑓 ∈ MorVect𝑘 (𝑉,𝑊) ∀𝑐 ∈ 𝑘

where 0 is the map 0:𝑉 → 0→𝑊 .
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Remark 5.5.12. For the remaining this section we’ll be dealing with the category Vect𝑘 ,

unless said otherwise, therefore I’ll omit the category for the sake of notation.

Proposition 5.5.13. For any 𝑘-vector space 𝑉 there exists a natural isomorphism

Mor(𝑘, 𝑉) ≃ 𝑉

Proof. Map the zero morphism (0: 𝑘 → 𝑉) ↦−→ 0 ∈ 𝑉 . Then we could take the

morphism 1𝑣 : 𝑘 → 𝑉 being defined as 𝑘 ∋ 1

1𝑣↦−→ 𝑣 ∈ 𝑉 , not restricting the other

mappings whatsoever, then we could trivially make the mappings (1𝑣 : 𝑘 → 𝑉) ↦−→ 𝑣 ∈
𝑉 and then we are essentially done, since this is trivially an isomorphism. ♮

Proposition 5.5.14. Let the collection of 𝑘-vector spaces {𝑉𝑖}𝑖∈𝐼 , then, for any 𝐿, 𝑘-vector

space, then:

I. There is a natural isomorphism

Mor

(
𝐿,

∏
𝑖∈𝐼

𝑉𝑖

)
≃

∏
𝑖∈𝐼

Mor(𝐿, 𝑉𝑖).

II. There is a natural isomorphism

Mor

(⊕
𝑖∈𝐼

𝑉𝑖 , 𝐿

)
≃

∏
𝑖∈𝐼

Mor(𝑉𝑖 , 𝐿)

and therefore, given a set 𝑆, there is also a natural isomorphism Mor(𝑘⊕𝑆 , 𝑉) ≃ 𝑉𝑆
.

Proof. For the first proposition, we can assign the map of zero mappings (0: 𝐿 →∏
𝑉𝑖) ↦−→ (0: 𝐿 → 𝑉𝑖)𝑖 . Next we may consider the functions 𝑔: 𝐿 → ∏

𝑉𝑖 , defined as

𝑔(𝑙) = ( 𝑓1(𝑙), 𝑓2(𝑙), . . . ) for all 𝑙 ∈ 𝐿, where 𝑓𝑖 : 𝐿 → 𝑉𝑖 ; then we can simply make the

mapping 𝑔 ↦−→ (𝜋𝑖 𝑓𝑖)𝑖 .
For the second proposition, consider the morphism 𝜓: Mor

(⊕
𝑖∈𝐼 𝑉𝑖 , 𝐿

)
with the

mapping 𝑓 ↦→ ( 𝑓 𝜄𝑖)𝑖∈𝐼 where 𝜄 𝑗 :𝑉𝑗 ↩→
⊕

𝑖∈𝐼 𝑉𝑖 is the inclusion map. For the injectivity,

consider 𝑓 ∈ Mor

(⊕
𝑖∈𝐼 𝑉𝑖 , 𝐿

)
, 𝑓 ≠ 0 be a morphism, then 𝑓 𝜄𝑖 ≠ 0 and therefore

ker(𝜓) = 0, which implies in the injectivity of 𝜓. Now, let any tuple of morphisms

(𝑔𝑖)𝑖∈𝐼 ∈
∏

𝑖∈𝐼 Mor(𝑉𝑖 , 𝐿), then we can define a morphism 𝑓 ∈ Mor

(⊕
𝑖∈𝐼 𝑉𝑖 , 𝐿

)
such

that 𝑓 𝜄𝑖 = 𝑔𝑖 then definitely 𝜓( 𝑓 ) = (𝑔𝑖)𝑖∈𝐼 . ♮

Definition 5.5.15 (Induced Mor 𝑘-linear morphism). Given a 𝑘-linear morphism 𝑓 :𝑉 →
𝐿 and any 𝑘-vector space𝑊 , there are induced, uniquely defined, 𝑘-linear morphisms

(a) (Pushforward) 𝑓∗: Mor(𝑊,𝑉) →Mor(𝑊, 𝐿)with the mapping 𝛼 ↦→ 𝑓 𝛼, so that the

diagram commutes

𝑉 𝐿

𝑊

𝑓

𝛼
𝑓∗(𝛼)≔ 𝑓 𝛼
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(b) (Pullback) 𝑓 ∗: Mor(𝐿,𝑊) −→ Mor(𝑉,𝑊) with the mapping 𝛼 ↦−→ 𝛼 𝑓 , so that the

diagram commutes

𝑉 𝐿

𝑊

𝑓

𝛼
𝑓 ∗(𝛼)≔𝛼 𝑓

Proposition 5.5.16. Given𝑉1, 𝑉2, 𝑉3, 𝑘-vector spaces, the following holds for any given

𝑘-vector space 𝐿:

I. If the sequence 0→ 𝑉1 → 𝑉2 → 𝑉3 is exact, then

Mor(𝐿, 0) = 0→Mor(𝐿,𝑉1) →Mor(𝐿,𝑉2) →Mor(𝐿,𝑉3)

is an exact sequence, that is, covariant Mor is left exact.

II. If the sequence 𝑉1 → 𝑉2 → 𝑉3 → 0 is exact, then

Mor(0, 𝐿) = 0→Mor(𝑉3, 𝐿) →Mor(𝑉2, 𝐿) →Mor(𝑉1, 𝐿)

is an exact sequence, that is, contravariant Mor is left exact.

Proof. For each of the propositions, we’ll denote the morphisms 𝑓 :𝑉1 → 𝑉2 and 𝑔:𝑉2 →
𝑉3 such that ker 𝑔 = im 𝑓 .

For the first proposition, let 0 → 𝑉1 → 𝑉2 → 𝑉3 be a an exact sequence, and

consider the sequence 0 → Mor(𝐿,𝑉1)
𝑓∗−→ Mor(𝐿,𝑉2)

𝑔∗−→ Mor(𝐿,𝑉3). Let 𝛽 ∈ im 𝑓∗,
then there exists 𝛼 ∈ Mor(𝐿,𝑉1) such that 𝑓∗(𝛼) = 𝑓 𝛼 = 𝛽, hence 𝑔∗(𝛽) = 𝑔𝛽 = 𝑔 𝑓 𝛼 = 0

since ker 𝑔 = im 𝑓 , which implies in im 𝑓∗ ⊆ ker 𝑔∗. Suppose now that 𝛽 ∈ ker 𝑔∗, so

that 𝑔∗(𝛽) = 𝑔𝛽 = 0, then we find that im 𝛽 ⊆ ker 𝑔 = im 𝑓 and hence 𝛽 ∈ im 𝑓∗, which

implies in ker 𝑔∗ ⊆ im 𝑓∗. Therefore ker 𝑔∗ = im 𝑓∗.
For the second proposition, let 𝑉1 → 𝑉2 → 𝑉3 → 0 be a an exact sequence and

consider the sequence 0 → Mor(𝑉3, 𝐿)
𝑔∗

−→ Mor(𝑉2, 𝐿)
𝑓 ∗

−→ Mor(𝑉1, 𝐿). Let 𝛾 ∈ im 𝑔∗
and consider 𝜆 ∈ Mor(𝑉3, 𝐿) such that 𝑔∗(𝜆) = 𝜆𝑔 = 𝛾. Then we find that 𝑓 ∗(𝛾) = 𝛾 𝑓 =
𝜆𝑔 𝑓 = 𝜆0 = 0 hence 𝛾 ∈ ker 𝑓 ∗, which implies in im 𝑔∗ ⊆ ker 𝑓 ∗.

Let 𝛾 ∈ ker 𝑓 ∗ so that 𝑓 ∗(𝛾) = 𝛾 𝑓 = 0, this implies in im 𝑓 = ker 𝑔 ⊆ ker 𝛾. From

Theorem 5.4.3 we find that 𝛾 induces a morphism 𝛾 such that the following diagram

commutes

𝑉2 𝐿

𝑉/ker 𝑔

𝛾

𝜋
𝛾

so that 𝛾 = 𝛾𝜋. Moreover, since 𝑔 is surjective we have im 𝑔 = 𝑉3, and from The-

orem 5.4.4 we find that 𝑔 induces an isomorphism 𝑔:𝑉2/ker 𝑔 ≃−→ 𝑉3, so that the
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following diagram commutes

𝑉2 𝑉3

𝑉2/ker 𝑔

𝑔

𝜋
𝑔

so that 𝑔 = 𝑔𝜋 and since 𝑔 is an isomorphism, then 𝜋 = 𝑔𝑔
−1

. Notice now that

𝑔∗(𝛾𝑔−1) = 𝛾𝑔−1

𝑔 = 𝛾𝜋 = 𝛾 and therefore 𝛾 ∈ im 𝑔∗. This shows that ker 𝑓 ∗ ⊆ im 𝑔∗

and therefore ker 𝑓 ∗ = im 𝑔∗. ♮

5.6 Bases and Dimensions
Definition 5.6.1. Let𝑉 a 𝑘-vector space and 𝑆 ⊆ 𝑉 a subset. By the universal property

of free vector spaces, the inclusion 𝑆 ↩→ 𝑉 induces the unique 𝑘-linear morphism

𝑓 : 𝑘⊕𝑆 → 𝑉 . Then we can classify the set 𝑆 in terms of 𝑓 as:

I. Linearly independent, in the case where 𝑓 is injective, and linearly dependent

otherwise.

II. Generating (or spanning) if 𝑓 is surjective.

III. Basis if 𝑓 is an isomorphism.

Proposition 5.6.2. A set 𝑆 ⊆ 𝑉 is linearly independent if and only if for all subset

{𝑣𝑖}𝑖 ⊆ 𝑆 and scalars {𝑎𝑖}𝑖 ⊆ 𝑘, the equation

∑
𝑖 𝑎𝑖𝑣𝑖 = 0 implies 𝑎𝑖 = 0 for all index 𝑖.

Definition 5.6.3 (Subspace spanned). Let𝑉 be a 𝑘-vector space. Given a set 𝑆 ⊆ 𝑉 , we

define the subspace spanned by 𝑆 to be

span(𝑆) = im(𝑘⊕𝑆 → 𝑉)

Proposition 5.6.4. Let 𝑉 be a 𝑘-vector space and the set 𝑆 ⊆ 𝑉 . Then 𝑆 is a basis for

𝑉 if and only if for all 𝑣 ∈ 𝑉 there exists a unique tuple (𝑎𝑠)𝑠∈𝑆 ⊆ 𝑘 such that there are

only finitely many 𝑎𝑠 ≠ 0 and

∑
𝑠∈𝑆 𝑎𝑠𝑠 = 𝑣.

Lemma 5.6.5 (Zorn’s Lemma). Let 𝑋 be a set and consider the partial order relation

(⊢) ⊆ 𝑋 × 𝑋, so that ⊢ is reflexive for all 𝑥 ∈ 𝑋, antisymmetric for all 𝑥, 𝑦 ∈ 𝑋,

and transitive for all 𝑥, 𝑦, 𝑧 ∈ 𝑋. Moreover, if 𝑆 ⊆ 𝑋 is such that only one of the

propositions: 𝑥 ⊢ 𝑦 or 𝑦 ⊢ 𝑥 is true for every 𝑥, 𝑦 ∈ 𝑆; then there exists an element

𝑧 ∈ 𝑋 for which 𝑥 ⊢ 𝑧 for all choices of 𝑥 ∈ 𝑋. Then there exists an element 𝑚 ∈ 𝑋 for

which 𝑚 ⊢ 𝑥 if and only if 𝑥 = 𝑚.

Theorem 5.6.6. Every vector space has a basis.
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Proof. Let𝑉 be a 𝑘-vector space. Consider the set𝒜 ≔ {𝑋 ⊆ 𝑉 : 𝑋 linearly independent}
partially order under inclusion, and let 𝒞 ⊆ 𝒜 be a totally ordered subset by inclusion.

We now show that ℬ satisfies the hypothesis needed for the use of Zorn’s lemma.

Define 𝑍 to be the union of all sets in 𝒞—we’ll show that 𝑍 is linearly independent.

For the sake of contradiction, suppose 𝑍 is linearly dependent, then one must be able

to pick a finite collection (𝑣 𝑗)𝑛𝑗=1
of members of 𝑍 such that there exists an associated

collection (𝑎 𝑗)𝑛𝑗=1
of elements 𝑎 𝑗 ∈ 𝑘, not all zero, such that

𝑎1𝑣1 + · · · + 𝑎𝑛𝑣𝑛 = 0. (5.1)

Since each 𝑣 𝑗 ∈ 𝑆 𝑗 for some set 𝑆 𝑗 ∈ 𝒞 , then by the total ordering of 𝒞 we may assume

that

𝑆1 ⊆ 𝑆2 ⊆ · · · ⊆ 𝑆𝑛−1 ⊆ 𝑆𝑛
up to change of indexing. Since 𝑣 𝑗 ∈ 𝑆𝑛 for all 1 ⩽ 𝑗 ⩽ 𝑛, then in particular Eq. (5.1)

shows that 𝑆𝑛 is linearly dependent, which is false by hypothesis that 𝑆𝑛 ∈ 𝒜. We

conclude that 𝑍 must be linearly independent and thus 𝑍 ∈ 𝒜.

Since 𝒜 is ordered by inclusion, we can apply Zorn’s lemma to conclude that 𝒜
admits a maximal element 𝑀 ∈ 𝒜. We’ll show that 𝑀 does generate 𝑉 . Suppose, for

the sake of contradiction, that there exists 𝑣 ∈ 𝑉 such that 𝑣 is not generated by 𝑀.

Then it must be the case that 𝑀 ∪ {𝑣} is linearly-independent hence 𝑀 ∪ {𝑣} ∈ 𝒜 and

𝑀 ⊆ 𝑀 ∪ {𝑣}, which is a contradiction since 𝑀 is maximal. Therefore span(𝑀) = 𝑉 ,

which shows
1

that 𝑀 is a basis for 𝑉 . ♮

Corollary 5.6.7. Every vector space is isomorphic to 𝑘⊕𝑆 for some set 𝑆.

Proposition 5.6.8. Let 𝐵 be a basis of the 𝑘-vector space 𝑉 . Then for every 𝑘-vector

space𝑊 there is a natural isomorphism of vector spaces

MorVect𝑘 (𝑉,𝑊) ≃
∏
𝑏∈𝐵

𝑊

Proof. We show that the map

( 𝑓 :𝑉 →𝑊) ↦−→ ( 𝑓 (𝑏))𝑏∈𝐵
is an isomorphism. First, it is injective: let 𝑓 , 𝑔 ∈ Mor(𝑉,𝑊); suppose that 𝑓 = 𝑔 so

that obviously ( 𝑓 (𝑏))𝑏∈𝐵 = (𝑔(𝑏))𝑏∈𝐵 since 𝑓 (𝑏) = 𝑔(𝑏) for all 𝑏 ∈ 𝐵; suppose now that

( 𝑓 (𝑏))𝑏∈𝐵 = (𝑔(𝑏))𝑏∈𝐵, since 𝐵 is a basis on 𝑉 then, given any 𝑣 ∈ 𝑉 , we can write it as

𝑣 =
∑
𝑏∈𝐵 𝑎𝑏𝑏 where 𝑎𝑏 ≠ 0 only finitely many and 𝑎𝑏 ∈ 𝑘, then

𝑓 (𝑣) = 𝑓

(∑
𝑏∈𝐵

𝑎𝑏𝑏

)
=

∑
𝑏∈𝐵

𝑎𝑏 𝑓 (𝑏) =
∑
𝑏∈𝐵

𝑎𝑏𝑔(𝑏) = 𝑔

(∑
𝑏∈𝐵

𝑎𝑏𝑏

)
= 𝑔(𝑣)

thus indeed the mapping is injective. Now we show that it is surjective: notice that

|𝑊 ||𝐵| = |∏𝑏∈𝐵𝑊 | and since the morphism of Mor(𝑉,𝑊) are completely determined

by its image under 𝐵 ⊆ 𝑉 then we conclude that |Mor(𝑉,𝑊)| = |𝑊 ||𝐵|, thus we can

create a mapping which satisfies the surjectivity. ♮
1
This proof is also true for modules over division rings.
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Proposition 5.6.9. Let 𝛼: 𝑆 → 𝑇 be a map between sets. Then the induced map

𝛼∗: 𝑘⊕𝑆 → 𝑘⊕𝑇 is such that

i. 𝛼∗ is an monomorphism if 𝛼 is injective.

ii. 𝛼∗ is an epimorphism if 𝛼 is surjective.

iii. 𝛼∗ is an isomorphism if 𝛼 is bĳective.

Proof. For the first, let 𝛼 be injective, then given 𝑓 ∈ 𝑘⊕𝑆 and define the finite set

𝑆 𝑓 ≔ 𝑆 ∖ ker 𝑓 . Now we construct a unique function 𝑔 ∈ 𝑘⊕𝑇 defined such that

𝑔(𝑡) ≠ 0 if and only if 𝑡 ∈ 𝛼(𝑆 𝑓 ) (well defined since 𝛼(𝑆 𝑓 ) is finite by the injectivity of

𝛼), and moreover the condition 𝑓 (𝑠) = 𝑔(𝛼(𝑠)) (uniqueness), then our mapping 𝛼∗ can

be defined as 𝑓 ↦→ 𝑔, which is surely a monomorphism and well defined.

For the second proposition, let 𝛼 be surjective, then from the same map as before,

given any function 𝑔 ∈ 𝑘⊕𝑇 , let 𝑇𝑔 ≔ 𝑇 ∖ ker 𝑔 then for every 𝑡 ∈ 𝑇𝑔 we chose one

𝑠 ∈ 𝛼−1(𝑡) so that for some function 𝑓 ∈ 𝑘⊕𝑇 defined by 𝑓 (𝑠) = 𝑔(𝛼(𝑠)) = 𝑔(𝑡) and

moreover 𝑓 (𝑠) ≠ 0 if and only if 𝑠 ∈ 𝛼−1(𝑡) for some 𝑡 ∈ 𝑇𝑔 (thus 𝑓 is well defined, since

𝑇𝑔 is finite and we are taking only one corresponding 𝑠 for each 𝑡 ∈ 𝑇𝑔). Thus indeed

𝑓
𝛼∗↦−→ 𝑔 is surjective.

The last proposition comes trivially from the last two. ♮

Proposition 5.6.10. Let the surjective 𝑘-linear morphism 𝑓 :𝑉 ↠ 𝑊 . There exists an

injective 𝑘-linear morphism 𝑔:𝑊 ↣ 𝑉 such that 𝑓 𝑔 = id𝑊 .

Proof. Just take the mapping 𝑤
𝑔
↦−→ 𝑣 ∈ 𝑓 −1(𝑤) ∈ 𝑉 , then 𝑤

𝑔
↦−→ 𝑣

𝑓
↦−→ 𝑤 and thus

𝑓 𝑔 = id𝑊 . ♮

Proposition 5.6.11. Let the injective 𝑘-linear morphism 𝑓 :𝑉 ↣ 𝑊 . There exists a

surjective morphism 𝑔:𝑊 ↠ 𝑉 such that 𝑔 𝑓 = id𝑉 .

Proof. Given any 𝑣 ∈ 𝑉 , we want 𝑔( 𝑓 (𝑣)) = 𝑔(𝑤) = 𝑣, but since 𝑓 −1(𝑤) is a singleton,

we can simply make the well defined mapping 𝑤
𝑔
↦−→ 𝑣 for all 𝑤 ∈ im( 𝑓 ). With this

unique condition we already have the wanted 𝑔 𝑓 = id𝑉 . Moreover, given any 𝑣 ∈ 𝑉 ,

there must exist 𝑤 ∈ 𝑊 (in fact we could specify 𝑤 ∈ im( 𝑓 ), but here we can be more

general) such that 𝑔(𝑤) = 𝑣, thus 𝑔 is surjective. ♮

Proposition 5.6.12. Let 𝑘-vector spaces 𝑉 and 𝑊 . There exists injective linear mor-

phism 𝑉 ↣𝑊 if and only if there exists a surjective morphism𝑊 ↠ 𝑉 .

Proof. The last two propositions. ♮

Theorem 5.6.13. Let sets 𝑆 and 𝑇. The following propositions are equivalent:

I. There exists injective linear morphism 𝑘⊕𝑆 ↣ 𝑘⊕𝑇 .

II. There exists surjective linear morphism 𝑘⊕𝑇 ↠ 𝑘⊕𝑆.

III. There exists an injection 𝑆 ↣ 𝑇.
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IV. There exists a surjective map 𝑇 ↠ 𝑆 or 𝑆 = ∅.

Lemma 5.6.14. Let 𝑉 a 𝑘-vector space, 𝐵 ⊆ 𝑉 a basis and 𝑆 ⊆ 𝑉 a spanning set. Then

for all 𝑏 ∈ 𝐵 there exists 𝑎 ∈ 𝐴 such that (𝐵 ∖ {𝑏}) ∪ {𝑎} is a basis.

Proof. Let 𝑏 ∈ 𝐵 be any element. Suppose, for the sake of contradiction, that 𝐴 ⊆
span(𝐵 ∖ {𝑏}) then 𝑉 = span(𝐴) ⊆ span(𝐵 ∖ {𝑏}), which is a contradiction because 𝐵

is said to be a basis for 𝑉 ; thus 𝐴 ⊈ span(𝐵 ∖ {𝑏}). Let 𝑎 ∈ 𝐴 ∖ span(𝐵 ∖ {𝑏}), then

consider the set (𝐵 ∖ {𝑏})∖ {𝑎}. Let then 𝑎 = 𝑐𝑏 + 𝑐1𝑏1 + · · · + 𝑐𝑛𝑏𝑛 with 𝑐 ≠ 0 from the

construction of 𝑎 (that is, 𝑎 ∉ span(𝐵 ∖ {𝑏})). This way we can make

𝑏 = 𝑎/𝑐 − 𝑐1/𝑐𝑏1 − · · · − 𝑐𝑛/𝑐𝑏𝑛 therefore 𝑏 ∈ span((𝐵 ∖ {𝑏}) ∪ {𝑎})

which makes (𝐵 ∖ {𝑏}) ∪ {𝑎} a basis for 𝑉 . ♮

Lemma 5.6.15. Let 𝐵 and 𝐵′ be bases the 𝑘-vector space 𝑉 , then there exists a bĳection

𝐵 ≃ 𝐵, and thus |𝐵| = |𝐵′|.

Proof. From Theorem 5.6.13 we see that since exists injective 𝑘-linear morphism𝑉 ↣ 𝑉 ,

then exists injective map 𝐵 ↣ 𝐵′ and also surjective map 𝐵 ↠ 𝐵′. From Cantor-

Schröder-Bernstein theorem we see that there exists bĳection 𝐵 ≃ 𝐵′. ♮

Proposition 5.6.16. Let 𝑉 be a 𝑘-vector space and 𝑆 ⊆ 𝑉 be any linearly independent

set. There exists a set 𝐵 ⊇ 𝑆 such that 𝐵 is a basis of 𝑉 .

Proof. Let 𝒮 be the non-empty collection of linearly independent sets of 𝑉 containing

𝑆. Notice that a the union of a chain of elements of𝒮 is again a linearly independent set

containing 𝑆 — thus 𝒮 is closed under arbitrary unions. In other words, every chain

of elements has an upper bound in 𝒮. By Zorn’s lemma, it follows that the collection

𝒮 has a maximal element — call it 𝐵. We now prove that 𝐵 is a basis for 𝑉 .

Let 𝑣 ∈ 𝑉 be an element such that 𝑣 ∉ 𝐵. Since 𝐵 is maximal, it follows that the

set 𝐵 ∪ {𝑣}must not be linearly independent — since it contains 𝐵. This implies in the

existence of a collection (𝑐𝑏)𝑏∈𝐵 of finitely many non-zero elements 𝑐𝑏 ∈ 𝑘, and 𝑐0 ∈ 𝑘
such that

𝑐0𝑣 +
∑
𝑏∈𝐵

𝑐𝑏𝑏 = 0

with not all coefficients equal to zero. Since 𝑣 isn’t a member of 𝐵, it follows that 𝑐0 ≠ 0,

otherwise 𝐵 wouldn’t be linearly independent. It follows that

𝑣 =

∑
𝑏∈𝐵
− 𝑐𝑏
𝑐0

𝑏,

therefore 𝑣 belongs to the span of 𝐵 in 𝑉 . Therefore 𝐵 indeed generates 𝑉 , making it a

basis. ♮

Lemma 5.6.17. Let 𝑉 be a 𝑘-vector space. If 𝐵 ⊆ 𝑉 is a minimal generating set for 𝑉 ,

then 𝐵 is a basis of 𝑉 .
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Proof. We must show that 𝐵 is linearly independent. If, on the contrary, 𝐵 where to be

linearly dependent, let (𝑐𝑏)𝑏∈𝐵 be a collection of finitely many non-zero scalars, not all

zero, such that

∑
𝑏∈𝐵 𝑐𝑏𝑏 = 0. Choose a non-zero scalar 𝑐𝑏′ from this family, then

𝑏′ =
∑

𝑏∈𝐵∖{𝑏′}
− 𝑐𝑏
𝑐𝑏′
𝑏,

which implies that 𝑏′ can be written as a linear combination of the remaining elements

of 𝐵. This in particular implies that 𝐵 ∖ {𝑏′} is a generating set of𝑉 , which contradicts

the hypothesis that 𝐵 is minimal. ♮

Matrices and changes of base
Definition 5.6.18 (Change of basis operator). Let 𝒞 :𝑉 → 𝑉 be a linear operator of

a finite dimensional 𝑘-vector space, 𝑉 ≃ 𝑘𝑛 , defined by the mapping [𝑣]𝐵1

𝒞↦−→ [𝑣]𝐵2
,

where [𝑣]𝐵1
and [𝑣]𝐵2

are the representations of the vector 𝑣 in the basis 𝐵1 and 𝐵2 of

𝑉 . We define the matrix representation 𝐶𝐵1 ,𝐵2
: 𝑘𝑛 → 𝑘𝑛 of the linear operator 𝒞 to be

the change of basis matrix. Then if 𝐵1 = {𝑒𝑖}𝑛𝑖=1
, and 𝐵2 = {𝑒′

𝑗
}𝑛
𝑗=1

, and 𝐶𝐵1 ,𝐵2
= [𝑐𝑖 , 𝑗], then

the coefficients 𝑐𝑖 , 𝑗 of 𝐶𝐵1 ,𝐵2
must be such that

𝑣 =

𝑛∑
𝑖=1

𝑎𝑖𝑒𝑖 =

𝑛∑
𝑗=1

𝑏 𝑗𝑒
′
𝑗 =

𝑛∑
𝑗=1

𝑏 𝑗

(
𝑛∑
𝑖=1

𝑐𝑖 , 𝑗𝑒𝑖

)
=

𝑛∑
𝑖=1

©«
𝑛∑
𝑗=1

𝑐𝑖 , 𝑗𝑏 𝑗
ª®¬ 𝑒𝑖

Proposition 5.6.19 (Change of basis, linear morphism). Let 𝑓 :𝑉 → 𝑊 be a 𝑘-linear

morphism of finite dimensional spaces, 𝑉 ≃ 𝑘𝑛 and 𝑊 ≃ 𝑘𝑚 . Let 𝑀𝐵,𝑆: 𝑘𝑛 → 𝑘𝑚 and

𝑀𝐵′,𝑆′ be the matrix representation of 𝑓 in the basis 𝐵 and 𝑆, where 𝐵 is a basis of𝑉 and

𝑆 a basis of𝑊 . Let now 𝐵′ and 𝑆′ be basis for𝑉 and 𝑆. Then, the matrix representation

of 𝑓 in the basis 𝐵′, 𝑆′, that is, 𝑀𝐵′,𝑆′: 𝑘
𝑛 → 𝑘𝑚 , is given by the conjugation

𝑀𝐵′,𝑆′ = 𝐶−1

𝑆,𝑆′𝑀𝐵,𝑆𝐶𝐵,𝐵′

where 𝐶𝑆,𝑆′ and 𝐶𝐵,𝐵′ are the change of basis matrix representations defined in Defini-

tion 5.6.18.

Proof. Consider the function 𝒞−1

𝑆,𝑆′ 𝑓𝒞𝐵,𝐵′:𝑉 →𝑊 , then we have the mapping

[𝑣]𝐵
𝒞𝐵,𝐵′↦−−−→ [𝑣]𝐵′

𝑓
↦−→ [ 𝑓 ([𝑣]𝐵′)]𝑆

𝒞𝑆,𝑆′↦−−−→ [ 𝑓 ([𝑣]𝐵′)]𝑆′

hence the statement follows directly from Proposition 5.2.5. ♮

Corollary 5.6.20. In particular, if 𝑓 :𝑉 → 𝑉 is a 𝑘-linear operator, and 𝐵, 𝐵′ are basis of

𝑉 , then given the matrix representation of 𝑓 in base 𝐵, namely, 𝑀𝐵, we have that the

matrix representation of 𝑓 in base 𝐵′ is given by

𝑀𝐵′ = 𝐶−1𝑀𝐵𝐶

where 𝐶 is the matrix representation of the change of basis operator from base 𝐵 to 𝐵′.
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Dimension and Rank plus Nullity Theorem
Definition 5.6.21. Let 𝑉 be a 𝑘-vector space. We define the dimension of 𝑉 as

dim𝑘(𝑉) = |𝐵|

for 𝐵 ⊆ 𝑉 basis of𝑉 . In particular, if dim𝑘(𝑉) < ∞we say that𝑉 is a finite dimensional

𝑘-vector space.

Lemma 5.6.22. Let 𝑉 be a 𝑘-vector space and𝑊 ⊆ 𝑉 a 𝑘-subspace, then

dim𝑘(𝑉) = dim𝑘(𝑊) + dim𝑘(𝑉/𝑊).

Proof. Let 𝐵𝑊 = {𝑤𝑖}𝑖∈𝐼 be a basis for𝑊 and 𝐵𝑉/𝑊 = {𝑞 𝑗}𝑗∈𝐽 a basis for𝑉/𝑊 . Then for

all 𝑗 ∈ 𝐽 there exists 𝑣 𝑗 ∈ 𝑉 such that 𝑞 𝑗 = [𝑣 𝑗] ∈ 𝑉/𝑊 . Define the set 𝐴 ≔ {𝑣 𝑗 : 𝑗 ∈ 𝐽},
then the map 𝜑: 𝐽 → 𝐴 with the mapping 𝑗 ↦→ 𝑣 𝑗 is surely surjective; moreover, if

𝑗 , 𝑡 ∈ 𝐽 and 𝑗 ≠ 𝑡, then 𝑞 𝑗 ≠ 𝑞𝑡 since 𝐵𝑉/𝑊 is a basis, hence [𝑣 𝑗] ≠ [𝑣𝑡] and the map 𝜑
is injective. Then 𝜑 is a bĳection and thus |𝐴| = |𝐽|. Now we show that 𝐴 is a linearly

independent set: let 𝐽𝑡 ⊆ 𝐽 be a finite subset of 𝐽 with 𝑡 elements and 𝛼1, . . . , 𝛼𝑡 ∈ 𝑘
be such that

∑𝑡
ℓ=1

𝛼ℓ𝑣 𝑗ℓ = 0 ∈ 𝑉 then

∑𝑡
ℓ=1

𝛼ℓ [𝑣 𝑗ℓ ] =
[ ∑𝑡

ℓ=1
𝛼ℓ𝑣 𝑗ℓ

]
= [0] ∈ 𝑉/𝑊 but

notice that the set of classes [𝑣 𝑗]: 𝑣 𝑗 ∈ 𝐴 is linearly independent (from the fact that this

corresponds to the basis 𝐵𝑉/𝑊 ), hence we must have 𝛼ℓ = 0 for all 1 ⩽ ℓ ⩽ 𝑡, thus 𝐴 is

linearly independent.

Consider now the set 𝐴 ∪ 𝐵𝑊 , we’ll show that this is a basis for 𝑉 . First we

show that 𝐴 ∪ 𝐵𝑊 is linearly independent: let 𝐼𝑠 ⊆ 𝐼 be the finite set with 𝑠 indices,

and 𝐽𝑡 ⊆ 𝐽 be the finite set with 𝑡 indices, and 𝛼1, . . . 𝛼𝑠 , 𝛽1, . . . , 𝛽𝑡 ∈ 𝑘, be such that∑𝑠
ℓ=1

𝛼ℓ𝑤𝑖ℓ +
∑𝑡
𝑟=1

𝛽𝑟𝑣 𝑗𝑟 = 0 ∈ 𝑉 if we now take the module with respect to 𝑊 (as we

did before with 𝐴) we see that

[0] =
𝑠∑
ℓ=1

𝛼ℓ [𝑤𝑖ℓ ] +
𝑡∑
𝑟=1

𝛽𝑟[𝑣 𝑗𝑟 ] =
[ 𝑡∑
𝑟=1

𝛽𝑟𝑣 𝑗𝑟

]
∈ 𝑉/𝑊

since 𝑤𝑖ℓ ∈𝑊 and thus [𝑤𝑖ℓ ] = [0]; since 𝐵𝑉/𝑊 (and [𝑣 𝑗𝑟 ] = 𝑞 𝑗𝑟 ) is linearly independent,

we see that necessarily 𝛽𝑟 = 0 for all 1 ⩽ 𝑟 ⩽ 𝑡. Therefore, we conclude that

∑𝑠
ℓ=1

𝛼ℓ𝑤𝑖ℓ =
0 and since 𝐵𝑊 is linearly independent, we conclude that 𝛼ℓ = 0 for all 1 ⩽ ℓ ⩽ 𝑠. For

the final part, we need to show that 𝑉 = span(𝐴 ∪ 𝐵𝑊 ): let 𝑣 ∈ 𝑉 be any element,

then [𝑣] ∈ 𝑉/𝑊 = span(𝐵𝑉/𝑊 ) then [𝑣] = ∑𝑡
ℓ=1

𝛼ℓ [𝑣 𝑗ℓ ] for 𝐽𝑡 ⊆ 𝐽 and 𝛼1, . . . , 𝛼𝑡 ∈ 𝑘;
this implies that [𝑣] −

[ ∑𝑡
ℓ=1

𝛼ℓ𝑣 𝑗ℓ
]
= [0] and thus 𝑣 − ∑𝑡

ℓ=1
𝛼ℓ𝑣 𝑗ℓ ∈ 𝑊 = span(𝐵𝑊 );

hence for some 𝛽1, . . . , 𝛽𝑠 ∈ 𝑘 and 𝐼𝑠 ⊆ 𝐼 we have 𝑣 − ∑𝑡
ℓ=1

𝛼ℓ𝑣 𝑗ℓ =
∑𝑠
𝑟=1

𝛽𝑟𝑤𝑖𝑟 hence

𝑣 ∈ span(𝐴 ∪ 𝐵𝑊 ) and thus 𝐴 ∪ 𝐵𝑊 is a basis for 𝑉 .

We’ll now show that 𝐴 ∩ 𝐵𝑊 = ∅: suppose 𝑢 ∈ 𝐴 ∩ 𝐵𝑊 , then there exists 𝑖 ∈ 𝐼
and 𝑗 ∈ 𝐽 such that 𝑢 = 𝑤𝑖 and 𝑢 = 𝑣 𝑗 — thus 𝑞 𝑗 = [𝑣 𝑗] = [𝑤𝑖] = [0] ∈ 𝑉/𝑊 which

cannot be true since 𝐵𝑉/𝑊 is a basis. Therefore |𝐴 ∪ 𝐵𝑊 | = |𝐴| + |𝐵𝑊 | = |𝐽| + |𝐵𝑊 | =
|𝐵𝑉/𝑊 | + |𝐵𝑊 | = dim𝑘(𝑉) as wanted. ♮

Theorem 5.6.23 (Rank plus nullity). Let 𝐿:𝑉 →𝑊 be a 𝑘-linear morphism, then

dim𝑘(𝑉) = dim𝑘(ker(𝐿)) + rank(𝐿).
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Proof. Notice that from the first isomorphism theorem we have𝑉/ker(𝐿) ≃ im(𝐿) then

it follows that dim𝑘(𝑉/ker(𝐿)) = dim𝑘(im(𝐿)) = rank(𝐿) from the fact that ker(𝐿) is

a 𝑘-subspace of 𝑉 , we conclude from Lemma 5.6.22 that dim𝑘(𝑉) = dim𝑘(ker(𝐿)) +
dim𝑘(𝑉/ker(𝐿)) = dim𝑘(ker(𝐿)) + rank(𝐿). ♮

Corollary 5.6.24. Let 𝑉 and 𝑊 be 𝑘-vector spaces and 𝐿:𝑉 → 𝑊 be a 𝑘-linear mor-

phism. Then we have

(a). If 𝐿 is injective, then dim𝑘(𝑉) ⩽ dim𝑘(𝑊).

(b). If 𝐿 is surjective, then dim𝑘(𝑉) ⩾ dim𝑘(𝑊).

(c). If 𝐿 is an isomorphism then dim𝑘(𝑉) = dim𝑘(𝑊).

Proof. (a) If 𝐿 is injective, then ker(𝐿) = 0 and thus dim𝑘(ker(𝐿)) = 0 and from

Theorem 5.6.23 we have dim𝑘(𝑉) = rank(𝐿) and since rank(𝐿) ⩽ dim𝑘(𝑊) since

im(𝐿) ⊆ 𝑊 then we conclude that the proposition is true. (b) Since 𝐿 is surjective,

then im(𝐿) = 𝑊 and in particular rank(𝐿) = dim𝑘(𝑊), thus Theorem 5.6.23 implies

that dim𝑘(𝑉) = dim𝑘(ker(𝐿)) + dim𝑘(𝑊) ⩾ dim𝑘(𝑊). (c) Already proved before, but

also comes from the last two propositions. ♮

Corollary 5.6.25. Let 𝐿:𝑉 → 𝑊 be a 𝑘-linear morphism of finite vector spaces 𝑉 and

𝑊 such that dim𝑘(𝑉) = dim𝑘(𝑊). Then the following propositions are equivalent:

(a). 𝐿 is an isomorphism.

(b). 𝐿 is injective.

(c). 𝐿 is surjective.

Proof. (b ⇒ c) Suppose 𝐿 injective, then from Theorem 5.6.23 we have dim𝑘(𝑉) =
rank(𝐿) since dim𝑘(ker(𝐿)) = 0 then we have dim𝑘(𝑊) = rank(𝐿) but then im(𝐿) = 𝑊

and therefore 𝐿 is a surjective linear map. (c⇒ a) Suppose that 𝐿 is surjective, from from

Theorem 5.6.23 we have dim𝑘(𝑉) = dim𝑘(ker(𝐿)) + rank(𝐿) = dim𝑘(ker(𝐿)) +dim𝑘(𝑊),
but from hypothesis we have dim𝑘(𝑉) = dim𝑘(𝑊), then, if the given vector spaces 𝑉

and 𝑊 are finite dimensional we have dim𝑘(ker(𝐿)) = 0 and thus ker(𝐿) is the zero

space, which implies that 𝐿 is injective, hence an isomorphism. ♮

5.7 Dual Vector Spaces
Definition 5.7.1. Let 𝑉 ∈ Obj(Vect𝑘), then, we define the dual vector space of 𝑉 to be

𝑉∗ = MorVect𝑘 (𝑉, 𝑘)

and 𝑓 ∈ 𝑉∗ is called a linear functional on 𝑉 .

Proposition 5.7.2. For all sets 𝑆 there exists a natural isomorphism between the dual

free vector space generated by 𝑆 and the function space 𝑆→ 𝑘, that is

(𝑘⊕𝑆)∗ ≃ 𝑘𝑆 .
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Proof. This result comes directly from the free vector space universal property, that is

𝑆 𝑘

𝑘⊕𝑆

𝑓

ℓ

so that we can assign for each function 𝑓 ∈ 𝑘𝑆 the corresponding unique 𝑘-linear

morphism ℓ ∈ (𝑘⊕𝑆)∗. ♮

Proposition 5.7.3. Let 𝑉 be finite dimensional, then there exists a non-canonical iso-

morphism

𝑉 ≃ 𝑉∗

Proof. The proof here is rather arbitrary, we’ll just construct explicitly an isomorphism

by defining an ordered basis 𝐵 = (𝑣1, . . . , 𝑣𝑛) of 𝑉 , but we could build other iso-

morphisms (this is why the proposition states “non-canonical”). Define the 𝑘-linear

morphism 𝜑(𝑣𝑖) = 𝑒𝑖 where 𝑒𝑖 is the 𝑖-th standard basis on 𝑘𝑛 , then 𝜑 is an isomor-

phims 𝑉 ≃ 𝑘𝑛 . Moreover, from the standard inner product, we have that 𝑘𝑛 ≃ (𝑘𝑛)∗,
thus we are done, since

𝑉 𝑘𝑛 ≃ (𝑘𝑛)∗ 𝑉∗
𝜑 𝑓 ↦→ 𝑓 𝜑

thus indeed 𝑉 ≃ 𝑉∗. ♮

Proposition 5.7.4. If 𝑉 is finite-dimensional, then 𝑉∗ is also finite dimensional and

dim𝑘(𝑉) = dim𝑘(𝑉∗).

Proposition 5.7.5. Given 𝑘-vector spaces𝑉 and𝑊 , there exists a natural isomorphism

(𝑉 ⊕𝑊)∗ ≃ 𝑉∗ ⊕𝑊 ∗.

Proof. Consider the mapping Φ: (𝑉 ⊕ 𝑊)∗ → 𝑉∗ ⊕ 𝑊 ∗ defined by Φ( 𝑓 ∗) = ( 𝑓 ∗
𝑉
, 𝑓 ∗
𝑊
),

where 𝑓 ∗
𝑉

= 𝑓 ∗|𝑉⊕{0} and 𝑓 ∗
𝑊

= 𝑓 ∗|{0}⊕𝑊 . We now show that Φ is an isomorphism.

(Injective) Suppose 𝑔∗ ∈ kerΦ, then necessarily 𝑔∗|𝑉⊕{0} = 0 and 𝑔∗|{0}⊕𝑊 = 0, but

since 𝑔∗ = 𝑔∗|𝑉⊕{0} + 𝑔∗|{0}⊕𝑊 we conclude that 𝑔∗ = 0. (Surjective) Let any (ℓ ∗, 𝑡∗) ∈
𝑉∗ ⊕𝑊 ∗, then define the function 𝑓 ∗ ∈ (𝑉 ⊕𝑊)∗ such that 𝑓 ∗(𝑣, 𝑤) = ℓ ∗(𝑣) + 𝑡∗(𝑤), then

𝑓 ∗|𝑉⊕{0} = ℓ ∗ and 𝑓 ∗|{0}⊕𝑊 = 𝑡∗, therefore Φ( 𝑓 ∗) = (ℓ ∗, 𝑡∗). ♮

Definition 5.7.6. Let 𝑓 :𝑉 → 𝑊 be a 𝑘-linear morphism. We define the dual (or

transpose) 𝑘-linear morphism of 𝑓 as 𝑓 ∗ = 𝑓 𝑇 :𝑊 ∗→ 𝑉∗. This is a particular case of the

induced Mor 𝑘-linear morphism, by taking the 𝑘-vector space 𝑘, so that

𝑓 ∗: Mor(𝑊, 𝑘) →Mor(𝑉, 𝑘), 𝛼 ↦→ 𝛼 𝑓 .

It is immediate from this definition that (𝑔 𝑓 )∗ = 𝑓 ∗𝑔∗ for every composable pair of

functionals 𝑓 and 𝑔.
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Proposition 5.7.7. Let 𝑓 :𝑉 →𝑊 be a 𝑘-linear morphism and consider its dual 𝑓 ∗:𝑊 ∗→
𝑉∗. If 𝑓 is injective, then 𝑓 ∗ is surjective, on the other hand, if 𝑓 is surjective, then 𝑓 ∗ is

injective. Hence, if 𝑓 is an isomorphism, then 𝑓 ∗ is an isomorphism.

Proposition 5.7.8. Let𝑉1 → 𝑉2 → 𝑉3 be an exact sequence, then𝑉∗
3
→ 𝑉∗

2
→ 𝑉∗

1
is also

exact.

Proof. Let 𝑓 :𝑉1 → 𝑉2 and 𝑔:𝑉2 → 𝑉3 be such that im( 𝑓 ) = ker(𝑔). Then, given any

𝛼 ∈ 𝑉∗
3

and consider 𝑔∗(𝛼) = 𝛼𝑔, we then have 𝑓 ∗(𝛼𝑔) = (𝛼𝑔) 𝑓 = 𝛼(𝑔 𝑓 ) = 0 from the

construction of 𝑓 , 𝑔, thus im(𝑔∗) ⊆ ker( 𝑓 ∗). On the other hand, let 𝛽 ∈ ker( 𝑓 ∗) ⊆ 𝑉∗
2

so

that 𝑓 ∗(𝛽) = 𝛽 𝑓 = 0, which is the same thing as requiring 𝛽|
im( 𝑓 ) = 0; this way we can

see that for any element 𝛼 ∈ 𝑉∗
3

we have 𝑔∗(𝛼) = 𝛼𝑔 be such that 𝛼𝑔|
im( 𝑓 ) = 0 since

ker(𝑔) = im( 𝑓 ) and thus already satisfies as an element of the kernel of 𝑓 ∗, therefore

ker( 𝑓 ∗) ⊆ im(𝑔∗). ♮

Proposition 5.7.9. Let 𝑉1 → 𝑉2 → 𝑉3 be exact sequence of 𝑘-vector spaces, then for

any given 𝑘-vector space𝑊 we have that

Mor(𝑉3,𝑊) −→Mor(𝑉2,𝑊) −→Mor(𝑉1,𝑊)

is exact (contravariant Mor).

Proof. The proof is almost identical to the latter. ♮

Proposition 5.7.10. Let 𝑉1 → 𝑉2 → 𝑉3 be exact sequence of 𝑘-vector spaces, then for

any given 𝑘-vector space𝑊 we have that

Mor(𝑊,𝑉1) −→Mor(𝑊,𝑉2) −→Mor(𝑉3,𝑊)

is exact (covariant Mor).

Proof. The proof only diverges from the above because we have the mappings 𝑔∗(𝛼) =
𝑔𝛼 and 𝑓∗(𝛽) = 𝑓 𝛽. ♮

Proposition 5.7.11. Consider a 𝑘-linear morphism 𝑓 :𝑉 →𝑊 such that rank( 𝑓 ) is finite

(that is, dim𝑘(im( 𝑓 )) exists). Then rank( 𝑓 ) = rank( 𝑓 ∗).

Proof. Notice that if 𝑓 :𝑉 ↠ 𝑈 ↣ 𝑊 is the decomposition of 𝑓 , then we can consider

the dual 𝑓 ∗:𝑊 ∗ → 𝑉∗ as having a decomposition 𝑊 ∗ ↠ 𝑈∗ ↣ 𝑉∗, since the dual of

an injective map is surjective and the dual of a surjective map is injective. Therefore,

given a basis 𝐵 for 𝑈 , since ∀𝑏 ∈ 𝐵 there exists 𝑣 ∈ 𝑉 for which 𝑓 (𝑣) = 𝑏 we can say

that 𝑏 ∈ im( 𝑓 ) and, moreover, rank( 𝑓 ) ⩾ dim𝑘(𝑈). Also, since im( 𝑓 ) ⊆ 𝑈 , then we

have directly that rank( 𝑓 ) ⩽ dim𝑘(𝑈), thus rank( 𝑓 ) = dim𝑘(𝑈). The same shows that

rank( 𝑓 ∗) = dim𝑘(𝑈∗) and since 𝑈 ≃ 𝑈∗ we find that dim𝑘(𝑈) = dim𝑘(𝑈∗) and hence

rank( 𝑓 ) = rank( 𝑓 ∗). ♮

Proposition 5.7.12. Let ℓ ∈ Mor(𝑉,𝑊), where 𝑉 ≃ 𝑘𝑛 and 𝑊 ≃ 𝑘𝑚 , so that ℓ can be

written as a matrix 𝐿: 𝑘𝑛 → 𝑘𝑚 . Then the dual ℓ ∗ is represented by the matrix 𝐿𝑇 .
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Proof. Define (𝑣 𝑗)𝑛𝑗=1
an ordered basis for𝑉 and (𝑣∗

𝑖
)𝑛
𝑖=1

be its dual ordered basis; define

also (𝑤𝑖)𝑚𝑖=1
to be an ordered basis for 𝑊 and (𝑤∗

𝑗
)𝑚
𝑗=1

be its dual ordered basis. Notice

that the dual of the matrix, that is, 𝐿∗: (𝑘𝑚)∗ → (𝑘𝑛)∗ can be written as 𝐿∗: 𝑘𝑚 → 𝑘𝑛 ,

since (𝑘𝑚)∗ ≃ 𝑘𝑚 and (𝑘𝑛)∗ ≃ 𝑘𝑛 . Define the representations

𝐿 =


𝑡1,1 . . . 𝑡1,𝑛
...

. . .
...

𝑡𝑚,1 . . . 𝑡𝑚,𝑛

 and define 𝐿∗ =


𝑑1,1 . . . 𝑑1,𝑚
...

. . .
...

𝑑𝑛,1 . . . 𝑑𝑛,𝑚


By definition of the dual linear morphism, we have 𝐿∗(𝑤∗

𝑗
) = 𝑤∗

𝑗
𝐿. When this trans-

formation is thought of as a 𝑘𝑛 → 𝑘𝑚 matrix, the definition of a matrix for a linear

transformation with respect to the given dual basis for 𝑊 ∗ and 𝑉∗ is defined such

that 𝐿∗(𝑤∗
𝑗
) = ∑𝑛

𝑟=1
𝑑𝑟, 𝑗𝑣

∗
𝑟 . Hence, given any element 𝑣𝑘 ∈ (𝑣 𝑗)𝑛𝑗=1

⊆ 𝑉 , from the first

definition:

𝑤∗𝑗𝐿(𝑣𝑘) = 𝑤∗𝑗

(
𝑚∑
𝑟=1

𝑡𝑟,𝑘𝑤𝑟

)
=

𝑚∑
𝑟=1

𝑡𝑟,𝑘𝑤
∗
𝑗(𝑤𝑟) = 𝑡 𝑗 ,𝑘 (5.2)

from the fact that we defined 𝑤∗
𝑗
so that 𝑤∗

𝑗
(𝑤 𝑗) = 1 and 𝑤∗

𝑗
(𝑤𝑖) = 0 for 𝑖 ≠ 𝑗. Now, from

the second definition that we discussed, we have (applying the same 𝑣𝑘):

𝑛∑
𝑟=1

𝑑𝑟, 𝑗𝑣
∗
𝑟(𝑣𝑘) = 𝑑𝑘,𝑗 (5.3)

from the same fact. Thus we conclude that 𝑑𝑘,𝑗 = 𝑡 𝑗 ,𝑘 for all 1 ⩽ 𝑘 ⩽ 𝑛 and 1 ⩽ 𝑗 ⩽ 𝑚,

thus indeed 𝐿∗ = 𝐿𝑇 ♮

Definition 5.7.13 (Column and Row Rank). Let 𝐿: 𝑘𝑛 → 𝑘𝑚 be a matrix. Define (𝑣 𝑗)𝑛𝑗=1

to be the vectors whose components are given by the ordered 𝑗-th column elements

of the matrix representation of 𝐿. Analogously, define (𝑤𝑖)𝑚𝑖=1
to be the vectors whose

components are the ordered 𝑖-th row elements of the matrix representation of 𝐿. We

define the column rank of 𝐿 to be dim𝑘(span(𝑣 𝑗)𝑛𝑗=1
) and the row rank of 𝐿 to be

dim𝑘(span(𝑤𝑖)𝑚𝑖=1
).

Proposition 5.7.14. Let 𝐿:𝑉 →𝑊 be a linear morphism with 𝑉 ≃ 𝑘𝑛 and 𝑊 ≃ 𝑘𝑚 , its

row and column rank of its matrix representation 𝑘𝑛 → 𝑘𝑚 are both equal to the rank

of 𝐿.

Proof. Let (𝑣 𝑗)𝑛𝑗=1
and (𝑤𝑖)𝑚𝑖=1

be the column and row vectors of the matrix representation

of 𝐿. (Rank equals column rank) Let 𝐵𝑉 and 𝑆𝑊 be ordered basis for 𝑉 and 𝑊

respectively and any element 𝑤 ∈ im(𝐿) = span(𝐿𝑏𝑘 : 𝑏𝑘 ∈ 𝐵𝑉) notice that since 𝐿𝑏𝑘 =∑𝑚
𝑖=1
𝑡𝑖 ,𝑘𝑠𝑖 , where 𝑡𝑖 , 𝑗 are the elements of the matrix representation of 𝐿, then we see

that 𝐿𝑏𝑘 is a linear combination of the 𝑘-th column vector of 𝐿, hence 𝐿𝑏𝑘 ∈ span(𝑣 𝑗)𝑛𝑗=1

for all 1 ⩽ 𝑘 ⩽ 𝑚. Therefore we conclude that 𝑤 ∈ span(𝑣𝑖)𝑛𝑖=1
. Moreover, we

have span(𝑣𝑖)𝑛𝑖=1
⊆ im(𝐿), thus span(𝑣𝑖)𝑛𝑖=1

= im(𝐿), hence we conclude finally that

dim𝑘(im(𝐿)) = rank(𝐿) = dim𝑘(span(𝑣𝑖)𝑛𝑖=1
) which states that the rank of 𝐿 equals the
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column rank. (Rank equals column rank) Notice that 𝐿∗: (𝑘𝑚)∗ → (𝑘𝑛)∗ is isomorphic

to the matrix 𝑘𝑚 → 𝑘𝑛 and the matrix representation of the dual of 𝐿 is equal to its

transpose by 5.7.12, moreover we proved lastly that the column rank of a matrix equals

its rank, thus it should be true that rank(𝐿∗) = dim𝑘(span(𝑤𝑖)𝑚𝑖=1
). Since 𝐿∗ ≃ 𝐿, it

follows that rank(𝐿) = dim𝑘(span(𝑤𝑖)𝑚𝑖=1
). Hence we conclude that

rank(𝐿) = rank(column) = rank(row).

♮

Definition 5.7.15 (Bilinear map). A map𝑉∗×𝑉 → 𝑘 that has the mapping (𝛼, 𝑣) ↦→ 𝛼(𝑣)
is called a bilinear map. This map is linear only when we fix the second component to

some 𝑣 ∈ 𝑉 so that 𝑓𝑣 :𝑉∗→ 𝑘 with the mapping 𝛼 ↦→ 𝛼(𝑣) is a 𝑘-linear morphism.

This defines a rather interesting canonical 𝑘-linear morphism

Ψ𝑉 :𝑉 → (𝑉∗)∗, mapping 𝑣 ↦→ ( 𝑓𝑣 = (𝛼 ↦→ 𝛼(𝑣))).

Proposition 5.7.16. The morphism Ψ𝑉 is an injection for every given vector space 𝑉 .

Proposition 5.7.17. A finite dimensional space 𝑉 is isomorphic to its double dual 𝑉∗∗.
The same can’t be said if 𝑉 is infinite dimensional.

Proof. Let {𝑣𝑖}𝑛𝑖=1
be a basis for 𝑉 , {𝑣∗

𝑖
}𝑛
𝑖=1

be a basis for 𝑉∗ dual to the first given

basis, and {𝑣∗∗
𝑖
)𝑛
𝑖=1
} be a basis for 𝑉∗∗ dual to the second given basis. We’ll show that

Ψ𝑉(𝑣𝑖) = 𝑣∗∗
𝑖

. Let 𝑣𝑖 be an element of the given basis of 𝑉 , then, we know from the

definition of the dual of the basis that 𝑣∗
𝑘
(𝑣𝑖) = 𝛿𝑖 ,𝑘 and 𝑣∗∗𝑡 (𝑣∗𝑘) = 𝛿𝑘,𝑡 . Moreover,

since Ψ𝑉 is an injection, we see that if Ψ𝑉(𝑣𝑖) ≠ 0, hence 𝑣𝑖 ↦→ 𝑣∗∗
𝑖

, which proves the

statement. ♮

Definition 5.7.18 (Annihilator). Let𝑉 be a finite dimensional 𝑘-vector space and𝑊 be

a subspace of 𝑉 . The annihilator of𝑊 is defined as the subspace of 𝑉∗ given by

𝑊0 = {𝛼 ∈ 𝑉∗ : 𝛼(𝑊) = 0}.

Proposition 5.7.19. Let 𝑉 be a finite dimensional space and𝑊 ⊆ 𝑉 a subspace. Then

dim𝑘(𝑉) = dim𝑘(𝑊) + dim𝑘(𝑊0).

Proof. Let the inclusion 𝜄:𝑊 ↩→ 𝑉 , then its dual 𝜄∗:𝑉∗ ↠ 𝑊 ∗ is surjective. Moreover,

let 𝛼 ∈ 𝑊0
then, 𝜄∗(𝛼) = 𝛼𝜄, since im(𝜄) ⊆ 𝑊 we conclude that 𝜄∗(𝛼) = 0 and thus

𝛼 ∈ ker(𝜄∗), so that 𝑊0 ⊆ ker(𝜄∗). Moreover, if 𝛼 ∈ ker(𝜄∗) then, in particular, 𝛼(𝑊) = 0

hence 𝛼 ∈ 𝑊0
. Then we find that 𝑊0 = ker(𝜄∗). We now use the theorem 5.6.23 on

the morphism 𝜄∗ so that dim𝑘(𝑉∗) = dim𝑘(ker(𝜄∗)) + rank(𝜄∗). Since 𝜄∗ is surjective, then

im(𝜄∗) = 𝑊 ∗ and therefore rank(𝜄∗) = dim𝑘(𝑊 ∗); moreover, dim𝑘(ker(𝜄∗)) = dim𝑘(𝑊0);
and finally dim𝑘(𝑉∗) = dim𝑘(𝑉), and dim𝑘(𝑊 ∗) = dim𝑘(𝑊). Thus indeed dim𝑘(𝑉) =
dim𝑘(𝑊) + dim𝑘(𝑊0). ♮

Complexification and decomplex
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Chapter 6

Multilinear Algebra

Add content about bilinear maps

6.1 Multilinear Maps and Tensor Products
The goal of this section is to introduce another concept of linearity, one of which

is induced by a kind of map that is called multilinear. This is a very important

generalization of what we’ve been studying so far.

Definition 6.1.1 (Multilinear map). Let {𝑉𝑖}𝑛𝑖=1
be a collection of 𝑘-vector spaces and

𝑊 be a 𝑘-vector space. We say that a map

𝜑:

𝑛∏
𝑖=1

𝑉𝑖 →𝑊

is a multilinear map if for a given 1 ⩽ 𝑡 ⩽ 𝑛 we have that, for all collections {𝑣𝑖 : 𝑣𝑖 ∈
𝑉𝑖 , 𝑖 ≠ 𝑡}, the map

𝜑(𝑣1, . . . , 𝑣𝑡−1,−, 𝑣𝑡+1, . . . , 𝑣𝑛):𝑉𝑡 −→𝑊 , mapping 𝑥
𝜑
↦−→ 𝜑(𝑣1, . . . , 𝑣𝑡−1, 𝑥, 𝑣𝑡 , . . . , 𝑣𝑛)

is a 𝑘-linear morphism.

Multilinear structures seems interesting and what is even better is that there is a

way of working with multilinear maps by means of the machinery acquired when we

where studying linear structures — we can simply linearize a multilinear map! That is

a great idea, one that is accomplished via the introduction of a structure called tensor

product. We’ll now focus on the construction of it.

Given a finite collection of 𝑘-vector spaces {𝑉𝑖}𝑖∈𝐼 , we define the free 𝑘-vector space

ℳ = 𝑘⊕
∏

𝑖∈𝐼 𝑉𝑖 — that is, the space of set-functions

∏
𝑖∈𝐼 𝑉𝑖 → 𝑘 with finite support.

A map 𝑓 ∈ ℳ is entirely described by the set of all tuples of its domain. For each

tuple (𝑣𝑖)𝑖∈𝐼 ∈
∏

𝑖∈𝐼 𝑉𝑖 , we define a characteristic map 𝛿(𝑣𝑖)𝑖∈𝐼 :
∏

𝑖∈𝐼 𝑉𝑖 → {0, 1}— which

happens to be an element of the spaceℳ. Since

𝑓 (𝑣) =
∑

𝑢∈∏𝑖∈𝐼 𝑉𝑖

𝑓 (𝑢)𝛿𝑣(𝑢) = 𝑓 (𝑣)𝛿𝑣(𝑣) = 𝑓 (𝑣)
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we conclude that the collection {𝛿𝑣 ∈ ℳ : 𝑣 ∈ 𝑉} is a basis for the spaceℳ.

For the sake of brevity, we’ll simply denote 𝛿𝑣 = 𝑣 for every 𝑣 ∈ ∏
𝑖∈𝐼 𝑉𝑖 . The

spaceℳ can then be viewed as the space of formal linear combination of the tuples of∏
𝑖∈𝐼 𝑉𝑖 , that is

ℳ =

{∑
𝑎𝑣𝑣 : 𝑣 ∈

∏
𝑖∈𝐼

𝑉𝑖 and 𝑎𝑣 ∈ 𝑘
}
.

Thus, if char 𝑘 = 0 and exists 𝑖 ∈ 𝐼 such that dim𝑘(𝑉𝑖) > 0, then ℳ is an infinite-

dimensional vector space.

The next step in our construction is to refine the spaceℳ by means of taking the

quotient ofℳ by some subspaceℳ0 so that the maps 𝑓 ∈ ℳ/ℳ0 satisfy the properties

arising from the multilinear structure induced by the maps Definition 6.1.1. We can

do so by considering the collection of maps of the following form

𝑓0 = (𝑣1, . . . , 𝑣 𝑗 + 𝑎𝑣′𝑗 , . . . , 𝑣𝑛) − (𝑣1, . . . , 𝑣 𝑗 , . . . , 𝑣𝑛) − 𝑎(𝑣1, . . . , 𝑣
′
𝑗 , . . . , 𝑣𝑛) ∈ ℳ.

We may simply defineℳ0 ⊆ ℳ to be the subspace spanned by the maps of the same

form as 𝑓0 ∈ ℳ. Now, when we take the quotientℳ/ℳ0 we essentially classify the

maps of the form 𝑓0 as the zero-maps — so that every element ofℳ/ℳ0 satisfy an

internal version of the properties of the multilinear maps. We are now ready to define

what we call a tensor product — we actually already constructed it, is the spaceℳ/ℳ0!

Definition 6.1.2 (Tensor product). We define the tensor product of the finite collection

of 𝑘-vector spaces {𝑉𝑖}𝑖∈𝐼 as the quotient space⊗
𝑖∈𝐼

𝑉𝑖 =ℳ/ℳ0,

where the elements of

⊗
𝑖∈𝐼 𝑉𝑖 are called tensors, and in special, the elements of the

form

⊗𝑖∈𝐼𝑣𝑖 = (𝑣𝑖)𝑖∈𝐼 +ℳ0 ∈
⊗
𝑖∈𝐼

𝑉𝑖

are called factorizable tensors.

Lemma 6.1.3. Let {𝑉𝑖}𝑖∈𝐼 be a finite collection of 𝑘-vector spaces. The canonical map

⊗:

∏
𝑖∈𝐼

𝑉𝑖 →
⊗
𝑖∈𝐼

𝑉𝑖 , mapping (𝑣𝑖)𝑖∈𝐼 ↦−→ ⊗𝑖∈𝐼𝑣𝑖

is multilinear.

Proof. Let |𝐼| = 𝑛, and 𝑎 ∈ 𝑘 be any constant, then

⊗(𝑣1, . . . , 𝑣 𝑗 + 𝑎𝑣′𝑗 , . . . , 𝑣𝑛) = 𝑣1 ⊗ · · · ⊗ (𝑣 𝑗 + 𝑎𝑣′𝑗) ⊗ · · · ⊗ 𝑣𝑛
= (𝑣1, . . . , 𝑣 𝑗 + 𝑎𝑣′𝑗 , . . . , 𝑣𝑛) +ℳ0

= [(𝑣1, . . . , 𝑣 𝑗 , . . . , 𝑣𝑛) +ℳ0] + [𝑎(𝑣1, . . . , 𝑣
′
𝑗 , . . . , 𝑣𝑛) +ℳ0]

= 𝑣1 ⊗ · · · ⊗ 𝑣 𝑗 ⊗ · · · ⊗ 𝑣𝑛 + 𝑎(𝑣1 ⊗ · · · ⊗ 𝑣′𝑗 ⊗ · · · ⊗ 𝑣𝑛)
= ⊗(𝑣1, . . . , 𝑣 𝑗 , . . . , 𝑣𝑛) + 𝑎 ⊗ (𝑣1, . . . , 𝑣

′
𝑗 , . . . , 𝑣𝑛).
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Where we used the fact that

(𝑣1, . . . , 𝑣 𝑗 + 𝑎𝑣′𝑗 , . . . , 𝑣𝑛) = (𝑣1, . . . , 𝑣 𝑗 , . . . , 𝑣𝑛) + 𝑎(𝑣1, . . . , 𝑣
′
𝑗 , . . . , 𝑣𝑛) ∈ ℳ/ℳ0

♮

Theorem 6.1.4 (Universal property of tensor products). Let {𝑉𝑖}𝑖∈𝐼 be a finite collection

of 𝑘-vector spaces, and 𝐿 be any 𝑘-vector space, and 𝑓 :
∏

𝑖∈𝐼 𝑉𝑖 → 𝐿 be any multilinear

map. Then there exists a unique 𝑘-linear morphism ℓ :
⊗

𝑖∈𝐼 𝑉𝑖 → 𝐿 such that the

following diagram commutes ∏
𝑖∈𝐼 𝑉𝑖 𝐿

⊗
𝑖∈𝐼 𝑉𝑖

𝑓

⊗
ℓ

Proof. Let |𝐼| = 𝑛. (Uniqueness) Suppose that for any 𝐿 and 𝑓 , the morphism ℓ exists,

so that 𝑓 = ℓ ◦ ⊗ and therefore

ℓ ⊗ (𝑣1, . . . , 𝑣𝑛) = ℓ (𝑣1 ⊗ · · · ⊗ 𝑣𝑛) = 𝑓 (𝑣1, . . . , 𝑣𝑛)

then certainly ℓ is uniquely defined by the pointwise image of 𝑓 , since {(𝑣1, . . . , 𝑣𝑛) ∈∏𝑛
𝑖=1
𝑉𝑖} generates

⊗𝑛
𝑖=1
𝑉𝑖 .

(Existence) Let 𝑔:ℳ → 𝐿 be defined as 𝑔(𝑣1, . . . , 𝑣𝑛) = 𝑓 (𝑣1, . . . , 𝑣𝑛) so that 𝑓

completely determines the image of 𝑔. Let now (𝑣1, . . . , 𝑣 𝑗−1, 0, 𝑣 𝑗+1, . . . , 𝑣𝑛) ∈ ℳ0,

then

𝑔(𝑣1, . . . , 𝑣 𝑗−1, 0, 𝑣 𝑗+1, . . . , 𝑣𝑛) = 𝑓 (𝑣1, . . . , 𝑣 𝑗−1, 0, 𝑣 𝑗+1, . . . , 𝑣𝑛) = 0

because 𝑓 is a multilinear map, then (𝑣1, , . . . , 𝑣 𝑗−1, 0, 𝑣 𝑗+1, . . . , 𝑣𝑛) ∈ ker(𝑔). Moreover,

for the second type of element ofℳ0

𝑔
(
𝑎(𝑣1, . . . , 𝑣 𝑗−1, 0, 𝑣 𝑗+1, . . . , 𝑣𝑛)

)
= 𝑓

(
𝑎(𝑣1, . . . , 𝑣 𝑗−1, 0, 𝑣 𝑗+1, . . . , 𝑣𝑛)

)
= 𝑓

(
𝑎(𝑣1, . . . , 𝑣 𝑗−1, 0, 𝑣 𝑗+1, . . . , 𝑣𝑛)

)
= 𝑎 𝑓 (𝑣1, . . . , 𝑣 𝑗−1, 0, 𝑣 𝑗+1, . . . , 𝑣𝑛)
= 0

thus 𝑎(𝑣1, . . . , 𝑣 𝑗−1, 0, 𝑣 𝑗+1, . . . , 𝑣𝑛) ∈ ker(𝑔) and henceℳ0 ⊆ ker(𝑔). From the univer-

sal property of quotients Theorem 5.4.3 we have that 𝑔 induces the uniquely defined

𝑘-linear morphism ℓ :ℳ/ℳ0 → 𝐿 such that the diagram commutes

ℳ 𝐿

ℳ/ℳ0

𝜋

𝑔

ℓ

then 𝑔 = ℓ𝜋 and therefore for all (𝑣1, . . . , 𝑣𝑛) ∈
∏𝑛

𝑖=1
𝑉𝑖 we have

𝑓 (𝑣1, . . . , 𝑣𝑛) = 𝑔(𝑣1, . . . , 𝑣𝑛) = ℓ𝜋(𝑣1, . . . , 𝑣𝑛) = ℓ (𝑣1 ⊗ · · · ⊗ 𝑣𝑛)

then indeed ℓ⊗ = 𝑓 as wanted. ♮
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Corollary 6.1.5 (Multilinear maps are isomorphic to linear maps). Let {𝑉𝑖}𝑝𝑖=1
be a finite

collection of 𝑘-vector spaces, and Mor(𝑉1, . . . , 𝑉𝑝 ; 𝐿) denote the space of multilinear

maps

∏𝑝

𝑖=1
𝑉𝑖 → 𝐿, where 𝐿 is a given 𝑘-vector space. The 𝑘-linear morphism

𝜓: Mor

(
𝑉1, . . . , 𝑉𝑝 ; 𝐿

)
−→Mor

(
𝑝⊗
𝑖=1

𝑉𝑖 , 𝐿

)
, 𝑓

𝜓
↦−→ ℓ

where 𝑓 = ℓ⊗ (as in Theorem 6.1.4), is an isomorphism, so that

Mor

(
𝑉1, . . . , 𝑉𝑝 ; 𝐿

)
≃Mor

(
𝑝⊗
𝑖=1

𝑉𝑖 , 𝐿

)
.

Proof. Let ℓ ∈ Mor(
⊗𝑝

𝑖=1
𝑉𝑖 , 𝐿), then 𝑓 = ℓ⊗ ∈ 𝜓−1(ℓ ) thus 𝜓 is surjective. On the other

hand, if 𝑓 ≠ 0, then ℓ⊗ ≠ 0 and in particular ℓ ≠ 0 hence 𝜓( 𝑓 ) = ℓ ≠ 0, therefore

ker(𝜓) = 0. Since 𝜓 is linear, then 𝜓 is injective. ♮

Dimensions and Bases of Tensor Products
Proposition 6.1.6. Let {𝑉𝑖}𝑖∈𝐼 be a finite collection of 𝑘-vector spaces. If exists 𝑗 ∈ 𝐼
such that 𝑉𝑗 = 0 is the null space then

⊗
𝑖∈𝐼 𝑉𝑖 = 0, that is, the tensor product is the

null space.

Proof. Let 𝑉𝑗 = 0 for some 𝑗 ∈ 𝐼. Consider any 𝑓 ∈ Mor(∏𝑖∈𝐼 𝑉𝑖 , 𝐿), where 𝐿 is

a 𝑘-vector space. Since 𝑓 is linear on 𝑉𝑗 , consider any element (𝑣𝑖)𝑖∈𝐼 ∈
∏

𝑖∈𝐼 𝑉𝑖 then

necessarily 𝑣 𝑗 = 0 and hence 𝑓 ((𝑣𝑖)𝑖∈𝐼) = 0, since𝑉𝑗 has only one element, every element

of the domain of 𝑓 is mapped to zero, which implies in 𝑓 = 0. Consider in particular

the mapping ⊗ ∈ Mor(∏𝑖∈𝐼 𝑉𝑖 ,
⊗

𝑖∈𝐼 𝑉𝑖) (Lemma 6.1.3) then from the latter discussion

we have ⊗ = 0, since

⊗
𝑖∈𝐼 𝑉𝑖 = span(im(⊗)), then we conclude that

⊗
𝑖∈𝐼 𝑉𝑖 = 0. ♮

Proposition 6.1.7 (Tensor product dimension). The dimension of the tensor product

of a finite collection of finite 𝑘-vector spaces {𝑉𝑖}𝑖∈𝐼 is equal to the product of the

dimensions of the vector spaces, that is

dim𝑘

⊕
𝑖∈𝐼

𝑉𝑖 =
∏
𝑖∈𝐼

dim𝑘 𝑉𝑖 .

Proof. Let |𝐼| = 𝑛. If exists a null vector space in the collection, then the dimension

of the tensor product is null, thus the proposition follows. Suppose there is no such

null vector space in the collection, then since

⊗
𝑖∈𝐼 𝑉𝑖 ≃

(⊗
𝑖∈𝐼 𝑉𝑖

)∗
= Mor(

⊗
𝑖∈𝐼 𝑉𝑖 , 𝑘).

From Corollary 6.1.5 we find that

(⊗
𝑖∈𝐼 𝑉𝑖

)∗ ≃ (∏𝑖∈𝐼 𝑉𝑖)∗. Let 𝐵𝑖 = {𝑒(𝑖)𝑗 }
dim𝑘 𝑉𝑖
𝑗=1

be a

basis for 𝑉𝑖 for every 𝑖 ∈ 𝐼, so that for every element 𝑣𝑖 ∈ 𝑉𝑖 we can write it as a

linear combination 𝑣𝑖 =
∑|𝐵1|
𝑗=1

𝑥
(𝑖)
𝑗
𝑒
(𝑖)
𝑗

where 𝑥
(𝑖)
𝑗
∈ 𝑘. Then, for any multilinear map

𝑓 ∈ (∏𝑖∈𝐼 𝑉𝑖)∗ we have

𝑓 (𝑣1, . . . , 𝑣𝑛) = 𝑓
©«
|𝐵1|∑
𝑗1=1

𝑥
(1)
𝑗1
𝑒
(1)
𝑗1
, . . . ,

|𝐵𝑛 |∑
𝑗𝑛=1

𝑥
(𝑛)
𝑗𝑛
𝑒
(𝑛)
𝑗𝑛

ª®¬ =

∑
1⩽ 𝑗𝑖⩽|𝐵𝑖 |,

1⩽𝑖⩽𝑛

𝑥
(1)
𝑗1
. . . 𝑥

(𝑛)
𝑗𝑛
𝑓
(
𝑒
(1)
𝑗1
, . . . , 𝑒

(𝑛)
𝑗𝑛

)
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so that the collection

∏
𝑖∈𝐼 𝐵𝑖 forms a base for (∏𝑖∈𝐼 𝑉𝑖)∗ and therefore

dim𝑘

(∏
𝑖∈𝐼

𝑉𝑖

)∗
=

∏
𝑖∈𝐼
|𝐵𝑖| =

∏
𝑖∈𝐼

dim𝑘 𝑉𝑖

Hence, since

⊕
𝑖∈𝐼 𝑉𝑖 ≃ (

∏
𝑖∈𝐼 𝑉𝑖), we conclude that dim𝑘

⊕
𝑖∈𝐼 𝑉𝑖 =

∏
𝑖∈𝐼 dim𝑘 𝑉𝑖 . ♮

Lemma 6.1.8 (Tensor basis). Given a finite collection of 𝑘-vector spaces {𝑉𝑖}𝑖∈𝐼 and

suppose none of them are null. The basis for the tensor product

⊗
𝑖∈𝐼 𝑉𝑖 is given by

the collection of factorizable tensors {⊗𝑖∈𝐼𝑒(𝑖)𝑗𝑖 }, where 𝑒
(𝑖)
𝑗𝑖
∈ 𝐵𝑖 and 𝐵𝑖 is a basis for 𝑉𝑖 .

What about infinite dimensional vector spaces and infinite tensor products?

Tensor Product of Function Spaces
Proposition 6.1.9. Let {𝑆𝑖}𝑖∈𝐼 be a finite collection of sets. There exists a canonical

isomorphism

𝑘⊕(
∏

𝑖∈𝐼 𝑆𝑖) ≃
⊗
𝑖∈𝐼

𝑘⊕𝑆𝑖 .

Proof. We show that the 𝑘-linear morphism𝜙: 𝑘⊕(
∏

𝑖∈𝐼 𝑆𝑖)→
⊕

𝑖∈𝐼 𝑘
⊕𝑆𝑖

mapping 𝛿(𝑠𝑖)𝑖∈𝐼 ↦→
⊗𝑖∈𝐼𝛿𝑠𝑖 , where 𝛿 is the Kronecker delta function, is an isomorphism. First, from Propo-

sition 5.3.5 we find that {𝛿(𝑠𝑖)𝑖∈𝐼 : (𝑠𝑖)𝑖∈𝐼 ∈
∏

𝑖∈𝐼 𝑆𝑖} is a base for the space 𝑘⊕(
∏

𝑖∈𝐼 𝑆𝑖) and,

in particular, {𝛿𝑠𝑖 : 𝑠𝑖 ∈ 𝑆𝑖} is a base for the space 𝑘⊕𝑆𝑖 . From Lemma 6.1.8 we find that

{⊗𝑖∈𝐼𝛿𝑠𝑖 : 𝑠𝑖 ∈ 𝑆𝑖} is a basis for

⊗
𝑖∈𝐼 𝑘

⊕𝑆𝑖
. ♮

6.2 Canonical Isomorphisms and Tensor Products

Associativity and Commutativity
Proposition 6.2.1 (Associativity). Let 𝑘-vector spaces 𝑉,𝑊, 𝐿, the map

(𝑉 ⊗𝑊) ⊗ 𝐿→ 𝑉 ⊗ (𝑊 ⊗ 𝐿) mapping (𝑣 ⊗ 𝑤) ⊗ ℓ ↦→ 𝑣 ⊗ (𝑤 ⊗ ℓ )

is a canonical isomorphism. Hence for any collection of 𝑘-vector spaces {𝑉𝑖}𝑝𝑖=1
we can

write any arrangement of parenthesis for their tensor product as canonically isomor-

phic to 𝑉1 ⊗ · · · ⊗ 𝑉𝑝 .

Proof. Let 𝐵𝑉 , 𝐵𝑊 , 𝐵𝐿 be basis for the vector spaces 𝑉,𝑊, 𝐿 respectively. Notice that

{(𝑣 ⊗ 𝑤) ⊗ ℓ : (𝑣, 𝑤, ℓ ) ∈ 𝐵𝑉 × 𝐵𝑊 × 𝐿} is a basis for (𝑉 ⊗𝑊) ⊗ 𝐿 and {𝑣 ⊗ (𝑤 ⊗ ℓ ) :

(𝑣, 𝑤, ℓ ) ∈ 𝐵𝑉 × 𝐵𝑊 × 𝐵𝐿} is a basis for𝑉 ⊗ (𝑊 ⊗ 𝐿) (from Lemma 6.1.8). Therefore, the

map (𝑣 ⊗ 𝑤) ⊗ ℓ ↦→ 𝑣 ⊗ (𝑤 ⊗ ℓ ) transforms one base into another, which implies that it

is a canonical isomorphism of the considered spaces. ♮
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Proposition 6.2.2 (Commutativity). Let {𝑉𝑖}𝑝𝑖=1
be a collection of 𝑘-vector spaces, and

𝜎 be any permutation of the numbers {1, . . . , 𝑝}. Define the 𝑘-linear morphism

𝑓𝜎:

𝑝⊗
𝑖=1

𝑉𝑖 →
𝑝⊗
𝑖=1

𝑉𝜎(𝑖) mapping 𝑣1 ⊗ · · · ⊗ 𝑣𝑝 ↦→ 𝑣𝜎(1) ⊗ · · · ⊗ 𝑣𝜎(𝑝)

where 𝑓𝜏𝜎 = 𝑓𝜏 𝑓𝜎, for any permutation 𝜏 on {1, . . . , 𝑝}. Then 𝑓𝜎 is a canonical isomor-

phism.

Proof. Let the map 𝑔𝜎:

∏𝑝

𝑖=1
𝑉𝑖 →

⊗𝑝

𝑖=1
𝑉𝜎(𝑖) such that (𝑣1, . . . , 𝑣𝑝) ↦→ 𝑣𝜎(1)⊗ · · · ⊗ 𝑣𝜎(𝑝).

Then the following diagram commutes∏𝑝

𝑖=1
𝑉𝑖

⊗𝑝

𝑖=1
𝑉𝜎(𝑖)

⊗𝑝

𝑖=1
𝑉𝑖

𝑔𝜎

⊗
𝑓𝜎

Now, by means of Theorem 6.1.4, we find that the morphism 𝑓𝜎 is unique. Notice that

𝑓𝜎 maps the base of

⊗𝑝

𝑖=1
𝑉𝑖 to the base of

⊗𝑝

𝑖=1
𝑉𝜎(𝑖), hence 𝑓𝜎 is an isomorphism. ♮

Duality
Proposition 6.2.3. Let {𝑉𝑖}𝑝𝑖=1

be a collection of finite dimensional 𝑘-vector spaces.

Then the 𝑘-linear morphism

𝑝⊕
𝑖=1

𝑉∗𝑖
∼−→

[
𝑝⊕
𝑖=1

𝑉𝑖

] ∗
mapping 𝑓1 ⊗ · · · ⊗ 𝑓𝑝 ↦−→ (𝑣1 ⊗ · · · ⊗ 𝑣𝑝 ↦→ 𝑓1(𝑣1) . . . 𝑓𝑝(𝑣𝑝))

is a natural isomorphism.

Proof. Since 𝑉𝑖 is finite dimensional for all 𝑖, then 𝑉𝑖 ≃ 𝑉∗
𝑖
, which in particular

yield dim𝑘(𝑉𝑖) = dim𝑘(𝑉∗𝑖 ) (Proposition 5.7.3), then dim𝑘(
⊕

𝑖 𝑉
∗
𝑖
) = dim𝑘(

⊕
𝑖 𝑉𝑖).

Now, since

⊗
𝑖 𝑉𝑖 is finite, then

⊗
𝑖 𝑉𝑖 ≃ (

⊗
𝑖 𝑉𝑖)∗, which implies in dim𝑘(

⊗
𝑖 𝑉𝑖) =

dim𝑘(
⊗

𝑖 𝑉𝑖)∗. From this, dim𝑘(
⊕

𝑉∗
𝑖
) = dim𝑘(

⊕
𝑖 𝑉𝑖)∗. From Corollary 5.6.25 it suf-

fices to show that the map is surjective or injective. Let 𝑓1 ⊗ · · · ⊗ 𝑓𝑝 ≠ 0, then its image

maps to 𝑓1(𝑣1) . . . 𝑓𝑝(𝑣𝑝), which cannot be zero if 𝑣1⊗ · · · ⊗ 𝑣𝑝 ≠ 0. This implies that the

kernel of the 𝑘-linear map shown is zero, hence it’s an isomorphism. ♮

Proposition 6.2.4. Let 𝑉, 𝐿 be finite dimensional 𝑘-vector spaces. Then the 𝑘-linear

morphism

𝑉∗ ⊗ 𝐿 ∼−→Mor(𝑉, 𝐿) mapping 𝑓 ⊗ ℓ ↦−→ (𝑣 ↦→ 𝑓 (𝑣)ℓ )
is a canonical isomorphism.

Proof. Name the above morphism 𝜙. Let dim𝑘(𝑉) = 𝑛 and dim𝑘(𝐿) = 𝑚. Let basis

{𝑣 𝑗}𝑛𝑗=1
and {ℓ𝑖}𝑚𝑖=1

of𝑉 and 𝐿, respectively. Then we find the corresponding dual basis
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{𝑣∗
𝑗
}𝑛
𝑗=1

and {ℓ ∗
𝑖
}𝑚
𝑖=1

. Notice that 𝜙: 𝑣∗
𝑗
⊗ ℓ𝑖 ↦→ (𝑣 ↦→ 𝑣∗

𝑗
(𝑣)ℓ𝑖), hence, given 𝑔 ∈ im(𝜙) ⊆

Mor(𝑉, 𝐿)we can write its matrix representation 𝑘𝑛 → 𝑘𝑚 with factors 𝑎𝑖 𝑗 defined by

𝑔(𝑣𝑘) =
𝑚∑
𝑖=1

𝑎𝑖𝑘ℓ𝑖 = 𝑣
∗
𝑗(𝑣𝑘)ℓ𝑖 =

{
ℓ𝑖 , 𝑘 = 𝑗

0, otherwise

for some (𝑣∗
𝑗
, ℓ𝑖) ∈ {𝑣∗𝑗}𝑚𝑗=1

× {ℓ𝑖}𝑚𝑖=1
, so that 𝑎𝑖𝑘 = 0 for all 𝑘 ≠ 𝑗 and 𝑎𝑖 𝑗 = 1. Notice that

this makes im(𝜙) a basis for Mor(𝑉, 𝐿), transforming a basis into other, which qualifies

𝜙 as an isomorphism. ♮

Notice that if𝑉 is finite dimensional 𝑘-vector space, we can consider the special case

of the endomorphism End(𝑉) ≃ 𝑉∗ ⊗ 𝑉 . Notice that id𝑉 ∈ End(𝑉) is such that, given

𝑣 𝑗 ∈ {𝑣𝑖}𝑛𝑖=1
, where the last is a basis for𝑉 , we have id𝑉(𝑣 𝑗) =

∑𝑛
𝑖=1

𝛿𝑖 𝑗𝑣𝑖 =
∑𝑛
𝑖=1
𝑣∗
𝑖
(𝑣 𝑗)𝑣𝑖 .

This implies in the mapping id𝑉 ↦→
∑𝑛
𝑖=1
𝑣∗
𝑖
⊗ 𝑣𝑖 for the canonical isomorphism.

Definition 6.2.5 (Trace). Given a finite 𝑘-vector space𝑉 , we define the canonical linear

functional

tr:𝑉∗ ⊗ 𝑉 → 𝑘, 𝛼 ⊗ 𝑣 ↦→ 𝛼(𝑣)

Since 𝑉∗ ⊗ 𝑉 ≃ End(𝑉), then we can view the above definition in terms of endo-

morphisms, so that tr: End(𝑉) → 𝑘. For a more computational interpretation, let

dim𝑘 𝑉 = 𝑛 and {𝑣𝑖}𝑛𝑖=1
be a basis for𝑉 . Given a linear endomorphism 𝑓 ∈ End(𝑉), sup-

pose that it’s coefficients in the matrix representation are 𝑎𝑖 𝑗 , so that for any 𝑣𝑘 ∈ {𝑣𝑖}𝑛𝑖=1

we have 𝑓 (𝑣𝑘) =
∑𝑛
𝑖=1

𝑎𝑖 𝑗𝑣𝑖 =
∑𝑛
𝑖,𝑗=1

𝑎𝑖 𝑗𝑣
∗
𝑗
(𝑣𝑘)𝑣𝑖 . From the canonical map described in

Proposition 6.2.4 we find that 𝑓 ↦→ ∑𝑛
𝑖,𝑗=1

𝑎𝑖 𝑗𝑣
∗
𝑗
⊗ 𝑣𝑖 . Now, from the definition of the

trace it follows that

𝑓 ↦−→
𝑛∑

𝑖 , 𝑗=1

𝑎𝑖 𝑗𝑣
∗
𝑗 ⊗ 𝑣𝑖

tr↦−→
𝑛∑
𝑖=1

𝑎𝑖𝑖 .

As one can note, this is the sum of the diagonal of the matrix representation of 𝑓

(which happens to be independent of the base, as can be asserted from the more

abstract definition).

Corollary 6.2.6. Given finite dimensional vector spaces 𝑉, 𝐿,𝑊 we have that

Mor(𝑉 ⊗ 𝐿,𝑊) ≃Mor(𝑉,Mor(𝐿,𝑊)).

Proof. Notice that from Proposition 6.2.4 we find

Mor(𝑉 ⊗ 𝐿,𝑊) ≃ (𝑉 ⊗ 𝐿)∗ ⊗𝑊 ≃ (𝑉∗ ⊗ 𝐿∗) ⊗𝑊
≃ 𝑉∗ ⊗ (𝐿∗ ⊗𝑊)
≃ 𝑉∗ ⊗Mor(𝐿,𝑊)
≃Mor(𝑉,Mor(𝐿,𝑊))

♮
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Corollary 6.2.7 (Tensor product of morphisms). Let {𝑉𝑖}𝑖∈𝐼 and {𝐿𝑖}𝑖∈𝐼 be a finite

collection of finite 𝑘-vector spaces. Then the 𝑘-linear morphism⊗
𝑖∈𝐼

Mor(𝑉𝑖 , 𝐿𝑖) →Mor

(⊗
𝑖∈𝐼

𝑉𝑖 ,
⊗
𝑖∈𝐼

𝐿𝑖

)
, ⊗𝑖∈𝐼 𝑓𝑖 ↦→ (⊗𝑖∈𝐼𝑣𝑖 ↦→ ⊗𝑖∈𝐼 𝑓𝑖(𝑣𝑖))

is a canonical isomorphism.

Proof. First notice that

Mor

(⊗
𝑖

𝑉𝑖 ,
⊗
𝑖

𝐿𝑖

)
≃

(⊗
𝑖

𝑉𝑖

)∗
⊗

(⊗
𝑖

𝐿𝑖

)
≃

(⊗
𝑖

𝑉∗𝑖

)
⊗

(⊗
𝑖

𝐿𝑖

)
≃

⊗
𝑖

𝑉∗𝑖 ⊗ 𝐿𝑖

≃
⊗
𝑖

Mor(𝑉𝑖 , 𝐿𝑖)

from propositions 6.2.4, and 6.2.3, and 6.2.2. Moreover, the map is clearly injective and

surjective, hence an isomorphism. ♮

Contractions, and Raising (Lowering) of Indices
Definition 6.2.8 (Contraction). Let {𝑉𝑖}𝑖∈𝐼 be a finite collection of finite 𝑘-vector spaces

such that for some 𝑘, 𝑗 ∈ 𝐼 we have 𝑉𝑘 = 𝑉 and 𝑉𝑗 = 𝑉∗. We define the contraction of

the tensor product

⊗
𝑖∈𝐼 𝑉𝑖 as the linear mapping⊗

𝑖∈𝐼
𝑉𝑖 −→

⊗
𝑖∈𝐼
𝑖≠𝑖 , 𝑗

𝑉𝑖 mapping ⊗𝑖∈𝐼 𝑣𝑖 ↦−→ 𝑣∗𝑗(𝑣𝑘)(⊗ 𝑖∈𝐼
𝑖≠𝑗 ,𝑘

𝑣𝑖)

where 𝑣∗
𝑗
(𝑣𝑘) = 𝛿 𝑗𝑘 .

Definition 6.2.9 (Raising and Lowering). Let {𝑉𝑖}𝑝𝑖=1
be a finite collection of finite 𝑘-

vector spaces and 𝑔:𝑉𝑖 → 𝑉∗
𝑖

be an isomorphism. Then we define the lowering of the

index 𝑖 as the linear morphism

id⊗ · · · ⊗ 𝑔 ⊗ · · · ⊗ id:

𝑝⊗
𝑖=1

𝑉𝑖 −→ 𝑉1 ⊗ · · · ⊗ 𝑉∗𝑖 ⊗ · · · ⊗ 𝑉𝑝

Moreover, the raising of the index 𝑖 is just defined as the inverse of the above linear

morphism.

Tensor Multiplication Functor
Definition 6.2.10 (Tensor multiplication functor). Let FinVect𝑘 be the category of finite

𝑘-vector spaces together with linear morphisms between them. Given 𝑀 ∈ FinVect𝑘 ,
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we define the functor of tensor multiplication on𝑀 as the mapping of objects 𝐿
𝐹↦−→ 𝐿⊗𝑀

and the mapping of morphisms 𝑓
𝐹↦−→ 𝑓 ⊗ id𝑀 . Hence we have id𝐿 ↦→ id𝐿 ⊗ id𝑀 = id𝐿⊗𝑀

and given composable morphisms 𝑓 , 𝑔 ∈ Mor(FinVect𝑘)we have 𝑓 𝑔 ↦→ ( 𝑓 𝑔) ⊗ id𝑀 =

( 𝑓 ⊗ id𝑀)(𝑔 ⊗ id𝑀) as wanted.

Proposition 6.2.11 (Exactness). Let 0→ 𝑉
𝑓
↣ 𝐿

𝑔
↠ 𝑊 → 0 be a short exact sequence,

where 𝑉, 𝐿,𝑊 ∈ FinVect𝑘 . Let 𝑀 ∈ FinVect𝑘 , then following sequence is exact

0→ 𝑉 ⊗ 𝑀
𝑓⊗id𝑀−−−−−→ 𝐿 ⊗ 𝑀

𝑔⊗id𝑀−−−−−→𝑊 ⊗𝑊 → 0.

Proof. ( 𝑓 ⊗ id𝑀 is injective) Let 𝑣 ⊗ 𝑚 ∈ 𝑉 ⊗ 𝑀 be a non-zero factorizable tensor.

Then in particular 𝑓 (𝑣) ≠ 0, since 𝑓 is injective, then 𝑓 (𝑣) ⊗ 𝑚 is also non-zero, since

𝑚 ≠ 0, hence ker( 𝑓 ⊗ id𝑀) = 0. (𝑔 ⊗ id𝑀 is surjective) Let 𝑤 ⊗ 𝑚 ∈ 𝑊 ⊗ 𝑀 be any

factorizable tensor, then in particular exists ℓ ∈ 𝐿 such that 𝑔(ℓ ) = 𝑤, from the fact that

𝑔 is surjective. Hence we find that ℓ ⊗ 𝑚
𝑔⊗id𝑀↦−−−−−→ 𝑔(ℓ ) ⊗ 𝑚 = 𝑤 ⊗ 𝑚, since the collection

of factorizable tensors form a base for the tensor product, we can conclude that 𝑔⊗ id𝑀

is surjective. (im( 𝑓 ⊗ id𝑀) = ker(𝑔 ⊗ id𝑀)) Suppose ℓ ⊗ 𝑚 ∈ im( 𝑓 ⊗ id𝑀), then in

particular we have ℓ ∈ im 𝑓 and hence ℓ ∈ ker 𝑔 since im 𝑓 = ker 𝑔. This implies in

ℓ ⊗ 𝑚 ∈ ker(𝑔 ⊗ id𝑀) and hence im( 𝑓 ⊗ id𝑀) ⊆ ker(𝑔 ⊗ id𝑀). Take now any tensor

ℓ ′ ⊗ 𝑚′ ∈ ker(𝑔 ⊗ 𝑚) if ℓ ′ ⊗ 𝑚′ = 0 then clearly ℓ ′ ⊗ 𝑚′ ∈ im( 𝑓 ⊗ id𝑀), suppose on the

contrary that ℓ ′ ⊗ 𝑚′ ≠ 0, then certainly ℓ ′ ∈ ker 𝑔 and in particular ℓ ′ ∈ im 𝑓 . Then it

follows that ℓ ′⊗𝑚′ ∈ im( 𝑓 ⊗ id𝑀) and hence ker(𝑔⊗ id𝑀) ⊆ im( 𝑓 ⊗ id𝑀). This finishes

the proof. ♮

6.3 Tensor Algebra
Definition 6.3.1 (Mixed tensor product). Let 𝑉 be a finite dimensional 𝑘-vector space.

We define the 𝑝-covariant and 𝑞-contravariant mixed tensor product on 𝑉 as

𝑇
𝑞
𝑝 (𝑉) = 𝑉∗⊗𝑝 ⊗ 𝑉⊗𝑞

Elements of such object are called tensors of type (𝑝, 𝑞) and rank 𝑝 + 𝑞 on𝑉 . We define

𝑇0

0
(𝑉) = 𝑘.

Example 6.3.2. The following examples illustrate some specific type of mixed tensor

product on 𝑉 , showing that such a construction generalizes various objects in linear

algebra.

(a) Tensors of type (0, 0) are called scalar tensors of rank 0.

(b) Tensors of type (1, 0) are linear functionals on 𝑉 .

(c) Tensors of type (0, 1) are vectors of 𝑉 .

(d) Tensors of type (1, 1) are elements of𝑉∗⊗𝑉 ≃ EndVect𝑘 (𝑉), that is, linear operators.
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(e) Tensors of type (2, 0) are elements of 𝑉∗ ⊗ 𝑉∗ ≃ Mor(𝑉∗∗, 𝑉∗) ≃ Mor(𝑉,𝑉∗) for a

finite dimensional 𝑉 . Moreover 𝑉∗ ⊗ 𝑉∗ ≃ (𝑉 ⊗ 𝑉)∗ ≃ Mor(𝑉,𝑉 ; 𝑘) of multilinear

maps 𝑉 ×𝑉 → 𝑘, that is, the mixed tensors of type (2, 0) are inner products.

Definition 6.3.3 (Mixed tensor multiplication). Let 𝑉 be a finite 𝑘-vector space, then

𝑇
𝑞
𝑝 (𝑉) = 𝑉∗⊗𝑝 ⊗ 𝑉⊗𝑞 ≃ (𝑉⊗𝑝 ⊗ 𝑉∗⊗𝑞)∗,

which in turn is isomorphic to the space of multilinear maps 𝑉𝑝 × 𝑉∗𝑞 → 𝑘. Let

𝑓 :𝑉𝑝 ×𝑉∗𝑞 → 𝑘 and 𝑔:𝑉𝑝′ × 𝑣∗𝑞′ → 𝑘 be multilinear maps, then we define their tensor

multiplication as

𝑓 ⊗ 𝑔:𝑉𝑝+𝑝′ ×𝑉∗(𝑞+𝑞′)→ 𝑘

mapping (𝑣1, . . . , 𝑣𝑝 , 𝑣
′
1
, . . . , 𝑣′𝑝′ , 𝑢

∗
1
, . . . , 𝑢∗𝑝 , 𝑢

′∗
1
, . . . , 𝑢′∗𝑞′) into

𝑓 (𝑣1, . . . , 𝑣𝑝 , 𝑢
∗
1
, . . . , 𝑢∗𝑝)𝑔(𝑣′1, . . . , 𝑣′𝑝′ , 𝑢′∗1 , . . . , 𝑢′∗𝑞′),

where 𝑣𝑖 , 𝑣
′
𝑖
∈ 𝑉 and 𝑢∗

𝑗
, 𝑢′∗

𝑗
∈ 𝑉∗. This shows that clearly this tensor multiplication is,

in general, non-commutative. However, it is

• (Bilinear) For all 𝑎, 𝑏 ∈ 𝑘, then

(𝑎 𝑓1 + 𝑏 𝑓2) ⊗ 𝑔 = 𝑎( 𝑓1 ⊗ 𝑔) + 𝑏( 𝑓2 ⊗ 𝑔) and 𝑓 ⊗ (𝑎𝑔1 + 𝑏𝑔2) = 𝑎( 𝑓 ⊗ 𝑔1) + 𝑏( 𝑓 ⊗ 𝑔2).

• (Associative) ( 𝑓 ⊗ 𝑔) ⊗ ℎ = 𝑓 ⊗ (𝑔 ⊗ ℎ).

Lemma 6.3.4. Let 𝑉 be a 𝑘-vector space. There exists a natural isomorphism

𝑇
𝑞

𝑝+1
(𝑉) ≃ {multilinear maps (𝑉∗)𝑝 ×𝑉 𝑞 → 𝑉}.

Definition 6.3.5 (Tensor algebra). We define the tensor algebra of the 𝑘-vector space𝑉

to be the infinite dimensional 𝑘-vector space

𝑇(𝑉) =
∞⊗

𝑝,𝑞=1

𝑇
𝑞
𝑝 (𝑉).

6.4 Symmetric Tensors and Symmetric Algebra
Definition 6.4.1 (Symmetric tensor). Let𝑉 be a 𝑘-vector space and consider the mixed

tensor product 𝑇
𝑞

0
(𝑉). For every permutation 𝜎 ∈ 𝑆𝑞 (where 𝑆𝑞 denotes the symmetry

group of 𝑞 elements), define the linear transformation

𝑓𝜎:𝑇
𝑞

0
(𝑉) → 𝑇

𝑞

0
(𝑉), ⊗𝑞

𝑖=1
𝑣𝑖

𝑓𝜎↦−→ ⊗𝑞
𝑖=1
𝑣 𝑓𝜎(𝑖).

We say that a tensor 𝑇 ∈ 𝑇𝑞
0
(𝑉) is symmetric if for all 𝜎 ∈ 𝑆𝑞

𝑓𝜎(𝑇) = 𝑇.
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Definition 6.4.2 (Symmetric tensor space). We denote the subspace of𝑇
𝑞

0
(𝑉) consisting

of symmetric tensors as the symmetric space Sym
𝑞(𝑉), also called symmetric power.

Definition 6.4.3 (Symmetrization map). Let 𝑉 be a 𝑘-vector space. We define the pro-

jection operator 𝑆:𝑇
𝑞

0
(𝑉) ↠ Sym

𝑞(𝑉), which maps factorizable tensors to symmetric

tensors.

Proposition 6.4.4 (Symmetric space universal property). Let 𝑉 be a 𝑘-vector space.

Given any 𝑘-vector space 𝐿 and a multilinear symmetric map 𝜇:𝑉 𝑞 → 𝐿, there exists

a unique linear map ℓ : Sym
𝑞(𝑉) → 𝐿 such that ℓ ◦ 𝑆 ◦ ⊗ = 𝜇. That is, the following

diagram commutes

𝑉 𝑞 𝐿

𝑇
𝑞

0
(𝑉) Sym

𝑞(𝑉)

𝜇

⊗

𝑆

ℓ

Proof. Since Sym
𝑞(𝑉) is a subspace of 𝑇

𝑞

0
(𝑉), then we can use Theorem 6.1.4. ♮

Proposition 6.4.5. For char 𝑘 ∤ 𝑞!, we have that

𝑆(𝑇) = 1

𝑞!

∑
𝜎∈𝑆𝑞

𝑓𝜎(𝑇)

and hence 𝑆2 = 𝑆, and 𝑆(𝑇𝑞
0
(𝑉)) = Sym

𝑞(𝑉).

Proof. Let {𝑒𝑖}𝑛𝑖=1
be a basis for 𝑉 . First, notice that if 𝑇 = 𝑇 𝑖1 ,...,𝑖𝑞 ∈ Sym

𝑞(𝑉), then

𝑆(𝑇) = 1

𝑞!

∑
𝜎∈𝑆𝑞

𝑓𝜎(𝑇 𝑖1 ,...,𝑖𝑞 ) =
1

𝑞!

(𝑞!𝑇 𝑖1 ,...,𝑖𝑞 ) = 𝑇

where we assumed that char 𝑘 ∤ 𝑞! in order to obtain a non-zero tensor after the

summation. Hence 𝑆|
Sym

𝑞(𝑇) = id
Sym

𝑞(𝑉) therefore we find that Sym
𝑞(𝑉) ⊆ im 𝑆.

Moreover, let 𝑇 = 𝑇 𝑖1 ,...,𝑖𝑞 ∈ 𝑇𝑞
0
(𝑉) be any factorizable tensor, then its image under 𝑆

is clearly a symmetric tensor, that is 𝑆(𝑇) ∈ Sym
𝑞(𝑉), hence im 𝑆 ⊆ Sym

𝑞(𝑉). This

implies that im 𝑆 = Sym
𝑞(𝑉) for char 𝑘 ∤ 𝑞!. Moreover, 𝑆(𝑆(𝑇)) = 𝑆(𝑇) from the first

argument, since 𝑆(𝑇) ∈ Sym
𝑞(𝑉). ♮

Remark 6.4.6. From now on we are going to assume that char 𝑘 ∤ 𝑞!

Notation 6.4.7. Notice that since im 𝑆 = Sym
𝑞(𝑉) then we can write any symmetrized

tensor in any permutation that we choose, hence, we sometimes use the dot notation

Sym
𝑞(𝑉) ∋ 𝑣1 ⊗ · · · ⊗ 𝑣𝑞 = 𝑣1 · . . . · 𝑣𝑞 . Moreover, if {𝑒𝑖}𝑛𝑖=1

is a basis for𝑉 , one can even

adopt an exponential notation 𝑒1 · . . . · 𝑒𝑞 = 𝑒
𝑎1

1
· . . . · 𝑒 𝑎𝑛𝑞 , where 𝑎𝑖 denotes the number

of times the component 𝑒𝑖 appears in the factorizable tensor, and 𝑎1 + · · · + 𝑎𝑞 = 𝑞.
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Proposition 6.4.8 (Basis for Sym
𝑞(𝑉)). Let {𝑒𝑖}𝑛𝑖=1

be a basis for the 𝑘-vector space 𝑉 .

Then, the collection of tensors {𝑒 𝑎1

1
· . . . · 𝑒 𝑎𝑛𝑛 : 𝑎1 + · · · + 𝑎𝑛 = 𝑞} ⊆ Sym

𝑞(𝑉) form a

basis for the symmetric space Sym
𝑞(𝑉). This implies that Sym

𝑞(𝑉) is the subspace of

𝑘[𝑒1, . . . , 𝑒𝑛] of homogeneous polynomials of total degree 𝑞.

Proof. We know from Lemma 6.1.8 that {⊗𝑞
𝑗=1
𝑒𝑖 𝑗 : 1 ⩽ 𝑖 𝑗 ⩽ 𝑛} forms a basis for 𝑇

𝑞

0
(𝑉).

Since 𝑆 is multilinear, then 𝑆({⊗𝑞
𝑗=1
𝑒𝑖 𝑗}) = Sym

𝑞(𝑉), that is {𝑒 𝑎1

𝑖1
· . . . · 𝑒 𝑎𝑛𝑛 } = {𝑆(⊗

𝑞

𝑗=1
𝑒𝑖 𝑗 )}

generates the space Sym
𝑞(𝑉). Hence, to show that the collection of symmetric tensors

of the basis elements of 𝑉 forms a basis for the symmetric space, we just need to show

their linear independence.

To do that, fix a sequence of indices 𝐼 = (𝑖1, . . . , 𝑖𝑞) such that 1 ⩽ 𝑖1 ⩽ . . . ⩽ 𝑖𝑞 ⩽ 𝑛.

For all 𝑣 𝑗 =
∑𝑛
𝑖=1

𝑎𝑖 𝑗𝑒𝑖 ∈ 𝑉 where 1 ⩽ 𝑗 ⩽ 𝑞, let 𝜇𝐼 :𝑉 𝑞 → 𝑘 be the mapping

𝜇𝐼(𝑣1, . . . , 𝑣𝑛) =
∑
𝜎∈𝑆𝑞

𝑞∏
𝑗=1

𝑒∗𝑖𝜎(𝑗)(𝑣 𝑗).

From the universal property of tensor products we find a unique functional 𝑓𝐼 : Sym
𝑞(𝑉) →

𝑘 such that the diagram commutes:

𝑉 𝑞 𝑘

Sym
𝑞(𝑉)

𝜇𝐼

𝑆◦⊗
𝑓𝐼

hence for all (𝑣1, . . . , 𝑣𝑞) ∈ 𝑇𝑞
0
(𝑉) we have 𝜇(𝑣1, . . . , 𝑣𝑞) = 𝑓 (𝑣1 · . . . · 𝑣𝑛). Notice that if

we have a monotonically increasing sequence of indices 𝐼′ = (𝑖′
1
, . . . , 𝑖′𝑞) ≠ 𝐼, there must

be an index 𝑖′
𝑗0
∈ 𝐼′ such that 𝑖′

𝑗0
≠ 𝑖 𝑗 for all 𝑖 𝑗 ∈ 𝐼. This way we find that for all 𝜎 ∈ 𝑆𝑞

the product

∏𝑞

𝑗=1
𝑒∗
𝑖𝜎(𝑗)
(𝑒𝑖′

𝑗
) = 0 because 𝑒∗

𝑖𝜎(𝑗)
(𝑒𝑖′

𝑗
0

) = 0. In particular, this implies in

𝜇𝐼(𝑒𝑖′
1

, . . . , 𝑒𝑖′𝑞 ) = 𝑓𝐼(𝑒𝑖′
1

· . . . · 𝑒𝑖′𝑞 ) = 0.

Lets compute the value of 𝑓𝐼(𝑒𝑖1 · . . . · 𝑒𝑖𝑞 ). To do this, consider again the fixed

monotone increasing sequence of indices that we started with, that is, 𝐼. Let 𝑄 ⩽ 𝑞

denote the number of distinct values of 𝑖 𝑗 ∈ 𝐼 for 1 ⩽ 𝑗 ⩽ 𝑞. Define now, for all

1 ⩽ 𝑟 ⩽ 𝑄 the index sets 𝐽𝑟 ≔ { 𝑗 : 𝑒𝑖 𝑗 have equal values}. Define 𝑛𝑟 ≔ |𝐽𝑟|, this

construction yields a total of

∏𝑄

𝑟=1
(𝑛𝑟 !) permutations. Notice that all permutations of

𝐽𝑟 ’s are such that 𝜎𝐽𝑟 (𝐼) = 𝐼 (they change the position of equal elements, causing no

alteration of the sequence), we’ll denote such permutations by 𝜎𝐽 ∈ 𝑆𝑞 . Moreover,

these are all the possible permutations that leave 𝐼 unaltered. Hence

𝑓𝐼(𝑒𝑖1 · . . . · 𝑒𝑖𝑞 ) = 𝜇𝐼(𝑒𝑖1 , . . . , 𝑒𝑖𝑞 ) =
∑
𝜎∈𝑆𝑞

𝑞∏
𝑗=1

𝑒∗𝑖𝜎(𝑗)(𝑒 𝑗) =
∑
𝜎𝐽∈𝑆𝑞

𝑞∏
𝑗=1

𝑒∗𝑖𝜎𝐽 (𝑗)
(𝑒 𝑗) =

𝑄∏
𝑟=1

(𝑛𝑟 !) ∈ 𝑘.

Therefore, if char 𝑘 ∤ 𝑞!, we find 𝑓𝐼(𝑒𝑖1 · . . . · 𝑒𝑖𝑞 ) ≠ 0 ∈ 𝑘.
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If there exists a linear relation∑
𝑖′
1
,...,𝑖′𝑞

𝑐𝑖′
1
,...,𝑖′𝑞 (𝑒𝑖′1 · . . . · 𝑒𝑖′𝑞 ) = 0

where the indices are arranged in monotonic increasing order, then we conclude that

0 = 𝑓𝐼
©«

∑
𝑖′
1
,...,𝑖′𝑞

𝑐𝑖′
1
,...,𝑖′𝑞 (𝑒𝑖′1 · . . . · 𝑒𝑖𝑞 )

ª®¬ = 𝑐𝑖′
1
,...,𝑖′𝑞

∑
𝜎∈𝑆𝑞

𝑞∏
𝑗=1

𝑒∗𝑖𝜎(𝑗)(𝑒𝑖′𝑗 )

= 𝑐𝑖1 ,...,𝑖𝑞

∑
𝜎∈𝑆𝑞

𝑞∏
𝑗=1

𝑒∗𝑖𝜎(𝑗)(𝑒 𝑗)

= 𝑐𝑖1 ,...,𝑖𝑞 𝑓𝐼(𝑒𝑖1 · . . . · 𝑒𝑖𝑞 )

hence 𝑐𝑖1 ,...,𝑖𝑞 = 0 since, as proved above, 𝑓𝐼(𝑒𝑖1 · . . . · 𝑒𝑖𝑞 ) ≠ 0. Now, passing 𝐼 through

all the monotone increasing sequences of indices, we prove that all of the coefficients

𝑐𝑖′
1
,...,𝑖′𝑐 vanish, as wanted. This proves that {𝑒 𝑎1

1
· . . . · 𝑒 𝑎𝑛𝑛 : 𝑎1 + · · · + 𝑎𝑛 = 𝑞} is indeed a

linearly independent collection. ♮

Corollary 6.4.9. If 𝑉 is a finite 𝑛-dimensional 𝑘-vector space, then

dim𝑘(Sym
𝑞(𝑉)) =

(
𝑛 + 𝑞 − 1

𝑞

)
Proof. Notice that from Proposition 6.4.8 we have that Sym

𝑞(𝑉) is the subspace of

𝑘[𝑒1, . . . , 𝑒𝑛] consisting of homogeneous polynomials of degree 𝑞. In order to find the

dimension of such space, it is sufficient to find the cardinality |{𝑎1+· · ·+𝑎𝑛 = 𝑞 : 𝑎𝑖 ⩾ 0}|.
A combinatorial way to do so is to define 𝑞 symbols | (which represent the unity 1),

which can be divided into 𝑛 different groups. In order to do so, we introduce 𝑛 − 1

symbols (we are going to use +), which are arranged in order to separate the bars into

the 𝑛 requested groups (example: for 𝑛 = 3 and 𝑞 = 5, one possible arrangement is

| + || + ||). We have a total of 𝑛 + 𝑞 − 1 symbols, and we want 𝑞 of those (the bars) in

order to create the groupings, that is, we have a total of

(
𝑛+𝑞−1

𝑞

)
ways of doing so. This

proves the corollary. ♮

Definition 6.4.10. We define the symmetric algebra over a finite 𝑛-dimensional 𝑘-linear

space 𝑉 to be the object Sym𝑉 =
⊕∞

𝑞=1
Sym

𝑞 𝑉 . This is the space of all polynomials

in 𝑒1, . . . , 𝑒𝑛 variables (where 𝑒1, . . . , 𝑒𝑛 form a basis for 𝑉).

We define multiplication in Sym𝑉 as the map

Sym
𝑞 𝑉 × Sym

𝑑𝑉 → Sym
𝑞+𝑑𝑉, mapping (𝑇1, 𝑇2) ↦→ 𝑆(𝑇1 ⊗ 𝑇2) =:𝑇1𝑇2 (6.1)

Proposition 6.4.11. The multiplicative structure defined by Eq. (6.1) makes Sym𝑉 a

commutative associative 𝑘-algebra. Under the isomorphism of tensors and homo-

geneous polynomials as described in Proposition 6.4.8, this multiplicative structure
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preserves that of the multiplication of polynomials, making such isomorphism an

isomorphism of algebras.

{polynomials in 𝑒1, . . . , 𝑒𝑛} ≃ Sym𝑉

where 𝑒1, . . . , 𝑒𝑛 forms a basis for 𝑉 .

Proof. Let 𝑇1 ∈ 𝑇𝑞
0
(𝑉) and 𝑇2 ∈ 𝑇𝑑

0
(𝑉), then we find that

𝑆(𝑇1) ⊗ 𝑇2 =
©« 1

𝑞!

∑
𝜎∈𝑆𝑞

𝑓𝜎(𝑇1)ª®¬ ⊗ 𝑇2

This way we find that

𝑆(𝑆(𝑇1) ⊗ 𝑇2) = 𝑆 ©« 1

𝑞!

∑
𝜎∈𝑆𝑞

𝑓𝜎(𝑇1) ⊗ 𝑇2

ª®¬ =
1

𝑞!

∑
𝜎∈𝑆𝑞

𝑆( 𝑓𝜎(𝑇1) ⊗ 𝑇2)

=
1

𝑞!

∑
𝜎∈𝑆𝑞

𝑆(𝑇1 ⊗ 𝑇2)

= 𝑆(𝑇1 ⊗ 𝑇2)

where we used the fact that 𝑆( 𝑓𝜎(𝑇1) ⊗ 𝑇2) = 𝑆(𝑇1 ⊗ 𝑇2). Hence, we can conclude in

general that

𝑆(𝑆(𝑇1) ⊗ 𝑇2) = 𝑆(𝑇1 ⊗ 𝑆(𝑇2)) = 𝑆(𝑇1 ⊗ 𝑇2)

If we extend such argument for tensors 𝑇1, 𝑇2, 𝑇3, we find that

(𝑇1𝑇2)𝑇3 = 𝑆(𝑆(𝑇1 ⊗ 𝑇2) ⊗ 𝑇3) = 𝑇1(𝑇2𝑇3) = 𝑆(𝑇1 ⊗ (𝑇1 ⊗ 𝑇3)) = 𝑇1𝑇2𝑇3 = 𝑆(𝑇1 ⊗ 𝑇2 ⊗ 𝑇3)

which proves associativity for the multiplication. From tensor commutativity we find

that

𝑇1𝑇2 = 𝑆(𝑇1 ⊗ 𝑇2) = 𝑆(𝑇2 ⊗ 𝑇1) = 𝑇2𝑇1

Finally, notice that from this multiplicative structure we have that the multiplication

of polynomials is given by (𝑒 𝑎1

1
· · · 𝑒 𝑎𝑛𝑛 )(𝑒𝑏1

𝑛 · · · 𝑒𝑏𝑛𝑛 ) = 𝑒
𝑎1+𝑏1

1
· · · 𝑒 𝑎𝑛+𝑏𝑛𝑛 , which shows the

algebra isomorphism. ♮

6.5 Alternating Tensors and Exterior Powers
Definition 6.5.1 (Alternating map). Let 𝑉 and𝑊 be vector spaces. A multilinear map

𝑓 :𝑉𝑛 → 𝑊 is called alternating if for any (𝑣1, . . . , 𝑣𝑛) ∈ 𝑉𝑛
such that exists 𝑖 < 𝑗 for

which 𝑣𝑖 = 𝑣 𝑗 then

𝑓 (𝑣1, . . . , 𝑣𝑛) = 0.
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Proposition 6.5.2. Let 𝑓 :𝑉𝑛 →𝑊 be an alternating multilinear map. Then if 𝜏 ∈ 𝑆𝑛 is

a transposition, we have

𝑓 (𝑣𝜏(1), . . . , 𝑣𝜏(𝑛)) = − 𝑓 (𝑣1, . . . , 𝑣𝑛).

In general, if 𝜎 ∈ 𝑆𝑛 is any permutation, then

𝑓 (𝑣𝜎(1), . . . , 𝑣𝜎(𝑛)) = sign(𝜎) 𝑓 (𝑣1, . . . , 𝑣𝑛).

Proof. Let 𝜏 be a transposition between indices 𝑖 < 𝑗, then consider

0 = 𝑓 (𝑣1, . . . , 𝑣𝑖 + 𝑣 𝑗 , . . . , 𝑣𝑖 + 𝑣 𝑗 , . . . , 𝑣𝑛) = 𝑓 (𝑣1, . . . , 𝑣𝑖 , . . . , 𝑣𝑖 + 𝑣 𝑗 , . . . , 𝑣𝑛)
+ 𝑓 (𝑣1, . . . , 𝑣 𝑗 , . . . , 𝑣𝑖 + 𝑣 𝑗 , . . . , 𝑣𝑛)

therefore we find

𝑓 (𝑣1, . . . , 𝑣𝑖 , . . . , 𝑣𝑖 + 𝑣 𝑗 , . . . , 𝑣𝑛) = − 𝑓 (𝑣1, . . . , 𝑣 𝑗 , . . . , 𝑣𝑖 + 𝑣 𝑗 , . . . , 𝑣𝑛)
𝑓 (𝑣1, . . . , 𝑣𝑖 , . . . , 𝑣 𝑗 , . . . , 𝑣𝑛) = − 𝑓 (𝑣1, . . . , 𝑣 𝑗 , . . . , 𝑣𝑖 , . . . , 𝑣𝑛)

𝑓 (𝑣1, . . . , 𝑣𝑛) = 𝑓 (𝑣𝜏(1), . . . , 𝑣𝜏(𝑛))

where we used that 𝑓 (𝑣1, . . . , 𝑣𝑖 , . . . , 𝑣𝑖 , . . . , 𝑣𝑛) = 𝑓 (𝑣1, . . . , 𝑣 𝑗 , . . . , 𝑣 𝑗 , . . . , 𝑣𝑛) = 0. This

shows the first proposition. For the second proposition, by means of Proposition 7.2.14

and Proposition 7.2.8 and the above proposition for transpositions, we conclude the

proof. ♮

Remark 6.5.3. Notice that Proposition 6.5.2 is not sufficient to characterize alternating

maps, it is but a necessary property. A counterexample to that is the field with

characteristic 2.

Alternating Tensor and Exterior Powers
Definition 6.5.4 (Alternating tensor). Let 𝑉 be a 𝑘-vector space we define a tensor

𝑇 ∈ 𝑇𝑞
0
(𝑉) to be alternating if for all 𝜎 ∈ 𝑆𝑞 permutation we have

𝑓𝜎(𝑇) = sign(𝜎)𝑇.

We denote byΛ𝑞𝑉 the subspace of𝑇
𝑞

0
(𝑉) of alternating tensors and call it the 𝑞-exterior

power of 𝑉 .

Proposition 6.5.5 (Alternating tensor projection). Let𝑉 be a 𝑘-vector space and char 𝑘 ∤
𝑞!. We define the linear projection operator 𝐴:𝑇

𝑞

0
(𝑉)↠ 𝑇

𝑞

0
(𝑉)where

𝐴(𝑇) = 1

𝑞!

∑
𝜎∈𝑆𝑞

sign(𝜎) 𝑓𝜎(𝑇)

Then 𝐴2 = 𝐴 and im𝐴 = Λ𝑞𝑉 .
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Proof. First we show that im𝐴 ⊆ Λ𝑞𝑉 (we already know that clearly Λ𝑞𝑉 ⊆ im𝐴).

Notice that

𝑓𝜎(𝐴(𝑇)) = 𝑓𝜎
©« 1

𝑞!

∑
𝜏∈𝑆𝑞

sign(𝜏) 𝑓𝜏(𝑇)ª®¬
=

1

𝑞!

∑
𝜏∈𝑆𝑞

sign(𝜏) 𝑓𝜎𝜏(𝑇)

= sign(𝜎) ©« 1

𝑞!

∑
𝜏∈𝒮𝑞

sign(𝜎𝜏) 𝑓𝜎𝜏(𝑇)ª®¬
= sign(𝜎)𝐴(𝑇)

where we’ve used Proposition 7.2.14. Hence we conclude that im𝐴 = Λ𝑞𝑉 . For the

second proposition, notice that

𝐴2 =
1

𝑞!
2

∑
𝜎,𝜏∈𝑆𝑞

sign(𝜎𝜏) 𝑓𝜎𝜏 =
1

𝑞!

∑
𝜌∈𝑆𝑞

sign(𝜌) 𝑓𝜌 = 𝐴

since any permutation 𝜌 ∈ 𝑆𝑞 can be represented in 𝑞! different ways as a form of a

product 𝜎𝜏. This concludes the proof. ♮

Definition 6.5.6 (Exterior multiplication). Let𝑉 be a 𝑘-vector space and 𝑣1 ⊗ · · · ⊗ 𝑣𝑞 ∈
𝑇
𝑞

0
(𝑉). We define the exterior multiplication to be the map

𝐴(𝑣1 ⊗ · · · ⊗ 𝑣𝑞) B 𝑣1 ∧ · · · ∧ 𝑣𝑞

Proposition 6.5.7 (Universal property for exterior power). Let 𝑉 be a 𝑘-vector space.

For all 𝑘-vector spaces 𝐿 together with an alternating multilinear map 𝜇:𝑉 𝑞 → 𝐿, there

exists a unique 𝑘-linear map ℓ :Λ𝑞𝑉 → 𝐿 for which the diagram commutes

𝑉 𝑞 𝐿

𝑇
𝑞

0
(𝑉) Λ𝑞𝑉

⊗

𝜇

𝐴

ℓ

Proof. Since Λ𝑞𝑉 is a subspace of 𝑇
𝑞

0
(𝑉), then we can use the universal property

Theorem 6.1.4. ♮

Now we get some geometric motivation behind the algebraic structure of the exte-

rior power Λ𝑞𝑉 . Alternating tensors 𝑣1 ∧ · · · ∧ 𝑣𝑞 ∈ Λ𝑞𝑉 can be seen as 𝑞-dimensional

oriented volume elements, where by oriented we mean that the transposition of two

edges, say 𝑣 𝑗 and 𝑣𝑖 , implies in a change up to a minus sign of the value (the sign is

what creates the bridge between orientation and wedge product). Notice that when

there are equal edges, the volume becomes malformed and 𝑣1 ∧ · · · ∧ 𝑣𝑞 = 0.
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Proposition 6.5.8. Let 𝑉 be a 𝑛-dimensional 𝑘-vector space, where char 𝑘 ≠ 2. Define

{𝑒𝑖}𝑛𝑖=1
to be a base for 𝑉 . Then the exterior product 𝑒𝑖1 ∧ · · · ∧ 𝑒𝑖𝑞 = 0 if there exists

𝑖𝑎 = 𝑖𝑏 for some 1 ⩽ 𝑎, 𝑏 ⩽ 𝑞.

Proof. Since 𝐴 is an alternating map, we can use Definition 6.5.1 and conclude the

proof. ♮

For the next proposition, we proceed in a similar fashion as in Proposition 6.4.8.

Proposition 6.5.9 (Exterior power Λ𝑞𝑉 basis). Let {𝑒𝑖}𝑛𝑖=1
be a basis for the 𝑘-vector

space 𝑉 . The factorizable tensors

𝐴(𝑒𝑖1 ⊗ · · · ⊗ 𝑒𝑖𝑞 ) = 𝑒𝑖1 ∧ · · · ∧ 𝑒𝑖𝑞

with 1 ⩽ 𝑖1 < · · · < 𝑖𝑞 ⩽ 𝑛 form a basis for the subspace Λ𝑞𝑉 .

Proof. Let 𝐵 ≔ {𝑒𝑖1 ∧ · · · ∧ 𝑒𝑖𝑞 : 1 ⩽ 𝑖1 < · · · < 𝑖𝑞 ⩽ 𝑛}. Since {𝑒𝑖1 ⊗ · · · ⊗ 𝑒𝑖𝑞 : 1 ⩽
𝑖1 < . . . 𝑖𝑞 ⩽ 𝑛} generates 𝑇

𝑞

0
(𝑉) (see Lemma 6.1.8), then clearly 𝐵 does generate the

subspace Λ𝑞𝑉 . We now show that 𝐵 is linearly independent.

Denote by ℐ ≔ {𝐼 = (𝑖 𝑗)𝑞𝑗=1
: 1 ⩽ 𝑖1 < · · · < 𝑖𝑞 ⩽ 𝑛} the set of strictly increasing

𝑞-tuples. For each 𝐼 ≔ (𝑖1, . . . , 𝑖𝑞) ∈ ℐ we define the alternating multilinear map

𝜇𝐼 :𝑉 𝑞 → 𝑘 as

𝜇𝐼(𝑣1, . . . , 𝑣𝑞) =
∑
𝜎∈𝑆𝑞

sign(𝜎)
𝑞∏
𝑗=1

𝑒∗𝑖𝜎(𝑗)(𝑣𝑖 𝑗 )

where {𝑒∗
𝑖 𝑗
}𝑖 𝑗∈𝐼 is the dual of {𝑒𝑖 𝑗}𝑖 𝑗∈𝐼 . Using Proposition 6.5.7 we can define a unique

linear map 𝑓𝐼 :Λ
𝑞𝑉 → 𝑘 such that the diagram commutes

𝑉 𝑞 𝑘

Λ𝑞𝑉

𝜇𝐼

𝐴◦⊗
𝑓𝐼

which implies in 𝜇𝐼(𝑣1, . . . , 𝑣𝑞) = 𝑓𝐼(𝑣1 ∧ · · · ∧ 𝑣𝑞) for all (𝑣1, . . . , 𝑣𝑞) ∈ 𝑉 𝑞
.

Let 𝐼′ = (𝑖′
1
, . . . , 𝑖′𝑞) ∈ ℐ such that 𝐼′ ≠ 𝐼. From the strictly ordering of the indices,

we conclude that there must exists some 1 ⩽ 𝑗0 ⩽ 𝑞 such that 𝑖′
𝑗0
≠ 𝑖 𝑗 for all 1 ⩽ 𝑗 ⩽ 𝑞.

In particular, this implies that

𝑓𝐼(𝑒𝑖′
1

∧ · · · ∧ 𝑒𝑖′𝑞 ) = 𝜇𝐼(𝑒𝑖′
1

, . . . , 𝑒𝑖′𝑞 ) =
∑
𝜎∈𝑆𝑞

sign(𝜎)
𝑞∏
𝑗=1

𝑒∗𝑖𝜎(𝑗)(𝑒𝑖′𝑗 ) = 0

since 𝑒∗
𝑖𝜎(𝑗)
(𝑒𝑖 𝑗

0

) = 0 for all permutations 𝜎 ∈ 𝑆𝑞 and 1 ⩽ 𝑗 ⩽ 𝑞. On the other hand, we

have that

𝑓𝐼(𝑒𝑖1 ∧ · · · ∧ 𝑒𝑖𝑞 ) = 𝜇𝐼(𝑒𝑖1 , . . . , 𝑒𝑖𝑞 ) =
∑
𝜎∈𝑆𝑞

sign(𝜎)
𝑞∏
𝑗=1

𝑒∗𝑖𝜎(𝑗)(𝑒𝑖 𝑗 ) = sign(id)
𝑞∏
𝑗=1

𝑒∗𝑖
id(𝑗)
(𝑒𝑖 𝑗 ) = 1
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Let 𝑐𝑃 ∈ 𝑘 for all 𝑃 ∈ ℐ and consider the vanishing linear combination∑
𝑃∈ℐ

𝑐𝑃(𝑒𝑝1
∧ · · · ∧ 𝑒𝑝𝑞 ) = 0. (6.2)

Then, if we look at its image under the map 𝑓𝐼 for all 𝐼 ∈ ℐ we conclude that

0 = 𝑓𝐼

(∑
𝑃∈ℐ

𝑐𝑃(𝑒𝑝1
∧ · · · ∧ 𝑒𝑝𝑞 )

)
=

∑
𝑃∈ℐ

𝑐𝑃 𝑓𝐼(𝑒𝑝1
∧ · · · ∧ 𝑒𝑝𝑞 ) = 𝑐𝐼

hence we conclude that the linear combination Eq. (6.2) vanishes if and only if each

coefficient vanishes. This concludes that 𝐵 is linearly independent. Hence we’ve

proved that 𝐵 is a basis for Λ𝑞𝑉 . ♮

Proposition 6.5.10. Let 𝑉 be a 𝑛-dimensional 𝑘-vector space. Then we have

dim𝑘 Λ
𝑞𝑉 =

(
𝑛

𝑞

)
Proof. Since we want our indices to be strictly increasing, we are left with 𝑛 elements

of which we want to arrange in groups of 𝑞 elements. Hence the number of possible

arrangements is

(
𝑛
𝑞

)
and this concludes the proof. ♮

Exterior Algebra
Definition 6.5.11 (Exterior algebra). Let 𝑉 be a 𝑘-vector space. We define the exterior

algebra on 𝑉 as

Λ•𝑉 =

∞⊕
𝑞=0

Λ𝑞𝑉

together with a multiplicative structure ∧:Λ𝑑𝑉 ⊗ Λ𝑞𝑉 → Λ𝑑+𝑞𝑉 mapping

(𝑣1 ∧ · · · ∧ 𝑣𝑑) ⊗ (𝑤1 ∧ · · · ∧ 𝑤𝑞)
∧↦−→ 𝑣1 ∧ · · · ∧ 𝑣𝑑 ∧ 𝑤1 ∧ · · · ∧ 𝑤𝑞 .

We interpret Λ0𝑉 = 𝑘.

Proposition 6.5.12. The multiplicative structure of the tensor algebraΛ•𝑉 is associative

and skew-commutative, that is, for all 𝛼 ∈ Λ𝑑𝑉 and 𝛽 ∈ Λ𝑞𝑉we have 𝛼∧𝛽 = (−1)𝑑𝑞𝛽∧𝛼.

Proof. First, we prove that if 𝑇1 ∈ 𝑇𝑞
0
(𝑉) and 𝑇2 ∈ 𝑇𝑑

0
(𝑉) then

𝐴(𝐴(𝑇1) ⊗ 𝑇2) = 𝐴(𝑇1 ⊗ 𝐴(𝑇2)) = 𝐴(𝑇1 ⊗ 𝑇2) (6.3)

Notice that

𝐴(𝑇1) ⊗ 𝑇2 =
1

𝑞!

∑
𝜎∈𝑆𝑞

sign(𝜎) 𝑓𝜎(𝑇1) ⊗ 𝑇2

120



therefore we find

𝐴(𝐴(𝑇1) ⊗ 𝑇2) =
1

𝑞!

∑
𝜎∈𝑆𝑞

sign(𝜎)𝐴( 𝑓𝜎(𝑇1) ⊗ 𝑇2) (6.4)

Moreover, we can construct an injection of the symmetry groups 𝑆𝑞 ↣ 𝑆𝑞+𝑑 via

the mapping 𝜎 ↦→ 𝜎 where 𝜎(𝑖) = 𝜎(𝑖) for all 𝑖 ∈ {1, . . . , 𝑞} and 𝜎(𝑖) = 𝑖 for all

𝑖 ∈ {𝑞 + 1, . . . , 𝑞 + 𝑑}. In particular, we find that 𝑓𝜎(𝑇1) ⊗ 𝑇2 = 𝑓𝜎(𝑇1 ⊗ 𝑇2) and clearly

sign(𝜎) = sign(𝜎). This implies that

𝐴( 𝑓𝜎(𝑇1) ⊗ 𝑇2) = 𝐴( 𝑓𝜎(𝑇1 ⊗ 𝑇2)) = 𝑓𝜎(𝐴(𝑇1 ⊗ 𝑇2)) = sign(𝜎)𝐴(𝑇1 ⊗ 𝑇2) = sign(𝜎)𝐴(𝑇1 ⊗ 𝑇2)
(6.5)

If we substitute Eq. (6.5) in Eq. (6.4) we find

𝐴(𝐴(𝑇1) ⊗ 𝑇2) =
1

𝑞!

∑
𝜎∈𝑆𝑞

sign
2(𝜎)𝐴(𝑇1 ⊗ 𝑇2) = 𝐴(𝑇1 ⊗ 𝑇2).

In the same manner we can show that 𝐴(𝑇1⊗𝐴(𝑇2)) = 𝐴(𝑇1⊗𝑇2). Hence Eq. (6.3) holds.

Let 𝛼 ∈ Λ𝑑𝑉, 𝛽 ∈ Λ𝑞𝑉, 𝛾 ∈ Λ𝑝𝑉 . Notice that from the construction of the product

map ∧ and Eq. (6.3) we find

(𝛼 ∧ 𝛽) ∧ 𝛾 = ∧
(
∧(𝛼 ⊗ 𝛽) ⊗ 𝛾

)
= ∧

(
𝛼 ⊗ ∧(𝛽 ⊗ 𝛾)

)
= (𝛼 ∧ 𝛽) ∧ 𝛾

which proves associativity of the tensor algebra.

We now prove skew-commutativity. Let 𝛼 ∈ Λ𝑑𝑉 and 𝛽 ∈ Λ𝑞𝑉 , and a permutation

𝜎 ∈ 𝑆𝑞+𝑑 such that 𝜎(𝑖) = 𝑞 + 𝑑 − 𝑖 + 1, consisting of 𝑑𝑞 transpositions. Hence we find

that

𝛽 ∧ 𝛼 = 𝑓𝜎(𝛼 ∧ 𝛽) = sign(𝜎)(𝛼 ∧ 𝛽) = (−1)𝑑𝑞(𝛼 ∧ 𝛽).

♮

Proposition 6.5.13. Let 𝑉 be a 𝑘-vector space and {𝑣𝑖}𝑑𝑖=1
⊆ 𝑉 . The vectors 𝑣1, . . . , 𝑣𝑑

are linearly independent if and only if

Λ𝑑𝑉 ∋ 𝑣1 ∧ · · · ∧ 𝑣𝑑 ≠ 0.

Proof. Let {𝑣𝑖}𝑑𝑖=1
be a set of linearly dependent vectors and choose a set of not-all zero

scalars {𝑐𝑖}𝑑𝑖=1
⊆ 𝑘 such that

∑𝑑
𝑖=1

𝑐𝑖𝑣𝑖 = 0. Choose 1 ⩽ 𝑗 ⩽ 𝑑 such that 𝑐 𝑗 ≠ 0 and write

𝑣 𝑗 = −
∑𝑑
𝑖=1

𝑐𝑖
𝑐 𝑗
𝑣𝑖 . Then we find that (recall ℳ0 from our construction of the tensor
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product)

𝑣1 ∧ · · · ∧ 𝑣 𝑗 ∧ · · · ∧ 𝑣𝑑 = 𝑣1 ∧ · · · ∧
(
−

𝑑∑
𝑖=1

𝑐𝑖

𝑐 𝑗
𝑣𝑖

)
∧ · · · ∧ 𝑣𝑑

=

(
𝑣1, . . . ,−

𝑑∑
𝑖=1

𝑐𝑖

𝑐 𝑗
𝑣𝑖 , . . . , 𝑣𝑑

)
+ℳ0

= −
𝑑∑
𝑖=1

𝑐𝑖

𝑐 𝑗
(𝑣1, . . . , 𝑣𝑖 , . . . , 𝑣𝑑) +ℳ0 (6.6)

= −
𝑑∑
𝑖=1

𝑐𝑖

𝑐 𝑗
(𝑣1 ∧ · · · ∧ 𝑣𝑖 ∧ . . . 𝑣𝑑) (6.7)

= 0 (6.8)

Where Eq. (6.8) comes from the fact that we have a repeated 𝑣𝑖 in the wedge product

Eq. (6.7).

Suppose {𝑣𝑖}𝑑𝑖=1
is a linearly independent set. Then from Proposition 5.6.16 we

can build 𝐵 ⊇ {𝑣𝑖}𝑑𝑖=0
such that 𝐵 is a basis for 𝑉 . From Proposition 6.5.9, we find

that ℬ = {𝑣𝑖1 ∧ · · · ∧ 𝑣𝑖𝑑 : 𝑣𝑖 𝑗 ∈ 𝐵 and 𝑖1 < · · · < 𝑖𝑑} is a basis for Λ𝑑𝑉 . In particular,

𝑣1 ∧ · · · ∧ 𝑣𝑑 ∈ ℬ, hence necessarily 𝑣1 ∧ · · · ∧ 𝑣𝑑 ≠ 0. ♮

Therefore one can trivially see that the kernel of the alternating projection 𝐴 is

simply the collection of all decomposable tensors 𝑣1 ⊗ · · · ⊗ 𝑣𝑑 such that the collection

{𝑣1, . . . , 𝑣𝑑} ⊆ 𝑉 is linearly dependent.

Corollary 6.5.14. The kernel of the alternating projection 𝐴:𝑇𝑑
0
(𝑉)↠ Λ𝑑𝑉 is given by

the collection {𝑣1 ⊗ · · · ⊗ 𝑣𝑑 ∈ 𝑇𝑑
0
(𝑉)} such that {𝑣1 ⊗ · · · ⊗ 𝑣𝑑} is linearly dependent on

𝑉 .

Theorem 6.5.15. Let 𝑉 be a finite dimensional 𝑘-vector space. The map 𝜙:Λ𝑑𝑉∗ ≃−→
(Λ𝑑𝑉)∗ given by the mapping

𝑓1 ∧ · · · ∧ 𝑓𝑑
𝜙
↦−→ ©«𝑣1 ∧ · · · ∧ 𝑣𝑑 ↦→

∑
𝜎∈𝑆𝑑

sign(𝜎)
𝑑∏
𝑗=1

𝑓𝑗(𝑣𝜎(𝑗))
ª®¬

is a 𝑘-linear isomorphism.

Proof. First of all, we show that 𝜙 is a 𝑘-linear map. For each 𝑓 ∈ Λ𝑑𝑉∗, define the

map 𝜓 𝑓 ∈ (Λ𝑑𝑉)∗ for which 𝜙( 𝑓 ) = 𝜓 𝑓 . Notice that if 𝑎 ∈ 𝑘 and 𝑓 , 𝑔 ∈ Λ𝑑(𝑉∗), then
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𝜙( 𝑓 + 𝑎𝑔) = 𝜓 𝑓+𝑎𝑔 . Notice that

𝜓 𝑓+𝑎𝑔(𝑣1 ∧ · · · ∧ 𝑣𝑑) =
∑
𝜎∈𝑆𝑑

sign(𝜎)
𝑑∏
𝑗=1

( 𝑓𝑗 + 𝑎𝑔𝑗)(𝑣𝜎(𝑗))

=

∑
𝜎∈𝑆𝑑

sign(𝜎)
𝑑∏
𝑗=1

𝑓𝑗(𝑣𝜎(𝑗)) + 𝑎𝑔𝑗(𝑣𝜎(𝑗))

=

∑
𝜎∈𝑆𝑑

sign(𝜎)
𝑑∏
𝑗=1

𝑓𝑗(𝑣𝜎(𝑗)) + 𝑎
∑
𝜎∈𝑆𝑑

sign(𝜎)
𝑑∏
𝑗=1

𝑔𝑗(𝑣𝜎(𝑗))

= 𝜓 𝑓 + 𝑎𝜓𝑔

Thus 𝜙( 𝑓 + 𝑎𝑔) = 𝜙( 𝑓 ) + 𝑎𝜙(𝑔) and therefore 𝜙 is indeed linear.

Suppose dim𝑉 = 𝑛 and let {𝑒 𝑗}𝑛𝑗=1
be a base for 𝑉 . Define the collection of strictly

increasing 𝑑-tuples ℐ = {𝐼 = (𝑖 𝑗)𝑑𝑗=1
: 1 ⩽ 𝑖1 < · · · < 𝑖𝑑 ⩽ 𝑛}. From Proposition 6.5.9, we

know that {𝑒𝑖1∧· · ·∧𝑒𝑖𝑑 ∈ Λ𝑑𝑉 : 𝑖 𝑗 ∈ 𝐼 and 𝐼 ∈ ℐ } is a basis forΛ𝑑𝑉 . Moreover, {𝑒∗
𝑗
}𝑛
𝑗=1

is

a basis for the dual space𝑉∗, thus the collection {𝑒∗
𝑖1
∧· · ·∧ 𝑒∗

𝑖𝑑
∈ Λ𝑑𝑉 : 𝑖 𝑗 ∈ 𝐼 and 𝐼 ∈ ℐ }

is a basis for Λ𝑑𝑉∗.
Let 𝐼 ∈ ℐ be any strictly increasing 𝑑-tuple, and define the notation 𝑒∗

𝐼
≔ 𝑒∗

𝑖1
∧· · ·∧𝑒∗

𝑖𝑑
,

so that

𝑒∗𝐼
𝜙
↦−→ 𝜓𝑒∗

𝐼
(𝑣1∧· · ·∧𝑣𝑑) =

∑
𝜎∈𝑆𝑑

sign(𝜎)
𝑑∏
𝑗=1

𝑒∗𝑖 𝑗 (𝑣𝜎(𝑗)) =
{

1, if 𝑣1 ∧ · · · ∧ 𝑣𝑑 = 𝑒𝑖1 ∧ · · · ∧ 𝑒𝑖𝑑
0, otherwise

(6.9)

Notice that we mapped a basis of Λ𝑑𝑉∗ into a basis of (Λ𝑑𝑉)∗, since any map 𝜓 ∈
(Λ𝑑𝑉)∗ can be obtained by a unique linear combination of maps of the collection

{𝜓𝑒∗
𝐼
∈ (Λ𝑑𝑉)∗ : 𝐼 ∈ ℐ }— which, together with Eq. (6.9), makes it a basis. This shows

that the morphism 𝜙 establishes an isomorphism Λ𝑑𝑉∗ ≃ (Λ𝑑𝑉). ♮

Add cool propositions for the exterior algebra: the Hodge Star Operator; the

isomorphisms

Sym
𝑑(𝑉 ⊕𝑊) ≃

𝑑⊕
𝑖=0

Sym
𝑖(𝑉) ⊗ Sym

𝑑−𝑖(𝑊)

Λ𝑑(𝑉 ⊕𝑊) ≃
𝑑⊕
𝑖=0

Λ𝑖(𝑉) ⊗ Λ𝑑−𝑖(𝑊)

After creating sections on affine and projective geometry, introduce grassmanian

varieties.
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6.6 Determinants
Definition 6.6.1. Let 𝑓 :𝑉 → 𝐿 be a 𝑘-linear map. The map 𝑓 naturally induces a

𝑘-linear pullback 𝑓 ∧𝑑:Λ𝑑𝑉 → Λ𝑑𝐿 which is defined by

𝑣1 ∧ · · · ∧ 𝑣𝑑
𝑓 ∧𝑑

↦−−→ 𝑓 (𝑣1) ∧ · · · ∧ 𝑓 (𝑣𝑑).

Proposition 6.6.2. Let 𝑓 :𝑉 → 𝑊 and 𝑔:𝑊 → 𝐿 be 𝑘-linear maps. Then the composi-

tion 𝑔 𝑓 :𝑉 → 𝐿 satisfy

(𝑔 𝑓 )∧𝑑 = 𝑔∧𝑑 𝑓 ∧𝑑 .

Proof. Notice that for any given 𝑣 = 𝑣1 ∧ · · · ∧ 𝑣𝑑 ∈ Λ𝑑𝑉 we have

(𝑔 𝑓 )∧𝑑(𝑣) = (𝑔 𝑓 )(𝑣1) ∧ · · · ∧ (𝑔 𝑓 )(𝑣𝑑) = 𝑔( 𝑓 (𝑣1)) ∧ · · · ∧ 𝑔( 𝑓 (𝑣2)) = (𝑔∧𝑑 𝑓 ∧𝑑)(𝑣).

Therefore (𝑔 𝑓 )∧𝑑 = 𝑔∧𝑑 𝑓 ∧𝑑. ♮

Definition 6.6.3 (Determinant). Let 𝑉 be an 𝑛-dimensional 𝑘-vector space and 𝑓 ∈
End(𝑉). Since Λ𝑛𝑉 is 1-dimensional, the induced map 𝑓 ∧𝑛 ∈ End(Λ𝑛𝑉) is a multipli-

cation by some scalar inΛ𝑛𝑉 . We define the determinant of the 𝑘-linear endomorphism

𝑓 as the element det 𝑓 ∈ Λ𝑛𝑉 such that

𝑓 ∧𝑛(𝜔) = det( 𝑓 )𝜔.

Proposition 6.6.4 (Composition determinant). Let 𝑓 , 𝑔 ∈ End(𝑉) where 𝑉 is a 𝑛-

dimensional vector space, then det(𝑔 𝑓 ) = det 𝑔 det 𝑓 .

Proof. From Proposition 6.6.2, (𝑔 𝑓 )∧𝑛(𝜔) = 𝑔∧𝑛( 𝑓 ∧𝑛(𝜔)). From Definition 6.6.3,

det(𝑔 𝑓 )𝜔 = det(𝑔)det( 𝑓 )𝜔,

thus det(𝑔 𝑓 ) = det(𝑔)det( 𝑓 ). ♮

Proposition 6.6.5 (Identity determinant). Let𝑉 be an 𝑛-dimensional vector space. The

identity map id𝑉 ∈ End(𝑉) is such that det(id𝑉) = 1.

Proof. Notice that id
∧𝑛
𝑉 (𝜔) = 𝜔 and from Definition 6.6.3 we have id

∧𝑛
𝑉 (𝜔) = det(id𝑉)𝜔.

Hence det(id𝑉) = 1. ♮

Proposition 6.6.6 (Dual determinant). Let 𝑉 be a finite dimensional vector space and

𝑓 ∈ End(𝑉). Then det 𝑓 = det 𝑓 ∗, where 𝑓 ∗ is the dual map of 𝑓 .

Proof. ♮

Dual determinant proof

Lemma 6.6.7. Let 𝑉 be an 𝑛-dimensional vector space. If 𝑓 ∈ End(𝑉) is not surjective,

then det 𝑓 = 0.
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Proof. Let im 𝑓 = 𝑊 ⊆ 𝑉 . Since 𝑓 is not surjective, then 𝑊 is a subspace with

dim(𝑊) < 𝑛, hence Λ𝑛𝑊 = 0 because any collection with a number of elements

greater than dim(𝑊) is linearly dependent on 𝑊 , and from Proposition 6.5.13 their

wedge product is equal to zero. Given any non-zero 𝜔 = 𝑣1 ∧ · · · ∧ 𝑣𝑛 ∈ Λ𝑛𝑉 we find

that 𝑓 ∧𝑛(𝜔) = 𝑓 (𝑣1)∧· · ·∧ 𝑓 (𝑣𝑛) ∈ Λ𝑛𝑊 = 0, since im 𝑓 =𝑊 , and therefore 𝑓 ∧𝑛(𝜔) = 0.

Moreover, since 𝑓 ∧𝑛(𝜔) = det( 𝑓 )𝜔 and 𝜔 ≠ 0, it follows that det( 𝑓 ) = 0. ♮

Proposition 6.6.8 (Isomorphism determinant). Let 𝑓 ∈ End(𝑉) where 𝑉 is an 𝑛-

dimensional vector space. Then 𝑓 is an isomorphism if and only if det 𝑓 ≠ 0.

Proof. Let {𝑣1, . . . , 𝑣𝑛} be a basis for 𝑉 . From Proposition 6.5.13, 𝑣 = 𝑣1 ∧ · · · ∧ 𝑣𝑛 ≠ 0.

Suppose first that 𝑓 is an isomorphism, then 𝑓 ∧𝑛(𝑣) = det( 𝑓 )𝑣 implies det 𝑓 ≠ 0.

Suppose now that det 𝑓 ≠ 0. From Lemma 6.6.7 we find that 𝑓 is surjective. Let

𝜔 ∈ Λ𝑛𝑉 be such that 𝑓 ∧𝑛(𝜔) = 0, then from the fact that 𝑓 ∧𝑛(𝜔) = det( 𝑓 )𝜔 and

det 𝑓 ≠ 0, it follows that 𝜔 = 0. Hence ker 𝑓 ∧𝑛 = 0 and therefore 𝑓 ∧𝑛 is injective. This

proves that 𝑓 ∧𝑛 is an isomorphism. ♮

Proposition 6.6.9 (Matrix determinant). Let𝑉 be an 𝑛-dimensional 𝑘-vector space and

𝑓 ∈ End(𝑉). Let𝐴: 𝑘𝑛 → 𝑘𝑛 be the matrix representation of 𝑓 and 𝑎𝑖 , 𝑗 ∈ 𝑘 be the entries

of 𝐴, where 1 ⩽ 𝑖 , 𝑗 ⩽ 𝑛. Then

det𝐴 =

∑
𝜎∈𝑆𝑛

sign(𝜎)𝑎𝜎(1),1𝑎𝜎(2),2 . . . 𝑎𝜎(𝑛),𝑛 .

Proof. Let me show you something interesting. Suppose 𝑓 :𝑉 → 𝐿 (the specified

case for Proposition 6.6.9 is 𝐿 = 𝑉). I want to show you that in order to define the

determinant we’ll need 𝑓 to be an endomorphism in 𝑉 , otherwise the determinant

cannot be fully well-defined. Let 𝐴 = [𝑎𝑖 , 𝑗]with respect to the basis {𝑣 𝑗}𝑛𝑗=1
of𝑉 . From

Definition 6.6.3 we have that

det(𝐴)𝑣1 ∧ · · · ∧ 𝑣𝑛 = 𝐴𝑣1 ∧ · · · ∧ 𝐴𝑣𝑛

since 𝐴𝑣 𝑗 =
∑𝑛
𝑖=1

𝑎𝑖 , 𝑗𝑣𝑖 (see Definition 5.2.3) then we can substitute to the previous

equation to obtain

det(𝐴)𝑣1 ∧ · · · ∧ 𝑣𝑛 =

𝑛∑
𝑖1=1

𝑎𝑖1 ,1𝑣𝑖1 ∧ · · · ∧
𝑛∑

𝑖𝑛=1

𝑎𝑖𝑛 ,𝑛𝑣𝑖𝑛 =
∑

1⩽𝑖1 ,...,𝑖𝑛⩽𝑛

𝑛∏
𝑗=1

𝑎𝑖 𝑗 , 𝑗(𝑣𝑖1 ∧ · · · ∧ 𝑣𝑖𝑛 ).

(6.10)

However, notice that if 𝑖 𝑗 = 𝑖 𝑗′ for some 1 ⩽ 𝑗 , 𝑗′ ⩽ 𝑛 then 𝑣𝑖1 ∧ · · · ∧ 𝑣𝑖𝑛 = 0, from

antisymmetry. Therefore we can write Eq. (6.10) as a sum of permutations of the set

{𝑖1, . . . , 𝑖𝑛} = {1, . . . , 𝑛}, that is

det(𝐴)𝑣1 ∧ · · · ∧ 𝑣𝑛 =

∑
𝜎∈𝑆𝑛

𝑎𝜎(1),1 . . . 𝑎𝜎(𝑛),𝑛(𝑣𝜎(1) ∧ · · · ∧ 𝑣𝜎(𝑛))

=

∑
𝜎∈𝑆𝑛

sign(𝜎)𝑎𝜎(1),1 . . . 𝑎𝜎(𝑛),𝑛(𝑣1 ∧ · · · ∧ 𝑣𝑛).
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Since 𝑣1 ∧ · · · ∧ 𝑣𝑛 ≠ 0, it follows that

det𝐴 =

∑
𝜎∈𝑆𝑛

sign(𝜎)𝑎𝜎(1),1𝑎𝜎(2),2 . . . 𝑎𝜎(𝑛),𝑛 .

♮

Corollary 6.6.10. Another equivalent way of writing the determinant of 𝐴 is

det𝐴 =

∑
𝜎∈𝑆𝑛

sign(𝜎)𝑎
1,𝜎(1)𝑎2,𝜎(2) . . . 𝑎𝑛,𝜎(𝑛).

Proposition 6.6.11. Let 𝑉 be an 𝑛-dimensional 𝑘-vector space, and (𝑣1, . . . , 𝑣𝑛) be a

basis for 𝑉 , and 𝜔 ∈ Λ𝑛𝑉 . Define, for every 1 ⩽ 𝑖 ⩽ 𝑛 the elements 𝑤𝑖 ≔
∑𝑛
𝑗=1

𝛼𝑖 𝑗𝑣 𝑗 .
Then

𝜔(𝑤1, . . . , 𝑤𝑛) = det[𝛼𝑖 𝑗]𝜔(𝑣1, . . . , 𝑣𝑛)

where [𝛼𝑖 𝑗] is the matrix composed of the coefficients 𝛼𝑖 𝑗 ∈ 𝑘 for 1 ⩽ 𝑖 , 𝑗 ⩽ 𝑛.

Proof. This is simply an application of the pullback operation, notice that every 𝑖-th

argument can be seen as the 𝑖-th row of the following resulting vector
∑𝑛
𝑗=1

𝛼1𝑗𝑣 𝑗
...∑𝑛

𝑗=1
𝛼𝑛𝑗𝑣 𝑗

 =


𝛼11 . . . 𝛼1𝑛
...

. . .
...

𝛼𝑛1 . . . 𝛼𝑛𝑛



𝑣1

...

𝑣𝑛

 .
Thus 𝜔(𝑤1, . . . , 𝑤𝑛) = [𝛼𝑖 𝑗]∧𝑛(𝑤(𝑣1, . . . , 𝑣𝑛)) = det[𝛼𝑖 𝑗]𝜔(𝑣1, . . . , 𝑣𝑛). ♮

Definition 6.6.12 (Orientation). Let𝑉 be an 𝑛-dimensional 𝑘-vector space, and letℬ be

the collection of all basis for the vector space 𝑉 . We define the following equivalence

relation on ℬ: two basis 𝐵, 𝐵′ ∈ ℬ are equivalent said to be equivalent, 𝐵 ∼ 𝐵′, if

and only if the change of basis matrix 𝐶 from 𝐵 to 𝐵′ (or vice versa) has det𝐶 > 0.

Since every change of basis matrix is an isomorphism, det𝐶 can only be either strictly

positive or strictly negative, therefore, the quotient ℬ/∼ splits the basis of 𝑉 into two

distinguished classes, both classes are said to define an orientation for 𝑉 . If [𝑣] is an

orientation class for 𝑉 , we commonly refer to the opposite orientation as −[𝑣].
If 𝜙:𝑉 ≃−→ 𝐿 is an isomorphism of 𝑘-vector spaces, and [𝑣] is an orientation for 𝑉 ,

then [𝜙𝑣] is the induced orientation for𝑊 .

An oriented 𝑘-vector space is a pair (𝑉, [𝑣]), where 𝑉 is a 𝑘-vector space and [𝑣]
is an orientation class for 𝑉 . An isomorphism between oriented 𝑘-vector spaces

𝜓: (𝑉, [𝑣]) ≃−→ (𝐿, [ℓ ]) isa said to be orientation preserving if [𝜓𝑣] = [ℓ ], otherwise we

say that 𝜓 is order reversing.

Definition 6.6.13 (Standard euclidean orientation). The standard orientation on the eu-

clidean space R𝑛
is given by the basis [𝑒1, . . . , 𝑒𝑛] where 𝑒 𝑗 = (𝛿𝑖 𝑗)𝑛𝑖=1

is the 𝑗-th unit

vector of R𝑛
.
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Corollary 6.6.14. Let 𝑉 be an 𝑛-dimensional 𝑘-vector space endowed with an inner

product ⟨−,−⟩:𝑉×𝑉 → 𝑘. Let 𝜔 ∈ Λ𝑛𝑉 be non-zero. Then, there is a unique orientation
𝜇 for𝑉 , for which 𝜇 = [𝑣1, . . . , 𝑣𝑛] if and only if 𝜔(𝑣1, . . . , 𝑣𝑛) > 0 — where (𝑣1, . . . , 𝑣𝑛)
is a basis for 𝑉 .

Proof. Let 𝐵 ≔ (𝑣 𝑗)𝑛𝑗=1
and 𝐵′ ≔ (𝑤 𝑗)𝑛𝑗=1

be orthonormal basis for 𝑉 with respect to

the given inner product, and 𝐶 be the change of basis matrix from 𝐵 to 𝐵′ — that is,

𝐶 is composed of entries 𝑎𝑖 𝑗 ∈ 𝑘 such that 𝑤𝑖 =
∑𝑛
𝑗=1

𝑎𝑖 𝑗𝑣 𝑗 . Since the given basis are

orthonormal, we have

𝛿𝑖 𝑗 = ⟨𝑤𝑖 , 𝑤 𝑗⟩ =
𝑛∑

𝑘,ℓ=1

𝑎𝑖𝑘𝑎 𝑗ℓ⟨𝑣𝑘 , 𝑣ℓ ⟩ =
𝑛∑
𝑘=1

𝑎𝑖𝑘𝑎 𝑗𝑘 ≔ 𝑏𝑖 𝑗 .

Notice that [𝑏𝑖 𝑗]𝑛𝑖,𝑗=1
is simply the matrix resulting from the product of 𝐶 with its

transpose 𝐶∗ — therefore, 𝐶𝐶∗ = id and hence det𝐶 = ±1. Regarding Proposi-

tion 6.6.11, we find that, if 𝜔 ∈ Λ𝑛𝑉 is such that 𝜔(𝑣1, . . . , 𝑣𝑛) = ±1, then necessarily

𝜔(𝑤1, . . . , 𝑤𝑛) = ±1 — for instance, if (𝑣1, . . . , 𝑣𝑛) is chosen so that 𝜔(𝑣1, . . . , 𝑣𝑛) = 1,

for some 𝜔 ∈ Λ𝑛𝑉 , then this 𝜔 is unique.

If𝜇 is an orientation for𝑉 , it’s clear that if𝜇 = [𝑣1, . . . , 𝑣𝑛] if and only if𝜔(𝑣1, . . . , 𝑣𝑛) >
0 (the 𝜔 ∈ Λ𝑛𝑉 is unique by our last discussion), then 𝜇 is necessarily a unique orien-

tation with such property. ♮

Definition 6.6.15 (Volume element). If 𝑉 is a 𝑛-dimensional vector space endowed

with an inner product ⟨−,−⟩:𝑉 × 𝑉 → 𝑘. Let 𝜇 be an orientation for 𝑉 . The form

𝜔 ∈ Λ𝑛𝑉 , described in Corollary 6.6.14, is called the volume element of 𝑉 determined

by the inner product ⟨−,−⟩ and orientation 𝜇.

Useful determinant theorems, matrix determinant, etc.

Write about inverse matrix calculations
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Chapter 7

Group Theory

7.1 Welcome to the Group
Lets recall Definition 1.2.16 and demystify it in the following definition.

Definition 7.1.1 (Group). A group 𝐺 is a groupoid Gwith one object ∗. The elements of

the group are the morphisms AutG(∗). From the axioms contained in Definition 1.2.1,

the graph 𝐺 contains the following data:

(G1) An identity element 𝑒 = id∗.

(G2) An associative binary operation𝐺×𝐺→ 𝐺, commonly denoted by juxtaposition.

(G3) For all 𝑔 ∈ 𝐺 there exists an inverse element 𝑔−1 ∈ 𝐺 such that 𝑔𝑔−1 = 𝑒 = 𝑔−1𝑔.

Some Basic Laws
The following three propositions where already proved in a more general setting, but

I’ll rewrite them in this particular context for the sake of completeness.

Proposition 7.1.2. The identity element of a group is unique.

Proof. See Corollary 1.2.5. ♮

Proposition 7.1.3. The inverse of an element of a group is unique.

Proof. See Proposition 1.2.7. ♮

Proposition 7.1.4. Let 𝐺 be a group and 𝑔, ℎ ∈ 𝐺, then (𝑔ℎ)−1 = ℎ−1𝑔−1
.

Proof. (ℎ−1𝑔−1)(𝑔ℎ) = ℎ−1(𝑔−1𝑔)ℎ = ℎ−1𝑒ℎ = ℎ−1ℎ = 𝑒 hence ℎ−1𝑔−1 = (𝑔ℎ)−1
. ♮

Proposition 7.1.5 (Cancellation). Let 𝐺 be a group and elements 𝑎, 𝑏, 𝑐 ∈ 𝐺. If 𝑎𝑐 = 𝑏𝑐

then 𝑎 = 𝑏.

Proof. Notice that 𝑎 = 𝑎𝑒 = (𝑎𝑐)𝑐−1 = (𝑏𝑐)𝑐−1 = 𝑏𝑒 = 𝑏. ♮
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Proposition 7.1.6. Let 𝐺 be a group. If 𝑔 ∈ 𝐺, then the collection {𝑔ℎ : ℎ ∈ 𝐺} is equal

to 𝐺.

Proof. Denote 𝐺′ ≔ {𝑔ℎ : ℎ ∈ 𝐺}. Clearly we have 𝐺′ ⊆ 𝐺. On the other hand, if ℓ ∈ 𝐺,

the element 𝑔(𝑔−1ℓ ) = 𝑒ℓ = ℓ ∈ 𝐺′, hence 𝐺 ⊆ 𝐺′. Thus 𝐺 = 𝐺′. ♮

Definition 7.1.7 (Commutative group). A group 𝐺 is said to be commutative (or

abelian) if for all 𝑔, ℎ ∈ 𝐺 we have 𝑔ℎ = ℎ𝑔.

Corollary 7.1.8. Let 𝐺 be a group such that for all 𝑔 ∈ 𝐺, 𝑔2 = 𝑒. Then 𝐺 is a

commutative group.

Proof. Let 𝑔, ℎ ∈ 𝐺 be any elements, then (𝑔ℎ)(ℎ𝑔) = 𝑔ℎ2𝑔 = 𝑔𝑒𝑔 = 𝑔2 = 𝑒 = (𝑔ℎ)(𝑔ℎ)
and from cancellation law we find that 𝑔ℎ = ℎ𝑔. ♮

Subgroups
Definition 7.1.9 (Subgroup). Let 𝐺 be a group. A subgroup 𝐻 of 𝐺 is a collection

of elements 𝐻 ⊆ 𝐺 containing the identity element, and such that composition of

elements of 𝐻 and inverses are closed in 𝐻 — that is, given 𝑥, 𝑦 ∈ 𝐻, then 𝑥𝑦 ∈ 𝐻
and 𝑥−1, 𝑦−1 ∈ 𝐻. We say that a subgroup is trivial if it consists only of the identity

element.

Corollary 7.1.10 (Intersection of subgroups). Let 𝐺 be a group and consider a non-

empty collection of subgroups {𝐺 𝑗}𝑗∈𝐽 . Then, the intersection

⋂
𝑗∈𝐽 𝐺 𝑗 together with

the group operation inherited from 𝐺 is a subgroup of 𝐺.

Proof. Let 𝑔 ∈ ⋂
𝑗∈𝐽 𝐺 𝑗 be any element, then 𝑔 ∈ 𝐺 𝑗 for every 𝑗 ∈ 𝐽, and since 𝐺 𝑗 is

a subgroup, then 𝑔−1 ∈ 𝐺 𝑗 — that is, 𝑔−1 ∈ ⋂
𝑗∈𝐽 𝐺 𝑗 . Let 𝑔, ℎ ∈ ⋂

𝑗∈𝐽 𝐺 𝑗 be any two

elements, then 𝑔ℎ ∈ 𝐺 𝑗 for each 𝑗 ∈ 𝐺 and hence 𝑔ℎ ∈ ⋂
𝑗∈𝐽 𝐺 𝑗 . ♮

The following notion will accompany us for the whole journey, the idea of taking

elements of any set and inducing a group structure from it, using the set elements to

generate this new group.

Definition 7.1.11 (Groups and generators). Let 𝑆 be a set and 𝐺 be a group. If every

element of 𝐺 can be written as the product of finitely many powers of the elements of

𝑆, then we say that 𝐺 is generated by 𝑆, and the elements 𝑠 ∈ 𝑆 are called generators

of 𝐺. Moreover, if 𝑆 is finite, we naturally say that 𝐺 is finitely generated. Sometimes

we denote this by 𝐺 = ⟨𝑆⟩. On the other hand, if 𝜑: 𝑆 → 𝐺 is a set-function, 𝐺 is said

to be generated by 𝜑 if the image im 𝜑 generates the group 𝐺.

Orders
Definition 7.1.12 (Order of an element). Let 𝐺 be a group and 𝑔 ∈ 𝐺 be any element.

We say that 𝑔 has finite order if there exists 𝑛 ∈ Z>0 such that 𝑔𝑛 = 𝑒. The order |𝑔|
of the element 𝑔 is defined as the smallest such positive integer. If 𝑔 does not have a

finite order, it is common to write |𝑔| = ∞.
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Lemma 7.1.13. Let 𝐺 be a group and 𝑔 ∈ 𝐺 be an element with finite order. Then

𝑔𝑛 = 𝑒 for some 𝑛 ∈ Z>0 if and only if |𝑔| divides 𝑛.

Proof. Since |𝑔| ⩽ 𝑛, define 𝑚 ∈ Z>0 such that 𝑛 − 𝑚|𝑔| ⩾ 0 and 𝑛 − (𝑚 + 1)|𝑔| < 0.

Define 𝑟 = 𝑛 − 𝑚|𝑔| to be the remainder, hence 𝑟 < |𝑔|. Our goal is to show that 𝑟 = 0.

Notice that 𝑔𝑟 = 𝑔𝑛𝑔−|𝑔|𝑚 = 𝑒𝑒−𝑚 = 𝑒, which can only be the case for 𝑟 = 0, since |𝑔| is
defined to be the least positive integer such that 𝑔|𝑔| = 𝑒. This proves that 𝑚|𝑔| = 𝑛.

For the second part, suppose 𝑛 is a multiple of |𝑔| and denote it by 𝑚|𝑔| = 𝑛. Then

𝑔𝑚|𝑔| = 𝑒𝑚 = 𝑒. ♮

Definition 7.1.14 (Order of a group). Let 𝐺 group of finite number of elements. We

define the order of 𝐺 to be the number of its elements and denote it by |𝐺|. If 𝐺 is an

infinite group, then |𝐺| = ∞.

Order of Products

Proposition 7.1.15 (Order of the power). Let 𝐺 be a group and 𝑔 ∈ 𝐺 be an element

with finite order. Then for all 𝑚 ∈ Z⩾0 the element 𝑔𝑚 has finite order. For 𝑚 = 0 we

have |𝑔𝑚| = 1, for 𝑚 > 0 we have

|𝑔𝑚| = lcm(𝑚, |𝑔|)
𝑚

=
|𝑔|

gcd(𝑚, |𝑔|) .

Proof. From divisibility arguments, we have lcm(𝑎, 𝑏)gcd(𝑎, 𝑏) = 𝑎𝑏 for integers 𝑎 and

𝑏, hence the second equality is justified. We prove the equality |𝑔𝑚| = lcm(𝑚,|𝑔|)
𝑚 . For the

sake of notation, let 𝑑 ≔ |𝑔𝑚|. Notice that 𝑔𝑚𝑑 = 𝑒 and hence |𝑔| divides 𝑚𝑑. Since 𝑑

is the least positive integer with such property, it follows that 𝑚𝑑 is the least common

multiple of 𝑚 and |𝑔|. Therefore 𝑚|𝑔𝑚| = lcm(𝑚, |𝑔|), which proves the equation. ♮

Proposition 7.1.16. Let 𝐺 be a group, then for any 𝑔, ℎ ∈ 𝐺 we have |𝑔ℎ| = |ℎ𝑔|.

Proof. First, let 𝑥, 𝑦 ∈ 𝐺 be any elements, we prove that |𝑦𝑥𝑦−1| = |𝑥|. Notice that for

any 𝑛 ⩾ 1 we have (𝑦𝑥𝑦−1)𝑛 = 𝑦𝑥𝑛𝑦−1
, hence the least element that annihilates the

product 𝑦𝑥𝑦−1
is the order of 𝑥 — that is, |𝑦𝑥𝑦−1| = 𝑥. In particular, ℎ𝑔 = 𝑔−1𝑔ℎ𝑔,

hence |ℎ𝑔| = |𝑔−1(𝑔ℎ)𝑔| = |𝑔ℎ|. ♮

Proposition 7.1.17. Let 𝐺 be a group and 𝑔, ℎ ∈ 𝐺 be such that 𝑔ℎ = ℎ𝑔. Then |𝑔ℎ|
divides lcm(|𝑔|, |ℎ|).

Proof. Let 𝑛 be a common multiple of |𝑔| and |ℎ|, then 𝑔𝑛 = ℎ𝑛 = 𝑒 from Lemma 7.1.13.

Notice that the commutative property 𝑔ℎ = ℎ𝑔 allow us to permute the terms of

𝑔𝑛ℎ𝑛 = 𝑒 in order to obtain 𝑔𝑛ℎ𝑛 = (𝑔ℎ)𝑛 = 𝑒. In particular, since lcm(|𝑔|, |ℎ|) is

a common multiple of |𝑔| and |ℎ|, we find that (𝑔ℎ)lcm(|𝑔|,|ℎ|) = 𝑒 and again from

Lemma 7.1.13 we find that |𝑔ℎ| divides lcm(|𝑔|, |ℎ|) ♮

Lemma 7.1.18. Let𝐺 be a group and 𝑔, ℎ ∈ 𝐺 commute — 𝑔ℎ = ℎ𝑔. If gcd(|𝑔|, |ℎ|) = 1,

then |𝑔ℎ| = |𝑔||ℎ|.
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Proof. Let |𝑔ℎ| = ℓ , |𝑔| = 𝑚 and |ℎ| = 𝑛. From Proposition 7.1.17, we have that

ℓ | lcm(𝑚, 𝑛), and since 𝑚𝑛 = lcm(𝑚, 𝑛)gcd(𝑚, 𝑛) = lcm(𝑚, 𝑛), then ℓ | 𝑚𝑛, which

implies that ℓ ⩽ 𝑚𝑛. Moreover, since the elements commute, (𝑔ℎ)ℓ = 𝑔ℓ ℎℓ = 𝑒 hence

𝑔ℓ = (ℎℓ )−1
. From Proposition 7.1.15, |𝑔ℓ | = |𝑔|

gcd(ℓ ,|𝑔|) =
𝑚
𝑚 = 1 and equivalently for ℎ we

have |ℎℓ | = 1. This shows that 𝑔ℓ = ℎℓ = 𝑒 and therefore both 𝑚 and 𝑛 divide ℓ , hence

so does the product 𝑚𝑛, thus 𝑚𝑛 ⩽ ℓ . This completes the proof that ℓ = 𝑚𝑛. ♮

Definition 7.1.19 (Maximal finite order). Let 𝐺 be a group. An element 𝑔 ∈ 𝐺 is said

to be of maximal finite order if its order is finite and for all ℎ ∈ 𝐺 with finite order, we

have |ℎ| ⩽ |𝑔|.

Proposition 7.1.20. Let 𝐺 be a commutative group and 𝑔 ∈ 𝐺 be of maximal finite

order. If ℎ ∈ 𝐺 has finite order, then |ℎ| divides |𝑔|.

Proof. Define the notation |𝑔| = 𝑚 and |ℎ| = 𝑛. Let 𝑃 = (𝑝 𝑗)𝑗 be a finite sequence

containing all primes such that less than or equal to 𝑚 and define a finite sequence of

integers of same length 𝐴 = (𝑎 𝑗)𝑗 such that 𝑚 =
∏

𝑗 𝑝
𝑎 𝑗

𝑗
. Since 𝑛 ⩽ 𝑚 it follows that

there also exists a finite sequence of integers 𝐵 = (𝑏 𝑗)𝑗 such that 𝑛 =
∏

𝑗 𝑝
𝑏 𝑗

𝑗
. Suppose

for the sake of contradiction that 𝑛 doesn’t divide𝑚, so that there exists an index 𝑘 such

that 𝑎𝑘 < 𝑏𝑘 — from the fact that
𝑚
𝑛 =

∏
𝑗 𝑝

𝑎 𝑗−𝑏 𝑗
𝑗

. Consider now the order — following

from Lemma 7.1.18:

|𝑔(𝑝
𝑎𝑘
𝑘 )ℎ

(
𝑛/𝑝𝑏𝑘

𝑘

)
| = |𝑔(𝑝

𝑎𝑘
𝑘 )||ℎ

(
𝑛/𝑝𝑏𝑘

𝑘

)
| = 𝑚

gcd(𝑚, 𝑝𝑎𝑘
𝑘
)

𝑛

gcd(𝑛, 𝑛/𝑝𝑏𝑘
𝑘
)
=
𝑚

𝑝
𝑎𝑘
𝑘

𝑛

𝑛/𝑝𝑏𝑘
𝑘

= 𝑚𝑝
𝑏𝑘−𝑎𝑘
𝑘

and since 𝑏𝑘 > 𝑎𝑘 , it follows that 𝑚𝑝
𝑏𝑘−𝑎𝑘
𝑘

> 𝑚 and hence there is a contradiction since

we assumed that 𝑚 was the the maximal finite order of the group. We conclude that

there does not exist 𝑘 for which 𝑏𝑘 is less than 𝑎𝑘 — thus 𝑛 divides 𝑚. ♮

Finite Groups and Elements of Order 2

Lemma 7.1.21 (Order 2 elements implies commutative). Let 𝐺 be a group such that all

non-identity elements have order 2. Then 𝐺 is commutative.

Proof. Let 𝑔, ℎ ∈ 𝐺, notice that |𝑔ℎ| = 2 from Proposition 7.1.17 hence 𝑔ℎ ∈ 𝐺, then

(𝑔ℎ)2 = 𝑒 and therefore 𝑔ℎ = 𝑔−1ℎ−1 = 𝑔−1(𝑔ℎ𝑔ℎ)ℎ−1 = ℎ𝑔 commutes. ♮

Lemma 7.1.22. Let 𝐺 be a finite group such that any element has order at most 2. Let𝐻

be any subgroup of 𝐺, for any 𝑡 ∈ 𝐺 ∖ 𝐻 consider the collection 𝑇 = 𝐻 ∪ {ℎ𝑡 : ℎ ∈ 𝐻},
then 𝑇 is a subgroup of 𝐺 with |𝑇| = 2|𝐻|.

Proof. Since 𝑡 ∉ 𝐻, any element ℎ𝑡 ∈ 𝑇 with ℎ ∈ 𝐻 is such that ℎ𝑡 ∉ 𝐻. The number of

distinct elements of the form is |𝐻|— one for each ℎ ∈ 𝐻 — hence |𝑇| = |𝐻| + |𝐻| =
2|𝐻|. ♮
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Lemma 7.1.23 (Order 2
𝑛
). Let 𝐺 be a finite group such that any element has order at

most 2. The order of 𝐺 is of the form 2
𝑛

for some 𝑛 ⩾ 0. Moreover, if |𝐺| > 1, then

there exists a subgroup 𝐻 of 𝐺 with order |𝐻| = 2
𝑛−1

.

Proof. We create a recursive algorithm to find the collection of elements of 𝐺 that

generate any other element contained in 𝐺:

1. (Base case) If 𝐺 = 𝐻𝑗 , return 𝐻𝑗 .

2. (Recursion) Let 𝑔 ∈ 𝐺 ∖ 𝐻𝑗 and construct 𝐻𝑗+1 = 𝐻𝑗 ∪ {ℎ𝑔 : ℎ ∈ 𝐻𝑗}, recursively

call the algorithm with 𝐻𝑗+1.

Such algorithm is certain to terminate since |𝐺| is finite. Notice that the second step

always doubles the order of the set 𝐻𝑗 , so that — if 𝐻𝑛 is the result of the algorithm

— then |𝐻𝑛| = 2
𝑛
. This shows that |𝐺| = |𝐻𝑛| = 2

𝑛
. The second part of the statement

follows immediately from the construction of the algorithm. ♮

Proposition 7.1.24. Let 𝐺 be a commutative group, if there exists exactly one element

of order 2 — say 𝑓 ∈ 𝐺 — then the product of all elements of the group is∏
𝑔∈𝐺

𝑔 = 𝑓 .

Otherwise, we have

∏
𝑔∈𝐺 𝑔 = 𝑒.

Proof. Since 𝐺 is finite, let 𝐺 = {𝑒 , 𝑔1, 𝑔
−1

1
, . . . , 𝑔𝑛 , 𝑔

−1

𝑛 }. Suppose there exists one and

only one element of order 2 and denote it by 𝑓 — that is, 𝑓 = 𝑓 −1
. Since the group

is commutative, we can rearrange the product of elements so that we can take the

pairwise product of each element and its inverse — this being possible only in the case

where 𝑔 ≠ 𝑔−1
— taking the product we find∏

𝑔∈𝐺
𝑔 = 𝑒(𝑔1𝑔

−1

1
) . . . (𝑔𝑗𝑔−1

𝑗 ) 𝑓 . . . (𝑔𝑗+2𝑔
−1

𝑗+2
)(𝑔𝑛𝑔−1

𝑛 ) = 𝑒 𝑗+1 𝑓 𝑒𝑛−(𝑗+1) = 𝑓

since 𝑓 has no inverse in 𝐺 ∖ { 𝑓 }.
Let there be no element with order 2 in 𝐺, then the rearrangement of pairwise

element and respective inverse is possible with each 𝑔 ∈ 𝐺, making∏
𝑔∈𝐺

𝑔 = 𝑒(𝑔1𝑔
−1

1
) . . . (𝑔𝑗𝑔−1

𝑗 ) . . . (𝑔𝑛𝑔−1

𝑛 ) = 𝑒𝑛+1 = 𝑒.

Suppose there exists 𝑚 > 1 distinct elements in 𝐺 with order 2 and define 𝑇 = { 𝑓 ∈
𝐺 : | 𝑓 | ⩽ 2} and 𝑆 = 𝐺 ∖ 𝑇. From the last case we know that

∏
𝑠∈𝑆 𝑠 = 𝑒. Note that 𝑇

forms a subgroup of 𝐺:

• 𝑒 ∈ 𝑇.

• If 𝑔, ℎ ∈ 𝑇, then from Proposition 7.1.17 |𝑔ℎ| divides lcm(|𝑔|, |ℎ|) ⩽ 2 hence

|𝑔ℎ| ⩽ 2 and 𝑔ℎ ∈ 𝑇.
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• Since 𝑔 ∈ 𝑇 implies 𝑔𝑔 = 𝑒 then 𝑔 = 𝑔−1
and |𝑔−1| = 2, so 𝑔−1 ∈ 𝑇.

Moreover, the order of the group 𝑇 has to be of the form 2
𝑘

for some 𝑘 ⩾ 2, from

Lemma 7.1.23. From the same lemma, choose a subgroup 𝐻 with order 2
𝑘−1

and take

𝑢 ∈ 𝑇∖𝐻, so that𝑇 = 𝐻∪{ℎ𝑢 : ℎ ∈ 𝐻}— such 𝑢 exists from the algorithm constructed

in the lemma. Since 𝑇 is commutative (see Lemma 7.1.21), we can write∏
𝑡∈𝑇

𝑡 =
∏
ℎ∈𝐻

ℎ
∏
ℎ∈𝐻

ℎ𝑢 =

∏
ℎ∈𝐻

𝑢ℎ2 =

∏
ℎ∈𝐻

𝑢 = 𝑢2
𝑘−1

= (𝑢2)2𝑘−2

= 𝑒.

Therefore we can finally conclude that∏
𝑔∈𝐺

𝑔 =

∏
𝑠∈𝑆

𝑠
∏
𝑡∈𝑇

𝑡 = 𝑒.

♮

7.2 Examples of Groups

Symmetry Group
Definition 7.2.1 (Symmetric groups). Let 𝐴 ∈ Set. The symmetric group of 𝐴 —

also referred to as the permutation group of 𝐴 — AutSet(𝐴), is denoted by 𝑆𝐴. The

symmetric group of the range set {1, . . . , 𝑛} is denoted 𝑆𝑛 .

Notation 7.2.2 (Permutations). A permutation 𝜎 ∈ 𝑆𝑛 is denoted by a table of the form

𝜎 =

(
1 2 . . . 𝑛 − 1 𝑛

𝜎(1) 𝜎(2) . . . 𝜎(𝑛 − 1) 𝜎(𝑛)

)
Remark 7.2.3 (Convention). If 𝜎, 𝜏 ∈ 𝑆𝑛 , we write the composition 𝜎𝜏 to denote the

permutation

𝑖
𝜎𝜏↦−−→ 𝜎(𝜏(𝑖)).

That is, it follows the same order of composition for maps.

Proposition 7.2.4. There exists an embedding 𝑓 : 𝑆𝑛 ↩→ 𝑀𝑛×𝑛({0, 1})— where𝑀𝑛×𝑛({0, 1})
is the collection of 𝑛 × 𝑛 matrices with entries assuming the value of 1 or 0. Moreover,

if 𝑓 (𝜎) = 𝑀𝜎 and 𝑓 (𝜏) = 𝑀𝜏 then 𝑓 (𝜎𝜏) = 𝑀𝜎𝑀𝜏.

Proof. Let 𝜎 ∈ 𝑆𝑛 be any permutation. We define 𝑓 as the mapping

𝜎
𝑓
↦−→ 𝑀𝜎 =


𝛿

1𝜎(1) . . . 𝛿
1𝜎(𝑛)

...
. . .

...

𝛿𝑛𝜎(1) . . . 𝛿𝑛𝜎(𝑛)


It should be noted that since 𝜎 is injective, 𝛿𝑖𝜎(𝑗) assumes the value 1 only once in the

𝑗-th column. If 𝜎 = 𝜏 then clearly 𝛿𝑖𝜎(𝑗) = 𝛿𝑖𝜏(𝑗) for every 1 ⩽ 𝑖 , 𝑗 ⩽ 𝑛, thus 𝑓 (𝜎) = 𝑓 (𝜏)
— 𝑓 is injective.
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Consider now the composition of permutations 𝜎𝜏 ∈ 𝑆𝑛 . Suppose we want to check

where the 𝑗-th element goes to from the action of 𝜎𝜏. Notice that for all possible new

positions 1 ⩽ 𝑖 ⩽ 𝑛 we have 𝛿𝑖𝜎𝜏(𝑗) =
∑𝑛
𝑘=1

𝛿𝑖𝜎(𝑘)𝛿𝑘𝜏(𝑗) — that is, 𝑗 belongs to 𝑖 after 𝜎𝜏
if and only if 𝜏(𝑗) = 𝑘 and 𝜎(𝑘) = 𝑖 for some 1 ⩽ 𝑘 ⩽ 𝑛. We have

𝑓 (𝜎𝜏) = 𝑀𝜎𝜏 =


𝛿

1𝜎𝜏(1) . . . 𝛿
1𝜎𝜏(𝑛)

...
. . .

...

𝛿𝑛𝜎𝜏(1) . . . 𝛿𝑛𝜎𝜏(𝑛)

 =


𝛿

1𝜎(1) . . . 𝛿
1𝜎(𝑛)

...
. . .

...

𝛿𝑛𝜎(1) . . . 𝛿𝑛𝜎(𝑛)



𝛿

1𝜏(1) . . . 𝛿
1𝜏(𝑛)

...
. . .

...

𝛿𝑛𝜏(1) . . . 𝛿𝑛𝜏(𝑛)

 = 𝑀𝜎𝑀𝜏.

♮

Proposition 7.2.5. The symmetry group 𝑆𝑛 contains elements of all orders 𝑑 for 1 ⩽
𝑑 ⩽ 𝑛.

Proof. Let 𝑑 be any integer in the range 1 ⩽ 𝑑 ⩽ 𝑛. Consider the subgroup 𝑆𝑑 ⊆
AutSet(Z/𝑛Z), composed of permutations 𝜎 ∈ 𝑆𝑑 such that 𝜎([𝑖]𝑛) = [𝑖]𝑛 for all 𝑖 > 𝑑.

Notice that the permutation 𝜏 given by 𝜏([𝑖]𝑛) = [𝑖 + 1]𝑛 for all 𝑖 ⩽ 𝑑 and 𝜏([𝑗]𝑛) = [𝑗]𝑛
is an element of 𝑆𝑑 and |𝜏| = 𝑑. Thus 𝜏 is an element of order 𝑑 in 𝑆𝑛 . ♮

Corollary 7.2.6. For every 𝑛 ∈ N, there exists an element 𝑥 ∈ 𝑆N with order |𝑥| = 𝑛.

Proof. Let any 𝑛 ∈ N and choose 𝑚 ∈ N with 𝑚 ⩾ 𝑛. From Proposition 7.2.5 we

find that the group 𝑆𝑚 contains an element 𝜎 ∈ 𝑆𝑚 with order |𝜎| = 𝑛. We can now

construct an element 𝜏 ∈ 𝑆N — defined by

𝜏(𝑎) =
{
𝜎(𝑎), 𝑎 ⩽ 𝑚

𝑎, 𝑎 > 𝑚

So clearly |𝜏| = 𝑛. ♮

Permutations, Transpositions and Sign

Definition 7.2.7 (Transposition). We define a transposition on a collection {1, . . . , 𝑛}
to be a map 𝜏 ∈ 𝑆𝑛 such that exists indices 1 ⩽ 𝑖 < 𝑗 ⩽ 𝑛 for which 𝜏(𝑖) = 𝑗 and 𝜏(𝑗) = 𝑖,

and 𝜏(𝑘) = 𝑘 for all 𝑘 ≠ 𝑖 , 𝑗.

Proposition 7.2.8. Every permutation can be written as a composition of finitely many

transpositions.

Proof. We proceed via induction on the number of points of {1, . . . , 𝑛}. For the base

case 𝑛 = 2 the composition is trivial. Assume as the induction hypothesis that for

𝑛−1 > 2 the statement is true. Now, consider 𝜎 ∈ 𝑆𝑛 and 𝑖 ∈ {1, . . . , 𝑛} be any element

in the ordered collection 𝐼𝑛 ≔ {1, . . . , 𝑛}. Denote 𝜏𝑖 , 𝑗 the transposition that changes 𝑖

with 𝑗 and maintains unchanged the remainder of the points. Assume that 𝜎(𝑖) = 𝑗,

then clearly 𝜏𝑖 , 𝑗𝜎(𝑖) = 𝜏𝑖 , 𝑗(𝑗) = 𝑖. Notice that since 𝜏𝑖 , 𝑗𝜎 maintains 𝑖 unchanged, we can

see it as a permutation of 𝑛 − 1 points (by simply ignoring the point 𝑖), hence it can be

written as a composition of finitely many transpositions by the induction hypothesis.

Notice that since 𝜎 = 𝜏𝑖 , 𝑗(𝜏𝑖 , 𝑗𝜎) we find that 𝜎 can also be written as a composition of

finitely many transpositions. ♮
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Definition 7.2.9 (Elementary transpositions). Let 𝜏 ∈ 𝑆𝑛 be a transposition. We say

that 𝜏 is an elementary transposition if exists 𝑖 ∈ {1, . . . , 𝑛} for which 𝜏(𝑖) = 𝑖 + 1 and

𝜏(𝑖 + 1) = 𝑖, and for all 𝑗 ≠ 𝑖 we have 𝜏(𝑗) = 𝑗.

Proposition 7.2.10. Every transposition can be written as a composition of finitely

many elementary transpositions.

Proof. Let 𝜎 ∈ 𝑆𝑛 be any transposition. Denote by 𝜏𝑘 the elementary transposition

𝜏𝑘(𝑘) = 𝑘+1 and 𝜏(𝑘+1)𝑘. Let 𝑥 be the transposed element of 𝜎, and 𝜎(𝑥) = 𝑦. Without

loss of generality we can assume that 𝑦 > 𝑥. Now we write 𝜎 as the composition —

beware of Remark 7.2.3

𝜎 =
(
𝜏𝑥𝜏𝑥+1 · · · 𝜏𝑦−3𝜏𝑦−2

) (
𝜏𝑦−1𝜏𝑦−1 · · · 𝜏𝑥+1𝜏𝑥

)
=

(
𝑦−2∏
𝑘=𝑥

𝜏𝑘

) ©«
(𝑦−1)−𝑥∏
𝑘=0

𝜏(𝑦−1)−𝑘
ª®¬

Which follows from the fact that

©«
(𝑦−1)−𝑥∏
𝑘=0

𝜏(𝑦−1)−𝑘
ª®¬ (𝑖) =


𝑦, 𝑖 = 𝑥

𝑖 − 1, 𝑥 < 𝑖 ⩽ 𝑦

𝑖, 𝑖 < 𝑥 or 𝑦 < 𝑖(
𝑦−2∏
𝑘=𝑥

𝜏𝑘

)
(𝑖) =


𝑥, 𝑖 = 𝑦

𝑖 + 1, 𝑥 ⩽ 𝑖 < 𝑦

𝑖, 𝑖 < 𝑥 or 𝑦 < 𝑖

Hence the composition of both gives(
𝑦−2∏
𝑘=𝑥

𝜏𝑘

) ©«
(𝑦−1)−𝑥∏
𝑘=0

𝜏(𝑦−1)−𝑘
ª®¬ (𝑖) =


𝑦, 𝑖 = 𝑥

𝑥, 𝑖 = 𝑦

𝑖, 𝑖 ∉ {𝑥, 𝑦}

which is equivalent to the transposition 𝜎. ♮

Corollary 7.2.11. Every permutation can be written as a composition of finitely many

elementary transpositions.

Definition 7.2.12 (Sign). Let 𝜎 ∈ 𝑆𝑛 be a permutation on 𝑛 objects. We define the sign

of 𝜎 as a map sign: 𝑆𝑛 → {1,−1} such that

sign(𝜎) = (−1)𝑚 , where 𝑚 ≔ |{(𝑖 , 𝑗) : 1 ⩽ 𝑖 < 𝑗 ⩽ 𝑛, 𝜎(𝑖) > 𝜎(𝑗)}|.

Equivalently, if 𝑥1, . . . , 𝑥𝑛 ∈ 𝑘 then we can define the sign of 𝜎 as

sign(𝜎) =
∏
𝑖< 𝑗

𝑥𝜎(𝑖) − 𝑥𝜎(𝑗)
𝑥𝑖 − 𝑥 𝑗

.

Corollary 7.2.13. If 𝜎 can be written as an odd number of transpositions, then sign(𝜎) =
−1. Otherwise, if it is an even number of transpositions, we have sign(𝜎) = 1.
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Proposition 7.2.14. Let 𝜎, 𝜏 ∈ 𝑆𝑛 , then

sign(𝜎𝜏) = sign(𝜎) sign(𝜏).

This implies that sign: 𝑆𝑛 → {1,−1} is a group homomorphism.

Proof. Consider the composition 𝜎𝜏, then we have

sign(𝜎𝜏) =
∏
𝑖< 𝑗

𝑥𝜎𝜏(𝑖) − 𝑥𝜎𝜏(𝑗)
𝑥𝑖 − 𝑥 𝑗

. (7.1)

Define the following: when 𝜏(𝑖) < 𝜏(𝑗) then 𝜏(𝑖) ≔ 𝑝 and 𝜏(𝑗) ≔ 𝑞; on the other hand,

when 𝜏(𝑗) < 𝜏(𝑖) let 𝜏(𝑖) ≔ 𝑞 and 𝜏(𝑗) ≔ 𝑝. This way we find that

𝑥𝜎𝜏(𝑖) − 𝑥𝜎𝜏(𝑗)
𝑥𝜏(𝑖) − 𝑥𝜏(𝑗)

=
𝑥𝜎(𝑝) − 𝑥𝜎(𝑞)
𝑥𝑝 − 𝑥𝑞

. (7.2)

From construction of the above, Eq. (7.2) yields

sign(𝜎) =
∏
𝑝<𝑞

𝑥𝜎(𝑝) − 𝑥𝜎(𝑞)
𝑥𝑝 − 𝑥𝑞

. (7.3)

Notice that we can write Eq. (7.1) (using Eq. (7.3)) as the product

sign(𝜎𝜏) =
∏
𝑖< 𝑗

𝑥𝜎𝜏(𝑖) − 𝑥𝜎𝜏(𝑗)
𝑥𝜏(𝑖) − 𝑥𝜏(𝑗)

𝑥𝜏(𝑖) − 𝑥𝜏(𝑗)
𝑥𝑖 − 𝑥 𝑗

= sign(𝜎) sign(𝜏)

as wanted. ♮

Dihedral Group
Definition 7.2.15 (Dihedral group). A dihedral group is defined as the group of iso-

metric symmetries of regular polygons — which are rotations and reflections about a

line. Given a 𝑛-sided regular polygon, its group of symmetries have 2𝑛 elements — 𝑛

rotations and 𝑛 reflections — and we denote it by 𝐷2𝑛 .

Proposition 7.2.16. There exists an embedding 𝐷2𝑛 ↩→ 𝑆𝑛 .

Proof. Label the vertices of the 𝑛-gon by 𝑉 = {[1]𝑛 , . . . , [𝑛]𝑛} = Z/𝑛Z. Notice that

any element 𝑥 ∈ 𝐷2𝑛 can be described as 𝑥 ∈ AutSet(𝑉)— where the automorphism

is restricted to the adjacency of the vertices, that is, if 𝑥([𝑖]𝑛) = [𝑘]𝑛 , then 𝑥([𝑖 −
1]𝑛), 𝑥([𝑖 + 1]𝑛) ∈ {[𝑘 − 1]𝑛 , [𝑘 + 1]𝑛}. This shows the existence of the embedding

𝐷2𝑛 ↩→ AutSet(𝑉) = 𝑆𝑉 = 𝑆𝑛 . ♮

Proposition 7.2.17. Any symmetry 𝑥 ∈ 𝐷2𝑛 can be written as 𝑦𝑎𝑧𝑏 — where we choose

any 𝑦, 𝑧 ∈ 𝐷2𝑛 which are, respectively, a rotation and a reflection about a line — with

0 ⩽ 𝑎 < 2 and 0 ⩽ 𝑏 < 𝑛.
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Proof. Notice that if 𝑦 is any rotation, then |𝑦| = 𝑛 and if 𝑧 is any reflection, then |𝑧| = 2.

We first show that 𝑦 and 𝑧 are independent. We’ll work with the injection 𝐷2𝑛 ↣
AutSet(𝑉), where we have the collection of vertices 𝑉 = Z/𝑛Z. Let 𝑗 ∈ 𝑉 be any vertex

and suppose 𝑧(𝑗) = 𝑘, then by the adjacency of the vertices are maintained, implying

in 𝑧(𝑗−1) = 𝑘−1 and 𝑧(𝑗+1) = 𝑘+1. On the other hand, if 𝑦(𝑗) = 𝑘, then the adjacency

of the vertices is inverted, that is, 𝑦(𝑗 − 1) = 𝑘 + 1 and 𝑦(𝑗 + 1) = 𝑘 − 1. Hence clearly

reflections and rotations cannot be dependent.

The only possible symmetries of 𝐷2𝑛 involve the maintenance or the inversion of

the adjacency of each vertex — we cannot break nor deform the edges that connect

each of the vertices — thus if 𝑥 ∈ 𝐷2𝑛 , then 𝑥 =
∏
(𝛼,𝛽)∈𝐼 𝑧

𝛼𝑦𝛽 for some finite set 𝐼 with

0 ⩽ 𝛼 < 2 and 0 ⩽ 𝛽 < 𝑛. We now show that such product can be reduced. Let 𝑗 ∈ 𝑉
be any vertex and assume

𝑧(𝑗) = 𝑘 and 𝑦(𝑘) = ℓ ,

We now analyse the symmetries 𝑦𝑧 and 𝑧𝑦𝑚 — for 0 ⩽ 𝑚 < 𝑛.

• The adjacent vertices of 𝑗 — when subjected to the symmetry 𝑦𝑧 — are obtained

as

𝑦𝑧(𝑗 − 1) = 𝑦(𝑘 + 1) = ℓ + 1 and 𝑦𝑧(𝑗 + 1) = 𝑦(𝑘 − 1) = ℓ − 1

• Since 𝑦(𝑘) = ℓ , 𝑦 is the action rotating the vertex 𝑘 an amount of ℓ − 𝑘 times

— where we’ll adopt the convention that if ℓ − 𝑘 < 0, the rotation is counter-

clockwise, if ℓ + 𝑘 > 0 the rotation is clockwise. Therefore

𝑦(𝑗) = 𝑗 + (ℓ − 𝑘).

Notice that this implies in 𝑦𝑚(𝑗) = 𝑗 +𝑚(ℓ − 𝑘)— we now define 𝑡 = 𝑦𝑚(𝑗). Since

𝑧(𝑗) = 𝑘, then 𝑧(𝑡) = 𝑘 − 𝑚(ℓ − 𝑘). Therefore, adjacent vertices of 𝑗 — when

subjected to the symmetry 𝑧𝑦𝑚 — are given by

Vertex 𝑗 − 1: 𝑧𝑦𝑚(𝑗 − 1) = 𝑧(𝑗 + 𝑚(ℓ − 𝑘) − 1) = 𝑘 − 𝑚(ℓ − 𝑘) + 1

Vertex 𝑗 + 1: 𝑧𝑦𝑚(𝑗 + 1) = 𝑧(𝑗 + 𝑚(ℓ − 𝑘) + 1) = 𝑘 − 𝑚(ℓ − 𝑘) − 1

In particular, for the case 𝑚 = 𝑛 − 1 — beware of the modularity of the vertices,

they lie on Z/𝑛Z — we get

Vertex 𝑗 − 1: 𝑧𝑦𝑛−1(𝑗 − 1) = 𝑘 − (𝑛 − 1)(ℓ − 𝑘) + 1 = 𝑘𝑛 − 𝑛ℓ + ℓ + 1 = ℓ + 1

Vertex 𝑗: 𝑧𝑦𝑛−1(𝑗) = 𝑘 − (𝑛 − 1)(ℓ − 𝑘) = 𝑘𝑛 − 𝑛ℓ + ℓ = ℓ
Vertex 𝑗 + 1: 𝑧𝑦𝑛−1(𝑗 + 1) = 𝑘 − (𝑛 − 1)(ℓ − 𝑘) − 1 = 𝑘𝑛 − 𝑛ℓ + ℓ − 1 = ℓ + 1

From this analysis we conclude the general relation 𝑦𝑧 = 𝑧𝑦𝑛−1
.

Lets analyse the product (𝑧𝑎𝑦𝑏)(𝑧𝑐𝑦𝑑) for the different cases of 0 ⩽ 𝑎, 𝑐 < 2 and

0 ⩽ 𝑏, 𝑑 < 𝑛.

• If 𝑎 = 1 and 𝑐 = 0 then (𝑧𝑎𝑦𝑏)(𝑧𝑐𝑦𝑑) = 𝑧𝑦𝑏+𝑑.
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• If 𝑎, 𝑐 = 0 then

(𝑧𝑎𝑦𝑏)(𝑧𝑐𝑦𝑑) = 𝑦𝑏+𝑑 .

• If 𝑎 = 0 and 𝑐 = 1 then (𝑧𝑎𝑦𝑏)(𝑧𝑐𝑦𝑑) = 𝑦𝑏𝑧𝑐𝑦𝑑 = 𝑦𝑏−1𝑧𝑦𝑑+(𝑛−1)
, by recurrence we

find find finally that

(𝑧𝑎𝑦𝑏)(𝑧𝑐𝑦𝑑) = 𝑧𝑦𝑑+𝑏(𝑛−1).

• If 𝑎, 𝑐 = 1 then (𝑧𝑎𝑦𝑏)(𝑧𝑐𝑦𝑑) = 𝑧𝑦𝑏𝑧𝑦𝑑 = 𝑧𝑦𝑏−1𝑧𝑦𝑑+(𝑛−1)
and, by recurrence

(𝑧𝑎𝑦𝑏)(𝑧𝑐𝑦𝑑) = 𝑧2𝑦𝑑+𝑏(𝑛−1) = 𝑦𝑑+𝑏(𝑛−1).

This shows that the finite product 𝑥 =
∏
(𝛼,𝛽)∈𝐼 𝑧

𝛼𝑦𝛽 can be reduced — for some

0 ⩽ 𝑎 < 2 and 0 ⩽ 𝑏 < 𝑛 — to 𝑥 = 𝑧𝑎𝑦𝑏 . ♮

Corollary 7.2.18. Let 𝑦, 𝑧 ∈ 𝐷2𝑛 be, respectively, a rotation and a reflection. The

following relation are satisfied:

|𝑦| = 𝑛, |𝑧| = 2, and 𝑦𝑧 = 𝑧𝑦𝑛−1.

The set {𝑦, 𝑧} generates any element of 𝐷2𝑛 .

Cyclic Group
We’ll initially define a cyclic group as a group generated by one element 𝑥 with a

relation 𝑥𝑛 = 𝑒 for some 𝑛 ∈ N. We’ll denote such groups by 𝐶𝑛 — for a formal

definition, see Definition 7.3.20.

Example 7.2.19. An example of a cyclic group is (Z/𝑛Z,+), where [1]𝑛 ∈ Z/𝑛Z is the

element generating any elements of Z/𝑛Z.

Proposition 7.2.20. Given an element 𝑦 ∈ 𝐶𝑛 — where 𝑥 is the generating element of

𝐶𝑛 — assume 𝑦 = 𝑥𝑚 . We have that

|𝑦| = 𝑛

gcd(𝑚, 𝑛) .

Proof. Notice that |𝑦| = |𝑥𝑚| = |𝑥|
gcd(𝑚,|𝑥|) =

𝑛
gcd(𝑚,𝑛) . ♮

Corollary 7.2.21. The element 𝑥 ∈ 𝐶𝑛 is the generator of the cyclic group if and only if

gcd(|𝑥|, 𝑛) = 1.
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7.3 Grp Category
Definition 7.3.1 (Group morphism). Let (𝐺, ·𝐺) and (𝐻, ·𝐻) be groups together with

their binary operation. A group morphism — also called homomorphism — is a map

𝜑: (𝐺, ·𝐺) → (𝐻, ·𝐻) such that the that the following diagram commutes

𝐺 × 𝐺 𝐻 × 𝐻

𝐺 𝐻

·𝐺

𝜑×𝜑

·𝐻
𝜑

Where 𝜑×𝜑 is uniquely defined in Set by ?? — mapping (𝑔, ℓ )
𝜑×𝜑
↦−−−→ (𝜑(𝑔), 𝜑(ℓ )). The

commutativity of such diagram can be viewed as the requirement that 𝜑 preserves the

structure coming from the binary operations — that is, for any 𝑔, ℓ ∈ 𝐺

𝜑(𝑔 ·𝐺 ℓ ) = 𝜑(𝑔) ·𝐻 𝜑(ℓ ).

Definition 7.3.2 (Category of groups). The category of groups Grp consists of the

collection of objects — called groups — and group morphisms between them.

Proposition 7.3.3. Grp is a category.

Proof. Let (𝐺, ·𝐺), (𝐻, ·𝐻) and (𝐾, ·𝐾) be any groups. The identity id𝐺:𝐺→ 𝐺 is a group

morphism since id𝐺(𝑔 ·𝐺 ℓ ) = 𝑔 ·𝐺 ℓ for any 𝑔, ℓ ∈ 𝐺. Moreover, we can define a map

𝑓 : MorGrp(𝐺, 𝐻) ×MorGrp(𝐻, 𝐾) →MorGrp(𝐺, 𝐾)

with the mapping (𝜓, 𝜑)
𝑓
↦−→ 𝜓𝜑 — since the following diagram commutes

𝐺 × 𝐺 𝐻 × 𝐻 𝐾 × 𝐾

𝐺 𝐻 𝐾

𝜑×𝜑

·𝐺

(𝜓𝜑)×(𝜓𝜑)

𝜓×𝜓

·𝐻 ·𝐾
𝜑

𝜓𝜑

𝜓

In other words, for any 𝑔, ℓ ∈ 𝐺 we have

𝜓𝜑(𝑔 ·𝐺 ℓ ) = 𝜓(𝜑(𝑔 ·𝐺 ℓ )) = 𝜓(𝜑(𝑔) ·𝐻 𝜑(ℓ )) = 𝜓(𝜑(𝑔)) ·𝐾 𝜓(𝜑(ℓ )) = 𝜓𝜑(𝑔) ·𝐾 𝜓𝜑(ℓ ).

Therefore 𝜓𝜑 ∈ MorGrp(𝐺, 𝐾). For the other part of the diagram, we have

(𝜓𝜑) × (𝜓𝜑)(𝑔, ℓ ) = (𝜓𝜑(𝑔),𝜓𝜑(ℓ )) = 𝜓 × 𝜓(𝜑(𝑔), 𝜑(ℓ )) = (𝜓 × 𝜓)(𝜑 × 𝜑)(𝑔, ℓ )

Since group morphisms are maps in Set, we have that associativity is inherited. ♮
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Proposition 7.3.4. There exists a covariant forgetful functor 𝐹: Grp→ Set.

Proof. For objects, define 𝐹 as 𝐹(𝐺, ·𝐺) = 𝐺 — where we denoted 𝐺 together with its

binary operation only to express that the multiplicative structure is lost in the process.

Let 𝜑: (𝐺, ·𝐺) → (𝐻, ·𝐻) be a group morphism, denote by 𝜑 ∈ Mor(Set) the function

𝜑:𝐺 → 𝐻 such that 𝜑(𝑔) = 𝜑(𝑔) for all 𝑔 ∈ 𝐺. For such morphisms we define 𝐹 as

𝐹𝜑 = 𝜑: 𝐹(𝐺, ·𝐺) → 𝐹(𝐻, ·𝐻).
Let 𝜓 ∈ MorGrp(𝐻𝐾), then we have 𝜓𝜑 = 𝜓𝜑:𝐻 → 𝐾. Thus

𝐹(𝜓𝜑) = 𝜓𝜑 = 𝜓𝜑 = 𝐹𝜓𝐹𝜑.

This shows that 𝐹 is a covariant forgetful functor. ♮

Proposition 7.3.5. The trivial group ∗ ∈ Grp is the initial and final object of Grp. That

is, for any 𝐺 ∈ Grp the diagram

∗ 𝐺
𝜑

𝜓

commutes for uniquely defined group morphisms 𝜑 and 𝜓.

Proof. Let 𝐺 ∈ Grp be any group. We define maps 𝜑: ∗ → 𝐺 mapping 𝑒
𝜑
↦−→ 𝑒𝐺, where 𝑒

is the only element of ∗— being unique possible map ∗ → 𝐺 that preserves the group

structure. Clearly, 𝜑 is a group morphism since 𝜑(𝑒𝑒) = 𝜑(𝑒) = 𝑒𝐺 = 𝜑(𝑒)𝜑(𝑒)— this

shows that ∗ is the initial object ofGrp. Let𝜓:𝐺→ ∗be a map defined by 𝑔
𝜓
↦−→ 𝑒— which

is clearly unique. Then 𝜓 is a morphism of groups, because 𝜓(𝑔ℎ) = 𝑒 = 𝜓(𝑔)𝜓(ℎ)—
showing that ∗ is the final object of Grp. ♮

Properties of Morphisms
Proposition 7.3.6 (Commuting on inverses). Let (𝐺, ·𝐺), (𝐻, ·𝐻) be groups and consider

𝜑 ∈ MorGrp(𝐺, 𝐻). Define inv𝐺:𝐺 ≃−→ 𝐺 and inv𝐻 :𝐻 ≃−→ 𝐻 as the maps 𝑔
inv𝐺↦−−−→ 𝑔−1

and

ℎ
inv𝐻↦−−−→ ℎ−1

. Then the following diagram commutes

𝐺 𝐻

𝐺 𝐻

𝜑

inv𝐺 inv𝐻

𝜑

That is, 𝜑(𝑔−1) = 𝜑(𝑔)−1
for every 𝑔 ∈ 𝐺.

Proof. Let 𝑔 ∈ 𝐺 be any element, then

𝜑(𝑔−1) = 𝜑(𝑔−1𝑒𝐺) = 𝜑(𝑔−1 ·𝐺 𝑔 ·𝐺 𝑔−1) = 𝜑(𝑔−1) ·𝐻 𝜑(𝑔) ·𝐻 𝜑(𝑔−1),

applying cancellation law on the equation above we find

𝑒𝐻 = 𝜑(𝑔) ·𝐻 𝜑(𝑔−1).
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Hence 𝜑(𝑔−1) = 𝜑(𝑔)−1

. Moreover, this implies that 𝑒𝐺
𝜑
↦−→ 𝑒𝐻 since

𝜑(𝑒𝐺) = 𝜑(𝑔 ·𝐺 𝑔−1) = 𝜑(𝑔) ·𝐻 𝜑(𝑔−1) = 𝜑(𝑔) ·𝐻 𝜑(𝑔)−1

= 𝑒𝐻 .

♮

Proposition 7.3.7 (Generators and unique extension). Let 𝐺 be a group and 𝑆 be a

generator set for 𝐺. Let 𝐻 be any group and 𝑓 : 𝑆→ 𝐻 be a set-function. If there exists

a morphism 𝜙:𝐺→ 𝐻 such that 𝜙|𝑆 = 𝑓 , then 𝜙 is unique.

Proof. Let 𝜓:𝐺→ 𝐻 be another morphism satisfying the condition specified above —

then clearly 𝜓|𝑆 = 𝑓 = 𝜙|𝑆, that is, 𝜙 and 𝜓 agree on 𝑆. Since 𝑆 generates 𝐺, every

element 𝑔 ∈ 𝐺 can be written as a finite product 𝑔 =
∏

𝑗 𝑠 𝑗 ∈ ⟨𝑆⟩ thus

𝜓(𝑔) = 𝜓
(∏

𝑗

𝑠 𝑗

)
=

∏
𝑗

𝜓(𝑠 𝑗) =
∏
𝑗

𝜙(𝑠 𝑗) = 𝜙
(∏

𝑗

𝑠 𝑗

)
= 𝜙(𝑔),

which implies in 𝜓 = 𝜙. ♮

Proposition 7.3.8 (Image subgroup). Let 𝜙:𝐺 → 𝐻 be a morphism of groups, then

im 𝜙 ⊆ 𝐻 is a subgroup of 𝐻.

Proof. Let ℎ ∈ im 𝜙 be any element and consider 𝑔 ∈ 𝜙−1(ℎ), from Proposition 7.3.6 we

see that 𝜙(𝑔−1) = 𝜙(𝑔)−1 = ℎ−1 ∈ im 𝜙, thus im 𝜙 is closed under inverses. Moreover,

given another ℎ′ ∈ im 𝜙, there exists 𝑔′ ∈ 𝜙−1(ℎ′) and 𝜙(𝑔𝑔′) = 𝜙(𝑔)𝜙(𝑔′) = ℎℎ′ ∈ im 𝜙
— hence 𝜙 is closed under products. ♮

Definition 7.3.9 (Kernel). We define the kernel of a morphism of groups𝜙 ∈ MorGrp(𝐺, 𝐻)
as the collection ker 𝜙 = {𝑔 ∈ 𝐺 : 𝜙(𝑔) = 𝑒𝐻}.

Lemma 7.3.10 (Kernel subgroup). Let 𝜙:𝐺 → 𝐻 be a group morphism. The kernel

ker 𝜙 ⊆ 𝐺 is a subgroup of 𝐺.

Proof. Let 𝑔 ∈ ker 𝜙 be any element, then since 𝜙(𝑔−1) = 𝜙(𝑔)−1 = 𝑒−1

𝐻
= 𝑒𝐻 , then

𝑔−1 ∈ ker 𝜙. Also, if 𝑢 ∈ ker 𝜙 is another element, then 𝜙(𝑔𝑢) = 𝜙(𝑔)𝜙(𝑢) = 𝑒𝐻 𝑒𝐻 = 𝑒𝐻
and hence 𝑔𝑢 ∈ ker 𝜙 — thus ker 𝜙 is a subgroup of 𝐺. ♮

Proposition 7.3.11 (Monomorphisms, kernels and injectivity). Let 𝜙:𝐺 → 𝐻 be a

morphism of groups. Then the following properties are equivalent:

(a) 𝜙 is a monomorphism in Grp.

(b) ker 𝜙 = {𝑒𝐺}.
(c) 𝜙 is injective in Set.

Proof. • (a) ⇒ (b). Suppose 𝜙 is a monormophism and consider the following

commutative diagram

ker 𝜙 𝐺 𝐻
𝜄

𝑒

𝜙

From the monomorphism definition we find 𝜄 = 𝑒 and therefore ker 𝜙 = {𝑒𝐺}.
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• (b)⇒ (c). If ker 𝜙 = {𝑒𝐺}, then, given elements 𝑔, 𝑔′ ∈ 𝐺 such that 𝜙(𝑔) = 𝜙(𝑔′),
then, multiplying both sides by 𝜙(𝑔′)−1

we get

𝜙(𝑔)𝜙(𝑔′)−1

= 𝜙(𝑔)𝜙(𝑔′−1) = 𝜙(𝑔𝑔′−1) = 𝑒𝐺 .

That is, 𝑔𝑔′−1 ∈ ker 𝜙, but since ker 𝜙 is trivial, then 𝑔𝑔′−1 = 𝑒𝐺 and hence 𝑔 = 𝑔′

— in other words, 𝜙 is injective.

• (c)⇒ (a). Let 𝜙 be injective — that is, for any pair of set-functions 𝑓 , 𝑔:𝐴 ⇒ 𝐺

from a set 𝐴, then 𝜙 𝑓 = 𝜙𝑔 if and only if 𝑓 = 𝑔. In particular, if we impose a

group structure in the set 𝐴 and that both 𝑓 and 𝑔 preserve the group structure

of 𝐴, we find that the injectivity in Set implies in the monomorphism 𝜙 as a

morphism in Grp.

♮

Proposition 7.3.12. Let 𝐺 be a group and 𝐻 be an abelian group. If there exists an

injective group morphism 𝜄:𝐺 ↣ 𝐻, then 𝐺 is abelian.

Proof. Let 𝑥, 𝑦 ∈ 𝐺 be any pair of elements, then 𝜙(𝑥𝑦) = 𝜙(𝑥)𝜙(𝑦) = 𝜙(𝑦)𝜙(𝑥) =
𝜙(𝑦𝑥), thus 𝑥𝑦 = 𝑦𝑥 — since 𝜙 is injective. ♮

The following proposition is a trivial one, but it is a really useful tool to prove

the non-existence of non-trivial morphisms between certain groups — it relies on

arguments based on the order of elements of each group.

Proposition 7.3.13 (Morphisms and orders). Let 𝐺 ∈ Grp be a group admitting an

element 𝑔 ∈ 𝐺 of finite order |𝑔| ∈ N. Let 𝐻 be any group and consider the morphism

𝜙:𝐺→ 𝐻. We have that |𝜙(𝑔)| divides the order of |𝑔|.

Proof. Notice that 𝜙(𝑔)|𝑔| = 𝜙(𝑔|𝑔|) = 𝜙(𝑒𝐺) = 𝑒𝐻 , hence |𝑔| is a multiple of the order

of 𝜙(𝑔) ∈ 𝐻. ♮

Example 7.3.14. Consider for example the collection of morphisms MorGrp(𝐶7, 𝐶15).
Let 𝜙 be any such morphism. Consider any element 𝑔 ∈ 𝐶7 and recall that |𝑔|must be

a divisor of 7 — see Proposition 7.2.20. On the other hand, if ℎ ∈ 𝐶15 then |ℎ| divides

15. From Proposition 7.3.13 we see that if 𝜙(𝑔) = ℎ, then |ℎ| must divide |𝑔|, but

gcd(7, 15) = 1, hence |ℎ| = 1 — that is ℎ = 𝑒𝐻 and 𝜙 is the trivial morphism 𝜙(𝑔) = 𝑒𝐻
for all 𝑔 ∈ 𝐶7. This shows that there is no non-trivial morphism between 𝐶7 and 𝐶15.

Isomorphism of Groups
Proposition 7.3.15 (Isomorphisms are bĳections). Let 𝜙 ∈ Mor(Grp). Then 𝜙 is an

isomorphism if and only if it is a bĳection.

Proof. Consider an isomorphism 𝜙:𝐺→ 𝐻. Using the forgetful functor 𝐹: Grp→ Set
we see that 𝐹𝜙 is a bĳection of sets in Set— recall Lemma 1.4.11 — thus 𝜙 defines a

bĳection between the elements of 𝐺 and 𝐻.
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On the other hand, if 𝜙 is a bĳection, consider its set-function inverse (𝐹𝜙)−1

:𝐻 →
𝐺. We now show that (𝐹𝜙)−1

preserves the structures of groups. Since 𝜙(𝑒𝐺) = 𝑒𝐻 , then

(𝐹𝜙)−1(𝑒𝐻) = 𝑒𝐺. Moreover, for any ℎ, ℎ′ ∈ 𝐻 — since 𝜙 is surjective — take elements

𝑔, 𝑔′ ∈ 𝐺 such that 𝜙(𝑔) = ℎ and 𝜙(𝑔′) = ℎ′, then we find that (𝐹𝜙)−1(ℎℎ′) = 𝑔𝑔′ =
(𝐹𝜙)−1(ℎ) · (𝐹𝜙)−1(ℎ′). This implies in the existence of a naturally induced morphism

of groups 𝜙−1
:𝐻 → 𝐺 defined by 𝜙−1(ℎ) = (𝐹𝜙)−1(ℎ). It is clear that 𝜙−1

is the right

and left inverse of 𝜙, thus 𝜙−1
is the inverse of 𝜙 in Grp and 𝜙 is an isomorphism. ♮

Definition 7.3.16 (Embedding). Let 𝜙:𝐺 ≃−→ 𝐻 be an isomorphism of groups. We

define the group im 𝜙 ⊆ 𝐻 as an embedding of 𝐺 on 𝐻.

Proposition 7.3.17. Let 𝜙:𝐺 ≃−→ 𝐻 be an isomorphism of groups. Then:

• For all 𝑔 ∈ 𝐺, we have |𝑔| = |𝜙(𝑔)|.
• 𝐺 is commutative if and only if 𝐻 is commutative.

Proof. Let 𝑔 ∈ 𝐺 be any element, then from Proposition 7.3.13 we have that |𝜙(𝑔)|
divides |𝑔|. Since 𝜙−1

exists and is a morphism of groups, it also follows that |𝑔|
divides |𝜙(𝑔)|— hence |𝑔| = |𝜙(𝑔)|.

Let 𝐺 be a commutative group and 𝐺 ≃ 𝐻. Let ℎ, ℎ′ ∈ 𝐻 be any elements and

consider 𝜙−1(ℎ) = 𝑔 and 𝜙−1(ℎ′) = 𝑔′. From the structure preserving property of 𝜙 we

have

ℎℎ′ = 𝜙(𝑔)𝜙(𝑔′) = 𝜙(𝑔𝑔′) = 𝜙(𝑔′𝑔) = 𝜙(𝑔′)𝜙(𝑔) = ℎ′ℎ.

That is, 𝐻 is commutative. The counter-implication is equivalent and will be omitted.

♮

Lemma 7.3.18 (Inner automorphism). Let𝐺 ∈ Grp. For each 𝑔 ∈ 𝐺, the map 𝛾𝑔 :𝐺→ 𝐺

given by 𝛾𝑔(𝑎) = 𝑔𝑎𝑔−1
is an automorphism — called inner automorphism of 𝐺.

Proof. Let 𝑔 ∈ 𝐺 be any element. Suppose 𝑎 ∈ ker 𝛾𝑔 , then 𝛾𝑔(𝑎) = 𝑔𝑎𝑔−1 = 𝑒𝐺, hence,

𝑎 = 𝑔−1𝑒𝐺𝑔 = 𝑔−1𝑔 = 𝑒𝐺, that is ker 𝛾𝑔 = 𝑒𝐺 — 𝛾𝑔 is injective. Let 𝑔′ ∈ 𝐺 be any

element, then, 𝛾𝑔(𝑔−1𝑔′𝑔) = 𝑔(𝑔−1𝑔′𝑔)𝑔−1 = 𝑔′, that is, 𝛾𝑔 is surjective. We conclude

that 𝛾𝑔 is a bĳection — hence an isomorphism, so 𝛾𝑔 ∈ AutGrp(𝐺). ♮

Lemma 7.3.19 (Inner automorphism correspondence). Let 𝐺 ∈ Grp. The map 𝜙:𝐺 →
AutGrp(𝐺) defined by the mapping 𝜙(𝑔) = 𝛾𝑔 (where 𝛾𝑔 is defined in Lemma 7.3.18) is

a morphism of groups.

Proof. Let 𝑔, 𝑔′ ∈ 𝐺 be any elements, then

𝛾𝑔𝑔′(𝑎) = (𝑔𝑔′)𝑎(𝑔𝑔′)−1

= (𝑔𝑔′)𝑎(𝑔′−1𝑔−1) = 𝑔(𝑔′𝑎𝑔′−1)𝑔−1 = 𝛾𝑔𝛾𝑔′(𝑎).

This being said, its easy to see that 𝜙 preserves the group structure: 𝜙(𝑔𝑔′) = 𝛾𝑔𝑔′ =
𝛾𝑔𝛾𝑔′ = 𝜙(𝑔)𝜙(𝑔′). Thus 𝜙 is a morphism of groups. ♮
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More Thoughts On Cyclic Groups
We can now state the definition of a cyclic group in a formal manner, it goes as follows:

Definition 7.3.20 (Cyclic group). A group 𝐺 is said to be cyclic if 𝐺 ≃ Z or 𝐺 ≃ Z/𝑛Z
for some 𝑛 ∈ N.

Proposition 7.3.21. A finite group of order 𝑛 ∈ N is cyclic if and only if it contains an

element of order 𝑛.

Proof. Let 𝐺 be a cyclic group of order 𝑛. Since 𝐺 is finite, then there exists an isomor-

phism 𝜙:𝐺 ≃−→ Z/𝑛Z. Consider the element 𝑔 = 𝜙−1([1]𝑛) ∈ 𝐺, from Proposition 7.3.17

we see that |𝑔| = 𝑛.

Let 𝐺 be a finite group of order 𝑛 and 𝑥 ∈ 𝐺 be such that |𝑥| = 𝑛. Let 𝜙:𝐺 →
Z/𝑛Z be any morphism of groups sending 𝑥 ↦→ [1]𝑛 . Consider the collection 𝐺′ =
{𝑒𝐺 , 𝑥, 𝑥2, . . . , 𝑥𝑛−1} ⊆ 𝐺, and notice that, together with the binary operation of 𝐺, 𝐺′

becomes a group of 𝑛 elements — that is, 𝐺′ = 𝐺 and every element 𝑔 ∈ 𝐺 can be

written as 𝑔 = 𝑥𝑘 for some 1 ⩽ 𝑘 ⩽ 𝑛. This implies in 𝜙 injective — thus a bĳection.

From Proposition 7.3.15 we see that 𝜙 is an isomorphism 𝐺 ≃ Z/𝑛Z — 𝐺 is a cyclic

group, which finishes our proof. ♮

Proposition 7.3.22. The order of the cyclic group 𝐶𝑛 is equal to 𝜙(𝑛), where 𝜙 is the

Euler totient function — that is, the number of positive integers less than 𝑛 that are

relatively prime to 𝑛.

Proof. Let 𝑥 ∈ 𝐶𝑛 be a generator of the group — that is, 𝑥𝑛 = 𝑒 — then for all 𝑑 < 𝑛

such that gcd(𝑑, 𝑛) = 1 we have 𝑥𝑑 ≠ 𝑥 and (𝑥𝑑)𝑛 = 𝑒 thus 𝑥𝑑 is a generator of 𝐶𝑛 .

Therefore the number of distinct elements of 𝐶𝑛 is the same as the number of positive

integers coprime of 𝑛. ♮

Proposition 7.3.23 (Subgroup). Any subgroup of a cyclic group is cyclic.

Proof. Let 𝐺 = ⟨𝑔⟩ be a cyclic group and 𝐻 ⊆ 𝐺 be any subgroup of 𝐺. If ℎ ∈ 𝐻 then

there exists 𝑛 ∈ Z such that ℎ = 𝑔𝑛 , thus 𝑔𝑛 ∈ 𝐻 — but then, given any other ℎ′ ∈ 𝐻,

there must exist 𝑚 ∈ Z such that ℎ′ = 𝑔𝑛+𝑚 = ℎ𝑚 , thus 𝐻 = ⟨ℎ⟩ is cyclic. ♮

Lemma 7.3.24. Given a group 𝐺, the collection of inner automorphisms, which we’ll

denote by Inn(𝐺), is a subgroup of Aut(𝐺). Moreover, the following statements are

equivalent:

(a) Inn(𝐺) is cyclic.

(b) Inn(𝐺) is trivial.

(c) 𝐺 is abelian.

Therefore, if Aut(𝐺) is cyclic, the group 𝐺 is abelian.

Proof. From Lemma 7.3.18 and Lemma 7.3.19 we find that Inn(𝐺) ⊆ Aut(𝐺) is indeed

a subgroup. Now we prove the equivalences:
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• (a)⇔ (b). If Inn(𝐺) is cyclic, then there must exist 𝑔 ∈ 𝐺 for which Inn(𝐺) = ⟨𝛾𝑔⟩.
Therefore, given any ℎ ∈ 𝐺, there exists 𝑛 ∈ Z for which 𝛾ℎ = 𝛾𝑛𝑔 — therefore

ℎ𝑔ℎ−1 = 𝑔𝑛𝑔𝑔−𝑛 = 𝑔, thus ℎ𝑔 = 𝑔ℎ. We can thus conclude that 𝛾𝑔 is the identity

morphism ℎ ↦→ ℎ, which implies in Inn(𝐺) being trivial. Now, if we assume

Inn(𝐺) to be trivial by hypothesis, then clearly Inn(𝐺) is cyclic.

• (b)⇔ (c). If Inn(𝐺) is trivial, then given any pair of elements 𝑔, ℎ ∈ 𝐺 we have

𝛾𝑔 = id and thus 𝑔ℎ𝑔−1 = ℎ, which implies in 𝑔ℎ = ℎ𝑔, thus 𝐺 is commutative.

Now, if 𝐺 is commutative by hypothesis, we find that 𝑔ℎ𝑔−1 = (𝑔𝑔−1)ℎ = ℎ thus

Inn(𝐺) is trivial.

Thus, if Aut(𝐺) is a cyclic group, we find that the subgroup Inn(𝐺) ⊆ Aut(𝐺) is also

cyclic (from Proposition 7.3.23), hence 𝐺 is abelian. ♮

Some Matrix Groups
Example 7.3.25 (Important matrix groups). Let 𝑘 be a field and Mat𝑛×𝑛(𝑘) = EndVect𝑘 (𝑘𝑛)
be the collection of all 𝑛 × 𝑛 matrices over 𝑘, for any 𝑛 ∈ Z>0. We define the following

important groups of square matrices:

1. General linear group: GL𝑛(𝑘) ≔ {𝑇 ∈ Mat𝑛×𝑛(𝑘) : det𝑇 ≠ 0}, the group of

invertible matrices.

2. Special linear group: SL𝑛(𝑘) ≔ {𝑇 ∈ GL𝑛(𝑘) : det𝑇 = 1}.
3. Orthogonal group: O𝑛(𝑘) ≔ {𝑇 ∈ GL𝑛(𝑘) : 𝑇𝑇∗ = 𝑇∗𝑇 = id𝑛}1.

4. Special orthogonal group: SO𝑛(𝑘) ≔ {𝑇 ∈ O𝑛(𝑘) : det𝑇 = 1}.
5. Unitary group: U𝑛(C) ≔ {𝑇 ∈ GL𝑛(C) : 𝑇𝑇† = 𝑇†𝑇 = id𝑛}2.

6. Special unitary group: SU𝑛(C) ≔ {𝑇 ∈ U𝑛(C) : det𝑇 = 1}.
7. Lie algebra of the general linear group: 𝔤𝔩𝑛(𝑘) ⊆ GL𝑛(𝑘) such that

[𝑇, 𝑀] ≔ 𝑇𝑀 −𝑀𝑇 ∈ 𝔤𝔩𝑛(𝑘)

for all 𝑇, 𝑀 ∈ 𝔤𝔩𝑛(𝑘).
8. Lie algebra of the special linear group: 𝔰𝔩𝑛(𝑘) ≔ {𝑇 ∈ 𝔤𝔩𝑛(𝑘) : tr𝑇 = 0}.
9. Lie algebra of the orthogonal group: 𝔬𝑛(𝑘) ≔ {𝑇 ∈ 𝔤𝔩𝑛(𝑘) : 𝑇 + 𝑇∗ = 0}

10. Lie algebra of the unitary group: 𝔲𝑛(C) ≔ {𝑇 ∈ 𝔤𝔩𝑛(C) : 𝑇 + 𝑇† = 0}.
11. Lie algebra of the special unitary group: 𝔰𝔲𝑛(C) ≔ {𝑇 ∈ 𝔤𝔩𝑛(C) : tr𝑇 = 0}.

The proof that such examples are indeed groups come immediately from Proposi-

tion 6.6.4 and Definition 5.7.6. Notice that all of the above groups are subgroups of

the general linear group GL𝑛(𝑘). It should be noted, however, that the Lie groups

presented do not form a group under multiplication.

1
The matrix 𝑇∗ denotes the transpose of 𝑇, which is the same as the dual of 𝑇.

2
The matrix 𝑇† denotes the complex transpose of 𝑇.
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Example 7.3.26 (Upper triangular matrices). The collection of upper triangular matri-

ces over a field 𝑘 is a subgroup of GL𝑛(𝑘). Let 𝐴 be any upper triangular matrix, then

from definition [𝑎𝑖 𝑗]1⩽𝑖 , 𝑗⩽𝑛 is such that 𝑎𝑖 𝑗 = 0 for all 𝑖 > 𝑗 and

∏𝑛
𝑗=1

𝑎 𝑗 𝑗 ≠ 0 — therefore,

any permutation 𝜎 ∈ 𝑆𝑛 other than the identity will have at least one element 𝑖0 > 𝑗.

Hence

det𝐴 =

∑
𝜎∈𝑆𝑛

sign(𝜎)
𝑛∏
𝑗=1

𝑎𝜎(𝑗) 𝑗 =
𝑛∏
𝑗=1

𝑎 𝑗 𝑗 ≠ 0,

which implies in𝐴 ∈ GL𝑛(𝑘). Moreover, since the sum of two upper triangular matrices

is upper triangular, clearly the sum is in GL𝑛(𝑘)— which proves that the collection of

upper triangular matrices is a subgroup, since the existence of inverses is immediate.

Example 7.3.27. Notice that any matrix of the form

𝐴 ≔

[
𝑎 + 𝑏𝑖 𝑐 + 𝑑𝑖
−𝑐 + 𝑑𝑖 𝑎 − 𝑏𝑖

]
(7.4)

Is such that

𝐴𝐴† =

[
𝑎 + 𝑏𝑖 𝑐 + 𝑑𝑖
−𝑐 + 𝑑𝑖 𝑎 − 𝑏𝑖

] [
𝑎 − 𝑏𝑖 −𝑐 − 𝑑𝑖
𝑐 − 𝑑𝑖 𝑎 + 𝑏𝑖

]
=

[
𝑎2 + 𝑏2 + 𝑐2 + 𝑑2

0

0 𝑎2 + 𝑏2 + 𝑐2 + 𝑑2

]
,

𝐴†𝐴 =

[
𝑎 − 𝑏𝑖 −𝑐 − 𝑑𝑖
𝑐 − 𝑑𝑖 𝑎 + 𝑏𝑖

] [
𝑎 + 𝑏𝑖 𝑐 + 𝑑𝑖
−𝑐 + 𝑑𝑖 𝑎 − 𝑏𝑖

]
=

[
𝑎2 + 𝑏2 + 𝑐2 + 𝑑2

0

0 𝑎2 + 𝑏2 + 𝑐2 + 𝑑2

]
.

Therefore, imposing 𝑎2+ 𝑏2+ 𝑐2+ 𝑑2 = 1 in Eq. (7.4) makes 𝐴 into a matrix of the group

SL2(C). Furthermore, if 𝑇 ∈ GL𝑛(C) is a matrix with a form other than that of Eq. (7.4),

then it cannot be the case that det𝑇 equal 1 — thus, every SL2(C)matrix has the form

of 𝐴.

Proposition 7.3.28. The group SL2(Z) is generated by the pair matrices

𝐴 ≔

[
0 −1

1 0

]
and 𝐵 ≔

[
1 1

0 1

]
Proof. It should be noted that 𝐵𝑛 =

[
1 𝑛
0 1

]
and 𝐴2 =

[ −1 0

0 −1

]
— thus, given any matrix

𝑋 =
[
𝑎 𝑏
𝑐 𝑑

]
∈ SL2(Z)we have

𝐴𝑋 =

[
−𝑐 −𝑑
𝑎 𝑏

]
and 𝐵𝑛𝑋 =

[
𝑎 + 𝑛𝑐 𝑏 + 𝑛𝑑
𝑐 𝑑

]
.

If we assume that 𝑐 ≠ 0, and |𝑎| ⩾ |𝑐| (otherwise, simply multiply from the left by 𝐴),

we can apply the division algorithm to find 𝑞0, 𝑟0 ∈ Z for which 𝑎 = 𝑞0𝑐 + 𝑟0, satisfying

0 ⩽ 𝑟0 ⩽ |𝑐|. Then we can apply

𝐴𝐵−𝑞0𝑋 = 𝐴

[
𝑟0 𝑏 − 𝑞0𝑑

𝑐 𝑑

]
=

[
−𝑐 −𝑑
𝑟0 𝑏 − 𝑞0𝑑

]
≔ 𝑋0,
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Now, if 𝑟0 ≠ 0, we can recursively apply the division algorithm (which I’ll carry again

just for the sake of clarity): we find 𝑞1, 𝑟1 ∈ Z such that−𝑐 = 𝑞1𝑟0+𝑟1, where 0 ⩽ 𝑟1 ⩽ |𝑟0|
— we thus find a new power 𝑞1 for which

𝐴𝐵−𝑞1𝑋0 =

[
−𝑟0 𝑞0𝑑 − 𝑏
𝑟1 (𝑞0𝑞1 − 1)𝑑 − 𝑞1𝑏

]
= 𝑋1.

This process is ensured to terminate at some point with a zero lower left entry. Since the

group is acting on the left of SL2(Z) and the determinant is always zero, the resulting

matrix will be of the form

[ ±1 𝑚
0 ±1

]
∈ SL2(Z) — which equals either 𝐵𝑚 or −𝐵−𝑚 . We

conclude that there must exist some 𝑔 ∈ ⟨𝐴, 𝐵⟩ such that 𝑔𝑋 = ±𝐵𝑡 for some 𝑡 ∈ Z —

and since 𝐴2 = −𝐼2, we obtain 𝑋 = ±𝑔−1𝐵𝑡 ∈ SL2(Z) and ±𝑔−1𝐵𝑡 ∈ ⟨𝐴, 𝐵⟩. ♮

Proposition 7.3.29 (Union of subgroups). Let 𝐺 be any group, then:

(a) Given subgroups 𝐻, 𝑄 ⊆ 𝐺, the union 𝐻 ∪ 𝑄 is a subgroup of 𝐺 if and only if

either 𝐻 ⊆ 𝑄 or 𝑄 ⊆ 𝐻.

(b) If 𝐻0 ⊆ 𝐻1 ⊆ . . . is a collection of subgroups of 𝐺, then the union

⋃
𝑗⩾0

𝐻𝑗 ⊆ 𝐺 is a

subgroup of 𝐺.

Proof. (a) If 𝐻 ⊆ 𝑄 or 𝑄 ⊆ 𝐻, then 𝐻 ∪𝑄 is clearly a subgroup. On the other hand, if

𝐻 ∪𝑄 is a subgroup, then for every ℎ ∈ 𝐻 and 𝑞 ∈ 𝑄 we must have ℎ𝑞 ∈ 𝐻 ∪𝑄 —

which implies that ℎ𝑞 ∈ 𝐻 or ℎ𝑞 ∈ 𝑄, for the first case, we have ℎ−1(ℎ𝑞) = 𝑞 ∈ 𝐻
thus 𝑄 ⊆ 𝐻, for the second case, (ℎ𝑞)𝑞−1 = ℎ ∈ 𝑄 implying in 𝐻 ⊆ 𝑄.

(b) Since the composition of elements is only defined for finitely many elements, the

proposition follows immediately.

♮

Group Products
Let (𝐺, ·𝐺), (𝐻, ·𝐻) ∈ Grp be any objects. We define a binary operation · : (𝐺 × 𝐻)2 →
𝐺 × 𝐻 as the mapping

(𝑔, ℎ) · (𝑔′, ℎ′) = (𝑔 ·𝐺 𝑔′, ℎ ·𝐻 ℎ′). (7.5)

Such binary operation defines a group structure on𝐺×𝐻. Notice that, given an element

(𝑔, ℎ) ∈ 𝐺 ×𝐻, there exists an element (𝑔−1, ℎ−1) ∈ 𝐺 ×𝐻 such that (𝑔, ℎ) · (𝑔−1, ℎ−1) =
(𝑒𝐺 , 𝑒𝐻). Moreover, clearly (𝑒𝐺 , 𝑒𝐻) ∈ 𝐺 × 𝐻 is the identity element of the structure.

Hence (𝐺 × 𝐻, ·) ∈ Grp.
Also, the natural projections 𝜋𝐺:𝐺×𝐻 → 𝐺 and 𝜋𝐻 :𝐺×𝐻 → 𝐻 define morphisms

of groups.

Definition 7.3.30 (Direct product). Let {𝐺 𝑗}𝑗∈𝐽 be a collection of groups. We define the

direct product of this family as the group

∏
𝑗∈𝐽 𝐺 𝑗 given by elements (𝑥 𝑗)𝑗∈𝐽 such that

𝑥 𝑗 ∈ 𝐺 𝑗 . The composition of elements of the direct product is defined component-wise,

that is, if (𝑥 𝑗)𝑗∈𝐽 , (𝑦 𝑗)𝑗∈𝐽 ∈
∏

𝑗∈𝐽 𝐺 𝑗 , then (𝑥 𝑗)𝑗∈𝐽(𝑦 𝑗)𝑗∈𝐽 ≔ (𝑥 𝑗𝑦 𝑗)𝑗∈𝐽 . Moreover, inverses

are also defined component-wise, (𝑥 𝑗)−1

𝑗∈𝐽 ≔ (𝑥−1

𝑗
)𝑗∈𝐽 .
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Proposition 7.3.31. The direct products of groups are products on the category of

groups, Grp. That is, for all group 𝑊 and group morphisms 𝑓 ∈ MorGrp(𝑊, 𝐺) and

𝑔 ∈ MorGrp(𝑊, 𝐻), there exists a unique morphism 𝜑 ∈ MorGrp(𝑊, 𝐺 × 𝐻) such that

the following diagram commutes

𝑊

𝐺 × 𝐻

𝐺 𝐻

𝜑
𝑔𝑓

𝜋𝐻𝜋𝐺

Proof. We just take 𝜑:𝑊 → 𝐺 ×𝐻 as the mapping 𝑤
𝜑
↦−→ ( 𝑓 (𝑤), 𝑔(𝑤)). We show that 𝜑

exists in Grp: let 𝑥, 𝑦 ∈ 𝑊 be any elements, then, since 𝑓 and 𝑔 are group morphisms,

we find that

𝜑(𝑥𝑦) = ( 𝑓 (𝑥𝑦), 𝑔(𝑥𝑦)) = ( 𝑓 (𝑥) 𝑓 (𝑦), 𝑔(𝑥)𝑔(𝑦)) = ( 𝑓 (𝑥), 𝑔(𝑥))( 𝑓 (𝑦), 𝑔(𝑦)) = 𝜑(𝑥)𝜑(𝑦).

That is, 𝜑 is a group morphism. The uniqueness comes from the covariant functor

𝐹: Grp→ Set, since Set allows for products and hence the set-function 𝐹𝜑 is unique. ♮

Remark 7.3.32. We now show that if 𝐺, 𝐻 ∈ Grp are such that 𝐺 ≃ 𝐻 × 𝐺, it does not
follow that𝐻 is trivial. Let𝐺 ≔

⊕∞
𝑗=0

Z and𝐻 ≔ Z be abelian groups under the natural

structure of addition. Notice that 𝐺 ≃ 𝐻×𝐺 by the natural assignment of each element

of 𝐺 to itself in 𝐻 × 𝐺. Since 𝐻 is non-trivial, we found a counterexample.

Proposition 7.3.33. Let 𝐺 be a group and 𝐻, 𝑄 ⊆ 𝐺 be subgroups for which 𝐻 ∩𝑄 = 𝑒

and 𝐻𝑄 = 𝐺 — that is, for every 𝑔 ∈ 𝐺, there exists ℎ ∈ 𝐻 and 𝑞 ∈ 𝑄 such that 𝑔 = ℎ𝑞

— we also impose that ℎ𝑞 = 𝑞ℎ for every ℎ ∈ 𝐻 and 𝑞 ∈ 𝑄. Then, the morphism of

groups 𝐻 ×𝑄 ≃−→ 𝐺 defined by the mapping (ℎ, 𝑞) ↦→ ℎ𝑞 is an isomorphism.

Proof. Notice that (ℎ, 𝑞)(ℎ′, 𝑞′) = (ℎℎ′, 𝑞𝑞′) ↦→ (ℎℎ′)(𝑞𝑞′) = (ℎ𝑞)(ℎ′𝑞′) thus the map is

indeed a morphism of groups. Moreover, since every element of 𝐺 can be written as

a product 𝐻𝑄, it follows that the map is surjective. Now, let (ℎ, 𝑞) be in the kernel

of the morphism, then ℎ𝑞 = 𝑒 which implies in ℎ = 𝑞−1
but then ℎ ∈ 𝐻 ∩ 𝑄 and by

hypothesis ℎ = 𝑒 — thus the morphism is injective. ♮

7.4 Quotient Groups — The Birth of Normal Subgroups

Cosets
Definition 7.4.1 (Coset). Let 𝐺 be a group and𝐻 be a subgroup of 𝐺. Given any 𝑔 ∈ 𝐺,

a left coset of 𝐻 in 𝐺 induced by 𝑔 and denoted by 𝑔𝐻 is a set whose elements have

the form 𝑔ℎ for each ℎ ∈ 𝐻. A right coset of 𝐻 in 𝐺 induced by 𝑔 is denoted 𝐻𝑔 and

is a set consisting of elements of the form ℎ𝑔 for each ℎ ∈ 𝐻. An element of a coset is

commonly called coset representative.
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Corollary 7.4.2. Let 𝐺 be a group and 𝐻 be subgroup of 𝐺, then, for every ℎ ∈ 𝐻, we

have

ℎ𝐻 = 𝐻ℎ = 𝐻.

Proof. Notice that, given 𝑥 ∈ 𝐻, the element ℎ(ℎ−1𝑥) = 𝑥 ∈ ℎ𝐻, thus 𝐻 ⊆ ℎ𝐻, on the

other hand, it’s clear that ℎ𝐻 ⊆ 𝐻, since ℎ𝐻 is composed of product of elements of

𝐻, which itself is closed under products. The same analogous proof goes for 𝐻ℎ so I

won’t bother to write it down. ♮

Corollary 7.4.3 (Equal cosets). Let 𝐺 be a group and 𝐻 ⊆ 𝐺 be a subgroup. Given

𝑥, 𝑦 ∈ 𝐺, if the cosets 𝑥𝐻 and 𝑦𝐻 share any common element, then 𝑥𝐻 = 𝑦𝐻.

Proof. Let 𝑔 ∈ 𝑥𝐻 ∩ 𝑦𝐻𝑘, then there exists 𝑥ℎ ∈ 𝑥𝐻 and 𝑦ℎ′ ∈ 𝑦𝐻 such that 𝑥ℎ = 𝑔 =

𝑦ℎ′, then, in particular, 𝑥 = 𝑦ℎ′ℎ−1
moreover, since 𝐻 is a subgroup, it is clear that

ℎ′ℎ−1 ∈ 𝐻 then 𝑥𝐻 = (𝑦ℎ′ℎ−1)𝐻 = 𝑦(ℎ′ℎ−1)𝐻 = 𝑦𝐻. ♮

Definition 7.4.4 (Index). Let 𝐺 be a group and 𝐻 ⊆ 𝐺 be a subgroup. The number of

left cosets of 𝐻 in 𝐺 is denoted by [𝐺 : 𝐻], which will be commonly referred to as the

index of 𝐻 in 𝐺.

Corollary 7.4.5. If we denote by ∗ the trivial group, the order of a group 𝐺 is the same

as [𝐺 : ∗]— that is, |𝐺| = [𝐺 : ∗].

Proof. One can view the trivial group ∗ as a subgroup of 𝐺 containing only the identity.

Notice that the number of left cosets of ∗ will be exactly the number of elements of 𝐺,

that is [𝐺 : ∗] = |𝐺|. ♮

Proposition 7.4.6. Let 𝐺 be a group, and 𝐻 ⊆ 𝐺 be a subgroup, and 𝑄 ⊆ 𝐻 be a

subgroup. Then, if any two of the quantities {[𝐺 : 𝐻], [𝐻 : 𝑄], [𝐺 : 𝑄]} is finite, the

third is also finite and the following equality holds

[𝐺 : 𝐻][𝐻 : 𝑄] = [𝐺 : 𝑄].

Proof. Let {𝑥𝑖}𝑖∈𝐼 ⊆ 𝐻 be coset representatives of 𝑄, and {𝑦 𝑗}𝑗∈𝐽 ⊆ 𝐺 be coset rep-

resentatives of 𝐻 — that is, each one of the collections {𝑥𝑖𝑄}𝑖∈𝐼 and {𝑦 𝑗𝐻}𝑗∈𝐽 have

pairwise disjoint elements, and 𝐻 =
⋃
𝑖∈𝐼 𝑥𝑖𝑄, and 𝐺 =

⋃
𝑗∈𝐽 𝑦 𝑗𝐻. Then we have that

𝐺 =
⋃
(𝑖 , 𝑗)∈𝐼×𝐽 𝑦 𝑗𝑥𝑖𝑄, and our goal will be to prove that 𝑦 𝑗𝑥𝑖𝑄 ∩ 𝑦𝑖′𝑥 𝑗′𝑄 = ∅. Sup-

pose on the contrary that their intersection is non-empty, which by Corollary 7.4.3

implies 𝑦 𝑗𝑥𝑖𝑄 = 𝑦 𝑗′𝑥𝑖′𝑄. Since 𝑥 𝑗 , 𝑥 𝑗′ ∈ 𝐻, we have 𝑦 𝑗𝑥𝑖𝑄𝐻 = 𝑦 𝑗𝑥𝑖𝐻 = 𝑦 𝑗𝐻 and anal-

ogously 𝑦 𝑗′𝑥𝑖′𝑄𝐻 = 𝑦 𝑗′𝐻 — thus 𝑦 𝑗𝐻 = 𝑦 𝑗′𝐻, which implies in 𝑦 𝑗 = 𝑦 𝑗′. This shows

that the collection {𝑦 𝑗𝑥𝑖}(𝑖 , 𝑗)∈𝐼×𝐽 ⊆ 𝐺 are coset representatives for 𝑄 and therefore

[𝐺 : 𝐻][𝐻 : 𝑄] = [𝐺 : 𝑄]. ♮

Corollary 7.4.7 (Lagrange’s theorem). Let 𝐺 be a finite group, then the order of any

subgroup 𝐻 of 𝐺 divides the order |𝐺|.

Proof. Since |𝐺| = [𝐺 : ∗] is finite, any subgroup 𝐻 of 𝐺 is also finite and therefore

[𝐺 : 𝐻][𝐻 : ∗] = [𝐺 : ∗], which is exactly the same as [𝐺 : 𝐻]|𝐻| = |𝐺|. ♮
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Example 7.4.8 (Prime order). Let 𝐺 be a group with order |𝐺| ≔ 𝑝 prime. Choose any

𝑔 ∈ 𝐺 with 𝑔 ≠ 𝑒, and consider the subgroup 𝐻 ≔ ⟨𝑔⟩. From Proposition 7.4.6 we find

that [𝐺 : 𝐻]|𝐻| = 𝑝, hence |𝐻| divides 𝑝, but since |𝐻| ⩽ 𝑝, then |𝐻| = 𝑝 and therefore

𝐻 = 𝐺. This implies that any non-identity element of 𝐺 generates the whole group,

which is the same as to say that 𝐺 is cyclic.

Normal Subgroups
Definition 7.4.9 (Normal subgroup). Let 𝐺 be a group. We define a normal subgroup
to be the kernel of some morphism of groups in MorGrp(𝐺,−)3. In other words, a

subgroup 𝑁 ⊆ 𝐺 is normal if there exists a morphism of groups 𝜙:𝐺 → 𝐻, for some

group 𝐻, for which ker 𝜙 = 𝑁 .

Definition 7.4.10 (Quotient group). Let 𝐺 be a group and 𝑁 be a normal subgroup of

𝐺. We denote by 𝐺/𝑁 the collection of all left cosets of 𝑁 in 𝐺, on the other hand,

𝐺\𝑁 denotes the collection of all right cosets of 𝑁 in 𝐺. Moreover, we view 𝐺/𝑁 (and

𝐺\𝑁) as groups where:

• The product of two cosets 𝑥𝑁 and 𝑦𝑁 (or, respectively, 𝑁𝑥 and 𝑁𝑦) is given by

(𝑥𝑁)(𝑦𝑁) ≔ (𝑥𝑦)𝑁 which is again a left coset in 𝐺/𝑁 (conversely, (𝑁𝑥)(𝑁𝑦) ≔
𝑁(𝑥𝑦) ∈ 𝐺\𝑁).

• Given any coset 𝑥𝑁 (respectively, 𝑁𝑥), its inverse is given by 𝑥−1𝑁 (respectively,

𝑁𝑥−1
).

• The identity of the group is 𝑁 .

The group 𝐺/𝑁 is commonly referred to as the quotient group of 𝐺 by 𝐻.

Proposition 7.4.11. Let 𝐺 be a group. A subgroup 𝑁 ⊆ 𝐺 is normal if and only if, for

every 𝑔 ∈ 𝐺, we have 𝑔𝑁𝑔−1 = 𝑁 .

Proof. First, suppose that 𝑁 is a normal group and 𝜙:𝐺 → 𝐻 is a morphism such

that ker 𝜙 = 𝑁 , then if 𝑔 ∈ 𝐺 is any element, we see that for any 𝑛 ∈ 𝑁 we have

𝜙(𝑔𝑛) = 𝜙(𝑔)𝜙(𝑛) = 𝜙(𝑔) and analogously 𝜙(𝑛𝑔) = 𝜙(𝑛)𝜙(𝑔) = 𝜙(𝑔), thus in general

𝑔𝑁 = 𝑁𝑔 = 𝜙−1(𝜙(𝑔)). Note that if we multiply both groups on the right by 𝑔−1
we

get 𝑔𝑁𝑔−1 = 𝑁 , as wanted.

On the other hand, let 𝑁 ⊆ 𝐺 be a subgroup such that 𝑔𝑁𝑔−1 = 𝑁 for every 𝑔 ∈ 𝐺,

then in particular left cosets are equal to right cosets because, multiplying on the right

by 𝑔 we obtain 𝑔𝑁 = 𝑁𝑔. Consider the group of left cosets 𝐺/𝑁 (since right and left

cosets are equivalent in this specific case, we could also have considered 𝐺\𝑁) and

define the morphism of groups 𝜋:𝐺→ 𝐺/𝑁 by the mapping 𝜋(𝑔) = 𝑔𝑁 . Notice that if

𝑔 ∈ ker𝜋, then 𝑔𝑁 = 𝑁 , which implies that 𝑔 ∈ 𝑁 , moreover, if 𝑛 ∈ 𝑁 is any element,

then 𝜋(𝑛) = 𝑛𝑁 = 𝑁 — thus ker𝜋 = 𝑁 . ♮

3
In this case, we are using MorGrp(𝐺,−) to denote the same as the collection of all group morphisms

whose source is 𝐺.
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In fact the morphism 𝜋:𝐺 ↠ 𝐺/𝑁 , defined above by the map 𝑔
𝜓
↦−→ 𝑔𝑁 , is so

important we are even going to distinguishably call it the canonical projection map of 𝐺

onto the factor group 𝐺/𝑁 . It is trivial that such canonical projection 𝜋 is surjective.

Corollary 7.4.12. Let 𝐺 be a group and 𝐻 ⊆ 𝐺 be a subgroup. Then 𝐻 is normal in 𝐺

if and only if, for all given 𝛾 ∈ Inn(𝐺), we have 𝛾(𝐻) ⊆ 𝐻. Therefore, the morphism

Inn(𝐺) → Aut(𝐻)mapping 𝛾𝑔 ↦→ 𝛾𝑔|𝐻 is well defined.

Corollary 7.4.13 (Intersection of normal subgroups is normal). Let {𝑁𝑗}𝑗∈𝐽 be any

collection of normal subgroups of a given group 𝐺. Then 𝑁 ≔
⋂
𝑗∈𝐽 𝑁𝑗 is a normal

subgroup of 𝐺.

Proof. Let 𝑛 ∈ 𝑁 and 𝑔 ∈ 𝐺 be any two elements, then 𝑛 ∈ 𝑁𝑗 for all 𝑗 ∈ 𝐽 and from the

normal condition we obtain that 𝑔𝑛𝑔−1 ∈ 𝑁𝑗 for all 𝑗 ∈ 𝐽 as well — which implies in

𝑔𝑛𝑔−1 ∈ 𝑁 . ♮

Proposition 7.4.14. If 𝐺 is a group and 𝑁 ⊆ 𝐺 is a subgroup with index [𝐺 : 𝑁] = 2,

then 𝑁 is normal in 𝐺.

Proof. Suppose 𝑁 ⊆ 𝐺 is a subgroup with index 2 — that is, 𝐺/𝑁 consists only of two

cosets. Thus there must exist 𝑔 ∈ 𝐺 such that 𝑔𝑁 ≠ 𝑁 and consequently 𝑁𝑔 ≠ 𝑁 —

moreover, since 𝐺 = 𝑁 ∪ 𝑔𝑁 = 𝑁 ∪ 𝑁𝑔, one concludes that 𝑔𝑁 = 𝑁𝑔. ♮

Definition 7.4.15 (Normal closure). Given a group 𝐺 and a subset 𝑆 ⊆ 𝐺, the normal
closure of 𝑆 is the subgroup of 𝐺 generated by all elements of the form 𝑔−1𝑠𝑔 — for

𝑔 ∈ 𝐺 and 𝑠 ∈ 𝑆.

Quotient Group Properties
We now study the properties of factorization of maps between groups and sequences

of maps from the viewpoint of quotientings. One interesting immediate example is

when 𝐻 ⊆ 𝐺 is a subgroup of a group 𝐺, then

𝐻 𝐺 𝐺/𝐻𝜄 𝜋

which is a short exact sequence. Moreover, given any groups 𝐺, 𝑄 and 𝐾, if we have

an exact sequence

∗ 𝑄 𝐺 𝐾 ∗𝑓 𝑔

we can conclude that 𝑓 is injective, and 𝑔 is surjective — this comes from the fact that

ker 𝑓 = 𝑒𝑄 and, since the kernel of 𝐾 → 0 is the whole group 𝐾, we necessarily have

𝑔(𝐺) = 𝐾. Moreover, if we define 𝐻 ≔ ker 𝑔, there exists a natural identification

∗ 𝑄 𝐺 𝐾 ∗

∗ 𝐻 𝐺 𝐺/𝐻 ∗
≃

𝑓 𝑔

≃ ≃
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Proposition 7.4.16 (Universal property of quotient groups). Let 𝐺 be a group and𝑁 be

a normal subgroup of 𝐺. Then, given a group 𝑄 together with a morphism of groups

𝜙:𝐺→ 𝑄 such that𝑁 is the kernel of 𝜙, there exists a unique morphism 𝜙∗:𝐺/𝑁 → 𝑄

such that the diagram

𝐺 𝑄

𝐺/𝑁

𝜋

𝜙

𝜙∗

is commutative. Moreover, the map 𝜙∗ is injective. The morphism 𝜙∗ induces an

isomorphism of groups 𝜙:𝐺/𝑁 ≃−→ im 𝜙 and therefore we have the following factor-

ization

𝐺 𝑄

𝐺/𝑁 im 𝜙

𝜙

𝜙

≃

Proof. Define 𝜙∗ simply as the mapping 𝑔𝐻 → 𝜙(𝑔), then clearly 𝜙∗𝜋 = 𝜙. Moreover,

given any 𝑥 ∈ 𝐺/𝑁 , the fiber 𝜋−1(𝑥) is non-empty, thus 𝜙∗ cannot assume any other

values beside those specified by 𝜙, which implies in its uniqueness. Moreover, since

ker 𝜙 = 𝑁 , if 𝑛 ∈ 𝑁 then 𝜙∗𝜋(𝑛) = 𝜙∗(𝑛𝑁) = 𝑒𝑄 but 𝑛𝑁 = 𝑁 thus 𝑁 ∈ ker 𝜙∗,
moreover, if 𝑥𝑁 ∈ ker 𝜙∗ it follows that 𝜙(𝑥) = 𝑒𝑄 then 𝑥 ∈ 𝑁 and therefore 𝑥𝑁 = 𝑁

— this implies that ker 𝜙∗ = 𝑁 , which is the identity element of 𝐺/𝑁 , thus 𝜙∗ is

injective. ♮

Corollary 7.4.17 (First isomorphism). Let𝜙:𝐺 ↠ 𝐻 be a surjective morphism of groups.

There exists a canonical isomorphism of groups

𝐺/ker 𝜙 ≃ 𝐻.

Proof. By the universal property, the induced map𝜙∗:𝐺/ker 𝜙 ↣ 𝐻 is already injective.

From hypothesis, 𝜙 being surjective implies that 𝜙∗ is surjective since 𝜙 = 𝜋𝜙∗. ♮

Corollary 7.4.18. Let 𝐺 be a group and 𝐻 be a subgroup of 𝐺. Define 𝑆 to be the

subgroup of 𝐺 consisting of the intersection of all normal subgroups of 𝐺 containing

𝐻. Then 𝑆 is normal in 𝐺 and is the smallest normal subgroup of 𝐺 containing 𝐻. Let

𝑄 be a group and 𝜙:𝐺 → 𝑄 be a morphism of groups such that 𝐻 ⊆ ker 𝜙. Then

we have 𝑆 ⊆ ker 𝜙, and there exists a unique morphism 𝜙∗:𝐺/𝑆 ↣ 𝑄 such that the

following diagram commutes

𝐺 𝑄

𝐺/𝑆

𝜋

𝜙

𝜙∗

moreover, 𝜙∗ is injective.
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Proof. As before, we just define 𝜙∗(𝑥𝑆) ≔ 𝜙(𝑥). The commutativity follow from con-

struction, uniqueness follows from the universal property. Moreover, 𝑆 is given by the

intersection of arbitrarily many normal subgroups of𝐺 containing𝐻, thus in particular

𝐻 ⊆ 𝑆 and, for every 𝑔 ∈ 𝐺, we have 𝑔𝑆𝑔−1 = 𝑆 — thus 𝑆 is indeed normal. ♮

Corollary 7.4.19 (Third isomorphism). Let 𝐺 be a group and 𝐻 ⊆ 𝐺 be a normal
subgroup of 𝐺. Let𝑄 ⊆ 𝐺 be a subgroup containing𝐻. Then,𝑄/𝐻 is normal in 𝐺/𝐻 if

and only if 𝑄 is normal in 𝐺, if that is the case, then we have a canonical isomorphism

𝐺/𝐻
𝑄/𝐻 ≃ 𝐺/𝑄.

Proof. Suppose 𝑄 is normal in 𝐺. Since 𝐻 is contained in 𝑄, and ker(𝐺 ↠ 𝐺/𝑄) = 𝑄,

we can apply the universal property of quotients Corollary 7.4.18 to the subgroup 𝐻

of the kernel and find a unique induced injective morphism 𝐺/𝐻 ↣ 𝐺/𝑄 — whose

kernel, on the other hand, is 𝑄/𝐻, thus 𝑄/𝐻 is normal in 𝐺/𝐻.

For the converse, let 𝑄/𝐻 be normal in 𝐺/𝐻, and consider the morphism given by

the composition of the canonical projections

𝐺 𝐺/𝐻 𝐺/𝐻
𝑄/𝐻

which has a kernel given by 𝑄 — thus 𝑄 is normal in 𝐺. With that, using Corol-

lary 7.4.18, the induced map is the wanted canonical isomorphism. ♮

In the context of the last corollary, we can visualize the propositions by the following

diagram, which commutes

∗ 𝑄 𝐺 𝐺/𝑄 ∗

∗ 𝑄/𝐻 𝐺/𝐻 𝐺/𝑄 ∗
≃ ≃

id

Corollary 7.4.20 (Second isomorphism). Let 𝐺 be a group, and let 𝐻 and 𝑄 be sub-

groups of 𝐺 such that 𝐻 ⊆ 𝑁𝐺(𝑄) — that is, 𝐻 is contained in the normalizer of 𝑄.

Then we have the following canonical isomorphism

𝐻

𝐻 ∩𝑄 ≃
𝐻𝑄

𝑄
.

Proof. Since 𝐻 ⊆ 𝑁𝐺(𝑄), then ℎ𝑄ℎ−1 = 𝑄 for every ℎ ∈ 𝐻, so that 𝑄 is normal in 𝐻.

Since both 𝐻 and 𝑄 are normal in 𝐻, their intersection 𝐻 ∩ 𝑄 is also normal in 𝐻.

Moreover, 𝐻𝑄 = 𝑄𝐻 and, given ℎ𝑞 ∈ 𝐻𝑄, the element 𝑞−1ℎ−1 ∈ 𝑄𝐻 = 𝐻𝑄 exists,

thus 𝐻𝑄 is closed under inverses, and clearly closed under products, thus 𝐻𝑄 is a

subgroup of 𝐺. Consider now the surjective morphism 𝐻 ↠ 𝐻𝑄/𝑄 given by the

mapping ℎ ↦→ ℎ𝑄 — whose kernel is 𝐻 ∩ 𝑄, and therefore, by the quotient universal

property, there exists a unique injective morphism𝐻/(𝐻∩𝑄)↣ 𝐻𝑄/𝑄, which is also

surjective by the construction of 𝐻 ↠ 𝐻𝑄/𝑄. ♮
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Proposition 7.4.21 (Morphism preimage preserve normality). Let 𝐺 and 𝐻 be groups

and 𝑁 ⊆ 𝐻 be a normal subgroup. If 𝑓 :𝐺 → 𝐻 is a morphism, then 𝑓 −1(𝑁) ⊆ 𝐺 is a

normal subgroup of 𝐺.

Proof. Let 𝑥 ∈ 𝐺 and 𝑦 ∈ 𝑓 −1(𝑁) be any two element of 𝐺. We have 𝑓 (𝑥𝑦𝑥−1) =
𝑓 (𝑥) 𝑓 (𝑦) 𝑓 (𝑥)−1 ∈ 𝑁 , thus 𝑥𝑦𝑥−1 ∈ 𝑓 −1(𝑁). ♮

Notice that the previous proposition gets us the following commutative diagram

𝐺 𝐻 𝐻/𝑁

𝑓 −1(𝑁) 𝑁

𝑓 𝜋

𝑓

Moreover, since ker𝜋 𝑓 = 𝑓 −1(𝑁), we can use the universal property to obtain

𝐺 𝐻/𝑁

𝐺/ 𝑓 −1(𝑁)

𝜋 𝑓

𝜙

If we now impose surjectivity to the morphism 𝑓 , we find that 𝜙 must also be surjective,

giving rise to an isomorphism𝐺/ 𝑓 −1(𝑁) ≃ 𝐻/𝑁 . The last two diagrams can be encoded

in a single commutative diagram:

0 𝑓 −1(𝑁) 𝐺 𝐺/ 𝑓 −1(𝑁) 0

0 𝑁 𝐻 𝐻/𝑁 0

𝑓 𝑓 𝜙

Centralizers & Normalizers
Definition 7.4.22 (Centralizers and normalizers). Let 𝐺 be a group and 𝑆 ⊆ 𝐺 be any

set of elements. We define the following groups:

(a) The normalizer of 𝑆 is defined as the group 𝑁(𝑆) ≔ {𝑔 ∈ 𝐺 : 𝑔𝑆𝑔−1 = 𝑆}.
(b) A centralizer of 𝑆 is defined as the group 𝑍(𝑆) ≔ {𝑔 ∈ 𝐺 : 𝑔𝑠𝑔−1 = 𝑠, for all 𝑠 ∈ 𝑆}.

The centralizer 𝑍(𝐺) is commonly called the center of 𝐺.

The normalizer and centralizer are indeed groups, notice that if 𝑔 ∈ 𝑁(𝑆), then

𝑔−1 ∈ 𝑁(𝑆) since 𝑔𝑆𝑔−1 = 𝑆 it follows, by multiplying on the left by 𝑔−1
and on the

right by 𝑔, that 𝑆 = 𝑔−1𝑆𝑔. Moreover, given any two elements 𝑔, ℎ ∈ 𝑁(𝑆), we have

(𝑔ℎ)−1𝑁(𝑔ℎ) = (ℎ−1𝑔−1)𝑁(𝑔ℎ) = (ℎ−1𝑁ℎ)(𝑔−1𝑁𝑔) = 𝑆.

For the case of the centralizer the proof is analogous as the one just made for normal-

izers, where instead of 𝑆 we would be considering any element 𝑠 ∈ 𝑆.

In the following lemmas, let 𝐺 be a group and 𝐻 be a subgroup of 𝐺.
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Lemma 7.4.23. If 𝑄 ⊆ 𝐺 is any subgroup containing 𝐻, and 𝐻 is normal in 𝑄, then

𝑄 ⊆ 𝑁𝐺(𝐻) — that is, the normalizer 𝑁𝐺(𝐻) of 𝐻 is the largest subgroup of 𝐺 such

that 𝐻 is normal.

Proof. Let 𝐾 be a group and 𝜙:𝑄 → 𝐾 be a morphism of groups such that ker 𝜙 =

𝐻, then given any 𝑞 ∈ 𝑄, and any ℎ ∈ 𝐻, we have 𝜙(𝑞ℎ𝑞−1) = 𝜙(𝑞)𝜙(ℎ)𝜙(𝑞)−1 =

𝜙(𝑞)𝜙(𝑞)−1 = 𝑒𝐾 — thus 𝑞ℎ𝑞−1 ∈ 𝐻 and since 𝑞𝐻𝑞−1 = 𝐻 from hypothesis, then

𝑞 ∈ 𝑁(𝐻). The last statement follows clearly from the proposition. ♮

Lemma 7.4.24. If 𝑄 ⊆ 𝑁𝐺(𝐻) is a subgroup, then 𝑄𝐻 is a group and 𝐻 is normal in

𝑄𝐻.

Proof. First we verify that 𝑄𝐻 is indeed a group. Let 𝑞ℎ ∈ 𝑄𝐻 be any element.

Since 𝑄 ⊆ 𝑁𝐺(𝐻), then 𝑄𝐻𝑄−1 = 𝐻 and therefore 𝑄𝐻 = 𝐻𝑄 — hence there exists

𝑞′ℎ′ ∈ 𝑄𝐻 such that 𝑞′ℎ′ = 𝑞−1ℎ−1
so that 𝑄𝐻 is closed under inverses. Moreover,

given any two elements 𝑞ℎ, 𝑞′ℎ′ ∈ 𝑄𝐻, we have (𝑞ℎ)(𝑞′ℎ′) = 𝑞(ℎ𝑞′)ℎ′, but since there

exists 𝑞′′ℎ′′ ∈ 𝑄𝐻 such that 𝑞′′ℎ′′ = ℎ𝑞′ then 𝑞(ℎ𝑞′)ℎ′ = 𝑞(𝑞′′ℎ′′)ℎ′ = (𝑞𝑞′′)(ℎ′′ℎ′) ∈ 𝑄𝐻
— thus 𝑄𝐻 is also closed under products, and therefore 𝑄𝐻 is a group.

Let 𝑞ℎ ∈ 𝑄𝐻 be any element and consider the group (𝑞ℎ)𝐻(ℎ−1𝑞−1). Given any

element ℎ′ ∈ 𝐻, we have that (𝑞−1ℎ−1)ℎ′(𝑞ℎ) ∈ 𝐻, thus (𝑞ℎ)[(𝑞−1ℎ−1)ℎ′(𝑞ℎ)](ℎ−1𝑞−1) =
ℎ′ thus 𝐻 ⊆ (𝑞ℎ)𝐻(ℎ−1𝑞−1). Moreover, clearly (𝑞ℎ)𝐻(ℎ−1𝑞−1) ⊆ 𝐻 thus the equality

holds — which implies that 𝐻 is normal on the group 𝑄𝐻. ♮

Epimorphisms
We lay out the most difficult part of Proposition 7.4.27 in the following lemma.

Lemma 7.4.25 (Epimorphisms are surjections). In the category of groups, an epimor-

phism is a surjective set-function.

Proof. Let 𝜙:𝐻 ↠ 𝐺 be an epimorphism in Grp — our goal will be to prove that

im 𝜙 = 𝐺.

Suppose, for the sake of contradiction, that [𝐺 : im 𝜙] = 2 — so that, by Propo-

sition 7.4.14 im 𝜙 is normal in 𝐺. Now, if we consider the canonical projection and

the trivial morphism 𝜋, 0:𝐺 ⇒ 𝐺/im 𝜙 we see that 𝜋𝜙 = 0𝜙 — however, since 𝜙 is

epic, this would imply in 𝜋 = 0 which cannot possibly be true. Hence [𝐺 : im 𝜙] ⩾ 3

necessarily and thus im 𝜙 is .

Define the set-function 𝜎:𝐺/im 𝜙 → 𝐺/im 𝜙 to be a permutation of the cosets of

𝐺/im 𝜙 such that 𝜎(im 𝜙) ≔ im 𝜙 is the only fixed point of 𝜎 — which can occur only

because [𝐺 : im 𝜙] > 2. We now consider the set-functions given by the canonical

projection 𝜋:𝐺 ↠ 𝐺/im 𝜙 and a map 𝜂:𝐺/im 𝜙→ 𝐺 defined so that 𝜋𝜂 = id𝐺/im 𝜙 and

𝜂(im 𝜙) ≔ 𝑒𝐺 — which is possible since𝜋 is surjective and therefore has a right-inverse.

One can define a set-function 𝛼:𝐺 → im 𝜙 for which every 𝑔 ∈ 𝐺 can be written

uniquely as

𝑔 = 𝛼(𝑔)𝜂𝜋(𝑔). (7.6)
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Since 𝐺 is a group, the existence of 𝛼 is ensured — simply define 𝛼(𝑔) ≔ 𝑔(𝜂𝜋(𝑔))−1
.

The unicity of 𝛼 comes from the fact that if 𝛽:𝐺 → im 𝜙 is another map such that

𝑔 = 𝛽(𝑔)𝜂𝜋(𝑔), then by the injectivity of 𝜂 we conclude that 𝛽 = 𝛼. In the special case

of 𝑔 ∈ im 𝜙 then 𝜂𝜋(𝑔) = 𝜂(im 𝜙) = 𝑒𝐺, and thus 𝛼(𝑔) ≔ 𝑔.

Define 𝜆:𝐺→ 𝐺 to be the set-function given by 𝜆(𝑔) ≔ 𝛼(𝑔)𝜂(𝜎𝜋(𝑔)), for all 𝑔 ∈ 𝐺.

Notice that 𝜆 is nothing but a permutation on 𝐺 since every element of 𝐺 is uniquely

written as in Eq. (7.6) — and 𝜎 merely permutes the cosets of 𝐺/im 𝜙. Let 𝑃 be the

group of all permutations of 𝐺 and consider group morphisms 𝑘, ℓ :𝐺 ⇒ 𝑃 defined by

𝑘(𝑔)(𝑥) ≔ 𝑔𝑥, for all 𝑔, 𝑥 ∈ 𝐺, (7.7)

ℓ (𝑔) ≔ 𝜆−1𝑘(𝑔)𝜆, for all 𝑔 ∈ 𝐺. (7.8)

Indeed, given 𝑔, 𝑔′ ∈ 𝐺 we have

𝑘(𝑔𝑔′)(𝑥) = (𝑔𝑔′)𝑥 = 𝑔(𝑔′𝑥) = 𝑘(𝑔)(𝑘(𝑔′)(𝑥)),
ℓ (𝑔𝑔′) = 𝜆−1𝑘(𝑔𝑔′)𝜆 = 𝜆−1𝑘(𝑔)𝑘(𝑔′)𝜆 = ℓ (𝑔)ℓ (𝑔′)

thus both are group morphisms. The condition for 𝑘(𝑔) = ℓ (𝑔) is the same as 𝜆𝑘(𝑔) =
𝑘(𝑔)𝜆, in turn if 𝑥 ∈ 𝐺 is any element, the requirement that

𝜆(𝑔𝑥) = 𝑔𝜆(𝑥) (7.9)

is also an equivalent condition.

For the case where 𝑔 ∈ im 𝜙 and 𝑥 ∈ 𝐺 is any element, one has 𝜋(𝑔𝑥) = 𝜋(𝑔)𝜋(𝑥) =
𝜋(𝑥) and 𝛼(𝑔𝑥) = 𝑔𝛼(𝑥). Therefore,

𝜆(𝑔𝑥) = 𝛼(𝑔𝑥)𝜂(𝜎𝜋(𝑔𝑥)) = 𝑔𝛼(𝑥)𝜂(𝜎𝜋(𝑥)) = 𝑔𝜆(𝑥).

Using Eq. (7.9) one concludes that 𝑘(𝑔) = ℓ (𝑔) for all 𝑔 ∈ im 𝜙 — which in turn

implies in 𝑘𝜙 = ℓ𝜙. Note however that since 𝜙 is an epimorphism of groups by

hypothesis, we conclude that 𝑘 = ℓ in general — thus 𝜆(𝑔𝑥) = 𝑔𝜆(𝑥) is true for all

choices of 𝑔, 𝑥 ∈ 𝐺. Fix 𝑔0 ∈ 𝐺 and consider the particular case where 𝑥 ≔ 𝑒𝐺, we

thus have 𝜆(𝑔0) = 𝑔0𝜆(𝑒𝐺) = 𝑔0 — therefore, 𝑔0 = 𝜆(𝑔0) = 𝛼(𝑔0)𝜂(𝜎𝜋(𝑔0)) from the

definition of 𝜆, and 𝑔0 = 𝛼(𝑔0)𝜂𝜋(𝑔0) from Eq. (7.6). Combining both equations for 𝑔0

we conclude that 𝜂(𝜎𝜋(𝑔0)) = 𝜂𝜋(𝑔0), which in turn implies in 𝜎𝜋(𝑔0) = 𝜋(𝑔0) since 𝜂
is injective. Furthermore, 𝜎 was constructed so that im 𝜙 was its only fixed point, that

is, 𝜋(𝑔0) = im 𝜙 and therefore 𝑔0 ∈ im 𝜙. This shows that im 𝜙 = 𝐺 as wanted. ♮

Remark 7.4.26. The clever reader may be tempted to think that every epimorphism in

the category of groups is a split epimorphism — so that the forgetful functor Grp→ Set
still preserves it. However, things are not as bright as one might think.

Consider for instance the natural projective group morphism Z/5Z ↠ Z/2Z send-

ing [𝑥]5 ↦→ [𝑥]2. Although an epimorphism, such projection is not a split epimorphism

— the lack of elements of order 2 in Z/5Z does not allow the existence of non-trivial

morphisms of groups Z/2Z→ Z/5Z.
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Proposition 7.4.27 (Epimorphisms in Grp). Let 𝜙:𝐺 → 𝐻 be a group morphism. The

following propositions are equivalent:

(a) The morphism 𝜙 is an epimorphism in Grp.

(b) The set function 𝜙 is surjective in Set.

Proof. For (a) ⇒ (b), we have Lemma 7.4.25. On the other hand, the proof that (b)

⇒ (a) is straightforward: let 𝑓1, 𝑓2:𝐻 ⇒ 𝑄 be any two group morphisms such that

𝑓1𝜙 = 𝑓2𝜙, then given any ℎ ∈ 𝐻 there exists 𝑔 ∈ 𝐺 such that 𝜙(𝑔) = ℎ and hence

𝑓1𝜙(𝑔) = 𝑓1(ℎ) = 𝑓2(ℎ) = 𝑓2𝜙(𝑔)— since ℎ was chosen arbitrarily over 𝐻, we conclude

that 𝑓1 = 𝑓2. ♮

Examples & Consequences
Proposition 7.4.28 (Modular group PSL2(Z)). Let ∼ be an equivalence relation on

SL2(Z) for which 𝐴 ∼ 𝐵 if and only if 𝐴 = ±𝐵. We define the modular group as the

quotient of SL2(Z) by this equivalence relation, that is

PSL2(Z) ≔ SL2(Z)/∼

The modular group so constructed is generated by the cosets of the matrices[
0 −1

1 0

]
and

[
0 −1

1 1

]
.

Proof. Let’s consider the canonical projection morphism 𝜋: SL2(Z) ↠ PSL2(Z) and let

𝑔 ≔
[

0 −1

1 0

]
and ℎ ≔

[
1 1

0 1

]
, then since 𝑔 and 𝑔ℎ =

[
0 −1

1 1

]
generate SL2(Z), the classes

𝜋(𝑔) and 𝜋(𝑔ℎ) generate PSL2(Z). Moreover, since 𝑔2 = −𝐼2, the order of 𝜋(𝑔) is 2 —

on the other hand, (𝑔ℎ)3 = −𝐼2 then 𝜋(𝑔ℎ) has order 3. ♮

Proposition 7.4.29. Let 𝐺 be a finite abelian group. If 𝑝 is a prime divisor of the order of

𝐺, then there exists an element of 𝐺 whose order is 𝑝.

Proof. Since 𝑝 divides |𝐺|, let 𝑚 ∈ Z such that |𝐺| = 𝑝𝑚. We proceed via strong

induction on 𝑚.

• The base case 𝑚 = 1, one has |𝐺| = 𝑝. If 𝑔 ∈ 𝐺 is any element, then ⟨𝑔⟩ is a

subgroup of𝐺 and, by Lagrange’s theorem, we have that |⟨𝑔⟩| divides |𝐺|— thus

it must be the case that |⟨𝑔⟩| = 𝑝. Therefore 𝑔 is an element of order 𝑝, since 𝑝 is

prime.

• For the inductive hypothesis, let 𝑚 > 1 and assume that that the proposition is

true for all 𝑚′ < 𝑚.

• We now prove the case for 𝑚, that is, |𝐺| = 𝑝𝑚. Let 𝑔 ∈ 𝐺 be any element and

consider the subgroup ⟨𝑔⟩ of 𝐺.

If 𝑝 divides the order of 𝑔, then there exists 𝑎 ∈ Z such that 𝑝𝑎 = |𝑔|, hence the

element 𝑎𝑔 ∈ 𝐺 has order 𝑝 — if this is the case, we are done.
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Otherwise, since 𝐺 is abelian, then ⟨𝑔⟩ is a subgroup and we may consider the

quotient 𝐺/⟨𝑔⟩. By Proposition 7.4.6 we find that |𝐺/⟨𝑔⟩| = |𝐺|/|⟨𝑔⟩| = 𝑝𝑚/|𝑔|.
Since 𝑝 does not divide |𝑔| by hypothesis, then |𝑔| must divide 𝑚, therefore

𝑚/|𝑔| < 𝑚. By the inductive hypothesis, the proposition is true for positive

integers less than 𝑚, hence there exists ℎ + ⟨𝑔⟩ ∈ 𝐺/⟨𝑔⟩ with order 𝑝. If we

consider the natural projection 𝜋:𝐺 ↠ 𝐺/⟨𝑔⟩, by Proposition 7.3.13 we have that

|𝜋(ℎ)| = |ℎ + ⟨𝑔⟩| = 𝑝 divides the order of ℎ. If |ℎ| = 𝑝𝑏 for some 𝑏 ∈ Z, then the

element 𝑏ℎ ∈ 𝐺 has order 𝑝 and we are done.

♮

Solve Aluffi problems from section 8 (quotient groups)

7.5 Group Towers & Solvability

Change from “towers” to “series”

Definition 7.5.1 (Tower of subgroups). Let 𝐺 be a group. A finite sequence of groups

(𝐺0, . . . , 𝐺𝑛) is said to be a tower of subgroups of 𝐺 if

𝐺 = 𝐺0 ⊋ 𝐺1 ⊋ · · · ⊋ 𝐺𝑛 .

The tower may be classified as a normal tower if 𝐺 𝑗+1 is normal in 𝐺 𝑗 for every 0 ⩽ 𝑗 ⩽
𝑛 − 1. The tower is said to be abelian (respectively, cyclic) if it is a normal tower and

each quotient 𝐺 𝑗/𝐺 𝑗+1 is abelian (respectively, cyclic).

A direct corollary of Proposition 7.4.21 goes as follows.

Corollary 7.5.2. Let 𝑓 :𝐺 → 𝐻 be a group morphism, and 𝐻 ⊋ 𝐻0 ⊋ · · · ⊋ 𝐻𝑛 be a

normal tower in 𝐻. Then, if we define subgroups 𝐺 𝑗 ≔ 𝑓 −1(𝐻𝑗) for every 0 ⩽ 𝑗 ⩽ 𝑛,

the sequence (𝐺0, . . . , 𝐺𝑛) forms a normal tower in 𝐺.

Moreover, if (𝐻0, . . . , 𝐻𝑛) is an abelian tower (respectively, cyclic tower) in 𝐻, then

(𝐺0, . . . , 𝐺𝑛) is an abelian tower (respectively, cyclic tower) in 𝐺.

Proof. The first part is clear. For the second, notice that since for all 0 ⩽ 𝑗 ⩽ 𝑛 − 1 we

have the following commutative diagram

𝐺 𝑗 𝐻𝑗 𝐻𝑗/𝐻𝑗+1

𝐺 𝑗/𝐺 𝑗+1

𝑓

then the injection 𝐺 𝑗/𝐺 𝑗+1 ↣ 𝐻𝑗/𝐻𝑗+1 allow us to view 𝐺 𝑗/𝐺 𝑗+1 as a subgroup of

𝐻𝑗/𝐻𝑗+1 — thus necessarily abelian (respectively, cyclic). ♮
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Definition 7.5.3 (Refinement). Given a tower 𝐺 = 𝐺0 ⊋ · · · ⊋ 𝐺𝑛 of subgroups of 𝐺,

a refinement of such tower is given by the insertion of a finite sequence of subgroups

(𝐺𝑛+1, . . . , 𝐺𝑚) to the end of the tower — that is,

𝐺 = 𝐺0 ⊋ · · · ⊋ 𝐺𝑛 ⊋ 𝐺𝑛+1 ⊋ · · · ⊋ 𝐺𝑚 .

Definition 7.5.4 (Solvable group). A group 𝐺 is said to be solvable, if there exists an

abelian tower in 𝐺 such that the last element is the trivial subgroup.

Proposition 7.5.5. The following propositions regard implications of the solvability of

finite groups:

(a) Let 𝐺 be a finite group. An abelian tower of 𝐺 admits a cyclic refinement.
(b) Let 𝐺 be a finite solvable group. Then 𝐺 admits a cyclic tower whose last element is

the trivial subgroup.

Proof. Let 𝐺 be a finite abelian group. We’ll set out to prove that 𝐺 admits a cyclic

tower ending with the trivial subgroup. We proceed by induction on the order of 𝐺. If

|𝐺| = 1, then the proposition follows trivially. Suppose, as the hypothesis of induction,

that the proposition is true for 1 ⩽ |𝐺| < 𝑛. Let now |𝐺| = 𝑛 and consider any element

𝑥 ≠ 𝑒 of 𝐺. Define the group 𝑋 ≔ ⟨𝑥⟩, and 𝐻 ≔ 𝐺/𝑋 — since |𝐻| < |𝐺| = 𝑛 it must be

true, from hypothesis, that there exists a cyclic tower

𝐻 ⊋ 𝐻0 ⊋ · · · ⊋ 𝐻𝑚 = {𝑒}.

Let 𝜋:𝐺 ↠ 𝐻 be the canonical projection. From Corollary 7.5.2, the sequence of

subgroups 𝐺0 ≔ 𝐺, and 𝐺 𝑗 ≔ 𝑓 −1(𝐻𝑗) for 1 ⩽ 𝑗 ⩽ 𝑚 form a cyclic tower in 𝐺, thus

𝐺 = 𝐺0 ⊋ 𝐺1 ⊋ · · · ⊋ 𝐺𝑚 ⊋ {𝑒}.

is the desired cyclic tower on𝐺. This proves both the first statement and the second. ♮

For the time being, the following theorem is a classic but probably still beyond the

scope of this text, so I shall only mention it.

Theorem 7.5.6 (Feit-Thompson). All finite groups of odd order are solvable.

Theorem 7.5.7. Let 𝑁 ⊆ 𝐺 be a normal subgroup of the group 𝐺. Then 𝐺 is solvable

if and only if both 𝑁 and 𝐺/𝑁 are solvable.

Proof. (⇒) Suppose 𝐺 is solvable, and let 𝐺 = 𝐺0 ⊋ · · · ⊋ 𝐺𝑛 = {𝑒} be an abelian

tower in 𝐺. For each 1 ⩽ 𝑗 ⩽ 𝑛, define 𝑁𝑗 ≔ 𝑁 ∩ 𝐺 𝑗 , and let 𝜙 𝑗 :𝐺 𝑗 → 𝑄 be a

group morphism with kernel 𝐺 𝑗+1, then the induced morphism 𝜙 𝑗|𝑁∩𝐺 𝑗 :𝑁 ∩ 𝐺 𝑗 → 𝑄

has kernel 𝑁 ∩ 𝐺 𝑗+1 = 𝑁𝑗+1 — which proves that 𝑁𝑗+1 is normal in 𝑁𝑗 . Moreover,

there exists a canonical embedding 𝑁𝑗/𝑁𝑗+1 ↩→ 𝐺 𝑗/𝐺 𝑗+1, which implies that 𝑁𝑗/𝑁𝑗+1

is abelian by Proposition 7.3.12. Therefore 𝑁 = 𝑁0 ⊋ · · · ⊋ 𝑁𝑛 = {𝑒} is an abelian

tower and hence 𝑁 is solvable. For the group 𝐺/𝑁 we can simply consider the tower

𝐺/𝑁 = (𝐺0𝑁)/𝑁 ⊋ · · · ⊋ (𝐺𝑛𝑁)/𝑁 = ({𝑒}𝑁)/𝑁 = 𝑁 — where (𝐺 𝑗+1𝑁)/𝑁 is surely
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normal in (𝐺 𝑗𝑁)/𝑁 . Moreover, [(𝐺 𝑗𝑁)/𝑁]
/
[(𝐺 𝑗+1𝑁)/𝑁] ≃ (𝐺 𝑗𝑁)/(𝐺 𝑗+1𝑁) which

inherits the commutative structure from 𝐺 𝑗/𝐺 𝑗+1 — thus the tower is abelian and 𝐺/𝑁
is solvable.

(⇐) Let both 𝑁 and 𝐺/𝑁 be solvable and consider the abelian towers 𝐺/𝑁 = 𝐻0 ⊋
· · · ⊋ 𝐻𝑛 = 𝑁 , and 𝑁 = 𝑄0 ⊋ · · · ⊋ 𝑄𝑚 = {𝑒}. Since every 𝐻𝑗 is isomorphic to a

subgroup 𝐻′
𝑗
of 𝐺 containing 𝑁 , we see that

𝐺 = 𝐻′
0
⊋ · · · ⊋ 𝐻′𝑛 = 𝑁

is an abelian tower. Moreover, we can append the abelian tower of 𝑁 to obtain the

abelian tower

𝐺 = 𝐻′
0
⊋ · · · ⊋ 𝐻′𝑛 = 𝑄0 ⊋ · · · ⊋ 𝑄𝑚 = {𝑒}.

This shows that 𝐺 is a solvable group. ♮

Commutator Group
Definition 7.5.8 (Commutator group). Let 𝐺 be a group, we define the commutator
group [𝐺, 𝐺] of 𝐺 to be the subgroup of 𝐺 generated by all elements of the form

𝑥𝑦𝑥−1𝑦−1
, for 𝑥, 𝑦 ∈ 𝐺.

Lemma 7.5.9. The commutator group [𝐺, 𝐺] is normal in 𝐺.

Proof. We show that 𝑔[𝐺, 𝐺]𝑔−1 = [𝐺, 𝐺] for all 𝑔 ∈ 𝐺. Let 𝑔, 𝑥, 𝑦 ∈ 𝐺 be any triple of

elements. If we let 𝑝 ≔ 𝑔𝑥𝑔−1
and 𝑞 ≔ 𝑔𝑦𝑔−1

we obtain

𝑝𝑞𝑝−1𝑞−1 = (𝑔𝑥𝑔−1)(𝑔𝑦𝑔−1)(𝑔𝑥𝑔−1)(𝑔𝑦𝑔−1) = 𝑔𝑥𝑦𝑥−1𝑦−1𝑔−1,

therefore 𝑔[𝐺, 𝐺]𝑔−1 ⊆ [𝐺, 𝐺]. Moreover, if 𝑎 ≔ 𝑔−1𝑥𝑔 and 𝑏 ≔ 𝑔−1𝑦𝑔, then

𝑔[𝑎𝑏𝑎−1𝑏−1]𝑔−1 = 𝑔[(𝑔−1𝑥𝑔)(𝑔−1𝑦𝑔)(𝑔−1𝑥𝑔)(𝑔−1𝑥−1𝑔)(𝑔−1𝑦−1𝑔)]𝑔−1

= 𝑔[𝑔−1𝑥𝑦𝑥−1𝑦−1𝑔]𝑔−1

= 𝑥𝑦𝑥−1𝑦−1,

which implies in 𝑥𝑦𝑥−1𝑦−1 ∈ 𝑔[𝐺, 𝐺]𝑔−1
and hence [𝐺, 𝐺] ⊆ 𝑔[𝐺, 𝐺]𝑔−1

. ♮

Lemma 7.5.10. The quotient group 𝐺/[𝐺, 𝐺] is commutative.

Proof. Notice that 𝑥𝑦 = 𝑦𝑥 is equivalent to 𝑥𝑦(𝑦𝑥)−1 = 𝑥𝑦𝑥−1𝑦−1 = 𝑒, thus, for any

given 𝑥, 𝑦 ∈ 𝐺, since 𝑥𝑦𝑥−1𝑦−1 ∈ [𝐺, 𝐺], then [𝑥𝑦] = [𝑦𝑥] ∈ 𝐺/[𝐺, 𝐺]— which shows

the commutativity. ♮

Lemma 7.5.11. Let 𝐺 be any group and 𝐻 be a commutative group. Any morphism

of groups 𝑓 :𝐺 → 𝐻 has the commutator [𝐺, 𝐺] in its kernel. Therefore the following

diagram commutes

𝐺 𝐻

𝐺/[𝐺, 𝐺]

𝑓
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Proof. If 𝐻 is commutative, then given any pair 𝑥, 𝑦 ∈ 𝐺 we have

𝑓 (𝑥𝑦𝑥−1𝑦−1) = 𝑓 (𝑥) 𝑓 (𝑦) 𝑓 (𝑥−1) 𝑓 (𝑦−1) = 𝑓 (𝑦) 𝑓 (𝑥) 𝑓 (𝑥)−1 𝑓 (𝑦)−1 = 𝑒𝐻 ,

thus indeed [𝐺, 𝐺] ⊆ ker 𝑓 . ♮

7.6 Ab— Category of Abelian Groups
Definition 7.6.1 (Category of abelian groups). We define the category of abelian

groups, denoted Ab, to be the category whose objects are abelian groups and group

morphisms between them.

In the following propositions we are going to describe ways of telling if the group

you might be interested is abelian or not.

Proposition 7.6.2. A group 𝐺 is abelian if and only either one of the following condi-

tions are satisfied:

• The map 𝜙:𝐺→ 𝐺 sending 𝑔 ↦→ 𝑔−1
is a morphism of groups.

• The map 𝜓:𝐺→ 𝐺 sending 𝑔 ↦→ 𝑔2
is a morphism of groups.

Proof. If 𝐺 is abelian, then for any 𝑔, 𝑔′ ∈ 𝐺 we have:

𝜙(𝑔𝑔′) = (𝑔𝑔′)−1 = 𝑔′−1𝑔−1 = 𝑔−1𝑔′−1 = 𝜙(𝑔)𝜙(𝑔′),
𝜓(𝑔𝑔′) = (𝑔𝑔′)2 = (𝑔𝑔′)(𝑔𝑔′) = 𝑔2𝑔′2 = 𝜓(𝑔)𝜓(𝑔′).

That is, 𝜙 and 𝜓 are morphisms. Now suppose 𝜙 and 𝜓 are morphisms and consider

any elements 𝑔, 𝑔′ ∈ 𝐺 — we get the following relations from each of the morphisms:

𝑔𝑔′ = 𝜙(𝑔−1)𝜙(𝑔′−1) = 𝜙(𝑔−1𝑔′−1) = 𝜙((𝑔′𝑔)−1) = 𝑔′𝑔,

(𝑔𝑔′)2 = 𝜓(𝑔𝑔′) = 𝜓(𝑔)𝜓(𝑔′) = 𝑔2𝑔′2.

Using cancellation law for the second relation we find 𝑔′𝑔 = 𝑔𝑔′. This shows that 𝐺 is

abelian. ♮

Proposition 7.6.3. Let 𝜙 ∈ MorGrp(𝐺,AutGrp(𝐺)) be the morphism of groups mapping

𝑔
𝜙
↦−→ 𝛾𝑔 — as defined in Lemma 7.3.19. 𝐺 is an abelian group if and only if 𝜙 is trivial.

Proof. Let 𝐺 be an abelian group, then for all 𝑔 ∈ 𝐺 the corresponding inner automor-

phism 𝛾𝑔 maps 𝑎
𝛾𝑔↦−→ 𝑔𝑎𝑔−1 = 𝑎(𝑔𝑔−1) = 𝑎 hence 𝛾𝑔 = id𝐺, thus 𝜙 is indeed trivial. Let

𝜙 be trivial, then for all 𝑔 ∈ 𝐺 the map 𝛾𝑔 = id𝐺 and therefore for all 𝑎 ∈ 𝐺 we have

𝑔𝑎𝑔−1 = 𝑎, which implies in 𝑔𝑎𝑔−1 = 𝑎𝑔𝑔−1 = 𝑎𝑔−1𝑔 = 𝑔𝑔−1𝑎 = 𝑔−1𝑔𝑎 — that is, the

group 𝐺 is abelian. ♮

Now that we know some ways of identifying abelian groups, we dive deep again

into the categorical foundations of the category of abelian groups Ab.
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Proposition 7.6.4 (MorAb abelian group). Let 𝐺, 𝐻 ∈ Ab be any two commutative

groups. The collection of morphisms MorAb(𝐺, 𝐻) forms an abelian group with a

binary operation defined by (𝜙 + 𝜓)(𝑔) = 𝜙(𝑔) +𝐻 𝜓(𝑔) — where +𝐻 is the binary

operation of 𝐻.

Proof. Let 𝜙,𝜓 ∈ MorAb(𝐺, 𝐻) be any morphisms and consider elements 𝑔, 𝑔′ ∈ 𝐺.

From the commutativity of 𝐻 it follows that

(𝜙 + 𝜓)(𝑔 +𝐺 𝑔′) = 𝜙(𝑔 +𝐺 𝑔′) +𝐻 𝜓(𝑔 +𝐺 𝑔′)
=

(
𝜙(𝑔) +𝐻 𝜙(𝑔′)

)
+𝐻

(
𝜓(𝑔) +𝐻 𝜓(𝑔′)

)
=

(
𝜙(𝑔) +𝐻 𝜓(𝑔)

)
+𝐻

(
𝜙(𝑔′) +𝐻 𝜓(𝑔′)

)
= (𝜙 + 𝜓)(𝑔) +𝐻 (𝜙 + 𝜓)(𝑔′).

That is, 𝜙 + 𝜓 ∈ MorAb(𝐺, 𝐻). Moreover, given a morphism 𝑓 ∈ MorAb(𝐺, 𝐻), define

the map 𝑘:𝐺→ 𝐻 mapping 𝑘(𝑔) = 𝑓 (𝑔)−1
. Notice that 𝑘 is a morphism:

𝑘(𝑔 +𝐺 𝑔′) = 𝑓 (𝑔 +𝐺 𝑔′)−1

= ( 𝑓 (𝑔) +𝐻 𝑓 (𝑔′))−1

= 𝑓 (𝑔′)−1 +𝐻 𝑓 (𝑔)−1

= 𝑓 (𝑔)−1 +𝐻 𝑓 (𝑔′)−1

= 𝑘(𝑔) +𝐻 𝑘(𝑔′).

Moreover, ( 𝑓 + 𝑘)(𝑔) = 𝑓 (𝑔) +𝐻 𝑘(𝑔) = 𝑓 (𝑔) +𝐻 𝑓 (𝑔)−1 = 𝑒𝐻 — that is, 𝑓 + 𝑘 is the trivial

morphism 𝑔 ↦→ 𝑒𝐻 , i.e. 𝑘 is the inverse of 𝑓 . This finishes the proof that MorAb(𝐺, 𝐻)
is a group. For the commutativity, it follows directly from the commutativity of 𝐻: for

all 𝜙,𝜓 ∈ MorAb(𝐺, 𝐻)we have

(𝜙 + 𝜓)(𝑔) = 𝜙(𝑔) +𝐻 𝜓(𝑔) = 𝜓(𝑔) +𝐻 𝜙(𝑔) = (𝜓 + 𝜙)(𝑔).

♮

The following corollaries follow immediately from the construction of the category.

Corollary 7.6.5. Let 𝐺 ∈ Grp and 𝐻 ∈ Ab. The collection of morphisms MorGrp(𝐺, 𝐻)
forms a group under the binary operation defined above.

Corollary 7.6.6. Let 𝐴 ∈ Set and 𝐻 ∈ Ab. The collection of morphisms MorSet(𝐴, 𝐹𝐻)
forms a group under the binary operation defined above — where 𝐹: Grp → Set is a

forgetful functor.

Proposition 7.6.7 (Cokernel in Ab). The category of abelian groups has cokernels.

Proof. Let 𝜙:𝐺 → 𝐻 be a morphism of abelian groups and 𝑄 be any other abelian

group and 𝛼:𝐺 → 𝑄 be any morphism for which 𝛼𝜙 = 0 — the trivial morphism.
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Since 𝐺 is abelian, it follows that any subgroup of 𝐺 is normal — in particular, im 𝜙 is

normal in 𝐺 and from Corollary 7.4.18 we see that

𝐻 𝐺 𝑄

𝐺/im 𝜙

𝜙

0

𝛼

𝜋

thus we conclude that

𝐺/im 𝜙 ≃ coker 𝜙.

♮

A much more trivial proof of Proposition 7.4.27 can be achieved easily in the

category of abelian groups with the help of Proposition 7.6.7 — for expository purposes

we shall not use our results concerning the equivalence of epimorphisms and surjection

in the category of groups, as we proved above.

Proposition 7.6.8. Let 𝜙:𝐺 → 𝐻 be a morphism of abelian groups. The following

propositions are equivalent in Ab:

(a) The morphism 𝜙 is an epimorphism.

(b) The coker 𝜙 is trivial.
(c) The set-function 𝜙 is surjective.

Proof. • (a) ⇒ (b): Let 𝜙 be an epimorphism and consider both the canonical

projection and the trivial morphism 𝜋, 0:𝐺 ⇒ coker 𝜙. Notice that, from the

definition of the cokernel, both maps are trivial when composed with 𝜙, that is,

𝜋𝜙 = 0𝜙 — but since 𝜙 is an epimorphism, then 𝜋 = 0 and such a thing can only

occur when coker 𝜙 itself is trivial.

• (b) ⇒ (c): Let coker 𝜙 be trivial, that is, 𝐺/im 𝜙 = im 𝜙, which implies that

𝐺 = im 𝜙 and hence 𝜙 is surjective.

• (c)⇒ (a): If 𝜙 is surjective, then since Ab is a concrete category, 𝜙 is an epimor-

phism.

♮

Proposition 7.6.9 (Coequalizers in Ab). The category of abelian groups have coequal-

izers. Moreover, given group morphisms 𝑓 , 𝑔:𝐴 ⇒ 𝐵 between abelian groups, we

have

coeq( 𝑓 , 𝑔) = 𝐵/im( 𝑓 − 𝑔).

Proof. Given any abelian group 𝐺 and a map 𝑚: 𝐵 → 𝐺 such that 𝑚 𝑓 = 𝑚𝑔, we have

that, for all 𝑎 ∈ 𝐴,

𝑚(( 𝑓 − 𝑔)(𝑎)) = 𝑚( 𝑓 (𝑎) − 𝑔(𝑎)) = 𝑚 𝑓 (𝑎) − 𝑚𝑔(𝑎) = 0
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therefore im( 𝑓 − 𝑔) ⊆ ker𝑚. Thus using the universal property Corollary 7.4.18

we obtain a unique morphism 𝑛: 𝐵/im( 𝑓 − 𝑔) → 𝐺 such that the following diagram

commutes

𝐵/im( 𝑓 − 𝑔) 𝐵 𝐴

𝐺

𝑛

𝜋

𝑚

𝑓

𝑔

Therefore 𝐵/im( 𝑓 − 𝑔) = coeq( 𝑓 , 𝑔). ♮

Coproduct and Fiber Product
Proposition 7.6.10 (Coproduct in Ab). The direct product of abelian groups is a co-

product in Ab. That is, for any 𝐺, 𝐻,𝑊 ∈ Ab and morphisms 𝑓 ∈ MorAb(𝑊, 𝐺) and

𝑘 ∈ MorAb(𝑊, 𝐻), there exists a unique morphism 𝜑 ∈ MorAb(𝑊, 𝐺 × 𝐻) such that the

following diagram commutes

𝐺 𝐻

𝐺 × 𝐻

𝑊

𝜄𝐺

𝑓

𝜄𝐻

𝑘𝜑

Where we define inclusion morphisms 𝑔
𝜄𝐺↦−→ (𝑔, 𝑒𝐻) and ℎ

𝜄𝐻↦−→ (𝑒𝐺 , ℎ).

Proof. Since Ab ⊂ Grp— that is, the category of abelian groups is a subcategory of Grp

— then, from Proposition 7.3.4 there exists a functor Ab→ Set. Since coproducts exists

in Set and are unique, a set-function 𝜑 exists and is unique, commuting the diagram

in Set. We now show that we can extend such set-function into a morphism of groups.

Let 𝜑:𝐺 × 𝐻 →𝑊 be the mapping (𝑔, ℎ)
𝜑
↦−→ 𝑓 (𝑔)𝑘(ℎ). Notice that

𝜑((𝑔, ℎ)(𝑔′, ℎ′)) = 𝜑(𝑔𝑔′, ℎℎ′) = 𝑓 (𝑔𝑔′)𝑘(ℎℎ′) = 𝑓 (𝑔) 𝑓 (𝑔′)𝑘(ℎ)𝑘(ℎ′) = 𝑓 (𝑔)𝑘(ℎ) 𝑓 (𝑔′)𝑘(ℎ′)
= 𝜑(𝑔, ℎ)𝜑(𝑔′, ℎ′)

that is, 𝜑 is a morphism of groups. ♮

Remark 7.6.11 (Coproducts in Grp). Proposition 7.6.10 is not at all true for the category

of groups. Consider for instance the cyclic groups 𝐶2 = {𝑒𝑥 , 𝑥} and 𝐶3 = {𝑒𝑦 , 𝑦, 𝑦2}.
Let 𝜎𝑘 ∈ 𝑆3, for 0 ⩽ 𝑘 ⩽ 2 be the rotation of {1, 2, 3} by 𝑘, that is, the permutations

represented by

𝑀𝜎0
=


1 0 0

0 1 0

0 0 1

 𝑀𝜎1
=


0 0 1

1 0 0

0 1 0

 𝑀𝜎2
=


0 1 0

0 0 1

1 0 0
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Consider the embeddings 𝑓 :𝐶2 ↣ 𝑆3 mapping 𝑥𝑘
𝑓
↦−→ 𝜎𝑘 for 𝑘 ∈ {0, 1}, and 𝑔:𝐶3 ↣ 𝑆3

mapping 𝑦𝑘
𝑔
↦−→ 𝜎𝑘 for 𝑘 ∈ {0, 1, 2}.

Suppose, for the sake of contradiction, that 𝐶2 × 𝐶3 is a coproduct in Grp, that is,

exists a unique morphism 𝜑:𝐶2 × 𝐶3 → 𝑆3 such that 𝑓 = 𝜑𝜄𝐶2
and 𝑔 = 𝜑𝜄𝐶3

. Since 𝜑
is supposedly a morphism of groups,

𝜑(𝑥, 𝑦) = 𝜑(𝑥, 𝑒𝑦)𝜑(𝑒𝑥 , 𝑦) = 𝜎1𝜎1 = 𝜎2

𝜑(𝑥, 𝑦2) = 𝜑(𝑥, 𝑒𝑦)𝜑(𝑒𝑥 , 𝑦2) = 𝜎1𝜎2 = 𝜎0

However, 𝜑(𝑒𝑥 , 𝑒𝑦) = 𝜎0 and on the other hand we have 𝜑(𝑥, 𝑦)𝜑(𝑥, 𝑦2) = 𝜎2, which

contradicts the properties of a group morphism. This shows that there exists no such

𝜑 in Grp and hence 𝐶2 × 𝐶3 is not a coproduct in Grp.

Although 𝐶2 × 𝐶3 is not a coproduct in Grp, that doesn’t mean that Grp has no

coproducts, they just behave differently when compared with Ab. For instance, let

𝐶2 ∗ 𝐶3 ∈ Grp be defined to be the group generated by elements 𝑥 and 𝑦, such that

𝑥2 = 𝑒 and 𝑦3 = 𝑒. We’ll now show that 𝐶2 ∗ 𝐶3 is a coproduct of 𝐶2 and 𝐶3 in Grp. Let

𝐺 be any group and consider morphisms 𝑓 :𝐶2 → 𝐺 and 𝑘:𝐶3 → 𝐺. The inclusions

𝜄𝐶2
:𝐶2 → 𝐶2 ∗ 𝐶3 and 𝜄𝐶3

:𝐶3 → 𝐶2 ∗ 𝐶3 will be naturally given maps by taking each

element to itself.

Let 𝑞 ∈ 𝐶2 ∗ 𝐶3 be any element. We know that there exists a finite collection of

coefficients 𝐼 = {(𝑎, 𝑏) ∈ Z2} such that 𝑞 =
∏
(𝑎,𝑏)∈𝐼 𝑥

𝑎𝑦𝑏 . Define 𝜙:𝐶2 ∗ 𝐶3 → 𝐺 as the

mapping

𝜙(𝑞) = 𝜙
©«

∏
(𝑎,𝑏)∈𝐼

𝑥𝑎𝑦𝑏
ª®¬ =

∏
(𝑎,𝑏)∈𝐼

𝑓 (𝑥𝑎)𝑘(𝑦𝑏) =
∏
(𝑎,𝑏)∈𝐼

𝑓 (𝑥)𝑎𝑘(𝑦)𝑏

It should be clear that this definition implies 𝜙𝜄𝐶2
= 𝑓 and 𝜙𝜄𝐶3

= 𝑔. Notice that 𝜙(𝑒) =
𝑓 (𝑒)𝑘(𝑒) = 𝑒𝐺 and for all 𝑞, 𝑝 ∈ 𝐶2 ∗ 𝐶3 — with respective coefficients 𝐼 = {(𝑎, 𝑏) ∈ Z2}
and 𝐽 = {(𝑐, 𝑑) ∈ Z2}— we have

𝜙(𝑞)𝜙(𝑝) = 𝜙


∏
(𝑎,𝑏)∈𝐼

𝑥𝑎𝑦𝑏
 𝜙


∏
(𝑐,𝑑)∈𝐽

𝑥𝑐𝑦𝑑
 =

∏
(𝑎,𝑏)∈𝐼

𝑓 (𝑥𝑎)𝑘(𝑦𝑏)
∏
(𝑐,𝑑)∈𝐽

𝑓 (𝑥𝑐)𝑘(𝑦𝑑)

=

∏
(𝛼,𝛽)∈𝐴

𝑓 (𝑥𝛼)𝑔(𝑦𝛽)

= 𝜙
©«

∏
(𝛼,𝛽)∈𝐴

𝑓 (𝑥𝛼)𝑔(𝑦𝛽)ª®¬
= 𝜙

©«
∏
(𝑎,𝑏)∈𝐼

𝑥𝑎𝑦𝑏
∏
(𝑐,𝑑)∈𝐽

𝑥𝑐𝑦𝑑
ª®¬ = 𝜙(𝑞𝑝)
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that is, 𝜙 is a morphism of groups — where we define 𝐴 as the concatenation of the

coefficients 𝐼 and 𝐽. We have shown that the following diagram commutes

𝐶2 𝐶3

𝐶2 ∗ 𝐶3

𝐺

𝜄𝐶
2

𝑓

𝜄𝐶
3

𝑔𝜙

We can then conclude that 𝐶2 ∗ 𝐶3, as defined above, is the coproduct of 𝐶2 and 𝐶3 in

Grp.

Proposition 7.6.12 (Fiber products). Fiber products exist in Ab. That is, given abelian

groups 𝐺, 𝐻,𝑊 ∈ Ab and group morphisms 𝜙 ∈ MorAb(𝐺,𝑊) and 𝜓 ∈ MorAb(𝐻,𝑊).
Let

𝐺 ×𝑊 𝐻 ∈ Ab𝑊
be the fiber product of 𝜙 and 𝜓 in the category Ab𝑊 ⊆ Ab4

for which exists natural

projections 𝜋𝐺 and 𝜋𝐻 . Let 𝑄 ∈ Ab be any abelian group and consider any morphisms

𝑓 ∈ MorAb(𝑄, 𝐺) and 𝑘 ∈ MorAb(𝑄, 𝐻). Then there exists a unique morphism 𝜑 ∈
MorAb(𝑄, 𝑃) such that the following diagram commutes

𝑄

𝐺 ×𝑊 𝐻 𝐻

𝐺 𝑊

𝜑

𝑓

𝑘

𝜋𝐻

𝜋𝐺 𝜓

𝜙

Proof. Define 𝐺 ×𝑊 𝐻 = {(𝑔, ℎ) ∈ 𝐺 × 𝐻 : 𝜙(𝑔) = 𝜓(ℎ)}. Since 𝜙 and 𝜓 are group

morphisms, given (𝑔, ℎ) ∈ 𝐺 ×𝑊 𝐻, we have

𝜙(𝑔−1) = 𝜙(𝑔)−1 = 𝜓(ℎ)−1 = 𝜓(ℎ−1),

that is, (𝑔−1, ℎ−1) ∈ 𝐺 ×𝑊 𝐻 exists and is the inverse of (𝑔, ℎ). Moreover, given any

elements (𝑔, ℎ), (𝑔′, ℎ′) ∈ 𝐺 ×𝑊 𝐻, the product (𝑔, ℎ)(𝑔′, ℎ′) = (𝑔𝑔′, ℎℎ′) is such that

𝜙(𝑔𝑔′) = 𝜙(𝑔)𝜙(𝑔′) = 𝜓(ℎ)𝜓(ℎ′) = 𝜓(ℎℎ′),

thus (𝑔𝑔′, ℎℎ′) ∈ 𝐺 ×𝑊 𝐻. This shows that 𝐺 ×𝑊 𝐻 is indeed a group and since 𝐺 ×𝐻
is abelian, so is the fiber product defined above.

4
As a reminder: Ab𝑊 is the category whose objects are morphisms 𝑓 ∈ MorAb(−,𝑊). If 𝑓 :𝐺 → 𝑊

and 𝑔:𝐻 →𝑊 are objects of Ab𝑊 , a morphism ℎ ∈ MorAb𝑊 ( 𝑓 , 𝑔) is such that ℎ𝑔 = 𝑓 .
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From the forgetful functor Ab → Set we know that there exists a unique set-

function 𝜑 such that the diagram commutes in Set. If we define 𝜑 as the mapping

𝑞
𝜑
↦−→ ( 𝑓 (𝑞), 𝑘(𝑞))we can see that it preserves the group structure, since

𝜑(𝑞𝑞′) = ( 𝑓 (𝑞𝑞′), 𝑘(𝑞𝑞′))
= ( 𝑓 (𝑞) 𝑓 (𝑞′), 𝑘(𝑞)𝑘(𝑞′))
= ( 𝑓 (𝑞), 𝑘(𝑞))( 𝑓 (𝑞′), 𝑘(𝑞′))
= 𝜑(𝑞)𝜑(𝑞′),

that is, 𝜑 ∈ Mor(Ab). ♮

Direct Sums and Free Groups
Definition 7.6.13 (Direct sum of abelian groups). Let {𝐺 𝑗}𝑗∈𝐽 be an indexed collection

of abelian groups. We define their direct sum as the collection of tuples (𝑔𝑗)𝑗∈𝐽 such

that 𝑔𝑗 ≠ 𝑒𝐺 𝑗 for only finitely many indexes 𝑗 ∈ 𝐽 — that is, set of tuples with finite

support. We denote the direct sum of {𝐺 𝑗}𝑗∈𝐽 as

⊕
𝑗∈𝐽 𝐺 𝑗 and the group structure of

the direct sum is defined naturally as (𝑥 𝑗)𝑗∈𝐽 + (𝑦 𝑗)𝑗∈𝐽 = (𝑥 𝑗 +𝐺 𝑗 𝑦 𝑗)𝑗∈𝐽 .

Proposition 7.6.14 (Direct sum universal property). The direct sum defined in Defini-

tion 7.6.13 satisfies the universal property of direct sums. In other words, let {𝐺 𝑗}𝑗∈𝐽
be a collection of abelian groups and 𝐻 be any abelian group, in addition, consider

the collection of morphisms {𝜙 𝑗 ∈ MorGrp(𝐺 𝑗 , 𝐻)}. There exists a unique morphism

𝜓:

⊕
𝑗∈𝐽 𝐺 𝑗 → 𝐻 such that the following diagram commutes

𝐺 𝑗

⊕
𝑗∈𝐽 𝐺 𝑗 𝐻

𝜙 𝑗

𝜄

𝜓

for every 𝑗 ∈ 𝐽 — where 𝜄 𝑗 :𝐺 𝑗 →
⊕

𝑗∈𝐽 𝐺 𝑗 is the natural inclusion, mapping 𝑥 𝑗0
𝜄 𝑗↦−→

(𝑥 𝑗)𝑗∈𝐽 such that 𝑥 𝑗 = 𝑥 𝑗0 for 𝑗 = 𝑗0 and 𝑥 𝑗 = 𝑒𝐺 𝑗 for 𝑗 ≠ 𝑗0.

Proof. Let 𝜓:

⊕
𝑗∈𝐽 𝐺 𝑗 → 𝐻 be the map defined by 𝜓(𝑥) = ∏

𝑗∈𝐽 𝜙 𝑗(𝑥 𝑗), where 𝑥 =

(𝑥 𝑗)𝑗∈𝐽 ∈
⊕

𝑗∈𝐽 𝐺 𝑗 is any element. Notice that 𝜓(𝑥) is therefore a finite product of

elements of 𝐻 and from the group structure of the direct sum, we find that 𝜓 is clearly

a group morphism. Moreover, 𝜓 satisfies the commutativity 𝜓𝜄 𝑗 = 𝜙 𝑗 for each 𝑗 ∈ 𝐽.
Since such definition of 𝜓 defines the image of every element of its domain, 𝜓 is the

unique morphism making the diagram commute. ♮

If 𝐺 is an abelian group and 𝐴, 𝐵 ⊆ 𝐺 are subgroups such that 𝐴 ∩ 𝐵 = 0 and

𝐴 + 𝐵 = 𝐺 — that is, every 𝑔 ∈ 𝐺 can be written as 𝑔 = 𝑎 + 𝑏 for some 𝑎 ∈ 𝐴 and 𝑏 ∈ 𝐵
— then, in the context of abelian groups, we’ll denote this fact shortly by 𝐺 = 𝐴 ⊕ 𝐵.

Just like a vector space, we can define a basis of an abelian group by means of the

ring Z. Moreover, if an abelian group has a basis, then we say that it is free.
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Definition 7.6.15 (Basis). Let𝐺 be an abelian group. We say that a non-empty collection

{𝑔𝑗}𝑗∈𝐽 is a basis for 𝐺 if, given an element 𝑔 ∈ 𝐺, there exists a unique tuple of

coefficients (𝑎 𝑗)𝑗∈𝐽 ∈
⊕

𝑗∈𝐽 Z such that 𝑔 =
∑
𝑗∈𝐽 𝑎 𝑗𝑔𝑗 .

Therefore the existence of a basis allow us to couple the coefficients coming from⊕
𝑗∈𝐽 Z to any element of 𝐺 in a unique way, which induces a natural isomorphism

𝐺 ≃
⊕
𝑗∈𝐽

Z.

Definition 7.6.16 (Abelian free group). An abelian group is said to be free if it allows

a basis.

Equivalently as we did with free vector spaces, we can build free abelian groups

out of sets, say 𝑆, by analysing maps 𝑆 → Z with finite support — the collection of

those will be likewise denoted by Z⊕𝑆, which is a group under pointwise addition. For

each 𝑠 ∈ 𝑆 we define a map s ∈ Z⊕ by the mapping

s(𝑥) ≔
{

1, for 𝑥 = 𝑠

0, otherwise

Then, any element 𝜙 ∈ Z⊕𝑆 can be written as a linear combination of finitely many

maps s (which is possible because of the finite support of 𝜙) that is, for some 𝑎 𝑗 ∈ Z
for each 1 ⩽ 𝑗 ⩽ 𝑛, we have

𝜙 =

𝑛∑
𝑗=1

𝑎 𝑗s𝑗 , mapping 𝑠
𝜙
↦−→

{
𝑎 𝑗 , if 𝑠 = 𝑠 𝑗 for some 1 ⩽ 𝑗 ⩽ 𝑛

0, otherwise

Moreover, such choice of coefficients 𝑎 𝑗 ∈ Z is unique. Let {𝑏 𝑗}𝑛𝑗=1
⊆ Z be another set

of coefficients with the same property, then in particular

∑𝑛
𝑗=1
(𝑎 𝑗 − 𝑏 𝑗)s𝑗 = 0 and since

s𝑗 are all non-zero maps, we find that 𝑏 𝑗 = 𝑎 𝑗 . We also define a map 𝜄𝑆: 𝑆 ↣ Z⊕𝑆 by

pairing 𝑠 ↦→ s.

Proposition 7.6.17 (Free Ab universal property). Let 𝑆 be a set. Consider 𝐺 to be any

abelian group and a set-function 𝑔: 𝑆 → 𝐺, then there exists a unique morphism of

groups 𝑔∗: Z⊕𝑆 → 𝐺 such that

𝑆 𝐺

Z⊕𝑆
𝜄𝑆

𝑔

𝑔∗

is a commutative diagram.

Proof. Define 𝑔∗ by 𝑔∗(
∑
𝑠∈𝑆 𝑎𝑠s) ≔

∑
𝑠∈𝑆 𝑎𝑠 𝑔(𝑠). Then 𝑔∗𝜄𝑆(𝑠) = 𝑔∗(s) = 𝑔(𝑠). Moreover,

it follows from the construction that 𝑔∗(
∑
𝑠∈𝑆 𝑎𝑠s) =

∑
𝑠∈𝑆 𝑎𝑠 𝑔∗(s) thus 𝑔∗ is a group

morphism. If we let 𝑓 : Z⊕𝑆 → 𝐺 be a morphism satisfying such commutativity, we’ll
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see that, since 𝑓∗(s) = 𝑔(𝑠) = 𝑔∗(s), since any element of Z⊕𝑆 can be written uniquely

as a linear combination of the basis {s}𝑠∈𝑆, then 𝑓∗ and 𝑔∗ agree in every point of the

domain — hence 𝑓∗ = 𝑔∗. ♮

Corollary 7.6.18. Let 𝑓 :𝑋 → 𝑌 be a set-function between sets 𝑋 and 𝑌. Then, there

exists a unique morphism 𝑓 : Z⊕𝑋 → Z⊕𝑌 such that the following diagram commutes

𝑋 Z⊕𝑋

𝑌 Z⊕𝑌
𝑓

𝜄𝑋

𝑓

𝜄𝑌

Proof. Let 𝑓 be defined by 𝑓 (∑ 𝑎𝑥x) ≔ ∑
𝑎𝑥 𝜄𝑌 𝑓 (𝑥)— so that, in particular, 𝑓 (x) = 𝜄𝑌 𝑓 (𝑥),

that is, the diagram commutes. Let 𝑔: Z⊕𝑋 → Z⊕𝑌 be a morphism such that the diagram

commutes, then necessarily 𝑔(x) = 𝜄𝑌 𝑓 (𝑥) = 𝑓 (x), that is, 𝑔 and 𝑓 agree on the basis of

Z⊕𝑋 , thus 𝑔 = 𝑓 . ♮

Notation 7.6.19. When it’s not confusing, we can even drop the notation s and instead

identify the elements as 𝑠 ∈ Z⊕𝑆, so that

∑
𝑎𝑠𝑠 ≔

∑
𝑎𝑠s. Moreover, for now on, we’ll

refer to the free abelian group generated by 𝑆, that is, Z⊕𝑆, as 𝐹Ab(𝑆)— this is motivated by

the fact that the notation Z⊕𝑆, although cool, may be a rather obscure way of talking

about a group. The elements of 𝑆, in particular, will be referred to as free generators.

Proposition 7.6.20. Let 𝐺 be any abelian group

Continue: mini exercises on free ab grp

Continue direct products

7.7 Graded Abelian Groups
Definition 7.7.1 (Graded abelian group). A graded abelian group is defined to be an

abelian group 𝐴 consisting of an indexed collection of abelian groups (𝐴𝑠)𝑠∈𝑆—it

should be noted that 𝑆 can be any set with an additive structure, for instance 𝐴 would

be a Z-graded abelian group if 𝑆 = Z. An element 𝑎 ∈ 𝐴 is said to have degree 𝑠0 if

𝑎 ∈ 𝐴𝑠0
.

Given 𝑆-graded abelian groups 𝐴 and 𝐵 we define a morphism 𝑓 :𝐴 → 𝐵 to be a

collection of morphisms of groups ( 𝑓𝑠 :𝐴𝑠 → 𝐵𝑠+𝑑)𝑠∈𝑆 for some fixed element 𝑑 ∈ 𝑆, in

such case we say that 𝑓 has degree 𝑑.

7.8 Free Groups
Let 𝑆 be a set. We define the category C as composed of objects that are set-functions

𝑓 : 𝑆 → 𝐺, denoted ( 𝑓 , 𝐺) ∈ C, where 𝐺 ∈ Grp. Given another object (𝑔, 𝐻) ∈ C,
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a morphism between 𝑓 → 𝑔 is a morphisms of groups 𝜙:𝐺 → 𝐻 such that the

following diagram commutes

𝑆

𝐺 𝐻

𝑔𝑓

𝜙

Proposition 7.8.1 (Free group universal property). Given a set 𝑆 we define the free

group of 𝑆 to be the initial object (𝜄, 𝐹(𝑆)) in the category C defined above. In other

words, 𝐹(𝑆) is said to be the free group of 𝑆 if there exists a set-functions 𝜄 such that for

all ( 𝑓 , 𝐺) ∈ C there exists a unique morphism 𝑓 → 𝜄 given by a morphism of groups

𝜙: 𝐹(𝑆) → 𝐺 such that the diagram commutes

𝑆 𝐺

𝐹(𝑆)
𝜄

𝑓

𝜙

Although we defined the universal property of free groups, there is still no certainty

that such objects shall in fact exist. We now proceed by proving that any set has a

corresponding free group — which is unique up to isomorphism. To do that, we first

prove the following lemma.

Lemma 7.8.2. Let 𝐺 be a group generated by the set-function 𝑓 : 𝑆 → 𝐺, where 𝑆 is a

set. Then there exists an indexing set 𝐼 and a collection of indexed groups {𝐺𝑖}𝑖∈𝐼 for

which there exists 𝑖 ∈ 𝐼 such that 𝐺 ≃ 𝐺𝑖 .

Proof. Since 𝐺 =
〈
im 𝑓

〉
then, if 𝑆 is a finite set, it follows im 𝑓 is also finite, hence

𝐺 is either finite or enumerably infinite, since every element of 𝐺 is given by a finite

product of elements in im 𝑓 and their inverses. On the other hand, if 𝑆 is infinite, then

im 𝑓 can be either finite or infinite, on both of these cases we find that 𝐺 can be either

finite or infinite — that is, in both of these cases we have |𝐺| ⩽ |𝑆|.
Define 𝑋 to be an infinitely enumerable set if 𝑆 is finite, on the other hand, if

𝑆 is infinite, let |𝑋| = |𝑆|. Let 𝐴 ⊆ 𝑋 be non-empty and define Γ(𝐴) to be the

collection of binary operations 𝛾:𝐴 × 𝐴 → 𝐴 such that (𝐴, 𝛾) is a group. Define

𝒜 = {(𝐴, 𝛾) : 𝐴 ⊆ 𝑋, 𝛾 ∈ Γ(𝐴)}, the collection of groups on subsets of the set 𝑋.

We now show that 𝒜 satisfies the proposition. The set 𝑋 is defined so that every

possible product of elements of 𝑆 can be injectively assigned to an element of 𝑋, that is,

for every collection 𝐵 of finite sequences of elements of 𝑆, there exists an injective set-

function 𝑖: 𝐵↣ 𝑋. Since

〈
im 𝑓

〉
can be seen set-wise as a collection of finite sequences

of elements of 𝑆, then there exists a bĳection 𝑗:
〈
im 𝑓

〉 ≃−→ 𝐵 — for some 𝐵 as defined

above. Since there exists an injection 𝑖: 𝐵 ↣ 𝑋, the induced map 𝑖: 𝐵 ≃−→ im 𝑖 ⊆ 𝑋 is

a bĳection and hence the composition 𝑖 𝑗:
〈
im 𝑓

〉 ≃−→ im 𝑖 is also bĳective. Then, given

𝛾 ∈ Γ(im 𝑖) the group (im 𝑖 , 𝛾) is isomorphic to

〈
im 𝑓

〉
= 𝐺. ♮
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Proposition 7.8.3 (Every set has a unique free group). Let 𝑆 be any set. Then there

exists a free group (𝜄, 𝐹(𝑆)), unique up to isomorphism, such that 𝐹 = ⟨im 𝜄⟩ and 𝜄 is

injective.

Proof. Let 𝐼 be an indexing set and {𝐺𝑖}𝑖∈𝐼 be an indexed collection of groups. Define

𝐹0 =

∏
𝑖∈𝐼

∏
ℓ∈MorSet(𝑆,𝐺𝑖)

𝐺𝑖 × {ℓ},

and consider the set-function 𝜄0: 𝑆 → 𝐹0 defined by mapping the elements 𝑠 ∈ 𝑆 to a

tuple of pairs whose 𝑗-th component would be (ℓ 𝑗(𝑠), ℓ 𝑗) ∈
∏
ℓ∈MorSet(𝑆,𝐺 𝑗) 𝐺 𝑗 × {ℓ}.

Consider 𝐺 to be a group and let 𝑔: 𝑆→ 𝐺 generate 𝐺. From Lemma 7.8.2 we find

that there exists a group 𝐺 𝑗 ∈ {𝐺𝑖}𝑖∈𝐼 such that there is an isomorphism 𝜙:𝐺 ≃−→ 𝐺 𝑗 .

Moreover, the set-function 𝜓 = 𝜙𝑔: 𝑆→ 𝐺 𝑗 is an element of

⋃
𝑖∈𝐼 MorSet(𝑆, 𝐺𝑖). Define

the projection map𝜋 𝑗 ,𝜓: 𝐹0 ↠ 𝐺 𝑗×{𝜓}. We can now define a map𝜓∗ = 𝜙−1𝜋 𝑗 ,𝜓: 𝐹0 → 𝐺

such that the following diagram commutes

𝑆 𝐹0

𝐺 𝐺 𝑗 × {𝜓}

𝜄0

𝑔 𝜋𝑗 ,𝜓
𝜓∗

𝜙

≃

Define the subgroup 𝐹 = ⟨im 𝜄0⟩ of 𝐹0 and let 𝜄: 𝑆→ 𝐹 be the set-function mapping

𝜄(𝑠) = 𝜄0(𝑠). Also, let 𝑔∗: 𝐹→ 𝐺 be the restriction 𝑔∗ = 𝜓∗|𝐹 = 𝜙−1𝜋 𝑗 ,𝜓|𝐹 — which imme-

diately implies in the uniqueness of 𝑔∗. Summarizing, we may view this construction

as the following diagram

𝑆 𝐹

𝐺

𝜄

𝑔
𝑔∗

We see that (𝜄, 𝐹) satisfies Proposition 7.8.1 and thus is a free group of 𝑆. Moreover,

since the construction works with no restriction on the choice of group 𝐺 and set-

function 𝑔, given any 𝑠, 𝑠′ ∈ 𝑆 distinct elements, define 𝐺 = ⟨𝑠, 𝑠′⟩ and let 𝑔: 𝑆 → 𝐺

be any set-function such that 𝑔(𝑠) = 𝑠 and 𝑔(𝑠′) = 𝑠′. We see that for the diagram

to commute, it is necessary that 𝜄(𝑠) ≠ 𝜄(𝑠′), otherwise 𝑔 would not be equal to the

composition 𝑔∗𝜄. This shows that for any two distinct elements of 𝑆, their image under

𝜄 is also distinct — that is, 𝜄 is injective on 𝑆, which proves the last assertion of the

proposition. ♮

Corollary 7.8.4. Given a set 𝑆, its corresponding free group is unique up to isomor-

phism.

Proof. It suffices to see that if 𝐹 is a free group of 𝑆, then it is the initial object of the

category 𝒞 , we defined above. From this, we can use Proposition 1.2.28 to obtain the

immediate conclusion that 𝐹 is unique up to isomorphism in 𝒞 . ♮
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Notice since every set has a corresponding free group via the latter theorem, we

can view the free group as a covariant functor 𝐹: Set→ Grp such that 𝐹(𝑋) is the free

group of 𝑋 ∈ Set— which is unique up to isomorphism — and, given a set-function

𝜙:𝑋 → 𝑌 between sets 𝑋 and 𝑌, we assign 𝐹( 𝑓 ) = 𝜙∗: 𝐹(𝑋) → 𝐹(𝑌). This whole

construction is such that the following diagram commutes

𝑋 𝐹(𝑋)

𝑌 𝐹(𝑌)

𝜄𝑋

𝜙 𝜙∗

𝜄𝑌

(7.10)

In the above diagram we see that 𝐹(𝑋) is the free group of 𝑋 generated by the image

of set-function 𝜄𝑋 , which induces an injection of the set-elements of 𝑋 into a group

structure. These elements are called the free generators of 𝐹(𝑋). The same remark

is true for 𝐹(𝑌). Moreover, the functor 𝐹 preserves injectivity and surjectivity of the

maps 𝜙, which is stated in the following lemma.

Lemma 7.8.5. If the map 𝜙:𝑋 → 𝑌 is a surjective (or injective) set-function, then

𝜙∗: 𝐹(𝑋) → 𝐹(𝑌) is a surjective (or injective) morphism of groups.

Proof. From Eq. (7.10) we have 𝜙∗𝜄𝑋 = 𝜄𝑌𝜙, hence, given any element 𝛾 ∈ im 𝜄𝑌 ⊆ 𝐹(𝑌),
there exists 𝑥 ∈ 𝑋 for which 𝜄𝑌𝜙(𝑥) = 𝛾 — which is true only because 𝜙 is surjective

— thus 𝜙∗𝜄𝑋(𝑥) = 𝛾. Since 𝐹(𝑌) = ⟨im 𝜄𝑌⟩, it follows that, for any given element

𝛾 ∈ 𝐹(𝑌), there exists a finite sequence of elements (𝛾𝑗)𝑛𝑗=1
with 𝛾𝑗 ∈ im 𝜄𝑌 for which

𝛾 =
∏𝑛

𝑗=1
𝛾𝑗 . From the fact that 𝛾𝑗 ∈ im 𝜄𝑌 , we are able to a corresponding sequence

(𝑥 𝑗)𝑛𝑗=1
of elements 𝑥 𝑗 ∈ 𝑋 such that 𝜄𝑌𝜙(𝑥 𝑗) = 𝛾𝑗 for each 1 ⩽ 𝑗 ⩽ 𝑛 — which is always

possible since 𝛾𝑗 ∈ im 𝜄𝑌 . Then we obtain

𝜙∗
©«
𝑛∏
𝑗=1

𝜒𝑗
ª®¬ =

𝑛∏
𝑗=1

𝜙∗(𝜒𝑗) =
𝑛∏
𝑗=1

𝛾𝑗 = 𝛾

and therefore

∏𝑛
𝑗=1

𝜒𝑗 ∈ 𝜙−1

∗ (𝛾), which proves that 𝜙∗ is surjective.

Now we prove the second part of the lemma, let 𝜙:𝑋 ↣ 𝑌 be injective. Given

distinct elements 𝑎, 𝑏 ∈ 𝑋, since 𝜄𝑋 and 𝜄𝑌 are injective, then 𝜄𝑌𝜙(𝑎) ≠ 𝜄𝑌𝜙(𝑏) and thus

𝜙∗𝜄𝑋(𝑎) ≠ 𝜙∗𝜄𝑋(𝑏)— that is, 𝜙∗ is injective on the set im 𝜄𝑋 and since 𝜙∗ is a morphism

of groups and multiplication is preserved, it follows that 𝜙∗ is in fact injective in

⟨im 𝜄𝑋⟩ = 𝐹(𝑋). Thus 𝜙∗ is injective. ♮

Proposition 7.8.6. If the cardinality of the sets 𝑋 and𝑌 are equal, the free groups 𝐹(𝑋)
and 𝐹(𝑌) are isomorphic.

Proof. Notice that if |𝑋| = |𝑌| then there exists a bĳection 𝑓 :𝑋 → 𝑌 between such sets.

From Lemma 7.8.5 we see that the induced morphism of groups 𝑓∗: 𝐹(𝑋) → 𝐹(𝑌) is

both injective and surjective — thus bĳective. Since bĳections are isomorphisms in

Grp, it follows that 𝐹(𝑋) ≃ 𝐹(𝑌). ♮
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Proposition 7.8.7 (Canonical factorization). Every group is the image of a morphism

on a free group. That is, given a group 𝐺, there exists a canonical surjective morphism

of groups 𝐹 ↠ 𝐺 such that 𝐹 is a free group.

Proof. Let 𝑆 = {𝑔 ∈ 𝐺} be a set and consider the identity set-function 𝑓 : 𝑆 → 𝐺. The

induced group morphism 𝑓∗: 𝐹(𝑆) → 𝐺 is simply a projection, establishing a surjection

between 𝐹(𝑆) and 𝐺 and hence 𝑓∗(𝐹(𝑆)) = 𝐺. ♮

Our construction of free groups got rather abstract and avoided any concrete iden-

tification of the elements of a free group — the intention being of creating the most

general setting possible. In fact, our construction is equivalent to that of the standard

notion regarding the free group 𝐹(𝑆) as composed of finite strings of elements of a set

𝑆 together with their inverses — forming the so called “words”. This idea boils down

to the concept of the elements of 𝑆 being generators of the free group 𝐹(𝑆), while the

collection of elements of 𝐹(𝑆) itself are the relations between the generator elements —

which provide the structure of a group to 𝐹(𝑆). In that view, we define the following

concept.

Definition 7.8.8 (Groups from generators and relations). Let 𝑆 be a set and 𝑅 ⊆ 𝐹(𝑆)
be any subset of the elements of the free group. Let 𝑁 be the smallest subgroup of 𝐹(𝑆)
containing 𝑅. Then we define 𝐹(𝑆)/𝑁 to be the group determined by the generators 𝑆

and the relations 𝑅.

Coproducts in Grp
We now get back to the idea of constructing coproducts, not only in Ab, but also in

Grp. We exemplified, in the infamous example coming from Remark 7.6.11, that such

construction doesn’t come trivially without the requirement of commutativity. Now

we are ready for the construction of coproducts in Grp, which will be supported by the

ideas developed on free groups.

Proposition 7.8.9. The category of groups Grp has coproducts.

Proof. Let 𝐽 be an indexing set for which there exists a corresponding indexed collection

of groups {𝐺 𝑗}𝑗∈𝐽 . Similarly, let {𝑆 𝑗}𝑗∈𝐽 be a collection of sets for which 𝑆 𝑗 = 𝐺 𝑗 if 𝐺 𝑗

is an infinite group, otherwise, if 𝐺 𝑗 happens to be finite, we let 𝑆 𝑗 be any infinitely

enumerable set (for instance, N). We define now 𝑆 to be any set such that |𝑆| = |∐𝑗∈𝐽 𝑆 𝑗|.
Define Γ as the collection of all binary operation 𝛾: 𝑆 × 𝑆 → 𝑆 for which the pair

(𝑆, 𝛾) is a group — which we’ll shortly denote by 𝑆𝛾. For each relation 𝛾 ∈ Γ, define

the collection

Φ𝛾 = {𝜙 = {𝜑 𝑗 ∈ MorGrp(𝐺 𝑗 , 𝑆𝛾) : 𝑗 ∈ 𝐽}},

that is, the collection composed of elements 𝜙 which are themselves collections of

group morphisms 𝐺 𝑗 → 𝑆𝛾 for each 𝑗 ∈ 𝐽. For each 𝜙 ∈ Φ𝛾, the product 𝑆𝛾 × {𝜙} is a

group with the operation defined as 𝛾∗((𝑥, 𝜙), (𝑦, 𝜙)) = (𝛾(𝑥, 𝑦), 𝜙).
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Now we construct a group 𝐹0 defined as

𝐹0 =

∏
𝛾∈Γ

∏
𝜙∈Φ𝛾

𝑆𝛾 × {𝜙},

which has a binary operation 𝐹0 × 𝐹0 → 𝐹0 which is defined naturally as applying 𝛾∗

to the corresponding 𝑆𝛾 × {𝜙} factor of the tuples.

Notice that we carried over the collection 𝜙 to be able to relate 𝐹0 to the groups

{𝐺 𝑗}𝑗∈𝐽 that we started with — to realize that, define the collection of morphisms

𝐼 = {𝜄 𝑗 ∈ MorGrp(𝐺 𝑗 , 𝐹0) : 𝑗 ∈ 𝐽},

such that the mapping 𝜄 𝑗 is defined by mapping elements 𝑔 ∈ 𝐺 𝑗 to the tuple of 𝐹0

whose 𝑆𝛾 × {𝜙} factor is given by (𝜑 𝑗(𝑔), 𝜙) — recall that 𝜑 𝑗 ∈ 𝜙 is a morphism of

groups 𝜑 𝑗 :𝐺 𝑗 → 𝑆𝛾. So far, what we have is the following scenario

𝐺 𝑗 𝐹0

𝑆𝛾

𝜄 𝑗

𝜑 𝑗

We set out to construct a group that would satisfy the coproduct universal property.

We need to somehow modify both groups 𝐹0 and 𝑆𝛾 so that we have a unique arrow

for any choice of a group 𝐺 in place of 𝑆𝛾.

We start out by letting 𝐺 be any group and considering the collection

Ψ = {𝜓 𝑗 ∈ MorGrp(𝐺 𝑗 , 𝐺) : 𝑗 ∈ 𝐽},

with the purpose of replacing both 𝑆𝛾 and 𝜙, respectively. Let 𝐻 ⊆ 𝐺 be the subgroup

of 𝐺 generated by the images the morphisms of Ψ — that is, 𝐻 = ⟨⋃𝑗∈𝐽 im𝜓 𝑗⟩. It is

natural to see that since 𝐻 can be interpreted as the group whose elements are finite

product of elements from {𝐺 𝑗}𝑗∈𝐽 — and some of those can even be finite groups —

then |𝐻| ⩽ |𝑆|, since the latter was constructed so that 𝑆 had a cardinality bigger than

or equal to the set-theoretic coproduct

∐
𝑗∈𝐽 𝐺 𝑗 . From Lemma 7.8.2 we find that there

exists 𝑆𝛾 ∈ {𝑆𝛾}𝛾∈Γ and an isomorphism of groups 𝜂: 𝑆𝛾
≃−→ 𝐻.

Let 𝑖:𝐻 ↩→ 𝐺 be the canonical inclusion sending𝐻 ∋ 𝑔 ↦→ 𝑔 ∈ 𝐺. Let 𝜙 ∈ Φ𝛾 be the

collection of morphisms such that 𝑖𝜂𝜑 𝑗 = 𝜓 𝑗 , that is, the following diagram commutes

for all 𝑗 ∈ 𝐽

𝐺 𝑗 𝐺

𝑆𝛾 𝐻

𝜓 𝑗

𝜑 𝑗

𝜂
∼

𝑖

Define 𝑝(𝛾,𝜙): 𝐹0 ↠ 𝑆𝛾 to be a projection mapping the (𝑠, 𝜙) ∈ 𝑆𝛾 × {𝜙} factor into

𝑠 ∈ 𝑆𝛾. Define 𝜓∗: 𝐹0 → 𝐺 to be the morphism of groups such that the following
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diagram commutes

𝐹0 𝐺

𝑆𝛾 𝐻

𝑝(𝛾,𝜙)

𝜓∗

∼
𝜂

𝑖

Notice that, by Section 7.8, we obtain — for all 𝑔 ∈ 𝐺 𝑗

𝑖𝜂𝑝(𝛾,𝜙)𝜄 𝑗(𝑔) = 𝑖𝜂𝑝(𝛾,𝜙)((. . . , (𝜑 𝑗(𝑔), 𝜙), . . . )) = 𝑖𝜂𝜑 𝑗(𝑔) = 𝜓 𝑗(𝑔)

But, from Section 7.8, since 𝑖𝜂𝑝(𝛾,𝜙) = 𝜓∗, then we conclude that 𝜓∗𝜄 𝑗 = 𝜓 𝑗 , that is, the

following diagram commutes

𝐺 𝑗 𝐹0

𝐺

𝜄 𝑗

𝜓 𝑗

𝜓∗

Let 𝐹 ⊆ 𝐹0 be the subgroup 𝐹 = ⟨⋃𝑗∈𝐽 im 𝜄 𝑗⟩. Then, if we consider the restriction

𝜓∗: 𝐹 → 𝐺, the morphism 𝜓∗ is now uniquely defined by the collection of morphisms

𝜓, that is, the diagram

𝐺 𝑗 𝐹

𝐺

𝜄 𝑗

𝜓 𝑗

𝜓∗

commutes for every 𝑗 ∈ 𝐽 — hence 𝐹 is the coproduct in the category of groups. ♮

Exercise 7.12 Aluffi

7.9 Group Actions on Sets
Definition 7.9.1 (Group action). Let 𝐺 be a group and 𝐴 ∈ C be an object in some

category C. An action of 𝐺 on the object 𝐴 is a group morphism

𝐺 −→ AutC(𝐴),

that is, the elements of 𝐺, which are automorphisms in the category B𝐺, define au-

tomorphisms in 𝐴—this shows that group actions are functors B𝐺 → C (see Ex-

ample 1.4.12 for more). Left actions are covariant functors, while right actions are

contravariant. Naturally the action is said to be faithful if the functor is faithful, that is,

if 𝐺 ↣ AutC(𝐴) is injective.

Definition 7.9.2. Let 𝐺 be a group acting on a set 𝑋. We define the following concepts

concerning such action:
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(a) The action is said to be free if the identity 𝑒𝐺 is the only element fixing any of the

elements of 𝑋. In other words, 𝐺 acts freely on 𝑋 if given any 𝑔 ∈ 𝐺 for which

there exists 𝑥 ∈ 𝑋 with 𝑔 · 𝑥 = 𝑥, then 𝑔 = 𝑒 is the identity element.

(b) An action is said to be effective if the only member of 𝐺 acting trivially is the identity

𝑒𝐺.

Remark 7.9.3. Mind you, free actions are effective, but not all effective actions are free.

Definition 7.9.4 (Conjugation). Let 𝐺 be a group. We define a conjugation to be a group

action of 𝐺 on itself, 𝐺 × 𝐺→ 𝐺, mapping

(𝑔, ℎ) ↦−→ 𝑔ℎ𝑔−1.

Theorem 7.9.5 (Cayley). Every group acts faithfully on some set. That is, there exists a

set 𝐴 and an injective action 𝐺 ↣ AutSet(𝐴) = 𝑆𝐴—where 𝑆𝐴 is the symmetry group

of 𝐴—making 𝐺 a subgroup of 𝑆𝐴.

Proof. Simply consider the action 𝐺 → AutGrp(𝐺) mapping 𝑔 ↦→ 𝑓𝑔 , where 𝑓𝑔(𝑥) = 𝑔𝑥

is the left-multiplication by 𝑔. This action is certainly faithful, making 𝐺 isomorphic

to a subgroup of AutGrp(𝐺). ♮

Definition 7.9.6 (Opposite group). Given a group 𝐺, we define its opposite group 𝐺op
to

be composed of the elements of𝐺, and endowed with a contravariant action𝐺×𝐺→ 𝐺

mapping (𝑔, ℎ) ↦→ 𝑔 · ℎ ≔ ℎ𝑔.

Corollary 7.9.7. The following are properties relating a group 𝐺 with its opposite

group:

(a) The set-function𝜙:𝐺op → 𝐺mapping 𝑔 ↦→ 𝑔 is an isomorphism of groups𝐺op ≃ 𝐺
if and only if 𝐺 is commmutative.

(b) There exists a natural isomorphism of groups 𝐺 ≃ 𝐺op
even when 𝐺 is non-

commutative.

Proof. We first prove item (a). If the said map is an isomorphism, then for all 𝑔, ℎ ∈ 𝐺
we have

𝑔ℎ = 𝜙(𝑔ℎ) = 𝜙(ℎ · 𝑔) = 𝜙(ℎ)𝜙(𝑔) = ℎ𝑔,

thus 𝐺 is commutative. Conversely, if we assume that 𝐺 is commutative then the map,

besides being bĳective, is also a group morphism, since

𝜙(𝑔 · ℎ) = 𝜙(ℎ𝑔) = ℎ𝑔 = 𝑔ℎ = 𝜙(𝑔)𝜙(ℎ).

For item (b), define a map 𝜓:𝐺 → 𝐺op
to be given by 𝑔 ↦→ 𝑔−1

, which is bĳective

since inverses are unique. The set-function 𝜓 is also a group morphism since

𝜓(𝑔ℎ) = (𝑔ℎ)−1 = ℎ−1𝑔−1 = 𝑔−1 · ℎ−1 = 𝜓(𝑔) · 𝜓(ℎ).

Therefore 𝐺 ≃ 𝐺op
via 𝜓. ♮
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Proposition 7.9.8 (Left to right & back). Let 𝐺 be a group and 𝐴 be a set. Given any

left-action 𝜎:𝐺 → AutC(𝐴), we can turn 𝜎 into a unique corresponding right-action
𝜎op

:𝐺 → AutC(𝐴) given by 𝜎op(𝑔)(𝑎) = 𝜎(𝑔−1)(𝑎) for any 𝑔 ∈ 𝐺 and 𝑎 ∈ 𝐴. The

conversion of a right-action into a left-action is also unique.

Proof. Let 𝑔, ℎ ∈ 𝐺 and 𝑎 ∈ 𝐴 be any elements. The map 𝜎op
is indeed a right action:

𝜎op(𝑔ℎ)(𝑎) = 𝜎((𝑔ℎ)−1)(𝑎) = 𝜎(ℎ−1𝑔−1)(𝑎) = 𝜎(ℎ−1)(𝜎(𝑔−1)(𝑎)) = 𝜎op(ℎ)(𝜎op(𝑔)(𝑎)).

The uniqueness comes from the fact that inverses are unique. ♮

Definition 7.9.9 (Transitive action). A group 𝐺 is said to act transitively on a set 𝐴 if for

all pairs of elements 𝑎, 𝑏 ∈ 𝐴, there exists a group element 𝑔 such that 𝑔𝑎 = 𝑏

Definition 7.9.10 (Orbit & Stabilizer). Given a group action 𝐺→ AutSet(𝐴) on a set 𝐴,

the orbit of an element 𝑎 ∈ 𝐴 under the action of 𝐺 is defined to be the set

Orb𝐺(𝑎) ≔ {𝑔𝑎 : 𝑔 ∈ 𝐺} ⊆ 𝐴.

The stabilizer of 𝑎 under the action of 𝐺 is the subgroup

Stab𝐺(𝑎) ≔ {𝑔 ∈ 𝐺 : 𝑔𝑎 = 𝑎} ⊆ 𝐺.

Let 𝜎 be any action of 𝐺 on 𝐴. Stabilizers indeed define a subgroup of 𝐺, notice

that if 𝑔, ℎ ∈ Stab𝐺(𝑎), then 𝜎(𝑔ℎ)(𝑎) = 𝜎(𝑔)(𝜎(ℎ)(𝑎)) = 𝜎(𝑔)(𝑎) = 𝑎 thus 𝑔ℎ ∈ Stab𝐺(𝑎).
Moreover, since 𝜎 is a group morphism, we have 𝜎(𝑔−1)(𝑎) = 𝜎(𝑔)−1(𝑎) = 𝑎 thus

𝑔−1 ∈ Stab𝐺(𝑎).

Definition 7.9.11 (𝐺-Set category). Given a group 𝐺, we define a category 𝐺-Set

whose objects are pairs (𝜎, 𝐴)—where 𝐴 is a set, and 𝜎:𝐺 → AutSet(𝐴) is a group

action on 𝐴—and morphisms 𝜙: (𝜎, 𝐴) → (𝜌, 𝐵) are set-functions 𝜙:𝐴→ 𝐵 such that

the following diagram commutes

𝐺 × 𝐴 𝐺 × 𝐵

𝐴 𝐵

𝜎

id𝐺 ×𝜙

𝜌

𝜙

That is, 𝜙(𝜎(𝑔)(𝑎)) = 𝜌(𝑔)(𝜙(𝑎))—or put even more simply as 𝜙(𝑔𝑎) = 𝑔𝜙(𝑎) when

there is no chance of confusion. These functions are called 𝐺-equivariant.

Proposition 7.9.12. Let (𝜎, 𝐴) ∈ 𝐺-Set, where 𝐴 is non-empty and 𝜎 is a transitive
left-action on 𝐴. Then there exists an isomorphism

(𝜎, 𝐴) ≃ (ℓ , 𝐺/Stabℓ (𝑎)),

in𝐺-Set, where ℓ is the left-multiplication of𝐺 on𝐺/Stabℓ (𝑎), and 𝑎 ∈ 𝐴 is any element.
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Proof. For the sake of brevity, define 𝑆𝑎 ≔ Stabℓ (𝑎). Let 𝑎 ∈ 𝐴 be any element, and

define a set-function 𝜙:𝐺/𝑆𝑎 → 𝐴 given by 𝜙(𝑔𝑆𝑎) ≔ 𝑔𝑎. This function is well defined

since, for any 𝑔𝑆𝑎 = 𝑔′𝑆𝑎 we have 𝑔′−1𝑔 ∈ 𝑆𝑎 thus (𝑔′−1𝑔)𝑎 = 𝑎, which implies in

𝑔𝑎 = 𝑔′𝑎. To show that 𝜙 is bĳective, we construct its inverse: define 𝜓:𝐴→ 𝐺/𝑆𝑎 by

mapping 𝑔𝑎 ↦→ 𝑔𝑆𝑎 , which is well defined because if 𝑔𝑎 = 𝑔′𝑎 then 𝑔′−1𝑔𝑎 = 𝑎 thus

𝑔′−1𝑔 ∈ 𝑆𝑎 so that 𝑔𝑆𝑎 = 𝑔′𝑆𝑎 by definition. One sees easily that 𝜙 and 𝜓 are inverses

of each other. Finally, the map 𝜙 is also equivariant since

𝜙(𝑔(𝑔′𝑆𝑎)) = 𝜙((𝑔𝑔′)𝑆𝑎) = (𝑔𝑔′)𝑎 = 𝑔(𝑔′𝑎) = 𝑔𝜙(𝑔′𝑆𝑎).

♮

Corollary 7.9.13. Let 𝐺 be a finite group and 𝐴 be a set. For any action of 𝐺 on a group

𝐴, the orbit Orb𝐺(𝑎) of any element 𝑎 ∈ 𝐴 is a finite subset of 𝐴. Moreover the we have

that |Orb𝐺(𝑎)| divides |𝐺|.

Proof. Given a 𝐺-set (𝜎, 𝐴) for any action 𝜎, if 𝑎 ∈ 𝐴 is any element, then the restriction

𝜎:𝐺 −→ AutSet(Orb𝐺(𝑎)),

is a transitive action by the definition of the orbit—where 𝜎(𝑔)(𝑔′𝑎) ≔ 𝜎(𝑔)(𝑔𝑎) for all

𝑔 ∈ 𝐺 and 𝑔′𝑎 ∈ Orb𝐺(𝑎).
Therefore by Proposition 7.9.12 we have (𝜎,Orb𝐺(𝑎)) ≃ (ℓ , 𝐺/Stab𝐺(𝑔𝑎)) in 𝐺-Set,

for any 𝑔𝑎 ∈ Orb𝐺(𝑎)—which means the existence of a𝐺-equivariant bĳection between

the sets Orb𝐺(𝑎) and 𝐺/Stab𝐺(𝑔𝑎). From Proposition 7.4.6 we have |𝐺/Stab𝐺(𝑔𝑎)| =
|𝐺|/| Stab𝐺(𝑔𝑎)| and therefore

|Orb𝐺(𝑎)| · | Stab𝐺(𝑔𝑎)| = |𝐺|.

♮

Theorem 7.9.14. Let 𝐺 be a group acting on a set 𝐴. Consider elements 𝑎 ∈ 𝐴, 𝑔 ∈ 𝐺,

and define 𝑏 ≔ 𝑔𝑎. It follows that

Stab𝐺(𝑏) = 𝑔 Stab𝐺(𝑎)𝑔−1.

Proof. Let ℎ ∈ Stab𝐺(𝑎) be any element, then

(𝑔ℎ𝑔−1)𝑏 = (𝑔ℎ)(𝑔−1𝑏) = (𝑔ℎ)𝑎 = 𝑔(ℎ𝑎) = 𝑔𝑎 = 𝑏,

therefore 𝑔ℎ𝑔−1 ∈ Stab𝐺(𝑎). Now if ℓ ∈ Stab𝐺(𝑏), we have ℓ𝑏 = 𝑏 but since 𝑏 = 𝑔𝑎 then

ℓ (𝑔𝑎) = 𝑔𝑎 thus multiplying by 𝑔−1
in both sides we obtain (𝑔−1ℓ 𝑔)𝑎 = 𝑎. Therefore,

Stab𝐺(𝑏) = 𝑔 Stab𝐺(𝑎)𝑔−1
. ♮

7.10 Topological Groups

Construction and Properties

Study topological groups on Dieck
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Actions on Topological Spaces
Definition 7.10.1 (Orbit space). Let 𝑋 be a topological space, and a topological group

𝐺 together with a left action on 𝑋. We define the orbit space of the 𝐺-space 𝑋 to be the

set

𝑋/𝐺 ≔ 𝑋/𝑥 ∼ Orb𝐺(𝑥)
together with the quotient topology given by the canonical projection 𝑋 ↠ 𝑋/𝐺.

Definition 7.10.2 (𝐺-stable). Given a 𝐺-space 𝑋, a subset 𝐴 ⊆ 𝑋 is said to be 𝐺-stable

if for every pair (𝑔, 𝑎) ∈ 𝐺 × 𝐴 we have 𝑔𝑎 ∈ 𝐴.

7.11 Group Objects
Definition 7.11.1 (Group object). Let C be a category with (finite) products and with a

terminal object 1. A triple (𝐺, 𝑚, 𝑒 , 𝑖) is said to be a group object of C if:

• 𝐺 is an object of C.

• 𝑚:𝐺 × 𝐺→ 𝐺 is a morphism of C satisfying the commutativity of

(𝐺 × 𝐺) × 𝐺 𝐺 × 𝐺 𝐺

𝐺 × (𝐺 × 𝐺) 𝐺 × 𝐺 𝐺

≃

𝑚×id𝐺 𝑚

id𝐺 ×𝑚 𝑚

in C. This arrow defines the notion of multiplication of group members.

• 𝑒: 1→ 𝐺 is a morphism of Cmaking the diagram

1 × 𝐺 𝐺 × 𝐺 𝐺 × 1

𝐺

𝑒×id𝐺

≃
𝑚

id𝐺 ×𝑒

≃

commute in C. The map 𝑒 defines the notion of a neutral member of the group

object.

• 𝑖:𝐺→ 𝐺 is a morphism ofC such that—ifΔ ≔ id𝐺 × id𝐺 is the diagonal morphism

of 𝐺—the diagram

𝐺 𝐺 × 𝐺 𝐺 × 𝐺 𝐺 × 𝐺 𝐺

1 𝐺 1

Δ id𝐺 ×𝑖

𝑚

𝑖×id𝐺 Δ

𝑒 𝑒

is commutative in C. The map 𝑖 defines the notion of inversion of members of the

group.
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Chapter 8

Rings & Modules

8.1 Introduction
Definition 8.1.1 (Ring). A ring𝑅 is a set endowed with an additive structure+:𝑅×𝑅→
𝑅 such that (𝑅,+) is an abelian group, moreover, 𝑅 is also endowed with a second

multiplicative structure ·:𝑅 × 𝑅→ 𝑅, making (𝑅, ·) into a monoid — that is, it is both

associative and has a two-sided identity:

• Given 𝑟, 𝑠, 𝑡 ∈ 𝑅, we have 𝑟(𝑠𝑡) = (𝑟𝑠)𝑡.
• There exists a unitary element 1𝑅 ∈ 𝑅 for which all 𝑟 ∈ 𝑅 is such that

𝑟1𝑅 = 1𝑅𝑟 = 𝑟.

Furthermore, we impose that the product structure is distributive over the additive

structure, that is, given any three 𝑟, 𝑡 , 𝑠 ∈ 𝑅, one has

(𝑟 + 𝑡)𝑠 = 𝑟𝑠 + 𝑡𝑠 and 𝑟(𝑡 + 𝑠) = 𝑟𝑡 + 𝑟𝑠.

Remark 8.1.2. Notice that we impose the following in the definition of a ring — which

may vary from author to author — the ring is always associative and has a unity.

Definition 8.1.3. A ring 𝑅 is said to be commutative if for all 𝑟, 𝑠 ∈ 𝑅 we have 𝑟𝑠 = 𝑠𝑟.

Corollary 8.1.4. Given a ring 𝑅, its identity is unique.

Proof. Let 1, 1′ ∈ 𝑅 be both identities of 𝑅, then 11
′ = 1 but 11

′ = 1
′
, thus 1 = 1

′
. ♮

Corollary 8.1.5. Given a ring 𝑅, we have for all 𝑟 ∈ 𝑅 that 0𝑅𝑟 = 𝑟0𝑅 = 0𝑅.

Proof. Note that for both cases, since 0 = 0 + 0, we are able to write the following

𝑟 · 0 = 𝑟 · (0 + 0) = 𝑟 · 0 + 𝑟 · 0,
0 · 𝑟 = (0 + 0) · 𝑟 = 0 · 𝑟 + 0 · 𝑟.

Further, since (𝑅,+) is a group, we evoke the cancellation to obtain 𝑟 · 0 = 0 and

0 · 𝑟 = 0. ♮
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Corollary 8.1.6. Let 𝑅, then (−1) · 𝑟 = 𝑟 · (−1) = −𝑟.

Proof. Notice that since 1 · 𝑟 = 𝑟 · 1 = 𝑟 we may write

𝑟 + (−1) · 𝑟 = (1 − 1) · 𝑟 = 0 · 𝑟 = 0,

𝑟 + 𝑟 · (−1) = 𝑟 · (1 − 1) = 𝑟 · 0 = 0.

Thus we arrive at the desired conclusion. ♮

Examples of Rings
Example 8.1.7 (Trivial ring). The trivial group ∗ can be endowed with a ring structure

by imposing that ∗ · ∗ = ∗ and ∗ + ∗ = ∗, so that (∗,+, ·) is a ring — we call such ring

trivial or zero-ring. Moreover, in such ring we have the equality 0 = 1.

Corollary 8.1.8. A ring 𝑅 is a zero-ring if and only if 0 = 1.

Proof. If 𝑅 is a zero-ring, it’s obvious that 0 = 1. On the other hand, assume that 𝑅 is a

ring such that 0 = 1, then if 𝑟 ∈ 𝑅 is any element, we have 𝑟 = 1 · 𝑟 = 0 · 𝑟 = 0, thus 𝑅 is

indeed a zero ring. ♮

Example 8.1.9 (Power set ring). Let 𝑆 be any set and 2
𝑆

be its power set. If we define

additive and multiplicative structures in 2
𝑆

given by 𝐴 + 𝐵 ≔ (𝐴 ∪ 𝐵) ∖ (𝐴 ∩ 𝐵) and

𝐴 · 𝐵 ≔ 𝐴 ∩ 𝐵, for all 𝐴, 𝐵 ∈ 2
𝑆
, then (2𝑆 ,+, ·) is a ring.

In order to prove that, we first show that (2𝑆 ,+) forms an abelian group. Since

𝐴 ∪ 𝐵 = 𝐵 ∪ 𝐴 and 𝐴 ∩ 𝐵 = 𝐵 ∩ 𝐴, then clearly 𝐴 + 𝐵 = 𝐵 + 𝐴. Moreover, the empty

set ∅ is the additive identity, since 𝐴 ∪ ∅ = 𝐴 and 𝐴 ∩ ∅ = ∅ and 𝐴 ∖ ∅ = 𝐴 — thus

𝐴 + ∅ = 𝐴. Every set is its own inverse: notice that 𝐴 ∪ 𝐴 = 𝐴 and 𝐴 ∪ 𝐴 = 𝐴, hence

𝐴 + 𝐴 = 𝐴 ∖ 𝐴 = ∅. We therefore conclude that (2𝑆 ,+) is an abelian group.

Now we show that (2𝑆 , ·) is a monoid with distributivity over addition. Let𝐴, 𝐵, 𝐶 ∈
2
𝑆

be any three sets. For associativity we have

(𝐴 · 𝐵) · 𝐶 = (𝐴 ∩ 𝐵) ∩ 𝐶 = 𝐴 ∩ (𝐵 ∩ 𝐶) = 𝐴 · (𝐵 · 𝐶).

The unitary element is 𝑆 itself, since 𝐴 ∩ 𝑆 = 𝑆 ∩ 𝐴 = 𝐴 for all 𝐴 ∈ 2
𝑆
. Moreover,

(𝐴 + 𝐵) · 𝐶 = [(𝐴 ∪ 𝐵) ∖ (𝐴 ∩ 𝐵)] ∩ 𝐶
= [(𝐴 ∩ 𝐶) ∪ (𝐵 ∩ 𝐶)] ∖ [(𝐴 ∩ 𝐶) ∩ (𝐵 ∩ 𝐶)]
= 𝐴 · 𝐶 + 𝐵 · 𝐶.

We can analogously show the same for 𝐴 · (𝐵 + 𝐶) = 𝐴 · 𝐵 + 𝐴 · 𝐶.

Example 8.1.10. Let 𝑅 be a ring and 𝑆 be a set. The set of set-functions 𝑅𝑆, of the form

𝑆→ 𝑅, together with the pointwise addition and multiplication make 𝑅𝑆 into a ring.

Example 8.1.11. Let𝑀𝑛(𝑅) denote the collection of all 𝑛×𝑛 matrices with entries in the

ring 𝑅. If we endow 𝑀𝑛(𝑅)with component-wise addition and matrix multiplication,

then (𝑀𝑛(𝑅),+, ·) is a ring.
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Zero-Divisors
Definition 8.1.12 (Zero-divisor). Let 𝑅 be a ring. We say that 𝑎 ∈ 𝑅 is a left-zero-divisor
if there exists 𝑏 ≠ 0 in 𝑅 for which 𝑎𝑏 = 0. On the other hand, 𝑎 is said to be a

right-zero-divisor if 𝑏𝑎 = 0.

Remark 8.1.13. The zero-ring is the only ring with no zero-divisors.

If 𝑅 is a non-zero ring, then 0 ∈ 𝑅 and since 0 is clearly a zero-divisor, 𝑅 has at least

one zero-divisor. On the other hand, if ∗ is a zero-ring, then zero is the only element

of ∗— thus we have no element different than zero for there to be a zero-divisor.

Proposition 8.1.14. Let 𝑅 be a ring. An element 𝑎 ∈ 𝑅 is not a left-zero-divisor (or

right-zero-divisor) if and only if the map 𝑅 → 𝑅 given by the left-multiplication by 𝑎

(or right-multiplication) is injective.

Proof. We only concern ourselves with the left case, the right case is clearly analogous.

Let 𝑎 ∈ 𝑅 be a non-left-zero-divisor, then if 𝑎𝑏 = 𝑎𝑐 for some 𝑏, 𝑐 ∈ 𝑅, then 𝑎𝑏 − 𝑎𝑐 =
𝑎(𝑏 − 𝑐) = 0 — and, since 𝑎 is not a zero-divisor, then necessarily 𝑏 − 𝑐 = 0, that is 𝑏 = 𝑐.

On the other hand, if 𝑎 is a left-zero-divisor then let 𝑏 ≠ 0 be any element of 𝑅

such that 𝑎𝑏 = 0. Notice then that both 𝑏 and zero have the same image under the

multiplication map, thus 𝑅→ 𝑅 is definitely not injective. ♮

Remark 8.1.15. Notice that Proposition 8.1.14 simply states that for an element to be

a zero-divisor the cancellation law must be true, that is, 𝑎 ∈ 𝑅 is not a zero-divisor if

𝑎𝑏 = 𝑎𝑐 implies 𝑏 = 𝑐 for every 𝑏, 𝑐 ∈ 𝑅.

Definition 8.1.16 (Domain). An object 𝑅 is said to be a domain if 𝑅 is non-zero ring and

for every two elements 𝑎, 𝑏 ∈ 𝑅 such that 𝑎𝑏 = 0 we must have either 𝑎 = 0 or 𝑏 = 0.

Definition 8.1.17 (Integral domain). An object 𝑅 is said to be an integral domain if 𝑅 is

a non-zero commutative ring such that, for all 𝑎, 𝑏 ∈ 𝑅 such that 𝑎𝑏 = 0, then either

𝑎 = 0 or 𝑏 = 0.

That is, in an integral domain every non-zero element is a non-zero-divisor. Classic

examples of integral domains are Z,Q,R and C.

Corollary 8.1.18. In an integral domain 𝑅, if 𝑟, 𝑎, 𝑏 ∈ 𝑅 are such that 𝑟𝑎 = 𝑟𝑏 and 𝑟 ≠ 0,

then 𝑎 = 𝑏 — that is, cancellation by non-zero elements holds.

Proof. This is immediate from Proposition 8.1.14. ♮

Corollary 8.1.19. If 𝑅 is an integral domain, an element 𝑥 ∈ 𝑅 is such that 𝑥2 = 1, if

and only if 𝑥 ∈ {−1, 1}.

Proof. If 𝑥 ∈ {−1, 1}, clearly 𝑥2 = 1, since this is true for any given ring. For the other

implication, suppose now that 𝑥2 = 1, then 𝑥2 − 1 = (𝑥 + 1)(𝑥 − 1) = 0 but since 𝑅 is an

integral domain, either 𝑥 = 1 or 𝑥 = −1. ♮
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Nilpotent Elements

Definition 8.1.20 (Nilpotent). Let 𝑅 be a ring. An element 𝑎 ∈ 𝑅 is said to be nilpotent
if there exists some 𝑛 ∈ Z such that 𝑎𝑛 = 0.

Lemma 8.1.21. Let 𝑅 be a ring. If 𝑎, 𝑏 ∈ 𝑅 are nilpotent elements with 𝑎𝑏 = 𝑏𝑎, then

𝑎 + 𝑏 is nilpotent.

Proof. Suppose 𝑛, 𝑚 ∈ Z are such that 𝑎𝑛 = 𝑏𝑚 = 0. Since 𝑎 and 𝑏 commute, we

can write the binomial equation (𝑎 + 𝑏)𝑛𝑚 =
∑𝑛𝑚
𝑗=0

(
𝑛𝑚
𝑗

)
𝑎𝑛𝑚−𝑗𝑏 𝑗 — for 𝑗 < 𝑚 we have

𝑛𝑚 − 𝑗 > 𝑛𝑚 −𝑚 = 𝑛(𝑚 − 1), greater than a multiple of 𝑛, so that 𝑎𝑛𝑚−𝑗 = 0; for 𝑗 ⩾ 𝑚,

we have 𝑏 𝑗 = 0. Thus we arrive at (𝑎 + 𝑏)𝑛𝑚 = 0. ♮

Lemma 8.1.22. A class [𝑚]𝑛 is nilpotent in Z/𝑛Z if and only if𝑚 shares all prime factors

of 𝑛.

Proof. Suppose that there exists a prime 𝑝 in the prime factorization of 𝑛 such that 𝑝

does not divide 𝑚. If ℓ ∈ Z is any exponent, 𝑚ℓ
won’t be divisible by 𝑛 since it lacks

the 𝑝 factor — hence 𝑚 fails to be nilpotent.

If 𝑚 shares every prime factor of 𝑛, let 𝑘 be defined to be the maximum exponent

in the prime factorization of 𝑛 (which is ensured to exist since the collection is finite).

Then clearly [𝑚]𝑘𝑛 = [𝑚𝑘]𝑛 = 0 since 𝑚𝑘
is divisible by 𝑛. ♮

Lemma 8.1.23. Let 𝑅 be a commutative ring and 𝑥 ∈ 𝑅 be a nilpotent element. The

following statements hold:

(a) The element 𝑥 is either zero or zero-divisor.

(b) For every 𝑟 ∈ 𝑅, the product 𝑟𝑥 is nilpotent.

(c) For every invertible element 𝑢 ∈ 𝑅, the sum 𝑥 + 𝑢 is invertible.

Proof. (a) If 𝑥 is non-zero, both the left and right multiplications of 𝑥 have the same

image under the distinct elements 𝑥𝑛−1
and 0 — hence 𝑥 is a zero-divisor.

(b) From commutativity (𝑟𝑥)𝑛 = 𝑟𝑛𝑥𝑛 = 𝑟𝑛 · 0 = 0.

(c) First we deal with the case where 𝑢 = 1. Remember that given any 𝑎 ∈ 𝑅 and

𝑚 ∈ N we have

(1 + 𝑎)(1 − 𝑎 + 𝑎2 − · · · + (−1)𝑚𝑎𝑚) = 1 + (−1)𝑚𝑎𝑚+1.

Therefore, for every 𝑚 > 𝑛, we have (1 + 𝑥)∑𝑚
𝑗=0
(−1)𝑗𝑎 𝑗 = 1 — which shows that

1+ 𝑥 is invertible. For the general case, if 𝑣 is the inverse of 𝑢, one sees that for any

𝑚 > 𝑛 we have

(𝑢 + 𝑥)
𝑚∑
𝑗=0

(−1)𝑗𝑣𝑥 𝑗 = 1 + (−1)𝑚𝑥𝑚+1 = 1.

♮
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Units
Definition 8.1.24 (Unit). Let 𝑅 be a ring. An element 𝑢 ∈ 𝑅 is said to be a left-unit (or

right-unit) if there exists 𝑎 ∈ 𝑅 for which 𝑢𝑎 = 1 (or 𝑎𝑢 = 1). An element is said to be a

unit if it is both a left and right unit.

Proposition 8.1.25. Let𝑅 be a ring and𝑢 ∈ 𝑅 be an element. The following propositions

hold.

(a) The element 𝑢 is a left-unit (or right-unit) if and only if the left-multiplication (or

right-multiplication) map 𝑅→ 𝑅 is surjective.
(b) If 𝑢 is a left-unit (or right-unit), then 𝑢 is a non-right-zero-divisor (or non-left-zero-

divisor).

(c) The inverse of a unit is unique.
(d) Units form a group under multiplication — such group is denoted by 𝑅×.

Proof. (a) Suppose first that 𝑢 is a left-unit. Let 𝑎 ∈ 𝑅 be any element and suppose that

𝑣 ∈ 𝑅 is such that 𝑢𝑣 = 𝑅 (which is ensured to exist) — then 𝑢(𝑣𝑎) = (𝑢𝑣)𝑎 = 𝑎,

thus left-multiplication is surjective.

On the other hand, if the left-multiplication by 𝑢 is surjective, we can conclude that

there must exist 𝑣 ∈ 𝑅 for which 𝑢𝑣 = 1 — hence 𝑢 is a left-unit of 𝑅.

The proof for the right-unit case is completely analogous and won’t be included.

(b) If 𝑢 is a left-unit, assume 𝑣 ∈ 𝑅 is such that 𝑢𝑣 = 1. Notice that the right-
multiplication maps 𝑓𝑢 , 𝑓𝑣 :𝑅 ⇒ 𝑅 by 𝑢 and 𝑣, respectively, are such that — for all

𝑎 ∈ 𝑅,

𝑓𝑣 𝑓𝑢(𝑎) = 𝑓𝑣(𝑎𝑢) = (𝑎𝑢)𝑣 = 𝑎(𝑢𝑣) = 𝑎 · 1 = 𝑎.

Therefore, 𝑓𝑣 is the left-inverse of 𝑓𝑢 and thus 𝑓𝑢 is injective. The equivalent proof

can be written for the right-unit.

(c) Let 𝑢 be a unit and 𝑣1, 𝑣2 ∈ 𝑅 be such that 𝑣1𝑢 = 1 and 𝑢𝑣2 = 1 — notice that

𝑣1 = 𝑣1 · 1 = 𝑣1(𝑢𝑣2) = (𝑣1𝑢)𝑣2 = 1 · 𝑣2 = 𝑣2.

(d) Let𝑈 denote the collection of units of 𝑅 (such set is ensured to be non-empty since

1 is a unit) — zero-rings are not a problem since zero is a unit in such case. If

𝑎, 𝑏 ∈ 𝑈 are units, then there are 𝑥, 𝑦 ∈ 𝑈 such that 𝑎𝑥 = 𝑥𝑎 = 1 and 𝑏𝑦 = 𝑦𝑏 = 1

(from the last item, inverses are unique) — therefore, (𝑎𝑏)(𝑦𝑥) = 𝑎(𝑏𝑦)𝑥 = 𝑎𝑥 = 1,

that is, 𝑎𝑏 ∈ 𝑈 and 𝑦𝑥 its inverse.

♮

Lemma 8.1.26. Let 𝑅 be a ring and 𝑎 ∈ 𝑅 be an element. If 𝑎 is a right-unit (or left-unit)

and has two or more left-inverses (or right-inverses), then

• The element 𝑎 is not a left-zero-divisor (or right-zero-divisor).

• The element 𝑎 is a right-zero-divisor (or left-zero-divisor).
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Proof. We shall restrict ourselves with the right-unit case — the other is completely

analogous. Since 𝑎 is a right-unit, there must exist 𝑢 ∈ 𝑅 such that 𝑢𝑎 = 1, then

if 𝑥, 𝑦 ∈ 𝑅 are such that 𝑎𝑥 = 𝑎𝑦, we can multiply both left-sides by 𝑢 and obtain

(𝑢𝑎)𝑥 = 𝑥 = 𝑦 = (𝑢𝑎)𝑦 — thus left-multiplication by 𝑎 is injective and 𝑎 is not a

left-zero-divisor.

For the other item, notice that if 𝑢 and 𝑣 are distinct left-inverses of 𝑎, then 𝑢𝑎 =

𝑣𝑎 = 1 have the same image under right-multiplication by 𝑎 — hence 𝑎 is a right-zero-

divisor. ♮

Division Rings & Fields

Definition 8.1.27 (Division ring). A ring 𝑅 is said to be a division ring if every non-zero

element is a unit.

Definition 8.1.28 (Field). A non-zero ring 𝑅 is said to be a field if 𝑅 is a commutative
division ring.

Remark 8.1.29. By the item (b) of Proposition 8.1.25, we see that a unit is a non-zero-

divisor, thus, if every non-zero element is a unit, then every non-zero element is also

a non-zero-divisor. This implies directly that every field is an integral domain. On the

other hand, Z is an integral domain but fails to be a field, hence not every integral
domain is a field. The concepts can however coincide in a special case, as we see in

Proposition 8.1.31.

Proposition 8.1.30. Any subring of a field is an integral domain.

Proof. Let 𝑘 be a field and 𝑅 ⊆ 𝑘 be a non-zero subring. Certainly 𝑅 is commutative.

Moreover if 𝑎, 𝑏 ∈ 𝑅 are such that 𝑎𝑏 = 0, suppose, for the sake of contradiction, that

𝑎 and 𝑏 are both non-zero. From the field properties, there are inverses 𝑎−1, 𝑏−1 ∈ 𝑘 so

that 𝑎−1(𝑎𝑏)𝑏−1 = (𝑎−1𝑎)(𝑏𝑏−1) = 1 · 1 = 1, but 𝑎𝑏 = 0 — this implies that 1 = 0, which

is a contradiction, thus 𝑎 or 𝑏 are zero. ♮

Proposition 8.1.31. A finite and commutative ring 𝑅 is a field if and only if 𝑅 is an

integral domain.

Proof. If 𝑅 is a finite commutative integral domain, let 𝑎 ∈ 𝑅 be a non-zero-divisor

of 𝑅 — so that multiplication by 𝑎 is an injective map. Since the ring is finite, the

multiplication by 𝑎 is also surjective — thus by Proposition 8.1.25 we find that 𝑎 is a

unit. ♮

Proposition 8.1.32 (Particular case of Weddenburn’s theorem). Let 𝑅 be a division ring

with 𝑝2
elements and 𝑝 be a prime, then 𝑅 is a field.

Proof. For the proof, we shall use the concepts of centre and centralizer, developed in

Definition 8.2.15 and Definition 8.2.18. If we assume that 𝑅 is non-commutative, the

centre 𝑍(𝑅) will be a proper subring of 𝑅. Moreover, since 𝑍(𝑅) is also a subgroup

of 𝑅 under multiplication, by Corollary 7.4.7 we conclude that |𝑍(𝑅)| = 𝑝. Let now

𝑟 ∈ 𝑅∖𝑍(𝑅), clearly the centralizer must contain both the centre of the ring — since by
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definition it must commute with 𝑟— and by symmetry, 𝑟 ∈ 𝑍(𝑟), thus {𝑟}∪𝑍(𝑅) ⊆ 𝑍(𝑟).
Since the centralizer is a subgroup of 𝑅 and |𝑍(𝑟)| > 𝑝, one concludes by Corollary 7.4.7

that |𝑍(𝑟)| = 𝑝2
— therefore 𝑍(𝑟) = 𝑅. That, however gives us a contradiction because

if the centralizer of 𝑟 is the whole ring, then 𝑟 commutes with every element and thus

𝑟 ∈ 𝑍(𝑅)— this cannot be the case by hypothesis, thus one concludes that 𝑅 must be

commutative and therefore a field. ♮

Monoid Ring
Definition 8.1.33 (Monoid ring). Given a monoid (𝑀, ·) and a ring 𝑅, we define a new

ring called monoid ring 𝑅[𝑀] ≔ 𝑅⊕𝑀 — that is, the ring whose elements are formal

linear combinations

∑
𝑚∈𝑀 𝑎𝑚 · 𝑚, where the coefficients 𝑎𝑚 ∈ 𝑅 are non-zero for at

most finitely many 𝑚 ∈ 𝑀.

The unitary element of𝑅[𝑀] is defined to be 1𝑅 ·1𝑀 . The additive and multiplicative

structures are defined as follows∑
𝑚∈𝑀

𝑎𝑚 · 𝑚 +
∑
𝑚∈𝑀

𝑏𝑚 · 𝑚 ≔

∑
𝑚∈𝑀
(𝑎𝑚 + 𝑏𝑚) · 𝑚,∑

𝑚∈𝑀
𝑎𝑚 · 𝑚 +

∑
𝑚∈𝑀

𝑏𝑚 · 𝑚 ≔

∑
𝑚∈𝑀

∑
𝑚1·𝑚2=𝑚

(𝑎𝑚1
𝑏𝑚2
) · 𝑚.

Polynomial Ring
Definition 8.1.34 (Polynomial). Let 𝑅 be a ring. A polynomial is a map 𝑓 :𝑅→ 𝑅 given

by a finite linear combination of non-negative powers of the indeterminate variable

with coefficients in 𝑅

𝑓 (𝑥) =
∑
𝑗⩾0

𝑎 𝑗𝑥
𝑗 , where 𝑎 𝑗 = 0 for 𝑗 ≫ 0.

The collection of all polynomials over 𝑅 with variable 𝑥 is denoted by 𝑅[𝑥] — this

collection forms a ring under point-wise addition and product, that is, given another

element 𝑔(𝑥) ≔ ∑
𝑗⩾0

𝑏 𝑗𝑥
𝑗
, we define

𝑓 (𝑥) + 𝑔(𝑥) ≔
∑
𝑗⩾0

(𝑎 𝑗 + 𝑏 𝑗)𝑥 𝑗 ,

𝑓 (𝑥) · 𝑔(𝑥) ≔
∑
𝑘⩾0

∑
𝑖+𝑗=𝑘

𝑎𝑖𝑏 𝑗𝑥
𝑖+𝑗 .

It should be noted immediately that 𝑅[𝑥] ≃ 𝑅[N], where N is viewed as a monoid

under addition.

Two polynomials are said to be equal if the sequence of coefficients match — that

is, if 𝑓 (𝑥) ≔ ∑
𝑗⩾0

𝑎 𝑗𝑥
𝑗

and 𝑔(𝑥) ≔ ∑
𝑗⩾0

𝑏 𝑗𝑥
𝑗
, then 𝑓 = 𝑔 if and only if 𝑎 𝑗 = 𝑏 𝑗 for all

𝑗 ⩾ 0 — since the collection of non-zero coefficients is necessarily finite, this equality

relation is well defined.
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Corollary 8.1.35. If 𝑅 is a commutative ring, then 𝑅[𝑥] is commutative.

Lemma 8.1.36. A ring 𝑅 is an integral domain if and only if 𝑅[𝑥] is an integral domain.

Proof. If 𝑅 is an integral domain, then clearly 𝑅[𝑥] is both non-zero and commutative.

Moreover, suppose that 𝑓 (𝑥) ≔ ∑
𝑗⩾0

𝑎 𝑗𝑥
𝑗

and 𝑔(𝑥) ≔ ∑
𝑗⩾0

𝑏 𝑗𝑥
𝑗

are elements of 𝑅[𝑥]
such that 𝑓 · 𝑔 = 0 — notice that from definition we have

𝑓 (𝑥)𝑔(𝑥) =
∑
𝑘⩾0

∑
𝑖+𝑗=𝑘

𝑎𝑖𝑏 𝑗𝑥
𝑖+𝑗 ,

which is merely a finite combination with coefficients, so that if 𝑓 · 𝑔 = 0, we necessarily

have 𝑎 𝑗 = 0 for all 𝑗 ⩾ 0 or 𝑏 𝑗 = 0 for all 𝑗 ⩾ 0 since 𝑅 is an integral domain — thus

either 𝑓 = 0 or 𝑔 = 0.

On the other hand, if 𝑅[𝑥] is an integral domain, let 𝑎, 𝑏 ∈ 𝑅 be elements such that

𝑎𝑏 = 0 in 𝑅, then we can consider the constant polynomials 𝑓 (𝑥) ≔ 𝑎 and 𝑔(𝑥) ≔ 𝑏 to

conclude that, since 𝑓 · 𝑔 = 0 then 𝑎 = 0 or 𝑏 = 0. ♮

Definition 8.1.37. The degree of a non-zero polynomial 𝑓 (𝑥) ≔ ∑
𝑗⩾0

𝑎 𝑗𝑥
𝑗

is defined as

the maximum index for which the corresponding coefficient is non-zero, that is

deg 𝑓 ≔ max{ 𝑗 : 𝑎 𝑗 ≠ 0}.

This is well defined because 𝑎 𝑗 ≠ 0 for only finitely many indices. By convention, the

zero-polynomial has degree −∞.

Polynomials of multiple variables are obtained simply as an iteration of the process

of construction of 𝑅[𝑥], that is,

𝑅[𝑥1, . . . , 𝑥𝑛] ≔ 𝑅[𝑥1] . . . [𝑥𝑛].

The ordering of the list 𝑥1, . . . , 𝑥𝑛 is irrelevant in the construction of the ring, if we

swap any elements of the list we still end up with isomorphic rings.

One can consider a ring of polynomials over infinitely many variables, say𝑅[𝑥1, 𝑥2, . . . ],
but still every polynomial of such ring consists of only finitely many terms — as we

impose that the coefficient indexing set is finite.

Definition 8.1.38 (Power series ring). Let 𝑅 be a ring. The ring of power series with

variable 𝑥 and coefficients in 𝑅, denoted by 𝑅[[𝑥]], is defined to be the ring whose

elements are formal sums

∑∞
𝑗=0

𝑎 𝑗𝑥
𝑗
.

8.2 The Category of Rings
Definition 8.2.1. Let 𝑅 and 𝑆 be rings. We define a morphism of rings 𝜙:𝑅→ 𝑆 to be

a map such that, for all 𝑎, 𝑏 ∈ 𝑅, we have 𝜙(𝑎 + 𝑏) = 𝜙(𝑎) + 𝜙(𝑏) and 𝜙(𝑎𝑏) = 𝜙(𝑎)𝜙(𝑏).
Moreover, we also impose that morphisms are unitary, that is, 𝜙(1𝑅) = 1𝑆.
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Definition 8.2.2. The category of rings is defined to consist of rings and morphisms

between them — such category will be denoted by Ring.

Remark 8.2.3. Curiously, the zero-ring is not a zero-object in the category of rings, it is
a final object but fails to be initial — this is due to the fact that we imposed morphisms

to be unitary, hence for a non-zero ring 𝑅, there exists no ring morphism from the

zero-ring to 𝑅.

One should, however, not be afraid, because Ring does have initial objects. In fact,

Z is initial in Ring — for any ring 𝑅 we can define a unique ring morphism Z → 𝑅

mapping 𝑛 ↦→ 𝑛 · 1𝑅 for any 𝑛 ∈ Z.

Corollary 8.2.4 (Unit preservation). If 𝜙:𝑅 → 𝑆 is a ring morphism and 𝑢 ∈ 𝑅 is a

left-unit (or right-unit), then 𝜙(𝑢) ∈ 𝑆 is again a left-unit (or right-unit).

Proof. Let 𝑣 ∈ 𝑅 be such that 𝑣𝑢 = 1𝑅, then 𝜙(𝑣𝑢) = 𝜙(𝑣)𝜙(𝑢) but 𝜙(𝑣𝑢) = 𝜙(1𝑅) = 1𝑆

thus 𝜙(𝑣)𝜙(𝑢) = 1𝑆 and 𝜙(𝑢) is indeed a left-unit in 𝑆. ♮

Proposition 8.2.5 (Image of morphism is a subring). The image of a ring morphism

𝑅→ 𝑆 is a subring of 𝑆.

Proof. Let 𝜙:𝑅 → 𝑆 be any ring morphism. Since it is a ring morphism, 𝜙(1𝑅) = 1𝑆 ∈
im 𝜙, moreover, if 𝑎, 𝑏 ∈ 𝑅 then 𝜙(𝑎 + 𝑏) = 𝜙(𝑎) + 𝜙(𝑏) ∈ im 𝜙 and 𝜙(𝑎𝑏) = 𝜙(𝑎)𝜙(𝑏) ∈
im 𝜙 — thus im 𝜙 is a subring of 𝑆. ♮

Remark 8.2.6. The image of non-zero-divisors may be a zero-divisor in the new ring —

for instance, 3 ∈ 𝑍 is a non-zero-divisor but the ring morphism 𝑍 ↠ Z/6Z (canonical

projection) maps 3 ↦→ [3]6, which is a zero divisor since [2]6[3]6 = [0]6.

Proposition 8.2.7. Let 𝜙:𝑅 → 𝑆 be a set-function between rings 𝑅 and 𝑆 such that

the additive and multiplicative structures are preserved. If either one of the following

propositions hold, then 𝜙 is a morphism of rings:

(a) The set-function 𝜙 is surjective.

(b) The set-function 𝜙 ≠ 0 and 𝑆 is an integral domain.

Proof. We simply need to show that each of the propositions yield 𝜙(1𝑅) = 1𝑆 — which

is the only condition left for 𝜙 to be a morphism of rings.

(a) If 𝜙 is surjective, then there exists 𝑟 ∈ 𝑅 such that 𝜙(𝑎) = 1𝑆 but then

1𝑆 = 𝜙(𝑎) = 𝜙(𝑎 · 1𝑅) = 𝜙(𝑎)𝜙(1𝑅) = 1𝑆 · 𝜙(1𝑅) = 𝜙(1𝑅).

(b) If 𝜙(1𝑅) where to be zero, the whole image of 𝜙 would also evaluate to zero, thus

1𝑅 has a non-zero image under 𝜙. Let 𝑟 ∈ 𝑅 be any element such that 𝜙(𝑟) ≠ 0

— then 𝜙(𝑟) = 𝜙(𝑟 · 1𝑅) = 𝜙(𝑟)𝜙(1𝑅) thus by means of Corollary 8.1.18 we can

conclude that 𝜙(1𝑅) = 1𝑆.

♮
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Universal Property of Polynomial Rings
Let 𝐴 ≔ {𝑎1, . . . , 𝑎𝑛} be a set and define a category R𝐴 consisting of pairs (𝛼, 𝑅) —

where 𝛼:𝐴→ R is a set-function and 𝑅 is a ring such that 𝛼(𝑎𝑖) commutes with every

element of 𝑅 for each 1 ⩽ 𝑖 ⩽ 𝑛 (one may restrict this further by imposing that 𝑅 is

commutative). Intuitively, morphisms between two objects (𝛼, 𝑅) → (𝛽, 𝑆) are ring

morphisms 𝜙:𝑅 → 𝑆 such that the following diagram commutes in the category of

sets:

𝑅 𝑆

𝐴

𝜙

𝛼 𝛽

In the same context of what is explained above, we now state a universal property

concerning the ring Z[𝑥1, . . . , 𝑥𝑛] in the category R𝐴.

Proposition 8.2.8. Let 𝑅 be a ring and define a set-function 𝛼:𝐴→ 𝑅mapping 𝑎 𝑗 ↦→ 𝑥 𝑗 .

The object (𝛼,Z[𝑥1, . . . , 𝑥𝑛]) is initial in R𝐴.

Proof. Let (𝛽, 𝑅) be any object in R𝐴. We now construct a morphism

𝜙: (𝛼,Z[𝑥1, . . . , 𝑥𝑛]) → (𝛽, 𝑅).

We can impose that 𝜙(𝑥 𝑗) ≔ 𝛽(𝑎 𝑗) for every 1 ⩽ 𝑗 ⩽ 𝑛. For 𝜙 to be a ring morphism,

one must also impose that is preserves both the additive and multiplicative structures

of the rings. Since Z is initial in Ring, we can uniquely determine that 𝜙(𝑟) = 𝜓(𝑟)—

where 𝜓: Z→ R is a unique morphism. That is, we defined morphism 𝜙 given by

𝜙

(∑
𝑚𝑖1...𝑖𝑛𝑥

𝑖1
1
. . . 𝑥

𝑖𝑛
𝑛

)
=

∑
𝜙(𝑚𝑖1...𝑖𝑛 )𝜙(𝑥 𝑖11

) . . . 𝜙(𝑥 𝑖𝑛𝑛 )

=

∑
𝜓(𝑚𝑖1...𝑖𝑛 )𝛽(𝑎1)𝑖1 . . . 𝛽(𝑎𝑛)𝑖𝑛 ,

which is surely both a ring morphism and unique — thus (𝛼,Z[𝑥1, . . . , 𝑥𝑛]) is initial,

and

Z[𝑥1, . . . , 𝑥𝑛] 𝑅

𝐴

𝜙

𝛼 𝛽

♮

Proposition 8.2.9 (Universal property of polynomial rings). Let 𝑓 :𝑅 → 𝑆 be any ring

morphism and 𝑠0 ∈ 𝑆 be a fixed element commuting with 𝑓 (𝑟) for all 𝑟 ∈ 𝑅. There

exists a unique ring morphism 𝜙:𝑅[𝑥] → 𝑆 which extends 𝑓 and maps 𝑥 ↦→ 𝑠0.

Proof. In the construction of 𝜙 we first impose that 𝜙(𝑥) ≔ 𝑠0. Moreover, for 𝜙 to

extend 𝑓 one has to define 𝜙(𝑟) ≔ 𝑓 (𝑟) for all given 𝑟 ∈ 𝑅. In order for 𝜙 to be a ring
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morphism it also needs to preserve the additive and multiplicative structures of the

rings — hence we end up with

𝜙

(∑
𝑗⩾0

𝑟 𝑗𝑥
𝑗

)
=

∑
𝑗⩾0

𝜙(𝑟 𝑗)𝜙(𝑥)𝑗 =
∑
𝑗⩾0

𝑓 (𝑟 𝑗)𝑠 𝑗
0
.

Since 𝜙 is completely defined by the image under constant polynomials and 𝑥, we find

that 𝜙 is the unique ring morphism sending 𝑥 to 𝑠0 for which the following diagram

commutes

𝑅 𝑆

𝑅[𝑥]

𝑓

𝜙

♮

In fact, in the case where 𝑅 is commutative and 𝑓 :𝑅 → 𝑅 is an endomorphism, the

unique ring morphism 𝜙:𝑅[𝑥] → 𝑅 defined above is called the evaluation map at the

given fixed point. We normally denote such map by eval𝑟 — where 𝑟 ∈ 𝑅 is the chosen

fixed point for evaluation.

Monomorphisms
Definition 8.2.10 (Kernel). The kernel of a ring morphism 𝜙:𝑅→ 𝑆 is the set

ker 𝜙 ≔ {𝑟 ∈ 𝑅 : 𝜙(𝑟) = 0𝑆}.

Proposition 8.2.11 (Ring monomorphisms). Let 𝜙:𝑅 → 𝑆 be a ring morphism. The

following properties are equivalent:

(a) The ring morphism 𝜙 is a monomorphism.

(b) The kernel of 𝜙 is trivial — that is, ker 𝜙 = {0𝑅}.
(c) The set-function 𝜙 injective.

Proof. (a)⇒ (b): Suppose 𝜙 is monic. Let 𝑟 ∈ ker 𝜙 be any element and consider the

uniquely defined morphisms eval𝑟 , eval0𝑅 : Z[𝑥]⇒ 𝑅 provided by Proposition 8.2.8 by

fixing eval𝑟(𝑥) = 𝑟 and eval0𝑅(𝑥) = 0𝑆. Notice that 𝜙 eval𝑟(𝑛) = 𝜙 eval0𝑅(𝑛) = 𝜙(𝑛)
for any 𝑛 ∈ Z, while 𝜙 eval𝑟(𝑥) = 𝜙(𝑟) = 0𝑆 and 𝜙 eval0𝑅(𝑥) = 𝜙(0𝑅) = 0𝑆 — thus

eval𝑟 = eval0𝑆 , which in turn implies that 𝑟 = eval𝑟(𝑥) = eval0𝑅(𝑥) = 0𝑆. Therefore

indeed ker 𝜙 = {0𝑅}.
(b)⇒ (c): Suppose 𝜙 has trivial kernel and let 𝑟, 𝑡 ∈ 𝑅 be such that 𝜙(𝑟) = 𝜙(𝑡),

then 𝜙(𝑟) − 𝜙(𝑡) = 𝜙(𝑟 − 𝑡) = 0 and 𝑟 − 𝑡 ∈ ker 𝜙, which implies in 𝑟 = 𝑡 — that is, 𝜙 is

injective.

(c) ⇒ (a): Suppose 𝜙 is an injective set-function. Since injections are monomor-

phisms in Set, we conclude that the set-function 𝜙:𝑅→ 𝑆 is a monomorphism in Set

when 𝑅 and 𝑆 are viewed as sets. If we now endows 𝑅 and 𝑆 with their respective ring

structures, we obtain that 𝜙 is a monic in Ring. ♮
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Subrings
Definition 8.2.12 (Subring). Let 𝑅 be a ring. A subring 𝑆 of 𝑅 is a ring whose elements

are contained in 𝑅 and the canonical inclusion map 𝑆 ↩→ 𝑅 is a ring morphism.

Remark 8.2.13. It should be noted that 𝑆 is a ring with unity where 1𝑆 = 1𝑅.

Proposition 8.2.14 (Intersection of subrings). Let 𝑅 be a ring and {𝑆 𝑗}𝑗∈𝐽 be a collection

of subrings of 𝑅. The intersection

⋂
𝑗∈𝐽 𝑆 𝑗 is also a subring of 𝑅.

Proof. Since each 𝑆 𝑗 is a subring, if 𝑎, 𝑏 ∈ ⋂
𝑗∈𝐽 𝑆 𝑗 then 𝑎, 𝑏 ∈ 𝑆 𝑗 for all 𝑗 ∈ 𝐽, and

𝑎 + 𝑏, 𝑎𝑏 ∈ 𝑆 𝑗 . Since every subring contains the unity, so does the intersection — hence⋂
𝑗∈𝐽 𝑆 𝑗 is a subring of 𝑅. ♮

Center

Definition 8.2.15 (Center). Given a ring 𝑅, we define its centre to be

𝑍(𝑅) ≔ {𝑟 ∈ 𝑅 : 𝑟𝑥 = 𝑥𝑟 for all 𝑥 ∈ 𝑅}.

Corollary 8.2.16. The centre of a ring is a subring.

Proof. Let 𝑅 be a ring. Clearly, 1 ∈ 𝑍(𝑅). Moreover, if 𝑟, 𝑠 ∈ 𝑍(𝑅) then for any 𝑥 ∈ 𝑅
we have

(𝑟 + 𝑠)𝑥 = 𝑟𝑥 + 𝑠𝑥 = 𝑥𝑟 + 𝑥𝑠 = 𝑥(𝑟 + 𝑠),
(𝑟𝑠)𝑥 = 𝑟(𝑠𝑥) = (𝑠𝑥)𝑟 = (𝑥𝑠)𝑟 = 𝑥(𝑠𝑟) = 𝑥(𝑟𝑠).

Therefore 𝑍(𝑅) is indeed a subring of 𝑅. ♮

Corollary 8.2.17. If 𝑅 is a division ring, then its centre 𝑍(𝑅) is a field.

Proof. Since 𝑍(𝑅) inherits the division ring structure and every element of 𝑍(𝑅) com-

mutes, it is indeed a field. ♮

Definition 8.2.18 (Centralizer). Given a ring 𝑅 and an element 𝑟 ∈ 𝑅, the centralizer of

𝑟 is defined to be the collection of elements 𝑥 ∈ 𝑅 such that 𝑥𝑟 = 𝑟𝑥 — we shall denote

the centralizer of 𝑟 as 𝑍(𝑟).

Corollary 8.2.19. The centralizer of an element is a subring.

Proof. This is simply a straightforward particular case of Corollary 8.2.16. ♮

Corollary 8.2.20. In a division ring a centralizer is also a division ring.

Proof. Let 𝑅 be a division ring and 𝑟 ∈ 𝑅 any element. If 𝑥 ∈ 𝑍(𝑟) is any element, then

since 𝑟𝑥 = 𝑥𝑟, we have (𝑟−1𝑥−1)𝑟𝑥 = (𝑟−1𝑥−1)𝑥𝑟 = 1 thus 𝑟−1𝑥−1𝑟 is a left-inverse of 𝑟

— moreover, we equivalently see that 𝑟𝑥−1𝑟−1
is a right-inverse of 𝑟. Since 𝑍(𝑟) is a

subring, such inverses are contained in 𝑍(𝑟) and thus 𝑍(𝑟) is a division ring.

Notice however that the centralizer may not be a field since there can be non-

commuting elements in 𝑍(𝑟). ♮
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Corollary 8.2.21. The centre of a ring is the intersection of all centralizers of the ring.

Proof. Let 𝑅 be a ring. Certainly, if 𝑥 ∈ 𝑍(𝑅) then it commutes with every element

of 𝑅 — which is equivalent to 𝑥 ∈ ⋂
𝑟∈𝑅 𝑍(𝑟). Moreover, if an element belongs to the

intersection of all centralizers, every element of the ring commutes with it and thus

such element is also present in the centre of the ring. Therefore 𝑍(𝑅) = ⋂
𝑟∈𝑅 𝑍(𝑟). ♮

Epimorphisms
Remark 8.2.22 (Epimorphisms and surjection in Ring). In Ring, epimorphisms are not
necessarily surjective set-functions.

A classical counterexample is the ring morphism given by the canonical inclusion

𝜄: Z ↩→ Q. Let 𝑅 be any ring and consider ring morphisms 𝑓 , 𝑔: Q ⇒ 𝑅 such that the

following diagram commutes

Z Q 𝑅
𝜄

𝑓

𝑔

Since 𝑓 |Z = 𝑔|Z we have, for any 𝑝/𝑞 ∈ Q, that 𝑓 (𝑝/𝑞) = 𝑓 (𝑝) 𝑓 (𝑞)−1
and 𝑔(𝑝/𝑞) =

𝑔(𝑝)𝑔(𝑞)−1
, which implies in 𝑓 (𝑝/𝑞) = 𝑔(𝑝/𝑞) — that is, 𝑓 = 𝑔 in general, which

implies that 𝜄 is an epimorphism in Ring. For the shock of the reader, the same is

obviously not the case in Set. If we take the rings Z and Q as abelian groups, one sees

that coker 𝜙 is non-trivial and by Proposition 7.6.8 we arrive at the fact that 𝜙 is not an

epimorphism in Ab neither.

Remark 8.2.23. With the caution given by Remark 8.2.22 one can rightly observe that

in the category of rings a morphism may be both monic and epic but yet lack the

conditions for being an isomorphism.

Remark 8.2.24. Cokernels in Ring are not what one would normally expect of a good

category, notice that given a ring morphism 𝜙:𝑅 → 𝑆 and, if 𝛼: 𝑆 → 𝑄 is any ring

morphism such that 𝛼𝜙 = 0 — as is required by the universal property of cokernels

— then 𝛼𝜙(1) = 𝛼(1) = 0, which can only be the case for 𝑄 = 0, the zero-ring. We

therefore conclude that coker 𝜙 must be the zero-ring.

Products
Proposition 8.2.25 (Product). Products exist in the category of rings.

Proof. Let 𝑅 and 𝑆 be rings. We’ll define on 𝑅×𝑆 additive and multiplicative structures

naturally as follows:

(𝑥, 𝑎) +𝑅×𝑆 (𝑦, 𝑏) ≔ (𝑥 +𝑅 𝑦, 𝑎 +𝑆 𝑏),
(𝑥, 𝑎) ·𝑅×𝑆 (𝑦, 𝑏) ≔ (𝑥 ·𝑅 𝑦, 𝑎 ·𝑆 𝑏),

for any 𝑥, 𝑦 ∈ 𝑅 and 𝑎, 𝑏 ∈ 𝑆. We now check that 𝑅 × 𝑆 is a product in Ring.
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Let 𝑍 be any ring and let 𝜙:𝑍 → 𝑅 and 𝜓:𝑍 → 𝑆 be any two ring morphisms.

Considering the canonical projections 𝜋𝑅:𝑅 × 𝑆 ↠ 𝑅 and 𝜋𝑆:𝑅 × 𝑆 ↠ 𝑆, we can

construct a map ℓ :𝑍 → 𝑅 × 𝑆 sending 𝑧 ↦→ (𝜙(𝑧),𝜓(𝑧)). Such a map inherits the

preservation of both the multiplicative and additive structures of 𝑍 and 𝑅 × 𝑆 since 𝜙
and𝜓 do so — therefore ℓ is a morphism of rings. Moreover, ℓ is completely determined

by the image of both 𝜙 and 𝜓, hence ℓ is the unique morphism of rings such that the

following diagram commutes

𝑍

𝑅 × 𝑆

𝑅 𝑆

𝜙 𝜓ℓ

𝜋𝑅 𝜋𝑆

♮

Remark 8.2.26. Coproducts on the other hand, although present in Ring, are not as

easy to construct. Lets work out a special case: consider the commutative ring Z[𝑥, 𝑦]
in the category of commutative rings. We’ll show that Z[𝑥, 𝑦] is the coproduct of two

copies of Z[𝑥]. Let 𝑅 be any commutative ring together with morphisms of rings

𝑓 , 𝑔: Z[𝑥]⇒ 𝑅. We define a map 𝜙: Z[𝑥, 𝑦] → 𝑅 for which 𝑥 ↦→ 𝑓 (𝑥), while 𝑦 ↦→ 𝑔(𝑥)
and finally 𝑛 ↦→ 𝑛 for every 𝑛 ∈ Z. One immediately sees that 𝜙 indeed satisfies

every condition of being a ring morphism. Moreover, since the image of 𝑥, 𝑦 and Z
completely defines 𝜙, we conclude that 𝜙 is the unique morphism of rings such that

the following diagram commutes

Z[𝑥] Z[𝑥]

Z[𝑥, 𝑦]

𝑅

𝑓 𝑔𝜙

thus Z[𝑥, 𝑦] is a coproduct of two copies of Z[𝑥] in the category of commutative rings.

The Ring EndAb(𝐺)
The ring of endomorphisms of an abelian group EndAb(𝐺) is a structure that pops

up in plenty of situations — module theory will explore this ring structure vastly —

so in this subsection we take some time to consider a small collection of interesting

and useful facts about it. Such ring, has its additive structure defined by point-wise

addition and the multiplicative structure is given by composition of morphisms.

Proposition 8.2.27. In the category of rings, there exists a natural isomorphism

Z ≃ EndAb(Z).
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Proof. Let 𝜙: EndAb(Z) → Z sending 𝑓 ↦→ 𝑓 (1) it is clear that

𝜙( 𝑓 + 𝑔) = ( 𝑓 + 𝑔)(1) = 𝑓 (1) + 𝑔(1) = 𝜙( 𝑓 ) + 𝜙(𝑔),

moreover the multiplicative structure is also preserved:

𝜙( 𝑓 𝑔) = ( 𝑓 𝑔)(1) = 𝑓 (𝑔(1)) = 𝑓 (1 · 𝑔(1)) = 𝑓 (1)𝑔(1) = 𝜙( 𝑓 )𝜙(𝑔).

Also, 𝜙(id) = id(1) = 1, therefore 𝜙 is a ring morphism. Since the image of the identity

element over a group morphism completely determines the map, one can be certain

that 𝜙 is a bĳection — thus an isomorphism of rings. ♮

Lets agree for the time being that, given a ring 𝑅 and an element 𝑟 ∈ 𝑅, the

morphisms of rings 𝑟𝑚, 𝑚𝑟 :𝑅 ⇒ 𝑅 are the left and right, respectively, multiplication

of elements of 𝑅 by 𝑟.

Proposition 8.2.28. Let 𝑅 be a ring. The map 𝑚:𝑅 ↣ EndAb(𝑅) sending 𝑟 ↦→ 𝑟𝑚 is an

injective ring morphism.

Proof. We first show that 𝑚 is a ring morphism: let 𝑎, 𝑏 ∈ 𝑅 be any three elements,

then for any 𝑟 ∈ 𝑅 we have

𝑚(𝑎 + 𝑏)(𝑟) = 𝑎+𝑏𝑚(𝑟) = (𝑎 + 𝑏)𝑟 = 𝑎𝑟 + 𝑏𝑟 = 𝑚(𝑎)(𝑟) + 𝑚(𝑏)(𝑟).

On the other hand, multiplication yields composition, as expected

𝑚(𝑎𝑏)(𝑟) = 𝑎𝑏𝑚(𝑟) = (𝑎𝑏)𝑟 = 𝑎(𝑏𝑟) = 𝑎𝑚(𝑏𝑚(𝑟)) = 𝑚(𝑎)(𝑚(𝑏)(𝑟)).

Also, 𝑚(1)(𝑟) = 1 · 𝑟 = 𝑟 = id𝑅(𝑟) and hence 𝑚(1) = id𝑅. We conclude that 𝑚 is indeed

a ring morphism. The injectivity comes from the fact that the only element that yields

a zero-map in EndRing(𝑅) is zero — thus the kernel is trivial. ♮

Remark 8.2.29. Notice that one cannot further extend Proposition 8.2.28 for right-

multiplications, this comes from the fact that

𝑚𝑎𝑏(𝑟) = 𝑟(𝑎𝑏) = (𝑟𝑎)𝑏 = 𝑚𝑏(𝑚𝑎(𝑟)).

That is, the multiplicative structure has its order reversed when transitioning to the

compositional structure.

Proposition 8.2.30. Up to isomorphism, there exists a unique ring (with identity)

structure whose underlying group is (Z,+).

Proof. Let 𝑅 be any ring with underlying group Z, and fix any 𝑟 ∈ 𝑅. Consider the ring

morphism𝑚:𝑅→ EndAb(𝑅) as defined in Proposition 8.2.28. Let 𝑓 ∈ EndAb(𝑅) is com-

pletely defined by 𝑓 (1𝑅), thus 𝑓 (1𝑟)𝑚 = 𝑓 . Therefore𝑚 is surjective and hence a bĳection

— 𝑚 thus establishes an isomorphism 𝑅 ≃ EndAb(𝑅). Moreover, by Proposition 8.2.27

we have EndAb(𝑅) ≃ Z, thus

𝑅 ≃ EndAb(𝑅) ≃ Z,

which proves the statement. ♮
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Proposition 8.2.31. Let 𝑅 be a ring and. There is a subring 𝑆 ⊆ 𝑍(𝑅) of the centre of 𝑅

such that there exists a ring isomorphism

𝑆 ≃ 𝑍(EndAb(𝑅)).

Proof. Let 𝑓 ∈ 𝑍(EndAb(𝑅)) be any group morphism. Since 𝑓 commutes with every

group endomorphism on 𝑅, in particular 𝑓 commutes with every right-multiplication

by an element of 𝑅— that is, given 𝑟 ∈ 𝑅, we have 𝑓 (𝑥𝑟) = 𝑓 (𝑥)𝑟, which can only be the

case if 𝑓 was a left-multiplication by an element of 𝑅. Moreover, by Proposition 8.2.28

the map 𝑚:𝑅 → EndAb(𝑅) is injective — restricting 𝑚 to the subring of 𝑍(𝑅) given by

𝑆 ≔ {𝑟 ∈ 𝑍(𝑅) : 𝑟𝑚 ∈ 𝑍(EndAb(𝑅))} makes 𝑚|𝑆 into a surjective morphism. Therefore

the morphism 𝑚: 𝑆 ≃ 𝑍(EndAb(𝑅)), where 𝑚(𝑟) = 𝑚(𝑟) for all 𝑟 ∈ 𝑆, is an isomorphism

of rings. ♮

Corollary 8.2.32. Let 𝑛 ∈ Z>0 be a positive integer. There exists a ring isomorphism

Z/𝑛Z ≃ EndAb(Z/𝑛Z).

8.3 Ideals & Quotients of Rings

Ideals
Definition 8.3.1 (Ideal). Let 𝑅 be a ring. A subgroup 𝔞 of (𝑅,+) is said to be a left-ideal
of 𝑅 if for all 𝑟 ∈ 𝑅 we have 𝑟𝔞 ⊆ 𝔞. On the other hand, 𝔞 is a right-ideal if for all

𝑟 ∈ 𝑅 we have 𝔞𝑟 ⊆ 𝔞. Furthermore, if 𝔞 is both a left and right ideal, we say that 𝔞 is

a two-sided-ideal — or simply an ideal, without qualifiers, which will be the preferred

nomenclature.

Remark 8.3.2 (Ideals and 1). The only ideal of a ring 𝑅 containing the unity 1𝑅 is 𝑅

itself — thus ideals need not be subrings.

Corollary 8.3.3. If 𝜙:𝑅→ 𝑆 is a ring morphism such that im 𝜙 is an ideal of 𝑆, then 𝜙
is surjective.

Proof. Since im 𝜙 is a subring, it contains 1𝑆 — by Remark 8.3.2 we have im 𝜙 = 𝑆. ♮

Corollary 8.3.4. The collection of ideals of a ring is closed under addition and inter-

section.

Proof. Let 𝑅 be a ring and 𝔞, 𝔟 ⊆ 𝑅 be ideals. Let 𝑎, 𝑏 ∈ 𝑅 be any two elements, then

(𝑎+𝑏)(𝔞+𝔟) = (𝑎+𝑏)𝔞+(𝑎+𝑏)𝔟 but since (𝑎+𝑏)𝔞, (𝑎+𝑏)𝔟 ⊆ 𝔞+𝔟, then (𝑎+𝑏)(𝔞+𝔟) ⊆ 𝔞+𝔟
— the same analogous arguments can be used to show that (𝔞 + 𝔟)(𝑎 + 𝑏) ⊆ 𝔞 + 𝔟. If

𝑎, 𝑏 ∈ 𝔞 ∩ 𝔟, then (𝑎𝑏)𝔞 ∩ 𝔟, 𝔞 ∩ 𝔟(𝑎𝑏) ⊆ 𝔞, 𝔟 thus also contained in 𝔞 ∩ 𝔟. ♮

Corollary 8.3.5 (Kernel is an ideal). Given a ring morphism 𝜙:𝑅 → 𝑆, then ker 𝜙 is a

ring ideal of 𝑅.
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Proof. From group theoretic considerations, we already know that ker 𝜙 is a subring of

𝑅. On the other hand, let 𝑟 ∈ 𝑅 be any element and 𝑎 ∈ ker 𝜙, then𝜙(𝑟𝑎) = 𝜙(𝑟)𝜙(𝑎) = 0

and 𝜙(𝑎𝑟) = 𝜙(𝑎)𝜙(𝑟) = 0, thus indeed both 𝑟𝑎, 𝑎𝑟 ∈ ker 𝜙. ♮

Corollary 8.3.6 (Preimage of ideal is an ideal). Let 𝜙:𝑅 → 𝑆 be a ring morphism and

𝔞 be an ideal of 𝑆, then the preimage 𝜙−1(𝔞) is an ideal of 𝑅.

Proof. Let 𝑟 ∈ 𝑅 and 𝑎 ∈ 𝜙−1(𝔞) be any two elements. Notice that 𝜙(𝑟𝑎) = 𝜙(𝑟)𝜙(𝑎)
and 𝜙(𝑎𝑟) = 𝜙(𝑎)𝜙(𝑟), and since 𝜙(𝑎) ∈ 𝔞 then 𝜙(𝑟𝑎), 𝜙(𝑎𝑟) ∈ 𝔞 — therefore 𝑟𝑎, 𝑎𝑟 ∈
𝜙−1(𝔞). ♮

Remark 8.3.7 (Image of ideals). Although the preimage of ideals is an ideal of the

morphism’s source, the image of a given ideal need not be an ideal. For instance, let 𝔞 ⊆ 𝑅
be an ideal of a ring 𝑅 and 𝜙:𝑅 → 𝑆 be a non-surjective morphism, then there exists

𝑠 ∈ 𝑆 whose preimage is the empty set, therefore 𝑠𝜙(𝔞) is not contained in 𝜙(𝔞).

Corollary 8.3.8 (Surjective morphisms preserve ideals). If 𝜙:𝑅 ↠ 𝑆 is a surjective ring

morphism, then the image of any ideal 𝔞 ⊆ 𝑅 is an ideal of 𝑆.

Proof. This is immediate from Remark 8.3.7, for all 𝑠 ∈ 𝑆 we have both 𝑠𝜙(𝔞), 𝜙(𝔞)𝑠 ⊆
𝜙(𝔞) because there will exist 𝑟 ∈ 𝑅 whose image is 𝑠. ♮

Example 8.3.9. For every element 𝑟 ∈ 𝑅 of a ring 𝑅, the objects 𝑟𝑅 and 𝑅𝑟 are, respec-

tively, right and left ideals of 𝑅. Indeed, given any 𝑎 ∈ 𝑅, we have (𝑟𝑅)𝑎 = 𝑟(𝑅𝑎) ⊆ 𝑟𝑅,

the analogous being true for the left ideal. If 𝑅 is commutative, we have 𝑟𝑅 = 𝑅𝑟 and

such ideal is commonly denoted by (𝑟)— the principal ideal generated by 𝑟.

Proposition 8.3.10. Let 𝑅 be a ring and (𝔞𝑗)𝑗∈𝐽 be a collection of ideals of 𝑅, then the

direct sum

⊕
𝑗∈𝐽 𝔞𝑗 is an ideal of 𝑅.

Proof. Let 𝑟 ∈ 𝑅 be any element and consider any formal sum

∑
𝑗∈𝐽 𝑎 𝑗 ∈

⊕
𝑗∈𝐽 𝔞𝑗 where

𝑎 𝑗 ≠ 0 for only finitely many 𝑗 ∈ 𝐽, then 𝑟(∑𝑗∈𝐽 𝑎 𝑗) =
∑
𝑗∈𝐽 𝑟𝑎 𝑗 bus since 𝑟𝑎 𝑗 ∈ 𝔞𝑗 for

each 𝑗 ∈ 𝐽, then

∑
𝑗∈𝐽 𝑟𝑎 𝑗 ∈

⊕
𝑗∈𝐽 𝔞𝑗 — the same argument can be used for right-

multiplication. ♮

Lemma 8.3.11. Given a collection (𝔞𝑗)𝑗∈𝐽 of ideals of a ring 𝑅, the ideal

⊕
𝑗∈𝐽 𝔞𝑗 is the

smallest ideal of 𝑅 containing each ideal 𝔞𝑗 for 𝑗 ∈ 𝐽.

Proof. Let 𝔟 be an ideal of 𝑅 containing every ideal 𝔞𝑗 for 𝑗 ∈ 𝐽. Then in particular,

given any element

∑
𝑗∈𝐽 𝑎 𝑗 ∈

⊕
𝑗∈𝐽 𝔞𝑗 , since 𝑎 𝑗 ∈ 𝔟 for every 𝑗 ∈ 𝐽 only finitely many

such 𝑎 𝑗 are non-zero, we find that the sum

∑
𝑗∈𝐽 𝑎 𝑗 ∈ 𝔟 — thus indeed

⊕
𝑗∈𝐽 𝔞 ⊆ 𝔟. ♮

Definition 8.3.12 (Finitely generated ideals). An ideal 𝔞 of a commutative ring 𝑅 is said

to be finitely generated if there exists a finite set of elements 𝐴 ⊆ 𝑅 such that 𝔞 = (𝐴).
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Division Rings and its Ideals

Proposition 8.3.13 (Units and its ideals). Let 𝑅 be a ring and 𝑎 ∈ 𝑅. The element 𝑎 is a

left-unit (or right-unit) of 𝑅 if and only if 𝑅 = 𝑎𝑅 (or 𝑅 = 𝑅𝑎)

Proof. We prove the proposition only for left-units, for right-units the proof is com-

pletely analogous. Suppose 𝑎 is a left-unit of 𝑅 and let 𝑢 ∈ 𝑅 be such that 𝑎𝑢 = 1, then

𝑎𝑅 contains 1 which implies in 𝑎𝑅 = 𝑅. Now if 𝑅 = 𝑎𝑅, then 1 ∈ 𝑎𝑅, which means that

there must exist 𝑢 ∈ 𝑅 for which 𝑎𝑢 = 1, thus 𝑎 is a left-unit. ♮

Proposition 8.3.14 (Division ring ideals). Let 𝑅 be a ring. Then 𝑅 is a division ring if

and only if its only left-ideals and right-ideals are {0} and 𝑅.

Proof. Let 𝑅 be a division ring. Suppose 𝔞 is a left-ideal (or right-ideal) of 𝑅, then given

any 𝑟 ∈ 𝑅 and 𝑎 ∈ 𝔞 we have 𝑟𝑎 ∈ 𝔞 (or 𝑎𝑟 ∈ 𝔞) — in particular, if 𝑎 ≠ 0, then 𝑎−1 ∈ 𝑅
thus 𝑎−1𝑎 = 1 ∈ 𝔞 (or 𝑎𝑎−1 = 1 ∈ 𝔞), thus 𝔞 = 𝑅 or 𝔞 = 0.

Suppose 0 and 𝑅 are the only left and right ideals. Given any non-zero element

𝑟 ∈ 𝑅, the ideal 𝑟𝑅 (or 𝑅𝑟) is non-zero, thus must be equal to 𝑅, which is equivalent

of 1 ∈ 𝑟𝑅 (or 1 ∈ 𝑅𝑟) — therefore 𝑟 must be a unit of 𝑅, proving that 𝑅 is a division

ring. ♮

Corollary 8.3.15 (Field ideals). The only left or right ideals of a field 𝑘 are 0 and 𝑘.

Proposition 8.3.16. Let 𝑘 be a field and 𝑅 be a ring, then any ring morphism 𝑘 → 𝑅 is

injective.

Proof. Let 𝜙: 𝑘 → 𝑅 be a ring morphism and let 𝑎, 𝑏 ∈ 𝑘 be any two elements such that

𝜙(𝑎) = 𝜙(𝑏), then 𝑎 − 𝑏 ∈ ker 𝜙. Remember that ker 𝜙 is an ideal of 𝑘 but this means

that ker 𝜙 is either 0 or 𝑘 — by Proposition 8.3.14. Since 𝜙(1𝑘) = 1𝑅 for 𝜙 to be a ring

morphism, then ker 𝜙 ≠ 𝑘 and we are left with ker 𝜙 = 0 — thus 𝑎 = 𝑏. ♮

Nilpotent Ideal

Definition 8.3.17 (Nilpotent ideal). Let 𝑅 be a ring. We say that an ideal 𝔞 ⊆ 𝑅 is a

nilpotent ideal if there exists 𝑘 ∈ Z>0 such that the product of any 𝑘 elements of 𝔞 equals

zero.

Nilradicals

Definition 8.3.18 (Nilradical). Given a ring 𝑅, we define the nilradical of 𝑅 to be the

object 𝑁 composed of every nilpotent element of 𝑅.

Corollary 8.3.19. The nilradical 𝑁 of a commutative ring 𝑅 is an ideal of 𝑅.

Proof. Let 𝑎 ∈ 𝑅 and 𝑥 ∈ 𝑁 be any two elements — suppose 𝑛 ∈ Z>0 is such that 𝑥𝑛 = 0.

Since 𝑅 is commutative then (𝑎𝑥)𝑛 = 𝑎𝑛𝑥𝑛 = 𝑎𝑛 · 0 = 0, thus 𝑎𝑥 ∈ 𝑁 . ♮

Definition 8.3.20 (Reduced ring). A ring 𝑅 is said to be reduced if it contains no

non-zero nilpotent elements
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Corollary 8.3.21. Let 𝑅 be a commutative ring and 𝑁 be its nilradical. The quotient ring

𝑅/𝑁 is reduced.

Proof. Suppose 𝑎 + 𝑁 ∈ 𝑅/𝑁 is a nilpotent element and 𝑎𝑛 + 𝑁 = 𝑁 for some 𝑛 ∈ Z>0

— which implies in 𝑎𝑛 ∈ 𝑁 thus there must exist 𝑚 ∈ Z>0 such that (𝑎𝑛)𝑚 = 𝑎𝑛𝑚 = 0,

which implies in 𝑎 ∈ 𝑁 and hence 𝑎 + 𝑁 = 𝑁 . ♮

Lemma 8.3.22. A ring 𝑅 is reduced if and only if for all 𝑟 ∈ 𝑅 such that 𝑟2 = 0 implies

𝑟 = 0.

Proof. If 𝑅 is reduced then clearly 𝑟2 = 0 implies 𝑟 = 0. Let 𝑟 ∈ 𝑅 be any element such

that 𝑟𝑛 = 0 for some 𝑛 ∈ Z>0, then proceed by the following algorithm — start with 𝑟𝑛 ,

then:

• If 𝑛 = 1, return 𝑟 — since 𝑟 = 0.

• If 𝑛 is odd, 𝑟𝑛+1 = 0 and thus 𝑟(𝑛+1)/2𝑟(𝑛+1)/2 = 0 which by hypothesis implies

𝑟(𝑛+1)/2 = 0. Continue the algorithm for 𝑟(𝑛+1)/2
.

• If 𝑛 is even, 𝑟𝑛 = 𝑟𝑛/2𝑟𝑛/2 = 0 implies 𝑟𝑛/2 = 0. Continue the algorithm for

𝑟𝑛/2 = 0.

Such algorithm is ensured to terminate and will always result in 𝑟 = 0, which implies

in 𝑅 being a reduced ring. ♮

Quotient Ring
We define now, for every ideal 𝔞 of a given ring 𝑅, a ring 𝑅/𝔞 together with an additive

and multiplicative structure: for every 𝑎 + 𝔞, 𝑏 + 𝔞 ∈ 𝑅/𝔞, we define

(𝑎 + 𝔞) + (𝑏 + 𝔞) ≔ (𝑎 + 𝑏) + 𝔞,
(𝑎 + 𝔞) · (𝑏 + 𝔞) ≔ 𝑎𝑏 + 𝔞.

Let’s show that both operations are well defined. Addition is clearly well defined.

For the multiplication, suppose 𝑎1 + 𝔞 = 𝑎2 + 𝔞 and 𝑏1 + 𝔞 = 𝑏2 + 𝔞 — that is, both

differences 𝑎1 − 𝑎2 and 𝑏1 − 𝑏2 ∈ 𝔞 are elements of 𝔞. Notice that

𝑎1𝑏1 − 𝑎2𝑏2 = 𝑎1𝑏1 − 𝑎2𝑏2 + (𝑎1𝑏2 − 𝑎1𝑏2)
= (𝑎1𝑏1 − 𝑎1𝑏2) + (𝑎1𝑏2 − 𝑎2𝑏2)
= 𝑎1(𝑏1 − 𝑏2) + (𝑎1 − 𝑎2)𝑏2

and therefore 𝑎1𝑏1 − 𝑎2𝑏2 ∈ 𝔞, implying in 𝑎1𝑏1 + 𝔞 = 𝑎2𝑏2 + 𝔞 — thus multiplication is

well defined.

Proposition 8.3.23 (Universal property of quotient rings). Let 𝑅 be a ring. For every

ring 𝑆 together with a ring morphism 𝜓:𝑅 → 𝑆 and ideal 𝔞 ⊆ ker𝜓, there exists a

unique ring morphism 𝜙:𝑅/𝔞→ 𝑆 such that the following diagram commutes

𝑅 𝑆

𝑅/𝔞

𝜓

𝜋

𝜙
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Proof. Let 𝑆 be any ring together with a ring morphism𝜓:𝑅→ 𝑆. Let𝜋:𝑅 ↠ 𝑅/𝔞be the

canonical projection morphism. Define a map 𝜙:𝑅/𝔞→ 𝑆 by sending 𝑟+𝔞 ↦→ 𝜓(𝑟). We

show now that 𝜙 is indeed well defined, consider elements 𝑥, 𝑦 ∈ 𝑅/𝔞 to be such that

𝜙(𝑥) = 𝜙(𝑦), then𝜓(𝑥) = 𝜓(𝑦)which is the same as𝜓(𝑥)−𝜓(𝑦) = 𝜓(𝑥−𝑦) = 0, therefore

𝑥 − 𝑦 ∈ ker𝜓, then 𝑥 = 𝑦 in 𝑅/𝔞. Moreover, 𝜙 inherits from 𝜓 the preservation of both

additive and multiplicative structures, thus 𝜙 is a morphism of rings and 𝜙𝜋 = 𝜓. If

𝜙′ is another morphism such that 𝜙′𝜋 = 𝜓, since 𝜋 is surjective then 𝜙𝜋 = 𝜙′𝜋 implies

in 𝜙 = 𝜙′, thus 𝜙 is unique. ♮

Corollary 8.3.24 (Every ideal is a kernel). Given a ring 𝑅, for every ideal 𝔞 ⊆ 𝑅 is the

kernel of some ring morphism 𝑅 → 𝑆. Therefore an additive subgroup of a ring 𝑅 is

an ideal if and only if it is a kernel of some ring morphism.

Proof. Simply let 𝑆 = 𝑅/𝔞 and consider the canonical projection 𝜋:𝑅 → 𝑅/𝔞, whose

kernel is clearly 𝔞. ♮

Definition 8.3.25 (Characteristic). Let 𝑅 be a ring and 𝜙: Z → 𝑅 be the unique ring

morphism mapping 𝑟 ↦→ 𝑟 · 1𝑅. We define the characteristic of 𝑅 to be the non-negative

integer 𝑛 ∈ Z>0 such that ker 𝜙 = 𝑛Z — we denote such a property by char𝑅 = 𝑛.

Proposition 8.3.26 (Characteristic of integral domains). The characteristic of an integral
domain is either zero or a prime number.

Proof. Let 𝑅 be an integral domain and let char𝑅 = 𝑛. Suppose that 𝑛 is non-zero and

that there exists an integer 𝑚 < 𝑛 dividing 𝑛 — that is, for some integer 𝑞 we have

𝑛 = 𝑞𝑚. Then in particular 𝑛 · 1𝑅 = (𝑞 · 1𝑅)(𝑚 · 1𝑅) but 𝑛 · 1𝑅 = 0 and since 𝑞, 𝑚 < 𝑛 it

follows that 𝑞 · 1𝑅 , 𝑚 · 1𝑅 ≠ 0 in 𝑅 — thus we obtained a contradiction since 𝑅 is said

to be an integral domain, hence char𝑅 is either prime or zero. ♮

Definition 8.3.27 (Boolean ring). A ring 𝑅 is said to be boolean if for all 𝑟 ∈ 𝑅 we have

𝑟2 = 𝑟.

Corollary 8.3.28. A non-zero boolean ring is commutative and has characteristic 2.

Proof. Let 𝑥 ∈ 𝑅 be any element of a boolean ring 𝑅. Then we have 𝑥+𝑥 = (𝑥+𝑥)2 = 4𝑥2

and 𝑥 + 𝑥 = 𝑥2 + 𝑥2
, therefore, 2𝑥2 = 4𝑥2

which implies in 𝑥2 + 𝑥2 = 0 but since

𝑥2 + 𝑥2 = 𝑥 + 𝑥 then we conclude that 𝑥 + 𝑥 = 0 and thus char𝑅 = 2.

If 𝑥, 𝑦 ∈ 𝑅 are any two elements, then consider the sum

𝑥 + 𝑦 = (𝑥 + 𝑦)2 = 𝑥2 + 𝑥𝑦 + 𝑦𝑥 + 𝑦2 = 𝑥 + 𝑥𝑦 + 𝑦𝑥 + 𝑦,

hence cancelling the common terms we obtain 𝑥𝑦 + 𝑦𝑥 = 0, now since char𝑅 = 2 one

can use the fact that 𝑦𝑥 + 𝑦𝑥 = 0 to make

0 = 𝑥𝑦 + 𝑦𝑥 = 𝑥𝑦 + 𝑦𝑥 − (𝑦𝑥 + 𝑦𝑥) = 𝑥𝑦 − 𝑦𝑥,

thus 𝑥𝑦 = 𝑦𝑥. ♮
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Corollary 8.3.29. If 𝑅 is a boolean ring and also an integral domain, then there exists

a canonical isomorphism of rings 𝑅 ≃ Z/2Z.

Proof. Let 𝑟 ∈ 𝑅 be any element, since 𝑟2 = 𝑟 then 𝑟2 − 𝑟 = 𝑟(1𝑅 − 𝑟) = 0𝑅 but since

𝑅 is an integral domain, either 𝑟 = 0𝑅 or 1𝑅 − 𝑟 = 0𝑅, that is, 𝑟 = 1𝑅. Thus the map

𝑅→ Z/2Z sending 0𝑅 ↦→ [0]2 and 1𝑅 ↦→ [1]2 is an isomorphism of rings. ♮

Decompositions
Theorem 8.3.30 (First isomorphism). Every ring morphism 𝜙:𝑅 → 𝑆 can be decom-

posed into the commutative diagram

𝑅 𝑅/ker 𝜙 im 𝜙 𝑆

𝜙

≃
𝜙

where 𝜙:𝑅/ker 𝜙 ≃−→ im 𝜙 is the natural ring morphism induced by 𝜙.

Proof. The morphism 𝜙 is obtained by the quotient ring universal property — that is,

𝜙(𝑟) = 𝜙(𝑟) + ker 𝜙, which is a morphism 𝑅/ker 𝜙→ 𝑆. Restricting the codomain of 𝜙
we obtain the claimed isomorphism. The rest follows trivially. ♮

Corollary 8.3.31. Let 𝜙:𝑅 ↠ 𝑆 be a surjective ring morphism, then there exists a natural

isomorphism

𝑆 ≃ 𝑅/ker 𝜙

Proof. Indeed, if 𝜙 is surjective, then im 𝜙 = 𝑆 and by the first isomorphism theorem

we obtain the natural isomorphism 𝑆 ≃ 𝑅/ker 𝜙. ♮

Proposition 8.3.32 (Ideal of a quotient). Let 𝑅 be a ring and 𝔞 ⊆ 𝑅 be an ideal. If 𝔟 is an

ideal of 𝑅 and 𝔞 ⊆ 𝔟, then 𝔟/𝔞 is an ideal of 𝑅/𝔞 and there exists a natural isomorphism

𝑅/𝔞
𝔟/𝔞 ≃ 𝑅/𝔟.

Proof. By Proposition 8.3.23, let 𝜙:𝑅/𝔞→ 𝑅/𝔟 be the morphism making the following

diagram commute

𝑅 𝑅/𝔟

𝑅/𝔞 𝜙

That is, 𝜙 is defined by mapping 𝑟 + 𝔞 ↦→ 𝑟 + 𝔟. Notice that the kernel of 𝜙 is composed

of those elements 𝑟 + 𝔞 ∈ 𝑅/𝔞 for which 𝜙(𝑟 + 𝔞) = 𝔟, that is, 𝑟 ∈ 𝔟 for 𝑟 + 𝔟 = 𝔟 —

thus ker 𝜙 = 𝔟/𝔞, which is ensured to be an ideal. Since 𝜙 is surjective, by means of

Corollary 8.3.31 we obtain a natural isomorphism 𝑅/𝔟 ≃ 𝑅/𝔞
𝔟/𝔞 . ♮

201



Corollary 8.3.33. Any surjective morphism 𝜙:𝑅 ↠ 𝑆 can be bĳectively identified as a

canonical projection 𝑅 ↠ 𝑅/ker 𝜙.

Example 8.3.34. If 𝑅 is a commutative ring and we consider principal ideals (𝑎) and (𝑏)
of 𝑅. If [𝑏] ∈ 𝑅/(𝑎) is the class of 𝑏, then we have ([𝑏]) = (𝑎, 𝑏)/(𝑎). By Proposition 8.3.32

we find a canonical isomorphism

𝑅/(𝑎)
([𝑏]) ≃ 𝑅/(𝑎, 𝑏).

Generation of Ideals
Definition 8.3.35 (Noetherian ring). A commutative ring 𝑅 is said to be Noetherian if

every ideal of 𝑅 is finitely generated.

Proposition 8.3.36 (Image of Noetherian ring). Let 𝑅 be a Noetherian ring and 𝑆 be a

ring. If there exists a surjective ring morphism 𝑅 ↠ 𝑆 then 𝑆 is Noetherian.

Proof. Suppose there exists 𝜙:𝑅 ↠ 𝑆, a surjective ring morphism. Let 𝔰 be any ideal of

𝑆, since the preimage of an ideal is an ideal, then 𝜙−1(𝔰) is an ideal of 𝑅 — thus finitely

generated. Now, since 𝜙 is surjective, 𝜙−1(𝔰) is non-empty and there exists a finite set

𝐴 ⊆ 𝜙−1(𝔰) such that 𝜙−1(𝔰) = (𝐴), since 𝑅 is Noetherian. Therefore 𝜙(𝐴) = 𝐵 ⊆ 𝔰 is a

finite set, hence 𝜙((𝐴)) = (𝐵) = 𝔰 — proving that 𝔰 is finitely generated. ♮

Definition 8.3.37 (Principal ideal domain). An integral domain 𝑅 is said to be a principal
ideal domain (which we’ll shortly name PID) if every ideal of 𝑅 is principal.

Example 8.3.38. The ring of integers Z is a PID. Indeed, if 𝔞 is an ideal of Z, then there

exists 𝑛 ∈ Z for which 𝔞 is a subgroup of 𝑛Z = (𝑛), thus 𝔞 itself is principal.

Notice also that, given any two integers 𝑚, 𝑛 ∈ Z, if 𝑑 ≔ gcd(𝑚, 𝑛) then 𝑚, 𝑛 ∈ (𝑑),
which implies that (𝑚, 𝑛) ⊆ (𝑑). Moreover, from Bézout’s identity

1
, we have the

existence of 𝑎, 𝑏 ∈ Z for which 𝑎𝑚+𝑏𝑛 = 𝑑, thus 𝑑 ∈ (𝑚, 𝑛)— proving that (𝑚, 𝑛) = (𝑑).

Example 8.3.39. The ring Z[𝑥] is not a PID.

We consider the ideal (2, 𝑥) and show that it isn’t principal. Suppose there exists

𝑓 (𝑥) ∈ Z[𝑥] for which ( 𝑓 (𝑥)) = (2, 𝑥), so that there exists 𝑞(𝑥) ∈ Z[𝑥] such that

𝑞(𝑥) 𝑓 (𝑥) = 2. Notice however that since Z is an integral domain, the product of

the leading term coefficients of 𝑓 (𝑥) and 𝑞(𝑥) is necessarily non-zero (for non-zero

polynomials), thus deg 𝑓 (𝑥)𝑔(𝑥) = deg 𝑓 (𝑥) + deg 𝑔(𝑥). Notice that deg 𝑞(𝑥) 𝑓 (𝑥) = 0

1
Using the well order on (𝑚, 𝑛), let ℓ ≔ 𝑎0𝑚 + 𝑏0𝑛 be the smallest element of (𝑚, 𝑛). Notice that

given any other 𝑢 = 𝑎𝑚 + 𝑏𝑛 ∈ (𝑚, 𝑛), by the euclidean division algorithm there exists two integers

𝑞, 𝑟 ∈ Z for which 𝑢 = 𝑞ℓ + 𝑟 and 0 ⩽ 𝑟 < ℓ . Therefore, one can write

𝑟 = 𝑢 − 𝑞ℓ = (𝑎𝑚 + 𝑏𝑛) − 𝑞(𝑎0𝑚 + 𝑏0𝑛) = (𝑎 − 𝑞𝑎0)𝑚 + (𝑏 − 𝑞𝑏0)𝑛

so that 𝑟 ∈ (𝑚, 𝑛)— since ℓ is the smallest element, then 𝑟 = 0 and thus ℓ divides 𝑢.

In general, we have shown that ℓ divides every element of (𝑚, 𝑛), and in particular ℓ also divides both

𝑚 and 𝑛. Now, if 𝑐 ∈ Z is any common divisor of 𝑚 and 𝑛 then in particular 𝑐 divides 𝑎0𝑚 + 𝑏0𝑛 = ℓ —

showing that 𝑐 ⩽ ℓ and hence ℓ = gcd(𝑚, 𝑛).
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thus deg 𝑓 (𝑥) = 0 and this can’t be the case since we would have 𝑥 ∉ ( 𝑓 (𝑥))— this is a

contradiction, such polynomial 𝑓 (𝑥) cannot exist and therefore (2, 𝑥) isn’t principal.

Proposition 8.3.40. Given a field 𝑘, the ring of polynomials 𝑘[𝑥] is a PID.

Proof. The zero ideal is obviously principal, thus let 𝔞 be any non-zero proper ideal of

𝑘[𝑥] and, by the well-ordering of the positive degree polynomials in 𝑘[𝑥], let 𝑓 (𝑥) ∈ 𝔞

be a non-zero monic polynomial with least degree. We can indeed be certain that we

can choose an 𝑓 (𝑥), because every non-zero coefficient of a polynomial of 𝑘[𝑥] is a

unity — since 𝔞 is non-zero, we are ensured that there will exist a polynomial with at

least one non-zero coefficient.

Let 𝑔(𝑥) ∈ 𝑘[𝑥] be any polynomial and, since 𝑘 is a field, let 𝑞(𝑥), 𝑟(𝑥) ∈ 𝑘[𝑥] be

polynomials such that 𝑔(𝑥) = 𝑞(𝑥) 𝑓 (𝑥) + 𝑟(𝑥), where deg 𝑟 < deg 𝑓 (𝑥). Notice then

that the last condition implies in deg 𝑟(𝑥) ⩽ 0, otherwise 𝑓 (𝑥) wouldn’t be the monic

polynomial with least degree among polynomials of positive degree in 𝑘[𝑥]. Now, if

𝑟(𝑥) = 0, then 𝑔(𝑥) = 𝑞(𝑥) 𝑓 (𝑥) and 𝑔(𝑥) ∈ ( 𝑓 (𝑥))— on the other hand, if 𝑟(𝑥) = 𝑎 for

some 𝑎 ∈ 𝑘, then 𝑎 ∈ 𝔞 but since 𝑘 is a field, this implies in 1 ∈ 𝔞 thus 𝔞 = 𝑘[𝑥] and

hence a contradiction to the hypothesis that 𝔞 is proper. Assuming the latter does not

hold, we find that ( 𝑓 (𝑥)) = 𝔞 and hence 𝑘[𝑥] is a PID. ♮

Definition 8.3.41 (Product of ideals). Given a ring 𝑅 and ideals 𝔞 and 𝔟 of 𝑅, we denote

by 𝔞𝔟 the ideal generated by all products 𝑎𝑏 for 𝑎 ∈ 𝔞 and 𝑏 ∈ 𝔟.

Lemma 8.3.42. Let 𝔞 and 𝔟 be ideals of a commutative ring 𝑅. If either one of the

following properties is true:

(a) The ideals 𝔞 and 𝔟 are comaximal, that is, 𝔞 + 𝔟 = 𝑅.

(b) The quotient 𝑅/(𝔞𝔟) is a reduced ring.

Then it follows that

𝔞𝔟 = 𝔞 ∩ 𝔟.

Proof. If 𝑎𝑏 ∈ 𝔞𝔟 is any element, then 𝑎, 𝑏 ∈ 𝔞 ∩ 𝔟 and hence 𝑎𝑏 ∈ 𝔞 ∩ 𝔟 — thus in either

cases we have 𝔞𝔟 ⊆ 𝔞 ∩ 𝔟. We now prove the other side of the inclusion for each of the

properties — let ℓ ∈ 𝔞 ∩ 𝔟 be any element:

(a) Since 𝔞 + 𝔟 = 𝑅, then there are 𝑎 ∈ 𝔞 and 𝑏 ∈ 𝔟 such that 𝑎 + 𝑏 = 1. Moreover, since

ℓ ∈ 𝔞 ∩ 𝔟, it follows that 𝑎ℓ + 𝑏ℓ = ℓ is an element of 𝔞𝔟, thus 𝔞 ∩ 𝔟 ⊆ 𝔞𝔟.

(b) Notice that we have ℓ2 ∈ 𝔞𝔟, thus ℓ 2 + 𝔞𝔟 = 𝔞𝔟. Since 𝑅/(𝔞𝔟) is reduced, it follows

that ℓ + 𝔞𝔟 = 𝔞𝔟 (see Lemma 8.3.22) — thus ℓ ∈ 𝔞𝔟 and 𝔞 ∩ 𝔟 ⊆ 𝔞𝔟.

♮

Lemma 8.3.43. Let 𝑅 be a ring and 𝑓 (𝑥) ∈ 𝑅[𝑥] be a monomial. Then 𝑓 (𝑥) is not a left or

right zero-divisor.
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Proof. Since 𝑓 (𝑥) is is a monomial and there is no element 𝑟 ∈ 𝑅 other than zero for

which 𝑟 · 1𝑅 = 0 (where 1𝑅 is the coefficient of the leading term of 𝑓 (𝑥)), then it follows

that the only polynomial 𝑧(𝑥) ∈ 𝑅[𝑥] for which 𝑓 (𝑥)𝑧(𝑥) = 0 (or 𝑧(𝑥) 𝑓 (𝑥) = 0) is the

zero polynomial 𝑧(𝑥) = 0. ♮

Lemma 8.3.44 (Degree of the product of polynomials). If 𝑓 (𝑥) ∈ 𝑅[𝑥] is monic a poly-

nomial and 𝑅 is a ring, then for every 𝑔(𝑥) ∈ 𝑅[𝑥]we have

deg( 𝑓 (𝑥)𝑔(𝑥)) = deg 𝑓 (𝑥) + deg 𝑔(𝑥).
One can extend the euclidean division algorithm to the ring of polynomials, where

we’ll be able to divide polynomials by monomials.

Lemma 8.3.45 (Division of polynomials). Given a monic polynomial 𝑓 (𝑥) ∈ 𝑅[𝑥], for

some ring 𝑅, then for all 𝑔(𝑥) ∈ 𝑅[𝑥] there exists two polynomials 𝑞(𝑥), 𝑟(𝑥) ∈ 𝑅[𝑥] for

which

𝑔(𝑥) = 𝑓 (𝑥)𝑞(𝑥) + 𝑟(𝑥),
and deg 𝑟(𝑥) < deg 𝑓 (𝑥). Moreover, such polynomials 𝑞(𝑥) and 𝑟(𝑥) are unique.

Proof. Indeed, if 𝑞′(𝑥), 𝑟′(𝑥) ∈ 𝑅[𝑥] are polynomials — and, for the sake of contradic-

tion, distinct from the respective 𝑞(𝑥) and 𝑟(𝑥) — for which 𝑔(𝑥) = 𝑓 (𝑥)𝑞′(𝑥) + 𝑟′(𝑥),
and deg 𝑟′(𝑥) < deg 𝑓 (𝑥), we find that 𝑓 (𝑥)𝑞(𝑥) + 𝑟(𝑥) = 𝑓 (𝑥)𝑞′(𝑥) + 𝑟′(𝑥) and thus

𝑟(𝑥) − 𝑟′(𝑥) = 𝑓 (𝑥)(𝑞′(𝑥) − 𝑞(𝑥)). (8.1)

Notice however that by hypothesis deg 𝑟(𝑥), deg 𝑟′(𝑥) < deg 𝑓 (𝑥), thus deg(𝑟(𝑥) −
𝑟′(𝑥)) ⩽ max(deg 𝑟(𝑥), deg 𝑟′(𝑥)) < deg 𝑓 (𝑥)— which is in contradiction with Eq. (8.1)

since for such equation to be true we should have deg(𝑟(𝑥) − 𝑟′(𝑥)) = deg( 𝑓 (𝑥)(𝑞′(𝑥) −
𝑞(𝑥))) = deg 𝑓 (𝑥)+deg(𝑞′(𝑥)− 𝑞(𝑥)). Therefore 𝑟(𝑥)− 𝑟′(𝑥) is necessarily the zero poly-

nomial and 𝑓 (𝑥)𝑞(𝑥) = 𝑓 (𝑥)𝑞′(𝑥), now since 𝑓 (𝑥) is a monomial and by Lemma 8.3.43

is not a zero-divisor, we use Proposition 8.1.14 to conclude that 𝑞(𝑥) = 𝑞′(𝑥). ♮

In what follows, one should regard 𝑅⊕𝑑, for a ring 𝑅, to be the ring of polynomials

with degree less than or equal to 𝑑 — this observation is based on the fact that one can

map injectively

Ψ:𝑅⊕𝑑 ↣ 𝑅[𝑥] sending (𝑟0, . . . , 𝑟𝑑−1) ↦→
𝑑−1∑
𝑗=0

𝑟 𝑗𝑥
𝑗 , (8.2)

which is a morphism of abelian groups. Therefore, the restriction of the codomain to

the image of such map induces an isomorphism of abelian groups

𝑅⊕ ≃ imΨ ⊆ 𝑅[𝑥]. (8.3)

Proposition 8.3.46. Let 𝑅 be a commutative ring, and 𝑓 (𝑥) ∈ 𝑅[𝑥] a monic polynomial

with degree 𝑑 ∈ Z>0. Define a map 𝜙:𝑅[𝑥] → 𝑅⊕𝑑 sending 𝑔(𝑥) ↦→ (𝑟0, . . . , 𝑟𝑑−1),
where 𝑟(𝑥) ≔ Ψ(𝑟0, . . . , 𝑟𝑑−1) ∈ 𝑅[𝑥] is the remainder of the division of 𝑔(𝑥) by 𝑓 (𝑥).
Such map 𝜙 induces a natural isomorphism of abelian groups

𝑅[𝑥]/( 𝑓 (𝑥)) ≃ 𝑅⊕𝑑 .
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Proof. Notice that every polynomial 𝑔(𝑥) can be divided by a monic polynomial 𝑓 (𝑥)
and the remainder 𝑟(𝑥) of such division is unique by Lemma 8.3.45. Moreover, the

isomorphism in Eq. (8.3) is a right inverse of 𝜙, thus 𝜙 is surjective. Moreover, ker 𝜙 =

( 𝑓 (𝑥)) since every polynomial in the principal ideal ( 𝑓 (𝑥)) is divisible by 𝑓 (𝑥) and hence

has a zero remainder when divided by 𝑓 (𝑥).
Let’s check that 𝜙 is indeed a morphism of abelian groups. Let 𝑔(𝑥), 𝑔′(𝑥) ∈ 𝑅[𝑥]

be two polynomials and let 𝑞(𝑥), 𝑟(𝑥) ∈ 𝑅[𝑥] and 𝑞′(𝑥), 𝑟′(𝑥) ∈ 𝑅[𝑥] be their respective

pair of quotient and remainder in the division by 𝑓 (𝑥)— where deg 𝑟(𝑥), deg 𝑟′(𝑥) <
deg 𝑓 (𝑥). Therefore, the sum of 𝑔(𝑥)with 𝑔′(𝑥) can be written as

𝑔(𝑥) + 𝑔′(𝑥) = 𝑓 (𝑥)(𝑞(𝑥) + 𝑞′(𝑥)) + (𝑟(𝑥) + 𝑟′(𝑥)).

Since deg(𝑟(𝑥) + 𝑟′(𝑥)) ⩽ max(deg 𝑟(𝑥), deg 𝑟′(𝑥)) < deg 𝑓 (𝑥), then 𝑟(𝑥) + 𝑟′(𝑥) is the

remainder of the division of 𝑔(𝑥)+ 𝑔′(𝑥) by 𝑓 (𝑥). With this in our hands we can rightly

see that

𝜙(𝑔(𝑥) + 𝑔′(𝑥)) = (𝑟0 + 𝑟′
0
, . . . , 𝑟𝑑−1 + 𝑟′𝑑−1

)
= (𝑟0, . . . , 𝑟𝑑−1) + (𝑟′

0
, . . . , 𝑟′𝑑−1

)
= 𝜙(𝑔(𝑥)) + 𝜙(𝑔′(𝑥)),

where Ψ(𝑟0, . . . , 𝑟𝑑−1) ≔ 𝑟(𝑥) and Ψ(𝑟′
0
, . . . , 𝑟′

𝑑−1
) ≔ 𝑟′(𝑥) — thus 𝜙 is a morphism of

abelian groups. By Proposition 7.4.16 we find

𝑅[𝑥]/ker 𝜙 = 𝑅[𝑥]/( 𝑓 (𝑥)) ≃ im 𝜙 = 𝑅⊕𝑑 .

♮

Example 8.3.47 (Evaluation). Let 𝑅 be a commutative ring. The evaluation morphism

eval𝑎 :𝑅[𝑥] → 𝑅 (see Proposition 8.2.9), mapping 𝑓 (𝑥) ↦→ 𝑓 (𝑎), induces a natural

isomorphism of abelian groups

𝑅[𝑥]/(𝑥 − 𝑎) ≃ 𝑅.

Such isomorphism, name it 𝜙, is given by the map 𝑔(𝑥) + (𝑥 − 𝑎) ↦→ 𝑟, where 𝑟 ∈ 𝑅 is

the remainder of the division of 𝑔(𝑥) by 𝑥 − 𝑎.
First of all, if 𝑓 (𝑥) ∈ 𝑅[𝑥] then the division by 𝑥 − 𝑎 yields 𝑞(𝑥) ∈ 𝑅[𝑥] and 𝑟 ∈ 𝑅

such that 𝑓 (𝑥) = (𝑥 − 𝑎)𝑞(𝑥) + 𝑟 since the degree of the remainder should be less than

deg(𝑥−𝑎) = 1. Therefore, evaluating eval𝑎( 𝑓 (𝑥)) = (𝑎−𝑎)𝑞(𝑥)+𝑟 = 𝑟 implies in 𝑓 (𝑎) = 𝑟

— thus 𝑓 (𝑥) ∈ ker 𝜙 if and only if 𝑓 (𝑥) ∈ (𝑥 − 𝑎), hence ker 𝜙 = (𝑥 − 𝑎). Moreover, we

can now rethink of the 𝜙 as the mapping 𝑓 (𝑥) + (𝑥 − 𝑎) ↦→ 𝑓 (𝑎).
If𝑢(𝑥) = 𝑢(𝑎)+(𝑥−𝑎) and 𝑣(𝑥) = 𝑣(𝑎)+(𝑥−𝑎) are any two polynomials in𝑅[𝑥]/(𝑥−𝑎),

one finds that 𝑢(𝑥) + 𝑣(𝑥) = (𝑢(𝑎) + 𝑣(𝑎)) + (𝑥 − 𝑎) and therefore 𝜙(𝑢(𝑥) + 𝑣(𝑥)) =
𝑢(𝑎) + 𝑣(𝑎) = 𝜙(𝑢(𝑥)) +𝜙(𝑣(𝑥)), thus 𝜙 is a morphism of abelian groups. Therefore, by

means of Corollary 8.3.31 we find that 𝜙 is an isomorphism.

Example 8.3.48 (Constructing C). Consider, as in Proposition 8.3.46, the map𝜙: R[𝑥] →
R⊕R sending 𝑓 (𝑥) ↦→ (𝑟0, 𝑟1), where 𝑟(𝑥) = 𝑟0 + 𝑟1𝑥 is the remainder of the division of

𝑓 (𝑥) by the polynomial 𝑥2 + 1 ∈ R[𝑥].
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For any element 𝑓 (𝑥) ≔ 𝑎0 + 𝑎1𝑥 ∈ R[𝑥] we have deg 𝑓 (𝑥) < deg(𝑥2 + 1) = 2, then

𝜙( 𝑓 (𝑥)) = (𝑎0, 𝑎1). Hence, given another 𝑔(𝑥) = 𝑏0 + 𝑏1𝑥 ∈ R[𝑥], one has that

𝑓 (𝑥)𝑔(𝑥) = (𝑎0 + 𝑎1𝑥)(𝑏0 + 𝑏1𝑥)
= 𝑎0𝑏0 + (𝑎0𝑏1 + 𝑎1𝑏0)𝑥 + 𝑎1𝑏1𝑥

2

= (𝑥2 + 1)𝑎1𝑏1 + ((𝑎0𝑏0 − 𝑎1𝑏1) + (𝑎0𝑏1 + 𝑎1𝑏0)𝑥).

Thus 𝜙( 𝑓 (𝑥)𝑔(𝑥)) = (𝑎0𝑏0 − 𝑎1𝑏1, 𝑎0𝑏1 + 𝑎1𝑏0), this induces a multiplicative structure

·: (R ⊕ R)2 → R ⊕ R defined by

(𝑎0, 𝑎1) · (𝑏0, 𝑏1) ≔ (𝑎0𝑏0 − 𝑎1𝑏1, 𝑎0𝑏1 + 𝑎1𝑏0).

Now, since (R ⊕ R, ·) ≃ C, by identifying (𝑎, 𝑏) ↦→ 𝑎 + 𝑏𝑖, one obtains the following

natural isomorphism

R[𝑥]/(𝑥2 + 1) ≃ C,

hence we’ve constructed the complex numbers out of the ring R[𝑥].

Example 8.3.49. Let 𝑅 be a commutative ring and elements 𝑎1, . . . , 𝑎𝑛 ∈ 𝑅. Then there

exists a canonical isomorphism of abelian groups

𝑅[𝑥1, . . . , 𝑥𝑛]
(𝑥1 − 𝑎1, . . . , 𝑥𝑛 − 𝑎𝑛)

≃ 𝑅.

Denote 𝑆 ≔
𝑅[𝑥1 ,...,𝑥𝑛]

(𝑥1−𝑎1 ,...,𝑥𝑛−𝑎𝑛) . Consider the evaluation map eval: 𝑆 → 𝑅 given by

[𝑝(𝑥1, . . . , 𝑥𝑛)] ↦→ 𝑝(𝑎1, . . . , 𝑎𝑛), which is clearly a group morphism. Moreover, the

map 𝜌:𝑅 → 𝑆 mapping 𝑟 ↦→ [𝑟] is both a group morphism and right inverse of the

evaluation map, eval ◦𝜌 = id𝑅. Since for all 1 ⩽ 𝑗 ⩽ 𝑛 we have [𝑥 𝑗] = [𝑎 𝑗] as classes in

the quotient ring 𝑆, we find that, for any given 𝑝(𝑥1, . . . , 𝑥𝑛) ∈ 𝑅[𝑥]

[𝑝(𝑥1, . . . , 𝑥𝑛)] = [𝑝(𝑎1, . . . , 𝑎𝑛)],

implying in 𝜌 ◦ eval = id𝑆.

Prime & Maximal Ideals
Definition 8.3.50 (Prime and maximal ideal). Let 𝑅 be a commutative ring and 𝔞 be a

proper ideal of 𝑅. We define the following:

(a) If 𝑅/𝔞 is an integral domain, we call 𝔞 a prime ideal.

(b) If 𝑅/𝔞 is a field, we call 𝔞 a maximal ideal.

Example 8.3.51. Given a commutative ring 𝑅 and any monomial 𝑥 − 𝑎 ∈ 𝑅[𝑥], then:

• The ideal (𝑥 − 𝑎) is prime if and only if 𝑅 is an integral domain.

• The ideal (𝑥 − 𝑎) is maximal if and only if 𝑅 is a field.

206



Such propositions are direct implications of the isomorphism 𝑅[𝑥]/(𝑥 − 𝑎) ≃ 𝑅 given

by Proposition 8.3.46.

Some may want to avoid the machinery of quotient rings when defining prime and

maximal ideals. Such ambition is palpable, the following proposition exposes this old

fashioned alternative.

Proposition 8.3.52. Let 𝔞 be a proper ideal of a commutative ring 𝑅 — then:

(a) The ideal 𝔞 is prime if and only if for every given 𝑎, 𝑏 ∈ 𝑅 such that 𝑎𝑏 ∈ 𝔞, we have

either 𝑎 ∈ 𝔞 or 𝑏 ∈ 𝔞.

(b) The ideal 𝔞 is maximal if and only the only ideals that contain 𝔞 is either 𝔞 itself or

𝑅.

Proof. 1. The quotient ring 𝑅/𝔞 is an integral domain if and only if for all 𝑎+𝔞, 𝑏+𝔞 ∈
𝑅/𝔞 such that (𝑎+𝔞)(𝑏+𝔞) = 𝔞 we have 𝑎+𝔞 = 𝔞 or 𝑏+𝔞 = 𝔞 — which is equivalent

to the requirement that either 𝑎 ∈ 𝔞 or 𝑏 ∈ 𝔟.

2. The quotient ring 𝑅/𝔞 is a field if and only if 𝔞 and 𝑅/𝔞 are the only ideals of

𝑅/𝔞 — that is, if 𝔟 is an ideal of 𝑅 with 𝔞 ⊆ 𝔟, then 𝔟 is also an ideal of 𝑅/𝔞 (see

Proposition 8.3.32), thus either 𝔟 = 𝔞 or 𝔟 = 𝑅/𝔞.

♮

Corollary 8.3.53. Maximal ideals are prime ideals.

Proof. Let 𝑅 be a commutative ring and 𝔪 be maximal. Let 𝑎, 𝑏 ∈ 𝑅 be any elements

such that 𝑎𝑏 ∈ 𝔪, then consider the principal ideals (𝑎) and (𝑏). Since 𝔪 is maximal,

such principal ideals can be either 𝑅 or 𝔪 — for the former case, one of them equals

1𝑅, thus the other is contained in 𝔪, on the other hand, for the latter case the element

whose ideal equal to 𝔪 belongs to 𝔪. This shows that either 𝑎 ∈ 𝔪 or 𝑏 ∈ 𝔪. ♮

Proposition 8.3.54. Let 𝔞 be an ideal of a commutative ring 𝑅. If 𝑅/𝔞 is a finite ring, then

𝔞 is prime if and only if it is maximal.

Proof. Since a finite commutative ring is an integral domain if and only if it is a field,

the proposition follows — see Proposition 8.1.31. ♮

Example 8.3.55. A good example of Proposition 8.3.54 in action is the case of the ring

Z and the principal ideals (𝑛) for 𝑛 ∈ Z>0. Since Z/(𝑛) is always finite, (𝑛) is a prime

ideal if and only if (𝑛) is maximal — on the other hand, (𝑛) is maximal if and only if in

the case where 𝑛 is a prime number.

Definition 8.3.56 (Ring spectrum). Given a commutative ring𝑅, we define the following:

(a) The collection of all prime ideals of 𝑅 is called the prime spectrum of 𝑅 and is denoted

Spec𝑅.

(b) The collection of all maximal ideals of 𝑅 is called the maximal spectrum of 𝑅 and is

denoted Specm 𝑅.
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Proposition 8.3.57 (Prime & maximal ideals in PIDs). Let 𝑅 be a PID, and let 𝔞 be a

non-zero ideal of 𝑅. Then the ideal 𝔞 is prime if and only if it is maximal.

Proof. Suppose 𝔞 is prime. Since 𝑅 is PID, we can be certain that there exists a non-zero

element 𝑎 ∈ 𝑅 such that 𝔞 = (𝑎). Now, consider 𝔟 ≔ (𝑏) to be any ideal of 𝑅 containing

𝔟, then in particular there exists 𝑞 ∈ R such that 𝑎 = 𝑏𝑞 — since 𝔞 is prime and 𝑏𝑞 ∈ 𝔞

then either 𝑏 ∈ 𝔞 or 𝑞 ∈ 𝔞:

• For the case where 𝑏 ∈ 𝔞 then 𝔟 ⊆ 𝔞 — thus from hypothesis that 𝔟 contained 𝔞

we conclude that 𝔟 = 𝔞.

• If 𝑞 ∈ 𝔞, then there exists 𝑑 ∈ 𝑅 such that 𝑞 = 𝑎𝑑, therefore 𝑎 = 𝑏𝑞 = 𝑏(𝑎𝑑) =
𝑏(𝑑𝑎) = (𝑏𝑑)𝑎 — since a PID is an integral domain and 𝑎 ≠ 0, one can cancel

𝑎 from both sides to obtain 𝑏𝑑 = 1, thus 𝑏 is a unit element of 𝑅. In particular

𝑏𝑑 = 1 ∈ 𝔟, thus 𝔟 = 𝑅.

By Proposition 8.3.52 we conclude that 𝔞 is maximal. ♮

Example 8.3.58 (Prime ideals of 𝑘[𝑥] are maximal). Let 𝑘 be a field. Then non-zero

prime ideals of 𝑘[𝑥] are maximal. Indeed, from Proposition 8.3.40 we know that 𝑘[𝑥]
is PID, thus this is all but a consequence of Proposition 8.3.57.

Proposition 8.3.59 (Maximal ideals in algebraically closed fields). Let 𝑘 be an alge-
braically closed field and 𝔞 be an ideal of 𝑘[𝑥]. Then 𝔞 is maximal if and only if there

exists some 𝑎 ∈ 𝑘 for which 𝔞 = (𝑥 − 𝑎).

Proof. From Example 8.3.51 we know that (𝑥 − 𝑎) is a maximal ideal of 𝑘[𝑥], since 𝑘 is

a field.

Suppose 𝔞 is maximal, since 𝑘[𝑥] is a PID, it follows that there exists an 𝑓 (𝑥) ∈ 𝑘[𝑥]
for which 𝔞 = ( 𝑓 (𝑥)). Moreover, since 𝑘 is algebraically closed, there exists 𝑎 ∈ 𝑅 for

which 𝑓 (𝑎) = 0, therefore 𝑓 (𝑥) ∈ (𝑥 − 𝑎) and then 𝔞 ⊆ (𝑥 − 𝑎). From the hypothesis that

𝔞 is maximal, we conclude that either (𝑥 − 𝑎) = 𝔞 or (𝑥 − 𝑎) = 𝑘[𝑥] — notice that the

latter cannot be the case since the collection of constant polynomials is not contained

in (𝑥 − 𝑎), thus 𝔞 = (𝑥 − 𝑎). ♮

Example 8.3.60. Let𝐾 be a compact topological space and𝐶(𝐾) be the ring of continuous

maps 𝐾 → R, with addition and multiplication defined point-wise. We have the

following facts:

(a) For every 𝑝 ∈ 𝐾, the collection 𝔪𝑝 ≔ { 𝑓 ∈ 𝐶(𝐾) : 𝑓 (𝑝) = 0} is a maximal ideal of 𝑅.

(b) If 𝑓1, . . . , 𝑓𝑛 ∈ 𝐶(𝐾) have no common zeros, then ( 𝑓1, . . . , 𝑓𝑛) = 𝑅.

(c) For every maximal ideal 𝔪 ∈ Specm 𝐶(𝐾), there exists a point 𝑝 ∈ 𝐾 for which

𝔪 = 𝔪𝑝 .

(d) If in addition𝐾 is Hausdorff, then there exists a bĳective set-function𝐾 ≃−→ Specm 𝐶(𝐾)
given by 𝑝 ↦→ 𝔪𝑝 .

Proof. We now prove each one of these statements.
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(a) Consider any map 𝑓+𝔪𝑝 ∈ 𝐶(𝐾)/𝔪𝑝 such that 𝑓 (𝑝) ≠ 𝑎 for some 𝑎 ≠ 0 and therefore

𝑓 ∉ 𝔪𝑝 . Notice that the unit of 𝐶(𝐾)/𝔪𝑝 is composed of every element 𝑔 ∈ 𝐶(𝐾)
such that 𝑔(𝑝) = 1. In particular, since 𝑎 is non-zero, then there exists an inverse

𝑎−1 ∈ R. If 𝑔 ∈ 𝐶(𝐾) is any map assuming 𝑔(𝑝) = 𝑎−1
, then ( 𝑓 +𝔪𝑝)(𝑔+𝔪𝑝) = 1+𝔪𝑝 .

(b) Since 𝑓1, . . . , 𝑓𝑛 share no zeros, the function 𝑓 ≔
∑𝑛
𝑗=1

𝑓 2

𝑗
must be strictly positive,

therefore one can define a continuous map 𝑔 ∈ 𝐶(𝐾) as 𝑔(𝑥) ≔ 1

𝑓 (𝑥) for all 𝑥 ∈ 𝐾.

Therefore 𝑔 𝑓 = 1, which implies in 1 ∈ ( 𝑓1, . . . , 𝑓𝑛) — where we denote by 1 the

constant map assuming value 1.

(c) Let 𝔪 be maximal and suppose, for the sake of contradiction, that for all 𝑝 ∈ 𝐾
we have 𝔪 ≠ 𝔪𝑝 . Fix any 𝑝 ∈ 𝐾 and let 𝑓𝑝 ∈ 𝔪 be such that 𝑓𝑝(𝑝) ≠ 0. By the

continuity of 𝑓𝑝 there exists a neighbourhood 𝑈𝑝 ⊆ 𝐾 of 𝑝 such that 𝑓 (𝑥) ≠ 0 for

all 𝑥 ∈ 𝑈𝑝 . Let 𝒰 ≔ {𝑈𝑝}𝑝∈𝐾 be an open cover of 𝐾, where each neighbourhood

𝑈𝑝 is associated with a map 𝑓𝑝 as described above. Since 𝐾 is compact, there exists

a finite collection 𝑈𝑝1
, . . . , 𝑈𝑝𝑛 ∈ 𝒰 covering 𝐾. From construction, we obtain

( 𝑓𝑝1
, . . . , 𝑓𝑝𝑛 ) ⊆ 𝔪. Notice that the maps 𝑓𝑝 𝑗 share no common zero — if 𝑞 ∈ 𝐾 is

such that 𝑓𝑝 𝑗 (𝑞) = 0 for each 1 ⩽ 𝑗 ⩽ 𝑛, then 𝑞 ∉
⋃𝑛
𝑗=1
𝑈𝑝 𝑗 , which is a contradiction

— therefore 1 ∈ 𝔪 and 𝔪 = 𝐶(𝐾). We conclude that there must exist 𝑝 ∈ 𝐾 such

that 𝔪 = 𝔪𝑝 .

Prove last item, requires Urysohn’s lemma

♮

Definition 8.3.61 (Krull dimension). The Krull dimension of a commutative ring 𝑅 is

defined as the length of the longest chain of prime ideals in 𝑅.

8.4 Modules Over Rings

Modules
Definition 8.4.1 (Ring action). Let 𝑅 be a ring and 𝐴 an abelian group. A left-𝑅-action

on 𝐴 is given a ring morphism

𝜇:𝑅→ EndAb(𝑀).

Less compactly, given 𝑟, 𝑠 ∈ 𝑅 and a group endomorphism 𝜙:𝐴 → 𝐴, the ring mor-

phism satisfies, for every 𝑎, 𝑏 ∈ 𝐴:

(a) 𝜇(𝑟)(𝑎 + 𝑏) = 𝜇(𝑟)(𝑎) + 𝜇(𝑟)(𝑏).
(b) 𝜇(𝑟 + 𝑠)(𝑎) = 𝜇(𝑟)(𝑎) + 𝜇(𝑠)(𝑎).
(c) 𝜇(𝑟𝑠)(𝑎) = 𝜇(𝑟)(𝜇(𝑠)(𝑎)).
(d) 𝜇(1)(𝑎) = 𝑎.
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Definition 8.4.2 (Module). Given a ring 𝑅, a left-𝑅-module is an abelian group 𝑀 en-

dowed with a left-𝑅-action 𝑅 ×𝑀 → 𝑀 mapping (𝑟, 𝑚) ↦→ 𝑟𝑚 satisfying the following

properties, for every 𝑟, 𝑠 ∈ 𝑅 and 𝑚, 𝑛 ∈ 𝑀:

(a) 𝑟(𝑚 + 𝑛) = 𝑟𝑚 + 𝑟𝑛.

(b) (𝑟 + 𝑠)𝑚 = 𝑟𝑚 + 𝑠𝑚.

(c) (𝑟𝑠)𝑚 = 𝑟(𝑠𝑚).
(d) 1𝑚 = 𝑚.

Right-𝑅-modules are defined completely analogous, with a right-𝑅-action.

Definition 8.4.3 (Opposite ring). Given a ring (𝑅,+, ·), we define its opposite ring 𝑅op

to be ring inheriting the elements and additive structure of 𝑅, while its multiplicative

structure is given by a map ∗:𝑅 × 𝑅→ 𝑅 defined by 𝑎 ∗ 𝑏 ≔ 𝑏𝑎 ∈ 𝑅.

Corollary 8.4.4. The identity map id:𝑅→ 𝑅op
is an isomorphism of rings if and only if

𝑅 is commutative.

Proof. If 𝑅 is commutative, clearly the identity map is an isomorphism. Conversely, if

id is a morphism of rings, then id(𝑟𝑠) = id(𝑟) ∗ id(𝑠) = id(𝑠) id(𝑟) = 𝑠𝑟 but id(𝑟𝑠) = 𝑟𝑠

thus 𝑟𝑠 = 𝑠𝑟. ♮

Example 8.4.5. The ring of real 𝑛-square matrices, 𝑀𝑛(R), is isomorphic as a ring to its

opposite ring 𝑀𝑛(R)op
.

Indeed, if 𝜙:𝑀𝑛(R) → 𝑀𝑛(𝑅)op
is the map sending 𝐴 ↦→ 𝐴𝑇 then, given 𝐴, 𝐵 ∈

𝑀𝑛(R), we have

𝜙(𝐴𝐵) = (𝐴𝐵)𝑇 = 𝐵𝑇𝐴𝑇 = 𝐴𝑇 ∗ 𝐵𝑇 = 𝜙(𝐴) ∗ 𝜙(𝐵).

That is, 𝜙 is a morphism of rings. Injectivity and surjectivity are clear, thus 𝜙 is an

isomorphism of rings.

Example 8.4.6. For a commutative ring 𝑅, left-𝑅-modules can be bĳectively assigned to

a right-𝑅-modules. To see that given an abelian group 𝑀, let 𝑅𝑀 be a left-𝑅-module

structure on 𝑀, we proceed by constructing a bĳection 𝑅𝑀
≃−→ 𝑀𝑅, where 𝑀𝑅 denotes

a right-𝑅-module on 𝑀. For every element 𝑟 ∈ 𝑅 and 𝑚 ∈ 𝑀, map 𝑟𝑚 ↦→ 𝑚𝑟. Since 𝑅

is commutative, indeed

(𝑟𝑠)𝑚 = 𝑟(𝑠𝑚) ↦−→ 𝑚(𝑟𝑠) = 𝑚(𝑠𝑟) = (𝑚𝑠)𝑟,

translating the multiplication by 𝑟𝑠 from a left-module to a right-module accordingly.

Vector Spaces
Example 8.4.7 (Vector spaces). A module over a field 𝑘 is nothing more than a 𝑘-vector

space, thus 𝑘-Mod = Vect𝑘 .
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Example 8.4.8 (𝑘[𝑥]-module structure on 𝑉). Let 𝑘 be a field, 𝑉 be a 𝑘-vector space,

and 𝜙:𝑉 → 𝑉 be an endomorphism. We consider the ring action 𝜇: 𝑘 ↩→ EndVect𝑘 (𝑉)
given by 𝑎 ↦→ 𝑎 id𝑉 , which by Proposition 8.2.9 implies in the existence of a unique

morphism of rings Ψ: 𝑘[𝑥] → EndVect𝑘 (𝑉) such that the following diagram commutes

𝑘 EndVect𝑘 (𝑉)

𝑘[𝑥]

𝜇

Ψ

and that 𝑥
Ψ↦−→ 𝜙. Since 𝑘 and 𝑥 generate 𝑘[𝑥], for any 𝑓 (𝑥) ≔ ∑𝑛

𝑗=1
𝑎 𝑗𝑥

𝑗 ∈ 𝑘[𝑥], we have

a mapping

𝑓 (𝑥) = ∑𝑛
𝑗=1

𝑎 𝑗𝑥
𝑗 𝑎0 id𝑉 +𝑎1𝜙 + · · · + 𝑎𝑛−1𝜙𝑛−1 + 𝑎𝑛𝜙𝑛 ≔ 𝑓 (𝜙).Ψ

The ring action Ψ: 𝑘[𝑥] → EndVect𝑘 (𝑉) induces the structure of a left-𝑘[𝑥]-module

on 𝑉 as

𝑝(𝑥) · 𝑣 ≔ 𝑝(𝜙)(𝑣),
for all 𝑝(𝑥) ∈ 𝑘[𝑥] and 𝑣 ∈ 𝑉 .

Corollary 8.4.9. Given a field 𝑘, there exists a bĳection

{𝑘[𝑥]-modules} ≃−→ {(𝑉, 𝜙) : 𝑉 ∈ Vect𝑘 and 𝜙 ∈ EndVect𝑘 (𝑉)}.

In other words, 𝑘[𝑥]-modules are equivalent to 𝑘-vector spaces together with a uniquely

determined 𝑘-linear endomorphism.

Proof. As constructed in Example 8.4.8, for every 𝑘-vector space 𝑉 and 𝑘-linear endo-

morphism 𝜙:𝑉 → 𝑉 , one has a unique left-𝑘[𝑥]-module structure induced on 𝑉 . On

the other hand, let 𝑀 be a left-𝑘[𝑥]-module and 𝜓:𝑀 → 𝑀 be the group morphism

given by 𝑚 ↦→ 𝑥𝑚 for all 𝑚 ∈ 𝑀. Notice that for any 𝑎 ∈ 𝑘 and 𝑚 ∈ 𝑀 we have

𝜓(𝑎𝑚) = 𝑥(𝑎𝑚) = (𝑥𝑎)𝑚 = (𝑎𝑥)𝑚 = 𝑎(𝑥𝑚) = 𝑎𝜓(𝑎𝑚),

therefore 𝜓 is 𝑘-linear. Thus (𝑀, 𝜙) is the corresponding uniquely defined 𝑘-vector

space together with a 𝑘-linear endomorphism. ♮

Category of Modules
Definition 8.4.10 (Morphism of modules). Let 𝑅 be a ring, and both 𝑀 and 𝑁 be

abelian groups. Let 𝑀𝑅 and 𝑁𝑅 denote right-𝑅-modules on 𝑀 and 𝑁 , while 𝑅𝑀 and

𝑅𝑁 denote left-𝑅-modules on 𝑀 and 𝑁 . We define the the following:

(a) A morphism between right-𝑅-modules 𝜙:𝑀𝑅 → 𝑁𝑅 is a morphism of abelian

groups such that, for all 𝑟 ∈ 𝑅 and 𝑚 ∈ 𝑀 we have

𝜙(𝑚𝑟) = 𝜙(𝑚)𝑟.
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(b) A morphism between left-𝑅-modules 𝜓: 𝑅𝑀 → 𝑅𝑁 is a morphism of abelian groups

such that, for all 𝑟 ∈ 𝑅 and 𝑚 ∈ 𝑀 we have

𝜓(𝑟𝑚) = 𝑟𝜓(𝑚).

Morphisms of 𝑅-modules can also be compactly named 𝑅-linear morphisms.

Definition 8.4.11 (Category of 𝑅-modules). Given a ring 𝑅, we denote by Mod𝑅 the cat-

egory whose objects are right-𝑅-modules and morphisms between them. Analogously,

we define 𝑅Mod to be the category whose objects are left-𝑅-modules and morphisms

between them.

If 𝑅 is a commutative ring, we simply denote the category of modules over 𝑅 and

morphisms between them by 𝑅-Mod.

Proposition 8.4.12 (Z-modules). Abelian groups are Z-modules in exactly one way.

Therefore ZMod and Ab are isomorphic categories.

Proof. Let𝐺 be an abelian group. Since Z is initial in the category of rings and EndAb(𝐺)
forms a ring, we find that there exists a unique morphism of rings

Z EndAb(𝐺)

defining an action of Z on the group 𝐺. ♮

Example 8.4.13 (Q-vector space). Let 𝐺 be an abelian group. If there exists a Q-vector

space structure on 𝐺, this structure is unique.
Let 𝜇, 𝜎: Q ⇒ EndAb(𝐺) be two 𝑄-module structures on 𝐺. Since the inclusion

𝜄: Z ↩→ Q is an epimorphism of rings, it follows that, since there exists a unique Z-

module structure Z → EndAb(𝐺) (see Proposition 8.4.12), it follows that 𝜇𝜄 = 𝜎𝜄. On

the other hand, since 𝜄 is an epimorphism, then 𝜇 = 𝜎.

Proposition 8.4.14 (Zero object). Let 𝑅 be a ring. The trivial group 0 has a unique 𝑅-

module structure and defines a zero object in the category of (left or right) 𝑅-modules.

Proof. Notice that the only𝑅-module structure on the trivial group 0 is given by 𝑟 ·0 ≔ 0

for all 𝑟 ∈ 𝑅. Moreover, for any 𝑅-module 𝑀, we have unique 𝑅-linear morphisms

0→ 𝑀 mapping 0 ↦→ 0𝑀 and 𝑀 → 0 mapping 𝑚 ↦→ 0 for all 𝑚 ∈ 𝑀. ♮

Proposition 8.4.15 (Isomorphisms). Let 𝑅 be a ring. A morphism of (left or right)

𝑅-modules is an isomorphism if and only if it is a bĳective set-function.

Proof. We prove for right-𝑅-modules, the proof for left-𝑅-modules is completely anal-

ogous. Let 𝜙:𝑀 → 𝑁 be an isomorphism of 𝑅-modules and 𝜓:𝑁 → 𝑀 be its inverse.

Since 𝜙𝜓 = id𝑁 , then im 𝜙 = 𝑁 , that is, 𝜙 is surjective. On the other hand, since

𝜓𝜙 = id𝑀 and 𝜓 is a well defined set-function, it follows that 𝜙 is injective.

Conversely, let 𝜙:𝑀 → 𝑁 be an 𝑅-linear morphism and a bĳective set-function.

Let 𝜓:𝑁 → 𝑀 be its inverse as a set-function — we shall prove that 𝜓 is an 𝑅-linear

morphism. Let 𝑛, 𝑛′ ∈ 𝑁 be any elements, if 𝜙(𝑚) = 𝑛 and 𝜙(𝑚′) = 𝑛′ then 𝜙(𝑚+𝑚′) =
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𝜙(𝑚) + 𝜙(𝑚′) = 𝑛 + 𝑛′ — thus from construction 𝜓(𝑛 + 𝑛′) = 𝑚 + 𝑚′ = 𝜓(𝑛) + 𝜓(𝑛′).
Now, if 𝑟 ∈ 𝑅 is any ring element, then since 𝜙(𝑚𝑟) = 𝜙(𝑚)𝑟 = 𝑛𝑟, we find that

𝜓(𝑛𝑟) = 𝑚𝑟 = 𝜓(𝑛)𝑟 — therefore 𝜓 is indeed a morphism of 𝑅-modules and hence an

inverse morphism for 𝜙. ♮

Example 8.4.16. Let 𝑅 be an integral domain, and (𝑎) ⊆ 𝑅 be a non-zero principal ideal

of 𝑅. There exists a natural isomorphism of 𝑅-modules 𝑅 ≃ (𝑎).
Consider the map 𝜙:𝑅→ (𝑎) given by 𝑟 ↦→ 𝑟𝑎. Then for any 𝑟, 𝑠 ∈ 𝑅 we have

𝜙(𝑟 + 𝑠) = (𝑟 + 𝑠)𝑎 = 𝑟𝑎 + 𝑠𝑎 = 𝜙(𝑟) + 𝜙(𝑠)
𝜙(𝑟𝑠) = (𝑟𝑠)𝑎 = 𝑟(𝑠𝑎) = 𝑟𝜙(𝑠)

thus 𝜙 is an 𝑅-module morphism. The morphism is also clearly surjective by the

definition of an ideal. Moreover, one should note that 𝜙(1) = 𝑎, which is, by hypothesis,

non-zero. Given any two 𝑟, 𝑟′ ∈ 𝑅 such that 𝜙(𝑟) = 𝜙(𝑟′)we obtain

0 = 𝜙(𝑟) − 𝜙(𝑟′) = 𝑟𝜙(1) − 𝑟′𝜙(1) = (𝑟 − 𝑟′)𝜙(1) = (𝑟 − 𝑟′)𝑎,

and since 𝑅 is an integral domain, it follows that 𝑟 = 𝑟′ — therefore, 𝜙 is injective.

We conclude that 𝜙 is a bĳection between 𝑅-modules and therefore establishes an

isomorphism 𝑅 ≃ (𝑎).

Example 8.4.17 (Morphisms form an 𝑅-module). Given a ring 𝑅 and left-𝑅-modules

𝑀 and 𝑁 , the collection of 𝑅-linear morphisms Mor𝑅Mod(𝑀, 𝑁) can be endowed with

the structure of an right-𝑅-module.
Since Mor(𝑅Mod) ⊆ Mor(Ab), it follows that Mor𝑅Mod(𝑀, 𝑁) is an abelian group

given by

( 𝑓 + 𝑔)(𝑚) ≔ 𝑓 (𝑚) + 𝑔(𝑚)
for any morphisms 𝑓 , 𝑔:𝑀 ⇒ 𝑁 and element 𝑚 ∈ 𝑀. Moreover, one can endow

Mor𝑅Mod(𝑀, 𝑁) with the right ring action R ×Mor𝑅Mod(𝑀, 𝑁) → Mor𝑅Mod(𝑀, 𝑁) given

by

( 𝑓 · 𝑟)(𝑚) ≔ 𝑓 (𝑟𝑚)
for every morphism 𝑓 :𝑀 → 𝑁 , and any elements 𝑟 ∈ 𝑅 and 𝑚 ∈ 𝑀.

Notice that we’ve emphasized that, in general, we can only give a right 𝑅-module

structure to Mor𝑅Mod(𝑀, 𝑁), if on the contrary we defined an left-𝑅-action by (𝑟 · 𝑓 )(𝑚) ≔
𝑓 (𝑟𝑚), one would suffer from the following problem:

((𝑟𝑠) 𝑓 )(𝑚) = (𝑟(𝑠 𝑓 ))(𝑚) = (𝑠 𝑓 )(𝑟𝑚) = 𝑓 (𝑠(𝑟𝑚)) = 𝑓 ((𝑠𝑟)𝑚) = ((𝑠𝑟) 𝑓 )(𝑚) (8.4)

where 𝑓 :𝑀 → 𝑁 is a morphism, and 𝑟, 𝑠 ∈ 𝑅 and 𝑚 ∈ 𝑀 are any elements. Mind that

Eq. (8.4) does not yield a left-𝑅-module structure unless 𝑅 is commutative.

Lemma 8.4.18. Let 𝑅 be a ring and let 𝑀, 𝑁 ∈ 𝑅Mod. We have the following properties:

(a) The functor Mor𝑅Mod(𝑀,−): 𝑅Mod→ Ab is additive.
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(b) The collection of morphisms Mor𝑅Mod(𝑀, 𝑁) has a natural structure of left Z(𝑅)-
module with multiplication 𝑟 𝑓 mapping 𝑥 ↦→ 𝑓 (𝑟𝑥) for any 𝑟 ∈ Z(𝑅) and morphism

𝑓 :𝑀 → 𝑁 , moreover, addition is defined point-wise as expected. Therefore

Mor𝑅Mod(𝑀,−) can be seen as an additive functor 𝑅Mod→ Z(𝑅)Mod.

Proposition 8.4.19 (Additive functor, zero maps & zero objects). Let 𝐹:𝑅-Mod→ Ab be

an additive functor of either variance
2
. Then 𝐹 maps the zero map 0:𝑀 → 𝑁 to the

zero map 𝐹0 = 0: 𝐹𝑀 → 𝐹𝑁 , and maps the zero object {0} ∈ 𝑅-Mod to the zero object

𝐹{0} = {0} ∈ Ab.

Proof. Since 𝐹 is additive, for any morphism 𝑓 :𝑀 → 𝑁 we have

𝐹 𝑓 = 𝐹( 𝑓 + 0) = 𝐹 𝑓 + 𝐹0,

therefore it must be the case that 𝐹0: 𝐹𝑀 → 𝐹𝑁 is the zero morphism in Ab. Moreover,

since 𝐿 = 0 ∈ 𝑅-Mod if and only if id𝐿 = 0: 𝐿→ 𝐿, then from the fact that if 0 ∈ End𝑅Mod(0)
is the zero morphism, then

𝐹0 = 𝐹 id0 = id𝐹0

and it follows that 𝐹0 = 0. ♮

Proposition 8.4.20. Let 𝑅 be a commutative ring. Then there exists a canonical isomor-

phism of 𝑅-modules

Mor𝑅-Mod(𝑅, 𝑀) ≃ 𝑀.

Proof. Notice that every 𝑅-module morphism 𝑅 → 𝑀 has to be of the form 𝑟 ↦→ 𝑟𝑚

for some fixed 𝑚 ∈ 𝑀 — for convenience, name this morphism 𝑓𝑚 . We define a map

𝜙: Mor𝑅-Mod(𝑅, 𝑀) → 𝑀 by sending 𝑓𝑚 ↦→ 𝑚, which is certainly surjective. Moreover,

if 𝑓𝑚 = 𝑓𝑛 then in particular 𝑚 = 𝑓𝑚(1) = 𝑓𝑛(1) = 𝑛, therefore 𝜙 is injective. Notice that

for any 𝑚, 𝑛 ∈ 𝑀 we have

𝑓𝑚(𝑟) + 𝑓𝑛(𝑟) = 𝑟𝑚 + 𝑟𝑛 = 𝑟(𝑚 + 𝑛) = 𝑓𝑚+𝑛(𝑟),

thus 𝑓𝑚 + 𝑓𝑛 = 𝑓𝑚+𝑛 . Also, given any 𝑠 ∈ 𝑅 we have

𝑠 𝑓𝑚(𝑟) = 𝑠(𝑟𝑚) = (𝑠𝑟)𝑚 = (𝑟𝑠)𝑚 = 𝑟(𝑠𝑚) = 𝑓𝑠𝑚(𝑟),

then 𝑠 𝑓𝑚 = 𝑓𝑠𝑚 . The bĳection 𝜙 is also an 𝑅-module morphism since, given any two

𝑓𝑚 , 𝑓𝑛 ∈ Mor𝑅-Mod(𝑅, 𝑀)we have

𝜙( 𝑓𝑚 + 𝑓𝑛) = 𝜙( 𝑓𝑚+𝑛) = 𝑚 + 𝑛 = 𝜙( 𝑓𝑚) + 𝜙( 𝑓𝑛),

and given 𝑟 ∈ 𝑅,

𝜙(𝑟 𝑓𝑚) = 𝜙( 𝑓𝑟𝑚) = 𝑟𝑚 = 𝑟𝜙( 𝑓𝑚).
Since bĳective morphisms are isomorphisms in 𝑅-Mod, it follows that Mor𝑅-Mod(𝑅, 𝑀) ≃
𝑀 via 𝜙. ♮

2𝐹 can be covariant or contravariant.
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Proposition 8.4.21. Let 𝑀 and 𝑁 be 𝑅-modules, for some ring 𝑅. If 𝑀 ≃ 𝑁 , then there

exists a natural isomorphism between abelian groups

End𝑅-Mod(𝑀) ≃ End𝑅-Mod(𝑁).
Proof. Let 𝜙:𝑀 ≃−→ 𝑁 be an isomorphism. We define a map Φ: End𝑅-Mod(𝑀) →
End𝑅-Mod(𝑁) given by the conjugation 𝑓 ↦→ 𝜙 𝑓 𝜙−1

. This uniquely defines an 𝑅-module

morphism for each endomorphism 𝑓 :𝑀 → 𝑀. Notice that, since 𝜙 is a bĳection, given

any endomorphism 𝑔:𝑁 → 𝑁 we may define an 𝑅-morphism 𝑓 :𝑀 → 𝑀 given by

𝑓 ≔ 𝜙−1𝑔𝜙, so thatΦ( 𝑓 ) = 𝜙(𝜙−1𝑔𝜙)𝜙−1 = 𝑔. ThereforeΦ establishes an isomorphism

of abelian groups via conjugation. ♮

Examples on Nilpotency

Lemma 8.4.22 (Nakayama’s lemma, a particular case). Let 𝑅 be a commutative ring, and

𝑎 ∈ 𝑅 be a nilpotent element. Then 𝑀 = 0 if and only if 𝑎𝑀 = 𝑀.

Proof. If 𝑎 = 0 then the statement is true. Suppose that 𝑎 is non-zero, and let 𝑛 ∈ Z>0

be the minimal positive integer such that 𝑎𝑛 = 0. If 𝑀 = 0 then obviously 𝑎𝑀 = 𝑎 · 0 =

0 = 𝑀. On the converse, if we assume that 𝑎𝑀 = 𝑀, let 𝑚 ∈ 𝑀 be any element. Let

𝑚1 ∈ 𝑀 be an element such that 𝑚 = 𝑎𝑚1. By induction, let 𝑚 𝑗 ∈ 𝑀 be an element

such that 𝑚 𝑗−1 = 𝑎𝑚 𝑗 , for 1 < 𝑗 ⩽ 𝑘. If we consider the collection (𝑚 𝑗)𝑘𝑗=1
we get a chain

of equalities

𝑚 = 𝑎𝑚1 = 𝑎2𝑚2 = · · · = 𝑎𝑘𝑚𝑘 = 0.

Therefore 𝑀 = 0. ♮

Proposition 8.4.23. Let 𝑅 be a commutative ring and 𝔞 a nilpotent ideal of 𝑅. Let

𝜙:𝑀 → 𝑁 be an 𝑅-module morphism. If the induced 𝑅-module morphism

𝜙:

𝑀

𝔞𝑀
−→ 𝑁

𝔞𝑁
mapping 𝑚 + 𝔞𝑀 ↦−→ 𝜙(𝑚) + 𝔞𝑁

is a surjection, then so is 𝜙.

Proof. Since 𝜙 is surjective, it follows that

𝜙(𝑀/𝔞𝑀) =
𝜙(𝑀) + 𝔞𝑁

𝔞𝑁
=
𝑁

𝔞𝑁
,

therefore 𝑁 = 𝜙(𝑀) + 𝔞𝑁 . Suppose that 𝑘 ∈ Z>0 is such that 𝔞𝑘 = 0 (which exists since

𝔞 is a nilpotent ideal). Then via induction we find

𝑁 = 𝜙(𝑀) + 𝔞𝑁 = 𝜙(𝑀) + 𝔞(𝜙(𝑀) + 𝔞𝑁)
= 𝜙(𝑀) + 𝔞𝜙(𝑀) + 𝔞2𝑁

= 𝜙(𝑀) + 𝔞2𝑁

= . . .

= 𝜙(𝑀) + 𝔞𝑘𝑁
= 𝜙(𝑀).

Therefore 𝜙 is surjective, since 𝑁 = 𝜙(𝑀). ♮
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Kernels & Cokernels
Lemma 8.4.24. Kernels and cokernels exist in 𝑅-Mod.

Proof. Let 𝜙:𝑀 → 𝑁 be any 𝑅-module and consider ker 𝜙 ≔ {𝑚 ∈ 𝑀 : 𝜙(𝑚) = 0},
together with the canonical inclusion 𝜄: ker 𝜙 ↩→ 𝑀. Notice that 𝜙𝜄 = 0𝜄 = 0. We prove

that (ker 𝜙, 𝜄) is the equalizer of (𝜙, 0): let 𝑃 be any other 𝑅-module and 𝑓 :𝑃 → 𝑀 be

any 𝑅-module morphism such that 𝜙 𝑓 = 0 𝑓 = 0. We define a map 𝑓 :𝑃 → ker 𝜙 given

by 𝑓 = 𝑓 . Indeed, since 𝜙 𝑓 = 0, then im 𝑓 ⊆ ker 𝜙, and 𝑓 is a well defined and unique

𝑅-module morphism making the following diagram commute

ker 𝜙 𝑀 𝑁

𝑃

𝜄
𝜙

0

𝑓

𝑓

Thus (ker 𝜙, 𝜄) is indeed the equalizer of ( 𝑓 , 0).
Now we prove that coker 𝜙 ≔ 𝑁/im 𝜙 together with the natural projection 𝜋:𝑁 ↠

coker 𝜙 is the coequalizer of (𝜙, 0). Let 𝐶 be an 𝑅-module and 𝑔:𝑁 → 𝐶 be an 𝑅-

module morphism such that 𝑔𝜙 = 𝑔0 = 0. We define a map 𝑔: coker 𝜙 → 𝐶 to be

given by 𝑛 + im 𝜙 ↦→ 𝑔(𝑛). This map is well defined since 𝑔(𝑛) = 0 for all 𝑛 ∈ im 𝜙.

Also, since 𝑔 is a morphism, 𝑔 is trivially a morphism of 𝑅-modules too. Moreover,

since 𝜋 is an epimorphism, 𝑔 is the unique morphism for which the following diagram

commutes

𝑀 𝑁 coker 𝜙

𝑃

𝜙

0

𝜋

𝑔

𝑔

That is, (coker 𝜙,𝜋) is the coequalizer of (𝜙, 0). ♮

Proposition 8.4.25 (Properties of kernels & cokernels). Kernels and cokernels exist in

𝑅-Mod. Let 𝜙:𝑀 → 𝑁 be an 𝑅-module morphism, then:

(a) The following propositions are equivalent:

• The 𝑅-module morphism 𝜙 is a monomorphism.

• The kernel of 𝜙 is trivial, that is, ker 𝜙 = 0.

• The set-function induced by 𝜙 is injective.

(b) The following propositions are equivalent:

• The 𝑅-module morphism 𝜙 is an epimorphism.

• The cokernel of 𝜙 is trivial, that is, coker 𝜙 = 0.

• The set-function induced by 𝜙 is surjective.

Proof. (a) • Suppose 𝜙 is a monomorphism, and consider 𝜄: ker 𝜙 ↩→ 𝑀 and 0, then

𝜙𝜄 = 𝜙0 = 0, thus 𝜄 = 0 — which implies in ker 𝜙 = 0.
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• If we now suppose that ker 𝜙 = 0, given any two elements𝑚, 𝑚′ ∈ 𝑀 such that

𝜙(𝑚) = 𝜙(𝑚′) we obtain 0 = 𝜙(𝑚) − 𝜙(𝑚′) = 𝜙(𝑚 − 𝑚′) then 𝑚 − 𝑚′ ∈ ker 𝜙,

implying in 𝑚 = 𝑚′.

• Lastly, if 𝜙 is injective, then given any two morphisms 𝛼, 𝛽:𝑃 ⇒ 𝑀 such that

𝜙𝛼 = 𝜙𝛽, we have for all 𝑝 ∈ 𝑃 that 𝜙(𝛼(𝑝)) = 𝜙(𝛽(𝑝)) — which implies in

𝛼(𝑝) = 𝛽(𝑝), thus 𝛼 = 𝛽. We conclude that 𝜙 is a monomorphism.

(b) • Suppose that𝜙 is an epimorphism, then if we consider the canonical inclusiont

𝜄: im 𝜙 ↩→ 𝑁 and the identity morphism id𝑁 :𝑁 → 𝑁 , one has that 𝜄𝜙 = id𝑁 𝜙.

Since 𝜙 is an epimorphism, then 𝜄 = id𝑁 — which is only possible if im 𝜙 = 𝑁 .

Therefore coker 𝜙 is trivial.

• If we suppose that coker 𝜙 is trivial, then im 𝜙 = 𝑁 and 𝜙 is therefore surjec-

tive.

• Suppose that 𝜙 is surjective, and let 𝛼, 𝛽:𝑁 → 𝑃 be 𝑅-module morphisms

such that 𝛼𝜙 = 𝛽𝜙. Then, for every 𝑛 ∈ 𝑁 , there exists 𝑚 ∈ 𝑀 such that

𝜙(𝑚) = 𝑛, thus 𝛼(𝑛) = 𝛼(𝜙(𝑚)) = 𝛽(𝜙(𝑚)) = 𝛽(𝑛)— therefore 𝛼 = 𝛽 and 𝜙 is

an epimorphism.

♮

Example 8.4.26 (Right & left inverses). One should not be deceived by the ideas per-

meating Set, just as in general categories, 𝑅-Modmonomorphisms and epimorphisms

need not have left-inverse and right-inverse, respectively. An example of a monomor-

phism without a left-inverse is Z ↣ Z given by 𝑎 ↦→ 2𝑎. On the other hand, the

projection Z ↠ Z/2Z is an epimorphism, although it does not have a right-inverse.

𝑅-Algebras
Example 8.4.27 (𝑅-modules from ring morphisms). Let 𝜙:𝑅 → 𝑆 be any ring mor-

phism. We can induce on 𝑆 a structure of left-𝑅-module by defining a map 𝜌:𝑅×𝑆→ 𝑆

to map (𝑟, 𝑠) ↦→ 𝜙(𝑟)𝑠 for every 𝑟 ∈ 𝑅 and 𝑠 ∈ 𝑆. In particular, this shows that we can

endow 𝑅 itself with a left-𝑅-module structure. These constructions can be analogously

done for right-𝑅-modules as well.

If 𝑅 happens to be commutative and im 𝜙 ⊆ 𝑍(𝑆), then by Example 8.4.6 we find

that the left and right 𝑅-module structures on 𝑆 induced by 𝜙 coincide. Moreover,

notice that, given any 𝑠, 𝑠′ ∈ 𝑆 and 𝑟, 𝑟′ ∈ 𝑅, we have that

𝜌(𝑟, 𝑠)𝜌(𝑟′, 𝑠′) = (𝜙(𝑟)𝑠)(𝜙(𝑟′)𝑠′) = 𝜙(𝑟)(𝑠𝜙(𝑟′))𝑠′ = 𝜙(𝑟)(𝜙(𝑟′)𝑠)𝑠′

= (𝜙(𝑟)𝜙(𝑟′))(𝑠𝑠′) = 𝜙(𝑟𝑟′)(𝑠𝑠′)
= 𝜌(𝑟𝑟′, 𝑠𝑠′).

This shows that the 𝑅-module structure induced by 𝜙 is compatible with the ring

structure of 𝑆. This kind of 𝑅-module receive the name of 𝑅-algebra, which we now

define for later reference.

Definition 8.4.28 (𝑅-algebra). Let 𝑅 be a commutative ring. We define an 𝑅-algebra to

be a ring morphism 𝜙:𝑅→ 𝑆 such that the image of 𝜙 is contained in the centre of 𝑆 —
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inducing an 𝑅-module structure on 𝑆. If the ring 𝑆 itself is commutative, we say that

it has a structure of a commutative 𝑅-algebra.

We define a morphism 𝛾: 𝛼→ 𝛽 of 𝑅-algebras 𝛼:𝑅→ 𝑆 and 𝛽:𝑅→ 𝑄 to be a ring

morphism 𝛾: 𝑆 → 𝑄 such that for all 𝑟 ∈ 𝑅 and 𝑠 ∈ 𝑆 we have 𝜙(𝑟𝑠) = 𝑟𝜙(𝑠), and that

the following diagram commutes in Ring

𝑅

𝑆 𝑄

𝛼 𝛽

𝛾

We denote by 𝑅-Alg the category consisting of 𝑅-algebras and morphisms between

them. A particularly important subcategory is that of the commutative 𝑅-algebras,

which we shall denote by 𝑅-CAlg.

Corollary 8.4.29. Given a commutative ring𝑅, then𝑅-CAlg is a subcategory of𝑅/CRing
— where 𝑅/CRing denotes the slice category under 𝑅.

Example 8.4.30. The category 𝑅-CAlg, however, is not a full subcategory of CRing. Notice

for instance that the map C → C given by the complex conjugation 𝑧 ↦→ 𝑧 is a ring
automorphism, nonetheless it isn’t a morphism of C-modules.

Proposition 8.4.31 (Initial object). Given a ring 𝑅, the module structure of 𝑅 over itself

is the initial object of 𝑅-Alg.

Proof. Given any 𝑅-algebra 𝜙:𝑅 → 𝐴 we have, for all 𝑟, 𝑟′ ∈ 𝑅, that 𝜙(𝑟𝑟′) = 𝑟𝜙(𝑟′)—
thus 𝜙 is an 𝑅-algebra morphism. In particular, for 𝑟′ = 1𝑅 we obtain 𝜙(𝑟) = 𝑟𝜙(1𝑅) =
𝑟1𝐴 = 𝑟 — thus 𝜙 is the unique 𝑅-algebra morphism 𝑅→ 𝐴. ♮

Definition 8.4.32 (Field extension). Let 𝑘 be a field. We define a field extension of 𝑘 to

be a commutative 𝑘-algebra 𝐾 with injective ring morphisms inj, inv: 𝑘 ⇒ 𝐾 such that

inj(𝑎) inv(𝑎) = 1 for all 𝑎 ∈ 𝑘.

Example 8.4.33. Let 𝑘 be a subfield 𝑘 ⊆ ℓ of a field ℓ . Then ℓ has a natural structure of

field extension of 𝑘. Indeed, we have a natural inclusion 𝑘 ↩→ ℓ mapping 𝑎 ↦→ 𝑎 and

an inversion map 𝑘 ↩→ ℓ sending 𝑎 ↦→ 𝑎−1
.

Definition 8.4.34 (Rees algebra). Let 𝑅 be a commutative ring and 𝔞 ideal of 𝑅. We

define a ring

Rees𝑅(𝔞) ≔
⊕
𝑗⩾0

𝔞𝑗 ,

where 𝔞0 ≔ 𝑅, with a multiplication given by

(𝑎 𝑗)𝑗⩾0 · (𝑏 𝑗)𝑗⩾0 ≔

( ∑
𝑖+𝑘=𝑗

𝑎𝑖𝑏𝑘

)
𝑗⩾0

∈ Rees𝑅(𝔞).

The ring morphism 𝑅 → Rees𝑅(𝔞) mapping 𝑟 ↦→ (𝑟, 0, . . . , 0, . . . ) is called the Rees
algebra of 𝔞.
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Proposition 8.4.35. Let 𝑅 be a commutative ring and 𝑎 ∈ 𝑅 be a non-zero-divisor. There

exists a natural isomorphism of 𝑅-algebras

Rees𝑅((𝑎)) ≃ 𝑅[𝑥]

Proof. Notice that 𝑅[𝑥] is realized as an 𝑅-algebra by the inclusion 𝜄:𝑅 ↩→ 𝑅[𝑥] map-

ping to constant polynomials. Denote, for every 𝑗 ⩾ 0, by 𝑒 𝑗 ∈ Rees𝑅((𝑎)) the element

whose 𝑗-th coordinate is 𝑎 𝑗 and zero elsewhere. Define a map 𝜙:𝑅[𝑥] → Rees𝑅((𝑎))
by mapping 𝜙(𝑟) ≔ 𝑟𝑒0 and 𝜙(𝑥) ≔ 𝑒1. Since {𝑅, 𝑥} generate 𝑅[𝑥], this completely

defines 𝜙 as a ring morphism, since 𝜙(𝑟𝑥 𝑗) = 𝑟𝜙(𝑥)𝑗 = 𝑟𝑒
𝑗

1
= 𝑟𝑒 𝑗 . Moreover, given any

(𝑎 𝑗)𝑗⩾0 ∈ Rees𝑅((𝑎)), since 𝑅 is commutative, we have 𝑎 𝑗 = 𝑟 𝑗𝑎
𝑗

for some 𝑟 𝑗 ∈ 𝑅. If

we let (𝑟 𝑗)𝑗⩾0 be the collection of these associated 𝑅 terms, we can build a polynomial

𝑝(𝑥) ≔ ∑
𝑗⩾0

𝑟 𝑗𝑥
𝑗
so that

𝜙(𝑝(𝑥)) =
∑
𝑗⩾0

𝜙(𝑟 𝑗𝑥 𝑗) =
∑
𝑗⩾0

𝑟 𝑗𝑒 𝑗 = (𝑟 𝑗𝑎 𝑗)𝑗⩾0 = (𝑎 𝑗)𝑗⩾0.

Therefore 𝜙 is surjective. Moreover, it is simple to see that if 𝑝(𝑥) ≔ ∑
𝑗⩾0

𝑏 𝑗𝑥
𝑗

and

𝑞(𝑥) ≔ ∑
𝑗⩾0

𝑐 𝑗𝑥
𝑗

are polynomials in 𝑅[𝑥] such that 𝜙(𝑝(𝑥)) = 𝜙(𝑞(𝑥)), then their

coefficients match — that is, 𝑏 𝑗 = 𝑐 𝑗 for all 𝑗 ⩾ 0, and then 𝑝(𝑥) = 𝑞(𝑥), making 𝜙
injective. Therefore 𝜙 is an isomorphism of 𝑅-algebras. ♮

Proposition 8.4.36. Let 𝑅 be a commutative ring, 𝑎 ∈ 𝑅 be a non-zero-divisor, and

𝔟 ⊆ 𝑅 be any ideal. Then there exists a natural isomorphism of 𝑅-algebras

Rees𝑅(𝑎𝔟) ≃ Rees𝑅(𝔟).

Proof. Define a map 𝜙: Rees𝑅(𝔟) → Rees𝑅(𝑎𝔟) by (𝑏 𝑗)𝑗⩾0 ↦→ (𝑎 𝑗𝑏 𝑗)𝑗⩾0 — since 𝑎 is a

non-zero-divisor, 𝑎 𝑗𝑏 𝑗 = 0 if and only if 𝑏 𝑗 = 0, therefore 𝜙 is bĳective. Notice that

𝜙 satisfies 𝜙(𝑟𝑢) = 𝑟𝜙(𝑢) for any 𝑟 ∈ 𝑅 and 𝑢 ∈ Rees𝑅(𝔟). Moreover for any two

(𝑢𝑗)𝑗⩾0, (𝑣 𝑗)𝑗⩾0 ∈ Rees𝑅(𝔟), we have

𝜙((𝑢𝑗)𝑗 · (𝑣 𝑗)𝑗) = 𝜙

( ∑
𝑖+𝑘=𝑗

𝑢𝑖𝑣𝑘

)
𝑗

=

(
𝑎 𝑗

∑
𝑖+𝑘=𝑗

𝑢𝑖𝑣𝑘

)
𝑗

=

( ∑
𝑖+𝑘=𝑗

𝑎 𝑖+𝑘𝑢𝑖𝑣𝑘

)
𝑗

= (𝑎 𝑗𝑢𝑗)𝑗 · (𝑎 𝑗𝑣 𝑗)𝑗

= 𝜙((𝑢𝑗)𝑗) · 𝜙((𝑣 𝑗)𝑗).

Thus 𝜙 is an 𝑅-algebra isomorphism between Rees𝑅(𝑎𝔟) and Rees𝑅(𝔟). ♮

Submodules & Quotients
Submodules

Definition 8.4.37 (Submodule). Let 𝑅 be a ring and 𝑀 be an 𝑅-module. An 𝑅-module

𝑁 is said to be a submodule of 𝑅 if𝑁 ⊆ 𝑀 and the inclusion map𝑁 ↩→ 𝑀 is a morphism

of 𝑅-modules.
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Example 8.4.38 (Ideals are the submodules of 𝑅). Let 𝑅 be a ring endowed with the

canonical left-𝑅-module structure. The submodules of 𝑅 are correspond exactly to the

left-ideals of 𝑅.

Example 8.4.39 (Kernel and image are submodules). Given a morphism 𝜙:𝑀 → 𝑁 of

𝑅-modules, the kernel of 𝜙 is a submodule of 𝑀, while the image of 𝜙 is a submodule

of 𝑁 .

Suppose 𝑀 and 𝑁 are right-𝑅-modules, for left-𝑅-modules the proof is analogous.

If 𝑚 ∈ ker 𝜙, then for all 𝑟 ∈ 𝑅 we have 𝜙(𝑚𝑟) = 𝜙(𝑚)𝑟 = 0 · 𝑟 = 0 — thus 𝑚𝑟 ∈ ker 𝜙,

making ker 𝜙 ↩→ 𝑀 a morphism of right-𝑅-modules. Now, if 𝑛 ∈ im 𝜙, there must exist

𝑚 ∈ 𝑀 such that 𝜙(𝑚) = 𝑛, therefore for all 𝑟 ∈ 𝑅we have 𝜙(𝑚𝑟) = 𝜙(𝑚)𝑟 = 𝑛𝑟 ∈ im 𝜙.

We conclude that, indeed, ker 𝜙 and im 𝜙 are submodules of 𝑀 and 𝑁 , respectively.

Example 8.4.40 (Intersection & sum of submodules). Let𝑀 be an𝑅-module and (𝑁𝑗)𝑗∈𝐽
be a collection of submodules of 𝑀. We have the following:

(a) The intersection

⋂
𝑗∈𝐽 𝑁𝑗 is a submodule of 𝑀.

(b) The sum ∑
𝑗∈𝐽

𝑁𝑗 ≔

{∑
𝑗∈𝐹

𝑛 𝑗 : 𝐹 ⊆ 𝐽 is finite, and 𝑛 𝑗 ∈ 𝑁𝑗 for all 𝑗 ∈ 𝐹
}

is a submodule of 𝑀.

Proof. For the intersection, given any two 𝑎, 𝑏 ∈ ⋂
𝑗∈𝐽 𝑁𝑗 we have, for each 𝑗 ∈ 𝐽, that

𝑎, 𝑏 ∈ 𝑁𝑗 and therefore 𝑎 + 𝑏 ∈ 𝑁𝑗 — this implies in 𝑎 + 𝑏 ∈ ⋂
𝑗∈𝐽 𝑁𝑗 . Moreover, given

any element 𝑟 ∈ 𝑅 it is equally clear that 𝑎𝑟 ∈ 𝑁𝑗 for every 𝑗 ∈ 𝐽, which implies in

𝑎𝑟 ∈ ⋂
𝑗∈𝐽 𝑁𝑗 . Therefore

⋂
𝑗∈𝐽 𝑁𝑗 is indeed a submodule of 𝑀.

For the ease of notation, define 𝑁 ≔
∑
𝑗∈𝐽 𝑁𝑗 . Notice that since every sum in 𝑁

is finite, then 𝑁 ⊆ 𝑀. Given any two elements

∑
𝑗∈𝐹 𝑎 𝑗 ,

∑
𝑗∈𝐹′ 𝑏 𝑗 ∈ 𝑁 , we have that

𝐹 ∪ 𝐹′ ⊆ 𝐽 is finite, hence we have an element

∑
𝑗∈𝐹∪𝐹′ 𝑚 𝑗 ∈ 𝑁 given by

𝑚 𝑗 ≔


𝑎 𝑗 , 𝑗 ∈ 𝐹 ∖ 𝐹′,
𝑏 𝑗 , 𝑗 ∈ 𝐹′ ∖ 𝐹,
𝑎 𝑗 + 𝑏 𝑗 , 𝑗 ∈ 𝐹 ∩ 𝐹′.

It is easy to see that this constructed element satisfies∑
𝑗∈𝐹∪𝐹′

𝑚 𝑗 =

(∑
𝑗∈𝐹

𝑎 𝑗

)
+

(∑
𝑗∈𝐹′

𝑏 𝑗

)
,

therefore 𝑁 is closed under finite addition. Since multiplication is distributive over

finite sums, it follows that for any 𝑟 ∈ 𝑅 we have(∑
𝑗∈𝐹

𝑎 𝑗

)
𝑟 =

∑
𝑗∈𝐹

𝑎 𝑗𝑟

and since 𝑎 𝑗𝑟 ∈ 𝑁𝑗 for each 𝑗 ∈ 𝐹, it follows that

( ∑
𝑗∈𝐹 𝑎 𝑗

)
𝑟 ∈ 𝑁 . Thus𝑁 is a submodule

of 𝑀. ♮

220



Example 8.4.41 (Union of submodules). Let 𝑀 be an 𝑅-module, for a ring 𝑅. The

following are two propositions concerning submodules of 𝑀:

1. Given submodules 𝑆, 𝑇 ⊆ 𝑀, the union 𝑆 ∪ 𝑇 is a submodule of 𝑀 if and only if

𝑆 ⊆ 𝑇 or 𝑇 ⊆ 𝑆.

2. Let (𝑁𝑗)𝑗∈N be an ascending chain of submodules of 𝑀—that is, 𝑁𝑗 ⊆ 𝑁𝑗+1 for all

𝑗 ∈ N. Then the union

⋃
𝑗∈N 𝑁𝑗 is a submodule of 𝑀.

Proof. For item (a), if 𝑆 ∪ 𝑇 is a submodule of 𝑀, let 𝑠 ∈ 𝑆 and 𝑡 ∈ 𝑇 be any two

elements, then 𝑠 + 𝑡 ∈ 𝑆 ∪ 𝑇. This implies that either 𝑠 + 𝑡 ∈ 𝑆 (which would imply in

𝑡 ∈ 𝑆) or 𝑠 + 𝑡 ∈ 𝑇 (which would imply in 𝑠 ∈ 𝑇), therefore either 𝑆 ⊆ 𝑇 or 𝑇 ⊆ 𝑆. For

the converse, suppose, without loss of generality, that 𝑆 ⊆ 𝑇, then 𝑆 ∪𝑇 = 𝑆, therefore

𝑆 ∪ 𝑇 is a submodule of 𝑀.

We now prove item (b). For the sake of notation, let 𝑁 ≔
⋃
𝑗∈N 𝑁𝑗 . If 𝑛, 𝑛′ ∈ 𝑁 are

any two elements, there must exist indices 𝑗 , 𝑗′ ∈ N such that 𝑛 ∈ 𝑁𝑖 and 𝑛′ ∈ 𝑁𝑖′ for all

𝑖 > 𝑗 and for all 𝑖′ > 𝑗′. Define 𝑘 ≔ max(𝑗 , 𝑗′), then 𝑛, 𝑛′ ∈ 𝑁𝑖 for all 𝑖 > 𝑘—implying

in 𝑛 + 𝑛′ ∈ 𝑁𝑖 and 𝑟𝑛 ∈ 𝑁𝑖 for any 𝑟 ∈ 𝑅. Therefore 𝑛 + 𝑛′ ∈ 𝑁 and 𝑟𝑛 ∈ 𝑁 , hence 𝑁 is

a submodule of 𝑀. ♮

Example 8.4.42 (Totally ordered submodules). Let 𝑀 be a finite Z-module such that

the collection of its submodules is totally ordered with respect to inclusion. Then there

exists a prime 𝑝 such that the number of elements of 𝑀 is a power of 𝑝.

Proof. Let |𝑀| ≔ 𝑑 and suppose there exists two primes 𝑝 and 𝑞 dividing 𝑑. By

Proposition 7.4.29 we know that there must exist 𝑚, 𝑛 ∈ 𝑀 with order 𝑝 and 𝑞,

respectively. We now consider the submodules ⟨𝑚⟩ and ⟨𝑛⟩ of 𝑀. Since 𝑀 has a

totally ordered set of submodules, we may assume without loss of generality that

⟨𝑚⟩ ⊆ ⟨𝑛⟩—therefore there exists 𝑎 ∈ Z such that 𝑚 = 𝑎𝑛. Notice that 𝑝𝑚 = 𝑝𝑎𝑛 = 0,

therefore 𝑝𝑎 must be a divisor of 𝑞—but since 𝑞 is prime, 𝑝𝑎 is either 1 or 𝑞. Since 𝑝 is

also prime, it must be the case that 𝑎 = 1 and 𝑝 = 𝑞. Thus there exists a unique prime

divisor of 𝑑—hence 𝑑 = 𝑝𝛼 for some 𝛼 ∈ Z. ♮

Simple 𝑅-Modules

Definition 8.4.43 (Simple module). Let 𝑅 be a ring. An 𝑅-module𝑀 is said to be simple
if its only submodules are {0} and 𝑀 itself.

Lemma 8.4.44 (Schur’s). Let 𝑀 and 𝑁 be simple 𝑅-modules. If 𝜙:𝑀 → 𝑁 is an

𝑅-module morphism, then either 𝜙 = 0 or 𝜙 is an isomorphism.

Proof. Since ker 𝜙 is a submodule of 𝑀, it can either be 0 or 𝑀. If ker 𝜙 = 𝑀, then

𝜙 = 0. On the other hand, if ker 𝜙 = 0 then 𝜙 is an injective morphism. Moreover,

since im 𝜙 is a submodule of 𝑁 , it’s either 0 or 𝑁 — since ker 𝜙 in trivial, then the only

possibility is that im 𝜙 = 𝑁 , thus 𝜙 is surjective. ♮

Corollary 8.4.45. Let 𝑀 and 𝑁 be right-𝑅-modules and consider MorMod𝑅(𝑀, 𝑁) as a

ring. If 𝑀 is simple, then MorMod𝑅(𝑀, 𝑁) is a division ring.
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Proof. Let 𝔞 be a left-ideal (or right-ideal) of MorMod𝑅(𝑀, 𝑁). If there exists an isomor-

phism 𝜙 ∈ 𝔞, then 𝜙−1𝜙 = id𝑀 ∈ 𝔞 and therefore, for all elements 𝜓 ∈ MorMod𝑅(𝑀, 𝑁)
we have 𝜓 id𝑀 = 𝜓 ∈ 𝔞 — thus 𝔞 = MorMod𝑅(𝑀, 𝑁) (the same equivalent argument can

be used for right-ideals, where instead we get 𝜙𝜙−1 = id𝑁 in the ideal). If there exist

no isomorphism in 𝔞, by Lemma 8.4.44 it is only composed of the zero morphism, thus

𝔞 = 0. From Proposition 8.3.14 we conclude that MorMod𝑅(𝑀, 𝑁) is a division ring. ♮

Example 8.4.46. We now show a counterexample ilustrating why the opposite of Corol-

lary 8.4.45 does not hold in general. Let 𝑘 be a field and

𝐴 ≔

[
1 1

0 0

]
𝐵 ≔

[
0 0

0 1

]
be matrices. Define 𝑅 to be the 𝑘-algebra generated by 𝐴 and 𝐵. Consider the left-𝑅-

module 𝑀 = 𝑘2
, with left-multiplication by matrices. We’ll show that Mor𝑅Mod(𝑀,𝑀)

is a division ring, while 𝑀 is not simple.

Consider the principal ideal 𝔞 ≔
( [

1

0

] )
of 𝑀. Notice that for any 𝑎, 𝑏 ∈ 𝑘 we have

(𝑎𝐴 + 𝑏𝐵)
[
1

0

]
=

[
𝑎 𝑎

0 𝑏

] [
1

0

]
=

[
𝑎

0

]
,

thus 𝔞 ≠ 𝑀 and 𝔞 ≠ 0, and 𝑀 isn’t simple.

Let 𝔥 be a left-ideal (or right-ideal) of the ring Mor𝑅Mod(𝑀,𝑀). If 𝔥 ≠ 0, consider a

non-zero morphism 𝑀 =
[
𝑎 𝑏
𝑐 𝑑

]
∈ 𝔥. Since 𝑀 is a left-𝑅-module morphism, it must be

the case that, for any 𝑥 =
[
𝑥1

𝑥2

]
∈ 𝑀, we have 𝑀(𝐴𝑥) = 𝐴𝑀(𝑥) and 𝑀(𝐵𝑥) = 𝐵𝑀(𝑥),

but

𝑀(𝐴𝑥) =
[
𝑎(𝑥1 + 𝑥2)
𝑐(𝑥1 + 𝑥2)

]
(8.5)

𝑀(𝐵𝑥) =
[
𝑏𝑥2

𝑑𝑥2

]
(8.6)

while on the other hand we have

𝐴𝑀(𝑥) =
[
(𝑎 + 𝑐)𝑥1 + (𝑏 + 𝑑)𝑥2

0

]
(8.7)

𝐵𝑀(𝑥) =
[

0

𝑐𝑥1 + 𝑑𝑥2

]
(8.8)

Since Eq. (8.5) equals Eq. (8.7), while Eq. (8.6) equals Eq. (8.8) — and since 𝑀 is non-

zero by hypothesis — we obtain a solution 𝑎 = 𝑑 = 1 and 𝑏 = 𝑐 = 0, yielding𝑀 =
[

1 0

0 1

]
,

which implies in 𝔥 = Mor𝑅Mod(𝑀,𝑀).

Proposition 8.4.47. Let 𝑀 be an 𝑅-module. Then 𝑀 is simple if and only if 𝑀 ≃ 𝑅/𝔪
for a maximal ideal 𝔪 of 𝑅.
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Proof. Suppose 𝜙:𝑀 ≃−→ 𝑅/𝔪 is an isomorphism of 𝑅-modules. If 𝑁 ⊊ 𝑀 is a proper
submodule, then 𝜙(𝑁) ⊆ 𝑅/𝔪 must also be a submodule of 𝑅/𝔪—that is, an ideal.

Since 𝔪 is maximal, then the only ideals of the field 𝑅/𝔪 are either the field itself or

the zero ideal 𝔪. Since 𝜙 is an isomorphism and 𝑁 is proper, it must be the case that

𝜙(𝑁) = 𝔪. But since 𝜙(0) = 𝔪, then 𝑁 = {0}—thus 𝑀 is simple.

For the converse, assume that 𝑀 is simple, so that every non-zero element of 𝑀

generates the whole module. In particular 1 ∈ 𝑀 generates𝑀, therefore the morphism

of 𝑅-modules 𝜓:𝑅→ 𝑀 mapping 𝑎 ↦→ 𝑎 · 1 is surjective, therefore

𝑀 ≃ 𝑅/ker𝜓.

By Corollary 8.4.55 if 𝔞 ⊊ 𝑅 is any proper ideal (submodule) containing ker𝜓, then

its corresponding submodule is 𝔞/ker𝜓 ⊆ 𝑅/ker𝜓 ≃ 𝑀. Since 𝑀 is simple and 𝔞 is

proper, it follows that 𝔞/ker𝜓 must be the zero ideal, therefore 𝔞 = ker𝜓—that is ker𝜓
is maximal. ♮

Quotient modules

Definition 8.4.48 (Quotient module). Let 𝑅 be a ring, and 𝑀 be a left-𝑅-module.

If 𝑁 ⊆ 𝑀 is a submodule, then in particular 𝑁 is a normal subgroup of 𝑀 and

therefore 𝑀/𝑁 is an abelian group. We endow the group 𝑀/𝑁 with a left-𝑅-action

𝑅 × (𝑀/𝑁) → 𝑀/𝑁 given by

𝑟(𝑚 + 𝑁) ≔ 𝑟𝑚 + 𝑁,

for all 𝑟 ∈ 𝑅 and𝑚 ∈ 𝑀. This action turns𝑀/𝑁 into a left-𝑅-module and the canonical

projection 𝜋:𝑀 ↠ 𝑀/𝑁 into an 𝑅-module morphism. Therefore, the submodule 𝑁 is

the kernel of the canonical projection 𝜋.

Example 8.4.49. Let 𝑅 be a non-commutative ring and 𝔞 a left-submodule, then the set
of equivalence classes 𝑅/𝔞 is not a ring — since 𝔞 is be required to be a two-sided-ideal

for the quotient to be a ring. Although not a ring, 𝑅/𝔞 is is an abelian group and one

can endow 𝑅/𝔞 with the canonical left-𝑅-action given by 𝑟(𝑎 + 𝔞) = 𝑟𝑎 + 𝔞 for every

𝑟 ∈ 𝑅 and 𝑎 + 𝔞 ∈ 𝑅/𝔞.

Theorem 8.4.50 (Universal property of quotient modules). Let 𝑅 be a ring and 𝑁 be

a submodule of an 𝑅-module 𝑀. For every module 𝑍 together with a morphism

𝜓:𝑀 → 𝑍 of 𝑅-modules such that 𝑁 ⊆ ker𝜓, there exists a unique morphism of rings

𝜙:𝑀/𝑁 → 𝑍 for which the following diagram commutes

𝑀 𝑍

𝑀/𝑁

𝜓

𝜙

Proof. In particular, the existence and uniqueness of 𝜙 as a group morphism is shown in

Proposition 7.4.16 — we only show that 𝜙 is a morphism of 𝑅-modules. Let’s assume
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that we are working with right-𝑅-modules, the same analogous proof would work for

the left modules. Let 𝑚 + 𝑁 ∈ 𝑀/𝑁 and 𝑟 ∈ 𝑅 be any elements, then 𝜓(𝑚𝑟) = 𝜓(𝑚)𝑟
and since 𝜓 = 𝜙𝜋 it follows that

𝜙((𝑚 + 𝑁)𝑟) = 𝜙(𝑚𝑟 + 𝑁) = 𝜓(𝑚𝑟) = 𝜓(𝑚)𝑟 = 𝜙(𝑚 + 𝑁)𝑟,

which shows that 𝜙 is indeed a morphism of right-𝑅-modules. ♮

Theorem 8.4.51 (Factorization of morphisms). Every 𝑅-module morphism 𝜙:𝑀 → 𝑁

factors as follows

𝑀 𝑁

𝑀/ker 𝜙 im 𝜙

𝜙

≃
𝜙

Proof. From the universal property Theorem 8.4.50 we find that 𝜙 induces a unique

morphism 𝜙:𝑀/ker 𝜙 → 𝑁 — being defined as 𝜙(𝑎 + ker 𝜙) = 𝜙(𝑎) for any 𝑎 +
ker 𝜙 ∈ 𝑀/ker 𝜙. We simply restrict the codomain of 𝜙 to im 𝜙 so that it becomes

surjective. Moreover, given any two classes 𝑎 + ker 𝜙, 𝑏 + ker 𝜙 ∈ 𝑀/ker 𝜙, such that

𝜙(𝑎 + ker 𝜙) = 𝜙(𝑏 + ker 𝜙) then 𝜙(𝑎) = 𝜙(𝑏) and thus 𝑎 − 𝑏 ∈ ker 𝜙 — therefore

𝑎 + ker 𝜙 = 𝑏 + ker 𝜙 and 𝜙 is injective. ♮

Corollary 8.4.52 (First isomorphism). Let 𝜙:𝑀 ↠ 𝑁 be a surjective 𝑅-module mor-

phism. There exists a canonical isomorphism of 𝑅-modules

𝑁 ≃ 𝑀/ker 𝜙

Proof. Since 𝜙 is surjective, im 𝜙 = 𝑁 and from Theorem 8.4.51 we conclude that the

induced morphism 𝜙:𝑀/ker 𝜙 ≃−→ 𝑁 establishes the wanted canonical isomorphism.

♮

Proposition 8.4.53 (Second isomorphism). Let 𝑀 be an 𝑅-module and 𝑃, 𝑁 ⊆ 𝑀 be

submodules. There exists a canonical isomorphism

𝑁 + 𝑃
𝑁
≃ 𝑃

𝑁 ∩ 𝑃

Proof. Since 𝑁 ↩→ 𝑁 + 𝑃 mapping 𝑛 ↦→ 𝑛 + 0 = 𝑛 is clearly an 𝑅-module morphism,

𝑁 is a submodule of 𝑁 + 𝑃. Moreover, the inclusion 𝑁 ∩ 𝑃 ↩→ 𝑃 mapping 𝑝 ↦→ 𝑝 is

also a morphism since 𝑝 ∈ 𝑃 for all 𝑝 ∈ 𝑁 ∩ 𝑃.

Consider the map 𝜙:𝑁 + 𝑃 → 𝑃
𝑁∩𝑃 given by 𝑛 + 𝑝 ↦→ 𝑝 +𝑁 ∩ 𝑃, which is clearly an

𝑅-module morphism. Given any class 𝑝+𝑁∩𝑃 ∈ 𝑃
𝑁∩𝑃 , one can choose a representative

𝑝 ∈ 𝑃 so that 𝜙(𝑝) = 𝑝 + 𝑁 ∩ 𝑃 — thus 𝜙 is surjective. Moreover, 𝜙(𝑛 + 𝑝) = 𝑁 ∩ 𝑃 if,

and only if 𝑝 ∈ 𝑁 ∩ 𝑃, which in this case implies in 𝑛 + 𝑝 ∈ 𝑁 . Therefore ker 𝜙 = 𝑁 .

By Corollary 8.4.52 we obtain
𝑁+𝑃
ker 𝜙 ≃ 𝑃

𝑁∩𝑃 , which is the required isomorphism. ♮
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Proposition 8.4.54 (Third isomorphism). Let 𝑀 be an 𝑅-module and 𝑁 ⊆ 𝑀 be a

submodule. If 𝑃 ⊆ 𝑀 is a submodule containing𝑁 — then 𝑃/𝑁 is a submodule of 𝑀/𝑁 ,

and there exists a canonical isomorphism

𝑀/𝑁
𝑃/𝑁 ≃ 𝑀/𝑃

Proof. Notice that since 𝑁 ↩→ 𝑃 is clearly an 𝑅-module morphism, thus 𝑁 is a sub-

module of 𝑃. Moreover, if we consider the inclusion 𝑖:𝑃/𝑁 ↩→ 𝑀/𝑁 by mapping

𝑝 + 𝑁 ↦→ 𝑝 + 𝑁 , since 𝑃 ⊆ 𝑀 this is well defined and is a morphism of groups —

furthermore, given any 𝑟 ∈ 𝑅, one has

𝑖((𝑝 + 𝑁)𝑟) = 𝑖(𝑝𝑟 + 𝑁) = 𝑝𝑟 + 𝑁 = (𝑝 + 𝑁)𝑟 = 𝑖(𝑝 + 𝑁)𝑟

for any 𝑝 + 𝑁 ∈ 𝑃/𝑁 , thus 𝑖 is an 𝑅-module morphism. From the last inclusion we

conclude that 𝑃/𝑁 is a submodule of 𝑀/𝑁 .

Let 𝜙:𝑀/𝑁 → 𝑀/𝑃 be defined by mapping 𝑚 + 𝑁 ↦→ 𝑚 + 𝑃 — since 𝑁 ⊆ 𝑃,

this map is well defined and and surjective. Moreover, for any 𝑝 + 𝑁 ∈ 𝑀/𝑁 where

𝑝 ∈ 𝑃, we have 𝜙(𝑝 + 𝑁) = 𝑝 + 𝑃 = 𝑃. Moreover, if 𝑚 + 𝑁 ∈ ker 𝜙 then necessarily

𝑚 ∈ 𝑃. Therefore ker 𝜙 = 𝑃/𝑁 and by Corollary 8.4.52 𝜙 induces an isomorphism

𝑀/𝑁
ker 𝜙 ≃ 𝑀/𝑃. ♮

Corollary 8.4.55 (Submodule correspondence). Let 𝑀 be an 𝑅-module and 𝑁 ⊆ 𝑀 be

a submodule. There exists a bĳection

{submodule 𝑃 of 𝑀 containing 𝑁} −−−−−−−−−−→ {submodules of 𝑀/𝑁}
𝑃 ↦−−−−−−−−−−→ 𝑃/𝑁

Moreover, given submodules 𝑃, 𝑃′ ⊆ 𝑀, we have that 𝑁 ⊆ 𝑃 ⊆ 𝑃′ if and only if

𝑃/𝑁 ⊆ 𝑃′/𝑁 in 𝑀/𝑁—that is, the bĳection preserves inclusions.

Proposition 8.4.56. Let 𝑅 be a commutative ring, and 𝔞, 𝔟 ⊆ 𝑅 be ideals. Then, there

exists a natural 𝑅-module isomorphism

𝔞 · 𝑅
𝔟
≃ 𝔞 + 𝔟

𝔟

Proof. Define a map 𝜙: 𝔞 + 𝔟 → 𝔞 · 𝑅
𝔟

given by 𝜙(𝑎 + 𝑏) = 𝑎 + 𝔟 for every 𝑎 ∈ 𝔞

and 𝑏 ∈ 𝔟. Clearly such a map establishes an 𝑅-module morphism. Moreover, if

𝑝 ≔
∑𝑛
𝑗=1

𝑎 𝑗𝑟 𝑗 + 𝔟 ∈ 𝔞 · 𝑅
𝔟

is any element, since 𝑅 is commutative then 𝔞 is a two-sided

ideal, hence one can choose, for every 1 ⩽ 𝑗 ⩽ 𝑛, an element 𝑎′
𝑗
∈ 𝔞 such that 𝑎 𝑗𝑟 𝑗 = 𝑎′

𝑗
.

Therefore if we consider 𝑞 ≔
∑𝑛
𝑗=1

𝑎′
𝑗
∈ 𝔞 + 𝔟, one has 𝜙(𝑞) = 𝑝 — thus 𝜙 is surjective.

Furthermore, an element 𝑎 + 𝑏 ∈ 𝔞 + 𝔟 belongs to ker 𝜙 if and only if 𝑎 + 𝑏 ∈ 𝔟 —

therefore ker 𝜙 = 𝔟. By Corollary 8.4.52 we obtain an isomorphism
𝔞+𝔟

ker 𝜙 ≃ 𝔞 · 𝑅
𝔟

as

wanted. ♮
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Products & Coproducts
Definition 8.4.57 (Direct product). Let 𝑅 be a ring and (𝑀 𝑗)𝑗∈𝐽 be a collection of 𝑅-

modules (either right or left modules). We define the direct product of (𝑀 𝑗)𝑗∈𝐽 as the

set ∏
𝑗∈𝐽

𝑀 𝑗 ≔ {(𝑚 𝑗)𝑗∈𝐽 : 𝑚 𝑗 ∈ 𝑀 𝑗},

together with coordinate-wise addition and multiplication by elements of 𝑅. This

structure comes naturally with canonical projections 𝜋𝑖 :
∏

𝑗∈𝐽 𝑀 𝑗 ↠ 𝑀𝑖 mapping

(𝑚 𝑗)𝑗∈𝐽 ↦→ 𝑚𝑖 for all 𝑖 ∈ 𝐽.

Definition 8.4.58 (Direct sum). Let 𝑅 be a ring and (𝑀 𝑗)𝑗∈𝐽 be a collection of 𝑅-modules

(either right or left modules). We define the direct product of this family to be a module⊕
𝑗∈𝐽

𝑀 𝑗 ≔ {(𝑚 𝑗) : 𝑚 𝑗 ∈ 𝑀 𝑗 and 𝑚 𝑗 ≠ 0 for finitely many 𝑗 ∈ 𝐽},

with a natural component-wise addition, and multiplication by elements of 𝑅. Such

a structure also naturally induces canonical inclusions 𝜄𝑖 :𝑀𝑖 ↩→
⊕

𝑗∈𝐽 𝑀 𝑗 given by

𝑚 ↦→ (𝑚 𝑗)𝑗∈𝐽 where 𝑚𝑖 = 𝑚 and 𝑚 𝑗 = 0 for 𝑗 ≠ 𝑖.

Theorem 8.4.59. In the category of modules over a given ring, direct products are products
and direct sums are coproducts.

Proof. Let (𝑀 𝑗)𝑗∈𝐽 be a collection of 𝑅-modules (either left or right).

• (Product) Define 𝑀 ≔
∏

𝑗∈𝐽 𝑀 𝑗 . Given an 𝑅-module 𝑁 and a family of mor-

phisms (𝜙 𝑗 :𝑁 → 𝑀 𝑗)𝑗∈𝐽 , we define a map 𝜙:𝑁 → 𝑀 to be given by 𝑛 ↦→
(𝜙 𝑗(𝑛))𝑗∈𝐽 . Notice that since each 𝜙 𝑗 is a morphism, then given any 𝑛, 𝑛′ ∈ 𝑁 we

have

𝜙(𝑛 + 𝑛′) = (𝜙 𝑗(𝑛 + 𝑛′))𝑗∈𝐽 = (𝜙 𝑗(𝑛) + 𝜙 𝑗(𝑛′))𝑗∈𝐽 = (𝜙 𝑗(𝑛))𝑗∈𝐽 + (𝜙 𝑗(𝑛′))𝑗∈𝐽
= 𝜙(𝑛) + 𝜙(𝑛′),

moreover, if 𝑟 ∈ 𝑅 is any element then

𝜙(𝑟𝑛) = (𝜙 𝑗(𝑟𝑛))𝑗∈𝐽 = (𝑟𝜙 𝑗(𝑛))𝑗∈𝐽 = 𝑟(𝜙 𝑗(𝑛))𝑗∈𝐽 = 𝑟𝜙(𝑛).

That is, 𝜙 is an 𝑅-module morphism and clearly 𝜋 𝑗𝜙 = 𝜙 𝑗 for all 𝑗 ∈ 𝐽. Moreover,

uniqueness comes from the fact that the natural projections are epimorphisms.

• (Coproduct) Define 𝑀 ≔
⊕

𝑗∈𝐽 𝑀 𝑗 . Given an 𝑅-module 𝑁 and a family of mor-

phisms (𝜓 𝑗 :𝑀 𝑗 → 𝑁)𝑗∈𝐽 , we define a map 𝜓:𝑀 → 𝑁 by (𝑚 𝑗)𝑗∈𝐽 ↦→
∑
𝑗∈𝐽 𝜓 𝑗(𝑚 𝑗)—

which is well defined since𝑚 𝑗 ≠ 0 only for finitely many 𝑗 ∈ 𝐽 and thus

∑
𝑗∈𝐽 𝜓 𝑗(𝑚 𝑗)

constitutes only of finitely many terms, since 𝜓 𝑗(0) = 0 for any 𝑗 ∈ 𝐽. This map

clearly defines a morphism of 𝑅-modules, and since 𝜄 𝑗 are monomorphisms, 𝜓 is

the unique morphism such that 𝜓𝜄 𝑗 = 𝜓 𝑗 .

♮
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Proposition 8.4.60. Let (𝑀 𝑗)𝑗∈𝐽 be a collection of 𝑅-modules and (𝑁𝑗)𝑗∈𝐽 be a corre-

sponding collection of submodules 𝑁𝑗 ⊆ 𝑀 𝑗 . Then

⊕
𝑗∈𝐽 𝑁𝑗 is naturally identified as

a submodule of

⊕
𝑗∈𝐽 𝑀 𝑗 , and there exists a natural isomorphism⊕

𝑗∈𝐽 𝑀 𝑗⊕
𝑗∈𝐽 𝑁𝑗

≃
⊕
𝑗∈𝐽

𝑀 𝑗/𝑁𝑗 .

Proof. For the sake of notation, define 𝑀 ≔
⊕

𝑗∈𝐽 𝑀 𝑗 and 𝑁 ≔
⊕

𝑗∈𝐽 𝑁𝑗 . Since the

inclusion 𝑁 ↩→ 𝑀 is an 𝑅-module morphism, it follows that 𝑁 is a submodule of 𝑀.

Consider the natural projections (𝜋 𝑗 :𝑀 𝑗 ↠ 𝑀 𝑗/𝑁𝑗)𝑗∈𝐽 , with kernels ker𝜋 𝑗 = 𝑁𝑗 . Notice

that the map 𝜋:𝑀 →
⊕

𝑗∈𝐽 𝑀 𝑗/𝑁𝑗 given by 𝑚 ↦→ (𝜋 𝑗(𝑚))𝑗∈𝐽 has a kernel ker𝜋 = 𝑁 ,

and is naturally surjective from its construction. Therefore by the universal property

of quotients we find 𝑀/ker𝜋 = 𝑀/𝑁 ≃
⊕

𝑗∈𝐽 𝑀 𝑗/𝑁𝑗 . ♮

Proposition 8.4.61 (Internal sum). Given a ring𝑅, let𝑀 be an𝑅-module (either right or

left module) and (𝑁𝑗)𝑗∈𝐽 be a collection of submodules of𝑀. The following propositions

are equivalent:

(a) The map

⊕
𝑗∈𝐽 𝑁𝑗 →

∑
𝑗∈𝐽 𝑁𝑗 given by 𝑥 ↦→ ∑

𝑗∈𝐽 𝜋 𝑗(𝑥) is a unique isomorphism of

𝑅-modules.

(b) For every 𝑖 ∈ 𝐽, we have 𝑁𝑖 ∩
∑
𝑗∈𝐽∖𝑖 𝑁𝑗 = 0.

(c) If

∑
𝑗∈𝐽 𝑥 𝑗 ∈

∑
𝑗∈𝐽 𝑁𝑗 is zero, then 𝑥 𝑗 = 0 for all 𝑗 ∈ 𝐽.

(d) Every element 𝑥 ∈ ∑
𝑗∈𝐽 𝑁𝑗 can be uniquely expressed as a sum 𝑥 =

∑
𝑗∈𝐽 𝑥 𝑗 for

𝑥 𝑗 ∈ 𝑁𝑗 and 𝑥 𝑗 ≠ 0 for only finitely many 𝑗 ∈ 𝐽.

Proof. • (a)⇒ (b). Let 𝑛𝑖 ∈ 𝑁𝑖 ∩
∑
𝑗∈𝐽∖𝑖 𝑁𝑗 be any element, then one can express 𝑛𝑖

as 𝑛𝑖 =
∑
𝑗∈𝐽∖𝑖 𝑎 𝑗𝑛 𝑗 for, therefore 𝑛𝑖 −

∑
𝑗∈𝐽∖𝑖 𝑎 𝑗𝑛 𝑗 = 0. By (a) we find that such an

element has preimage 0 ∈
⊕

𝑗∈𝐽 𝑁𝑗 , which can only be the case if 𝑛𝑖 = 0.

• (b) ⇒ (c). If

∑
𝑗∈𝐽 𝑥 𝑗 = 0, then for every 𝑖 ∈ 𝐽 we have 𝑥𝑖 = −

∑
𝑗∈𝐽∖𝑖 𝑥 𝑗 — but

assuming (b) we conclude that 𝑥𝑖 = 0.

• (c)⇒ (d). The condition of finitely many non-zero terms is already satisfied from

the definition of

∑
𝑗∈𝐽 𝑁𝑗 . Now, if 𝑥 =

∑
𝑗∈𝐽 𝑥 𝑗 =

∑
𝑗∈𝐽 𝑦 𝑗 are two representations

of the same element 𝑥 ∈ ∑
𝑗∈𝐽 𝑁𝑗 , then

∑
𝑗∈𝐽(𝑥 𝑗 − 𝑦 𝑗) = 0. By (c) this implies in

𝑥 𝑗 = 𝑦 𝑗 for all 𝑗 ∈ 𝐽.
• (d) ⇒ (a). Unicity of expression implies that the given map is injective and

unique. Moreover, the map is clearly surjective — therefore it establishes a

unique isomorphism.

♮

Proposition 8.4.62. Let 𝑅 be a ring, and consider a right-𝑅-module 𝑀, and a collection

(𝑁𝑗)𝑗∈𝐽 of right-𝑅-modules. The following propositions hold:
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(a) There exists a canonical isomorphism of abelian groups

MorMod𝑅

(⊕
𝑗∈𝐽

𝑁𝑗 , 𝑀

)
≃

∏
𝑗∈𝐽

MorMod𝑅(𝑁𝑗 , 𝑀).

(b) There exists a canonical isomorphism of abelian groups

MorMod𝑅

(
𝑀,

∏
𝑗∈𝐽

𝑁𝑗

)
≃

∏
𝑗∈𝐽

MorMod𝑅(𝑀, 𝑁𝑗).

(c) If (𝑀𝑖)𝑛𝑖=1
and (𝑁𝑗)𝑚𝑗=1

are finite collections of right-𝑅-modules, then there exists a

canonical isomorphism of abelian groups

MorMod𝑅

( 𝑛⊕
𝑖=1

𝑀𝑖 ,

𝑚⊕
𝑗=1

𝑁𝑗

)
≃

𝑛⊕
𝑖=1

𝑚⊕
𝑗=1

MorMod𝑅(𝑀𝑖 , 𝑁𝑗).

Proof. (a) Define a map Φ: MorMod𝑅(
⊕

𝑗∈𝐽 𝑁𝑗 , 𝑀) →
∏

𝑗∈𝐽 MorMod𝑅(𝑁𝑗 , 𝑀) by sending

𝑓 ↦→ ( 𝑓 𝜄 𝑗)𝑗∈𝐽 , where 𝜄 𝑗 :𝑁𝑗 ↩→
⊕

𝑗∈𝐽 𝑁𝑗 is the canonical inclusion. Notice that Φ

is indeed a group morphism. Also, morphisms with equal image must agree on

every element 𝜄 𝑗(𝑛 𝑗) for any 𝑗 ∈ 𝐽 and 𝑛 𝑗 ∈ 𝑁𝑗 , therefore, since these elements

generate

⊕
𝑗∈𝐽 𝑁𝑗 , it follows that the morphisms need to be equal — thus Φ is

injective. Moreover, if (𝑔𝑗 :𝑁𝑗 → 𝑀)𝑗∈𝐽 is any collection of 𝑅-linear maps, then by

the coproduct universal property there exists a unique 𝑓 :
⊕

𝑗∈𝐽 𝑁𝑗 → 𝑀 such that

𝑓 𝜄 𝑗 = 𝑔𝑗 for all 𝑗 ∈ 𝐽.
(b) Define a map Ψ: MorMod𝑅(𝑀,

∏
𝑗∈𝐽 𝑁𝑗) →

∏
𝑗∈𝐽 MorMod𝑅(𝑀, 𝑁𝑗) by 𝑓 ↦→ (𝜋 𝑗 𝑓 ) —

again this product preserves additive structure. Also, this map is injective since,

given 𝑓 , 𝑔:𝑀 ⇒
∏

𝑗∈𝐽 𝑁𝑗 such that Ψ( 𝑓 ) = Ψ(𝑔), we must have 𝜋 𝑗 𝑓 (𝑚) = 𝜋 𝑗𝑔(𝑚)
for every 𝑗 ∈ 𝐽 and 𝑚 ∈ 𝑀, therefore 𝑓 (𝑚) = 𝑔(𝑚) and 𝑓 = 𝑔. Surjectivity

comes from the product universal property: given a collection (𝑔𝑗 :𝑀 → 𝑁𝑗)𝑗∈𝐽 of

morphisms, there exists a unique morphism 𝑓 :𝑀 → ∏
𝑗∈𝐽 𝑁𝑗 such that 𝜋 𝑗 𝑓 = 𝑔𝑗

for all 𝑗 ∈ 𝐽.
(c) For finite indexing sets direct sums and products are isomorphic, thus the isomor-

phism follows directly from the last two items.

♮

Example 8.4.63. Let 𝑀1, . . . , 𝑀𝑛 be right-𝑅-modules and define a right-𝑅-module

𝑀 ≔
⊕𝑛

𝑗=1
𝑀 𝑗 and a ring

𝐻 ≔

{ 
𝑓11 . . . 𝑓1𝑛
...

. . .
...

𝑓𝑛1 . . . 𝑓𝑛𝑛

 : 𝑓𝑖 𝑗 ∈ MorMod𝑅(𝑀 𝑗 , 𝑀𝑖)
}
.

Then there exists a natural isomorphism of rings

𝐻 ≃ EndMod𝑅(𝑀).
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First we show that 𝐻 is indeed a ring. Given any [ 𝑓𝑖 𝑗], [𝑔𝑖 𝑗] ∈ 𝐻, we have entry-

wise 𝑓𝑖 𝑗 + 𝑔𝑖 𝑗 ∈ MorMod𝑅(𝑀 𝑗 , 𝑀𝑖), thus [ 𝑓𝑖 𝑗 + 𝑔𝑖 𝑗] ∈ 𝐻, and 𝐻 is an abelian group via

matrix addition. Now, if we define a product on 𝐻 as the matrix product [ 𝑓𝑖 𝑗] · [𝑔𝑖 𝑗] ≔
[∑𝑛

𝑘=1
𝑓𝑖𝑘 𝑔𝑘 𝑗], then since 𝑓𝑖𝑘 𝑔𝑘 𝑗 :𝑀 𝑗 → 𝑀𝑖 thus the matrix product [ 𝑓𝑖 𝑗] · [𝑔𝑖 𝑗] is also an

element of 𝐻—which shows that 𝐻 is indeed a ring.

If [ 𝑓𝑖 𝑗] ∈ 𝐻 is any matrix, define a morphism of right-𝑅-modules 𝑓 :𝑀 → 𝑀 with

projections ( 𝑓𝑖)𝑛𝑖=1
, where for every 1 ⩽ 𝑖 ⩽ 𝑛 the map 𝑓𝑖 :𝑀 → 𝑀𝑖 is the unique

morphism such that the diagram

𝑀 𝑗 𝑀

𝑀𝑖
𝑓𝑖 𝑗

𝑓𝑖

commutes for all 1 ⩽ 𝑗 ⩽ 𝑛. We now simply define a map Φ:𝐻 → EndMod𝑅(𝑀) by

[ 𝑓𝑖 𝑗] ↦→ 𝑓 .

We now show that Φ is a ring morphism. Let [𝑔𝑖 𝑗] ∈ 𝐻 be any other matrix

and let 𝑔 ≔ Φ([𝑔𝑖 𝑗]):𝑀 → 𝑀. If [ℎ𝑖 𝑗] ≔ [ 𝑓𝑖 𝑗] · [𝑔𝑖 𝑗] then from definition we have

ℎ𝑖 𝑗 =
∑𝑛
𝑘=1

𝑓𝑖𝑘 𝑔𝑘 𝑗 . Notice that the composition 𝑓 𝑔:𝑀 → 𝑀 with projections

( 𝑓 𝑔)𝑖 = 𝑓𝑖

( 𝑛∑
𝑘=1

𝑔𝑘

)
= 𝑓𝑖

( 𝑛∑
𝑘=1

𝑛∑
𝑗=1

𝑔𝑘 𝑗

)
=

𝑛∑
𝑗=1

𝑛∑
𝑘=1

𝑓𝑖𝑘 𝑔𝑘 𝑗

for all 1 ⩽ 𝑖 ⩽ 𝑛, therefore ( 𝑓 𝑔)𝑖 = ℎ𝑖 . This proves that 𝜙 is a ring morphism:

𝜙([ 𝑓𝑖 𝑗] · [𝑔𝑖 𝑗]) = ℎ = 𝑓 𝑔 = 𝜙([ 𝑓𝑖 𝑗])𝜙([𝑔𝑖 𝑗]).

For the injectivity of 𝜙 it suffices to see that the image of an element of 𝐻 is

uniquely defined by the universal property of the coproduct. For the surjectivity of

𝜙, let 𝑓 :𝑀 → 𝑀 be any endomorphism, then again from the universal property each

of its projections 𝑓𝑖 are uniquely defined by a family of morphisms of 𝑅-modules

( 𝑓𝑖 𝑗 :𝑀 𝑗 → 𝑀𝑖)𝑛𝑗=1
, therefore, the matrix [ 𝑓𝑖 𝑗] ∈ 𝐻 has image 𝑓 under 𝜙. Therefore we

conclude that 𝐻 ≃ EndMod𝑅(𝑀).

Example 8.4.64. Let 𝑅 be a ring and consider 𝑅 as a right-𝑅-module over itself. We’ll

show that there exists a natural isomorphism of rings

𝑀𝑛(𝑅) ≃ EndMod𝑅

( 𝑛⊕
𝑗=1

𝑅
)
.

First, we shall show that 𝑅 ≃ EndMod𝑅(𝑅) as rings. For that end, define a map

Ψ:𝑅 → EndMod𝑅(𝑅) given by 𝑟 ↦→ 𝑟𝑚, where 𝑟𝑚:𝑅 → 𝑅 is the left-multiplication by

𝑟, that is 𝑟𝑚(𝑎) = 𝑟𝑎. It is easy to notice that if 𝑟, 𝑠 ∈ 𝑅, then 𝑟𝑠𝑚 = 𝑟𝑚𝑠𝑚, therefore

Ψ is a ring morphism. For the injectivity of Ψ, if 𝑟, 𝑠 ∈ 𝑅 are elements with equal

image, then in particular 𝑟 = 𝑟𝑚(1) = 𝑠𝑚(1) = 𝑠. For surjectivity, if 𝑓 :𝑅 → 𝑅 is an
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endomorphism of right-𝑅-modules, then given 𝑟 ∈ 𝑅 we have 𝑓 (𝑟) = 𝑓 (1 · 𝑟) = 𝑓 (1)𝑟,
therefore 𝑓 = 𝑓 (1)𝑚—and Ψ( 𝑓 (1)) = 𝑓 . We thus conclude that

𝑅 ≃ EndMod𝑅(𝑅).

As in Example 8.4.63, we can define a ring 𝐻 of 𝑛 × 𝑛 matrices whose entries are

elements of the ring EndMod𝑅(𝑅). From our previous result, given a matrix [ 𝑓𝑖 𝑗] ∈ 𝐻
there exists a unique matrix [𝑟𝑖 𝑗] ∈ 𝑀𝑛(𝑅) such that Ψ(𝑟𝑖 𝑗) = 𝑓𝑖 𝑗 for all 1 ⩽ 𝑖 , 𝑗 ⩽ 𝑛.

Therefore, Ψ induces an isomorphism𝐻 ≃ 𝑀𝑛(𝑅). From Example 8.4.63 we know that

𝐻 ≃ EndMod𝑅(
⊕𝑛

𝑗=1
𝑅), therefore we conclude that 𝑀𝑛(𝑅) ≃ EndMod𝑅(

⊕𝑛
𝑗=1
𝑅).

As a corollary of this result, together with Corollary 8.4.45, we find that if 𝑆 is a

simple right-𝑅-module, then there exists a natural isomorphism of rings

𝑀𝑛(𝐷) ≃ EndMod𝑅

( 𝑛⊕
𝑗=1

𝑆
)
,

where 𝐷 is a division ring—in particular, we have 𝐷 ≃ EndMod𝑅(𝑆).

Pullbacks & Pushouts of 𝑅-Modules
Proposition 8.4.65 (Pullback). Let 𝑀, 𝑁 , and 𝑍 be 𝑅-modules. Given 𝑅-module

morphisms 𝜇:𝑀 → 𝑍 and 𝜆:𝑁 → 𝑍, we define a triple (𝑀 ×𝑍 𝑁,𝜋𝑀 ,𝜋𝑁 )— where

𝑀 ×𝑍 𝑁 ≔ {(𝑚, 𝑛) ∈ 𝑀 × 𝑁 : 𝜇(𝑚) = 𝜆(𝑛)},

with the natural𝑅-module structures inherited from𝑀×𝑁 , and𝜋𝑀 :𝑀×𝑍𝑁 ↠ 𝑀 and

𝜋𝑁 :𝑀 ×𝑍 𝑁 ↠ 𝑁 are canonical projections. We claim that the following commutative

square is a pullback

𝑀 ×𝑍 𝑁 𝑁

𝑀 𝑍

𝜋𝑀

𝜋𝑁

⌟
𝜆

𝜇

Proof. From construction we have 𝜇𝜋𝑀 = 𝜆𝜋𝑁 , thus the diagram commutes. Let 𝑊

be any other 𝑅-module, and consider any two 𝑅-module morphisms 𝑚:𝑊 → 𝑀 and

𝑛:𝑊 → 𝑁 such that 𝜇𝑚 = 𝜆𝑛. We define a map 𝜙:𝑊 → 𝑀 ×𝑍 𝑁 to be given by

𝜙(𝑤) = (𝑚(𝑤), 𝑛(𝑤))— since 𝜇𝑚(𝑤) = 𝜇𝑛(𝑤) then indeed 𝜙(𝑤) ∈ 𝑀 ×𝑍 𝑁 . Moreover,

since 𝑚 and 𝑛 are morphisms, it follows trivially that 𝜙 is an 𝑅-module morphism.

Uniqueness of 𝜙 comes from the fact that both 𝜋𝑀 and 𝜋𝑁 are epimorphisms. ♮

Proposition 8.4.66 (Pushout). Let 𝑀, 𝑁 , and 𝑃 be three 𝑅-modules, and consider

morphisms 𝑛:𝑀 → 𝑁 and 𝑝:𝑀 → 𝑃. Consider the following:

• Define two 𝑅-modules:

𝐿 ≔ {(𝑛(𝑚),−𝑝(𝑚)) : 𝑚 ∈ 𝑀} ⊆ 𝑁 ⊕ 𝑃 and 𝑄 ≔
𝑁 ⊕ 𝑃
𝐿
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• Define morphisms 𝜀𝑁 :𝑁 → 𝑄 and 𝜀𝑃 :𝑃 → 𝑄 given by

𝜀𝑁 ≔ 𝜋𝜄𝑁 and 𝜀𝑃 ≔ 𝜋𝜄𝑃 .

Where 𝜋:𝑁 ⊕ 𝑃 ↠ 𝑄 is the canonical projection and 𝜄𝑁 and 𝜄𝑃 are the canonical

inclusions of 𝑁 and 𝑃, respectively, into 𝑁 ⊕ 𝑃.

Then the triple (𝑄, 𝜀𝑁 , 𝜀𝑃) is the pushout of the pair (𝑛, 𝑝), that is

𝑀 𝑃

𝑁 𝑄

𝑝

𝑛

⌜
𝜀𝑃

𝜀𝑁

Proof. First we show that 𝜀𝑁𝑛 = 𝜀𝑃𝑝. Notice that for any 𝑚 ∈ 𝑀 we have

𝜀𝑃𝑝(𝑚) = (𝜋𝜄𝑃)𝑝(𝑚) = 𝜋(0, 𝑝(𝑚)) = (0, 𝑝(𝑚)) + 𝐿,
𝜀𝑁𝑛(𝑚) = (𝜋𝜄𝑁 )𝑛(𝑚) = 𝜋(𝑛(𝑚), 0) = (𝑛(𝑚), 0) + 𝐿,

therefore 𝜀𝑁𝑛(𝑚) − 𝜀𝑃𝑝(𝑚) = (𝑛(𝑚),−𝑝(𝑚)) + 𝐿 = 𝐿, thus 𝜀𝑁𝑛 = 𝜀𝑃𝑝.

Now, let 𝑋 be any 𝑅-module, and consider morphisms 𝑝′:𝑃 → 𝑋 and 𝑛′:𝑁 → 𝑋

such that 𝑝′𝑝 = 𝑛′𝑛. Define a map 𝑞:𝑄 → 𝑋 given by (𝑥, 𝑦) + 𝐿 ↦→ 𝑛′(𝑥) + 𝑝′(𝑦), where

(𝑥, 𝑦) ∈ 𝑁 ⊕ 𝑃. We now show that 𝑞 is well defined: suppose (𝑥, 𝑦) + 𝐿 = (𝑥′, 𝑦′) + 𝐿—

that is, (𝑥 − 𝑥′, 𝑦 − 𝑦′) ∈ 𝐿—then since 𝑞((𝑥 − 𝑥′, 𝑦 − 𝑦′) + 𝐿) = 𝑞(𝐿) = 0 and thus their

images are the same. Also, from construction, 𝑞 is a uniquely determined morphism

of 𝑅-modules and satisfies 𝑝′ = 𝑞𝜀𝑃 and 𝑛′ = 𝑞𝜀𝑁 . ♮
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Chapter 9

Integral Domains

9.1 Torsion
Definition 9.1.1 (Torsion). Let 𝑅 be an integral domain, and 𝑀 be an 𝑅-module. We

define the torsion of 𝑀 to be the submodule

tor𝑀 ≔ {𝑚 ∈ 𝑀 : 𝑟𝑚 = 0 for some 𝑟 ∈ 𝑅 ∖ 0}.

If tor𝑀 = 0, we say that 𝑀 is of free-torsion. On the contrary, if tor𝑀 = 𝑀, then 𝑀 is

said to be of torsion.

Definition 9.1.2 (Rank). Given an integral domain 𝑅 and an 𝑅-module 𝑀, we define

the rank of 𝑀 to be the cardinality of the maximal 𝑅-linearly independent subset of 𝑀.

Example 9.1.3. If𝑅 is an integral domain, and𝑀 is a torsion𝑅-module, then rank𝑅𝑀 =

0. Indeed, for any singleton {𝑚} ⊆ 𝑀 there exists a non-zero 𝑟 ∈ 𝑅 such that 𝑟𝑚 = 0,

which shows that every singleton is 𝑅-linearly dependent.

9.2 Noetherian Rings & Modules

Chain Conditions
Recalling the definition of Noetherian rings (see Definition 8.3.35), we can extend this

notion to the environment of modules:

Definition 9.2.1. Let𝑅 be a commutative ring. We say that an𝑅-module𝑀 is Noetherian
if every submodule of 𝑀 is finitely generated.

Proposition 9.2.2. Let 𝑅 be a commutative ring, and𝑀 be an 𝑅-module. The following

are equivalent propositions:

(a) 𝑀 is a Noetherian module.

(b) Every ascending chain of submodules of 𝑀 stabilizes. In other words, if (𝑁𝑗)𝑗∈N is

a collection of submodules of 𝑀 such that 𝑁𝑗 ⊆ 𝑁𝑗+1, then there exists an index

𝑗0 ∈ N such that 𝑁𝑗 = 𝑁𝑗+1 for all 𝑗 ⩾ 𝑗0.
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(c) Every non-empty collection of submodules of𝑀 has a maximal element with respect

to inclusion.

Proof. • (a) ⇒ (b). Let 𝑀 be Noetherian and define the module 𝑁 ≔
⋃
𝑗∈N 𝑁𝑗 ,

which is a submodule of 𝑀. Since submodules of Noetherian rings are finitely

generated, it follows that 𝑁 is finitely generated. Let 𝑁 = ⟨𝑛1, . . . , 𝑛𝑘⟩ be its

generating set. For all 1 ⩽ 𝑖 ⩽ 𝑘, there must exist 𝑗𝑖 ∈ N such that 𝑛𝑖 ∈ 𝑁𝑗 for all

𝑗 ⩾ 𝑗𝑖 . Taking the maximum 𝑗0 ≔ max(𝑗1, . . . , 𝑗𝑘), one finds that 𝑛𝑖 ∈ 𝑁𝑗 for each

1 ⩽ 𝑖 ⩽ 𝑘 and every 𝑗 ⩾ 𝑗0. Therefore 𝑁 ⊆ 𝑁𝑗 for all 𝑗 ⩾ 𝑗0, which implies that

𝑁𝑗 = 𝑁 for each of those indexes — therefore the chain stabilizes.

• (b) ⇒ (c). We prove the contrapositive. Suppose there exists a non-empty

collection𝒩 of submodules of 𝑀 admitting no maximal element. Let 𝑁0 ∈ 𝒩 be

any element. Inductively, for all 𝑗 ⩾ 1, define 𝑁𝑗 ∈ 𝒩 such that 𝑁𝑗−1 ⊊ 𝑁𝑗 , that

is, 𝑁𝑗−1 is a proper subset of 𝑁𝑗 — this is possible since 𝑁𝑗−1 isn’t maximal. The

collection (𝑁𝑗)𝑗∈N forms an ascending chain of submodules, but by construction

does not stabilize.

• (c)⇒ (a). Let 𝑁 ⊆ 𝑀 be any submodule. Since (0) ⊆ 𝑁 is a finitely generated

submodule of 𝑁 , one can define a non-empty collection 𝒩 of finitely generated

submodules of 𝑁 . From (c) one has that 𝒩 admits a maximum element, say

𝑊 ≔ ⟨𝑛1, . . . , 𝑛𝑘⟩. Let 𝑛 ∈ 𝑁 be any element and consider the finitely generated

submodule ⟨𝑛1, . . . , 𝑛𝑘 , 𝑛⟩ ∈ 𝒩 . Since𝑊 is maximal, we have ⟨𝑛1, . . . , 𝑛𝑘 , 𝑛⟩ ⊆ 𝑊
— therefore 𝑛 ∈ 𝑊 and 𝑁 ⊆ 𝑊 . Therefore 𝑁 = 𝑊 is finitely generated, which

proves that 𝑀 is Noetherian.

♮

Corollary 9.2.3. Every principal ideal domain 𝑅 is a Noetherian module over itself,

and thus every non-empty collection of ideals of 𝑅 admits a maximal element.

Lemma 9.2.4 (Quotient of Noetherian rings is Noetherian). Let 𝑅 be a Noetherian ring,

and 𝔞 ⊆ 𝑅 be an ideal. Then the quotient ring 𝑅/𝔞 is Noetherian.

Proof. From Proposition 8.3.36 we find that the canonical projection 𝑅 ↠ 𝑅/𝔞 implies

that 𝑅/𝔞 is Noetherian. ♮

Theorem 9.2.5 (Generalized Hilbert’s basis theorem). Let 𝑅 be a ring. Then 𝑅 is

Noetherian if and only if the polynomial ring 𝑅[𝑥1, . . . , 𝑥𝑛].

Prove generalized Hilbert’s basis theorem

Corollary 9.2.6. Let 𝑅 be a Noetherian ring, and 𝔞 ⊆ 𝑅[𝑥1, . . . , 𝑥𝑛] be an ideal of the

polynomial ring. Then the quotient ring 𝑅[𝑥1, . . . , 𝑥𝑛]/𝔞 is Noetherian.

Proof. Since 𝑅[𝑥1, . . . , 𝑥𝑛] is Noetherian by Theorem 9.2.5, applying Lemma 9.2.4 we

find that 𝑅[𝑥1, . . . , 𝑥𝑛]/𝔞 is Noetherian. ♮

Corollary 9.2.7. Every finite-type algebra over a Noetherian ring is Noetherian.
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Existence of Maximal Ideals
Proposition 9.2.8. Let 𝑅 be a commutative ring. If 𝔞 is any proper ideal of 𝑅, then there

exists a maximal ideal 𝔪 of 𝑅 containing 𝔞.

Proof. Consider the collection 𝐼 of proper ideals of 𝑅 containing 𝔞—which is ordered

by inclusion. Using this ordering, let (𝔞𝑗)𝑗∈𝐽 be the chain of all proper ideals with 𝔞𝑗 ∈ 𝐼
and 𝔞𝑗 ⊆ 𝔞𝑗+1. Define the set 𝔪 ≔

⋃
𝑗∈𝐽 𝔞𝑗 , which is again an ideal of 𝑅. Since every 𝔞𝑗

contains 𝔞 and does not contain 1, it follows that 𝔪 contains 𝔞 and also doesn’t contain

1—hence 𝔪 is a proper ideal. Therefore 𝔪 is a maximal ideal of 𝑅 containing 𝔞, which

proves the statement. ♮

9.3 Localization
Definition 9.3.1 (Multiplicative subset). Given a commutative ring 𝑅, a subset 𝑆 ⊆ 𝑅
is said to be multiplicative if 1𝑅 ∈ 𝑆 and 𝑆 is closed under multiplication—that is, given

𝑠, 𝑠′ ∈ 𝑆, we have 𝑠𝑠′ ∈ 𝑆.

Definition 9.3.2 (Localization). Let 𝑅 be a commutative ring, and 𝑆 ⊆ 𝑅 be a multi-
plicative subset. A localization of 𝑅 over the set 𝑆 is a morphism of commutative rings
𝐿𝑆:𝑅→ 𝑅[𝑆−1] such that:

(a) For all 𝑠 ∈ 𝑆, the image 𝐿𝑆(𝑠) ∈ 𝑅[𝑆−1] is a unit.
(b) For every morphism of rings 𝑓 :𝑅→ 𝐾 satisfying property (a), there exists a unique

ring morphism 𝜙:𝑅[𝑆−1] → 𝐾 such that the diagram

𝑅 𝑅[𝑆−1]

𝐾

𝐿𝑆

𝑓

𝜙

Equivalently, consider the minimal equivalence relation ∼
frac

on the set 𝑅 × 𝑆 defined

by (𝑟, 𝑠) ∼
frac
(𝑟′, 𝑠′) if and only if 𝑟𝑠′ − 𝑠𝑟′ = 0. Then the localization of 𝑅 under the

multiplicative subset 𝑆 is simply

𝑅[𝑆−1] = (𝑅 × 𝑆)/∼
frac
.

Example 9.3.3. Let 𝑝 ∈ Z be a prime number, and consider the ring of fractions Z[𝑝−1].
Then every proper submodule of the Z-module given by the quotient Z[𝑝−1]/Z is finite.

How to solve this?

Definition 9.3.4. Let 𝑅 be an integral domain. We define the field of fractions of 𝑅 to be

the localization

Frac(𝑅) ≔ 𝑅[(𝑅 ∖ {0})−1].
It is immediate that Frac(𝑅) is a field, since a field is simply an integral domain

whose non-zero elements are units—and this exactly what we did with the above

localization.
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9.4 Principal Ideal Domains

Modules Over PID’s
Theorem 9.4.1. Let 𝑅 be a principal ideal domain, and 𝑀 be a free 𝑅-module with

rank𝑅𝑀 = 𝑚 finite, and 𝑁 ⊆ 𝑀 a submodule. Then:

(a) The submodule 𝑁 is free with rank𝑅 𝑁 = 𝑛 satisfying 𝑛 ⩽ 𝑚.

(b) There exists a basis (𝑦1, . . . , 𝑦𝑚) of 𝑀, and a collection (𝑎1, . . . , 𝑎𝑚) of 𝑅 such that

(𝑎1𝑦1, . . . , 𝑎𝑛𝑦𝑛) is a basis for 𝑁 and 𝑎1 | 𝑎2 | · · · | 𝑎𝑛 .

Proof. Fix a basis (𝑥1, . . . , 𝑥𝑚) for 𝑀 and define a collection of 𝑅-linear morphisms

(𝜋 𝑗 :𝑀 ↠ 𝑅)𝑛
𝑗=1

with 𝜋 𝑗𝑥𝑖 = 𝛿𝑖 𝑗 .

(a) Since 𝑅 is a domain, 𝑀 is torsion-free and so is 𝑁 . Since 𝑀 has a finite rank, it

must also be the case that 𝑁 has a finite rank 𝑛 satisfying 𝑛 ⩽ 𝑚—which follows

from Proposition 10.2.14. We proceed via induction on 𝑛: for the base case 𝑛 = 0

we have 𝑁 = 0 and therefore 𝑁 is free. We assume for the induction hypothesis

that the proposition is true for some 0 < 𝑛 − 1 < 𝑚. Now we consider the case

0 < 𝑛 ⩽ 𝑚: since 𝑛 is non-zero, then 𝑁 is a non-zero module and therefore there

exists a non-zero 𝑥 =
∑𝑛
𝑗=1
𝑏 𝑗𝑥 𝑗 ≠ 0 element of 𝑁 . If 1 ⩽ 𝑗0 ⩽ 𝑛 is an index such that

𝑏 𝑗0 ≠ 0, then in particular 𝜋 𝑗0|𝑁 is a non-zero map of the form 𝑁 → 𝑅. Since 𝑅 is

a PID and 𝜋 𝑗0𝑁 ⊆ 𝑅 is a non-zero submodule, then there must exist 𝑏0 ∈ 𝑅 ∖ 0 for

which 𝜋 𝑗0𝑁 = 𝑅𝑏0. Since 𝑅 is a domain, then {𝑏0} is a basis for the free 𝑅-module

𝜋 𝑗0𝑁 . Then the short exact sequence

0 ker(𝜋 𝑗0|𝑁 ) 𝑁 𝑅𝑏0 0

𝜋𝑗
0
|𝑁

ends with a free module and thus splits, hence

𝑁 ≃ ker(𝜋 𝑗0|𝑁 ) ⊕ 𝑅𝑏0.

Since rank is additive over direct sums, then 𝑛 = rank𝑅(ker(𝜋 𝑗0|𝑁 )) + 1 implies that

ker(𝜋 𝑗0|𝑁 ) ⊆ 𝑀 is a submodule of rank 𝑛 − 1. From the inductive hypothesis it

follows that ker(𝜋 𝑗0|𝑁 ) is a free module. Therefore 𝑁 is the direct sum of two free

modules, hence 𝑁 is itself free.

(b) Notice that the case 𝑀 = 0 is trivial, thus we shall consider only 𝑚 ⩾ 1 and do

induction on 𝑚—moreover, we’ll assume that 𝑁 is anon-zero submodule of 𝑀,

since the zero case is trivially satisfied. For the base case 𝑚 = 1, there exists an 𝑅-

module isomorphism 𝜙:𝑀 ≃−→ 𝑅. Then from the fact that 𝑅 is a PID it follows that

there exists 𝑎 ∈ 𝑅 such that 𝜙𝑁 = 𝑅𝑎 = 𝑎𝑅, and if 𝑢 ≔ 𝜙−1(1) then 𝑀 = 𝑅𝑢—so

that {𝑢} is a basis for 𝑀. Moreover,

𝑁 = 𝑎(𝑅𝑢) = (𝑎𝑅)𝑢 = (𝑅𝑎)𝑢 = 𝑅(𝑎𝑢),

therefore {𝑎𝑢} forms a basis for 𝑁 .
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Now let 𝑚 > 1 and assume as a hypothesis for induction that the proposition is

true for all modules of rank less than 𝑚. For each 𝜙 ∈ Mor𝑅-Mod(𝑀, 𝑅), let 𝑎𝜙 ∈ 𝑅
denote a ring element such that 𝜙𝑁 = 𝑅𝑎𝜙, and define a collection of principal

ideals

Σ ≔ (𝑅𝑎𝜙)𝜙∈Mor(𝑀,𝑅).

From our previous considerations in item (a), we know that there must exist a

non-zero 𝜋 𝑗0 ∈ Mor(𝑀, 𝑅)—thus Σ is non-empty and its elements are not all zero.

Since 𝑅 is Noetherian, it follows thatΣ admits a maximal element 𝑅𝑎𝜙1
∈ Σ. Define

𝑎1 ≔ 𝑎𝜙1
and let 𝑦 ∈ 𝑁 be such that 𝜙1𝑦 = 𝑎1, which exists because 𝜙1𝑁 = 𝑅𝑎1.

We’ll show that 𝑎1 | 𝜑𝑦 for any 𝜑 ∈ Mor(𝑀, 𝑅). Let 𝜑:𝑀 → 𝑅 be any such map,

and let 𝔭 ≔ ⟨𝑎1, 𝜑𝑦⟩ be an ideal of 𝑅, so that there exists 𝑑 ∈ 𝑅 such that 𝔭 = 𝑅𝑑

since 𝔭 is principal. Therefore there exists a pair 𝑟1, 𝑟2 ∈ 𝑅 such that 𝑑 = 𝑟1𝑎1+𝑟2𝜑𝑦.

Define a morphism 𝜓:𝑀 → 𝑅 given by 𝜓 ≔ 𝑟1𝜙1 + 𝑟2𝜑 so that 𝜓𝑦 = 𝑑 and hence

𝑑 ∈ 𝜓𝑁 from the fact that 𝑦 ∈ 𝑁 . Since 𝑎1 ∈ 𝑅𝑑, then 𝑅𝑎1 ⊆ 𝑅𝑑 and from

maximality we obtain the equality 𝑅𝑎1 = 𝑅𝑑, which proves that 𝑎1 | 𝑑—while

𝑑 | 𝜑𝑦, thus 𝑎1 | 𝜑𝑦 as we wanted.

In particular, the last paragraph shows that 𝑎1 | 𝜋 𝑗𝑦 for each projection 1 ⩽ 𝑗 ⩽ 𝑚,

thus we may find 𝑏 𝑗 ∈ 𝑅 such that 𝜋 𝑗𝑦 = 𝑎1𝑏 𝑗 . We shall define

𝑦1 ≔

𝑚∑
𝑗=1

𝑏 𝑗𝑥 𝑗 .

Notice then that 𝑦 can be rewritten as

𝑦 =

𝑚∑
𝑗=1

𝜋 𝑗(𝑦)𝑥 𝑗 =
𝑚∑
𝑗=1

(𝑎1𝑏 𝑗)𝑥 𝑗 = 𝑎1

𝑚∑
𝑗=1

𝑏 𝑗𝑥 𝑗 = 𝑎1𝑦1. (9.1)

Furthermore, one knows that 𝑎1 = 𝜓𝑦 = 𝜓(𝑎1𝑦1) = 𝑎1𝜓𝑦1, therefore since 𝑅 is a

domain it follows that 𝜓𝑦1 = 1.

We’ll now show that 𝑀 = 𝑅𝑦1 ⊕ ker𝜓. Let 𝑥 ∈ 𝑀 be any element and write

𝑥 = 𝜓(𝑥)𝑦1 + (𝑥 − 𝜓(𝑥)𝑦1). Notice that

𝜓(𝑥 − 𝜓(𝑥)𝑦1) = 𝜓𝑥 − 𝜓(𝑥)𝜓(𝑦1) = 0 (9.2)

so 𝑥 − 𝜓(𝑥)𝑦1 ∈ ker𝜓. Therefore 𝑀 = 𝑅𝑦1 + ker𝜓. Now if 𝑟𝑦1 ∈ ker𝜓 then from

the fact that 𝜓𝑦1 = 1 we have 𝑟 = 0, hence 𝑟𝑦1 = 0 and thus 𝑅𝑦1 ∩ ker𝜓 = 0. We

thus conclude that 𝑀 = 𝑅𝑦1 ⊕ ker𝜓.

Further, we’ll prove that 𝑁 = 𝑅(𝑎1𝑦1) ⊕ (𝑁 ∩ ker𝜓). Let 𝑥 ∈ 𝑁 be any element and

as before rewrite it as 𝑥 = 𝜓(𝑥)𝑦1 + (𝑥 − 𝜓(𝑥)𝑦1). Using the fact that 𝜓𝑁 = 𝑅𝑎1,

there exists 𝑏 ∈ 𝑅 such that 𝜓𝑥 = 𝑏𝑎1—then one has

𝑥 = (𝑏𝑎1)𝑦1 + (𝑥 − (𝑏𝑎1)𝑦1)
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where 𝑏𝑎1𝑦1 ∈ 𝑅(𝑎1𝑦1) and 𝑥 − (𝑏𝑎1)𝑦1 ∈ 𝑁 ∩ ker𝜓 from Eq. (9.2). Therefore

𝑁 = 𝑅(𝑎1𝑦1) + (𝑁 ∩ ker𝜓), and since 𝑅(𝑎1𝑦1) ⊆ 𝑅𝑦1 while 𝑁 ∩ ker𝜓 ⊆ ker𝜓 then

𝑅(𝑎1𝑦1) ∩ (𝑁 ∩ ker𝜓) = 0. Thus

𝑁 = 𝑅(𝑎1𝑦1) ⊕ (𝑁 ∩ ker𝜓).

Since ker𝜓 ⊆ 𝑀 then it is free and the rank of the direct sum yields rank𝑅 ker𝜓 =

𝑚 − 1. Thus from the inductive hypothesis we conclude that there exists a ba-

sis (𝑦2, . . . , 𝑦𝑚) of ker𝜓 and a collection of ring elements (𝑎2, . . . , 𝑎𝑛) such that

(𝑎2𝑦2, . . . , 𝑎𝑛𝑦𝑛) forms a basis for 𝑁 ∩ ker𝜓, and 𝑎2 | 𝑎3 | · · · | 𝑎𝑚 . Since 𝑀 =

𝑅𝑦1⊕ker𝜓 then (𝑦1, 𝑦2, . . . , 𝑦𝑚) is a basis for𝑀, and since𝑁 = 𝑅(𝑎1𝑦1)⊕(𝑁∩ker𝜓)
we have that (𝑎1𝑦1, 𝑎2𝑦2, . . . , 𝑎𝑛𝑦𝑛) is a basis for 𝑁 .

To conclude the proof, we must show that 𝑎1 | 𝑎2. Since (𝑦1, . . . , 𝑦𝑚) is a basis of

𝑀, let 𝑓 :𝑀 → 𝑅 be an 𝑅-linear morphism such that 𝑓 𝑦1 = 𝑓 𝑦2 = 1 while 𝑓 𝑦 𝑗 = 0

for each 3 ⩽ 𝑗 ⩽ 𝑚. From Eq. (9.1) we have 𝑎1 = 𝑎1 𝑓 𝑦1 = 𝑓 (𝑎1𝑦1) = 𝑓 𝑦, therefore

since 𝑦 ∈ 𝑁 then 𝑎1 ∈ 𝑓 𝑁 . This implies in 𝑅𝑎1 ⊆ 𝑓 𝑁 but using maximality this

yields the equality 𝑓 𝑁 = 𝑅𝑎1. We also know that 𝑎2 = 𝑓 (𝑎2𝑦2) in a similar fashion,

and since 𝑎2𝑦2 ∈ 𝑁 then 𝑎2 ∈ 𝑓 𝑁 . This concludes the proof that 𝑎1 | 𝑎2, which was

the last step for the end of the proof at large.

♮

Decomposition Theorems
Theorem 9.4.2 (Fundamental theorem of invariant factors). Let 𝑅 be a principal ideal

domain and 𝑀 a finitely generated 𝑅-module. Then the following holds:

(a) There exists a number 𝑟 ∈ N and a collection of non-zero and non-invertible

elements (𝑎1, . . . , 𝑎𝑚) of 𝑅 such that

𝑀 ≃ 𝑅𝑟 ⊕
( 𝑚⊕
𝑗=1

𝑅/𝑅𝑎 𝑗
)
,

and 𝑎1 | 𝑎2 | · · · | 𝑎𝑚 . That is, 𝑀 is isomorphic to the direct sum of a finite collection

of cyclic 𝑅-modules. The elements 𝑎 𝑗 are said to be invariant factors of 𝑀.

(b) The module 𝑀 is torsion-free if and only if 𝑀 is free.

(c) There exists an isomorphism

tor𝑀 ≃
𝑚⊕
𝑗=1

𝑅/𝑅𝑎 𝑗 .

In particular, 𝑀 is a torsion module if and only if 𝑟 = 0, and in such a case we have

Ann𝑀 = 𝑅𝑎𝑚
1
.

1
The annihilator of a module 𝑀 is defined to be the collection

Ann𝑀 ≔ {𝑟 ∈ 𝑅 : 𝑟𝑚 = 0 for all 𝑚 ∈ 𝑀}.
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Proof. Let 𝑀 = ⟨𝑥1, . . . , 𝑥𝑛⟩ and let 𝑒 𝑗 ≔ (𝛿𝑖 𝑗)𝑛𝑖=1
∈ 𝑅𝑛 be a base element of 𝑅𝑛 . Define

a morphism 𝜙:𝑅𝑛 → 𝑀 as the map that sends 𝑒 𝑗 ↦→ 𝑥 𝑗 for each 𝑗—which is unique by

the free module universal property. Since {𝑥1, . . . , 𝑥𝑛} generates 𝑀, then im 𝜙 = 𝑀

and 𝜙 is thus surjective. Via the first isomorphism theorem we obtain 𝑅𝑛/ker 𝜙 ≃ 𝑀.

Since ker 𝜙 is a submodule of 𝑅𝑛 we can use Theorem 9.4.1 to obtain that ker 𝜙 is free

and has rank(ker 𝜙) ≔ 𝑚 ⩽ 𝑛. Furthermore, there exists a basis (𝑡1, . . . , 𝑡𝑛) of 𝑅𝑛 and a

list of ring elements (𝑎1, . . . , 𝑎𝑚) such that (𝑎1𝑡1, . . . , 𝑎𝑚𝑡𝑚) is a basis of ker 𝜙 satisfying

𝑎1 | 𝑎2 | · · · | 𝑎𝑚 . From the decomposition of free modules we obtain

𝑀 ≃ 𝑅𝑛/ker 𝜙 =
𝑅𝑡1 ⊕ · · · ⊕ 𝑅𝑡𝑛

𝑅𝑎1𝑡1 ⊕ · · · ⊕ 𝑅𝑎𝑚𝑡𝑚

Define a morphism of 𝑅-modules 𝜓:

⊕𝑛
𝑗=1
𝑅𝑡 𝑗 →

(⊕𝑚
𝑗=1
𝑅/𝑅𝑎 𝑗

)
⊕ 𝑅𝑛−𝑚 by mapping

𝜓(𝑟1𝑡1, . . . , 𝑟𝑛𝑡𝑛) ≔ (𝑟1 + 𝑅𝑎1, . . . , 𝑟𝑚 + 𝑅𝑎𝑚 , 𝑟𝑚+1, . . . , 𝑟𝑛).

From the definition, this map is certainly surjective. Moreover, we can see that

ker𝜓 =

( 𝑚⊕
𝑗=1

𝑅𝑎 𝑗

)
⊕ {0}⊕(𝑛−𝑚) ≃

𝑚⊕
𝑗=1

𝑅𝑎 𝑗 ,

therefore by the first isomorphism theorem we find

𝑅𝑡1 ⊕ · · · ⊕ 𝑅𝑡𝑛
𝑅𝑎1𝑡1 ⊕ · · · ⊕ 𝑅𝑎𝑚𝑡𝑚

≃
( 𝑚⊕
𝑗=1

𝑅/𝑅𝑎 𝑗
)
⊕ 𝑅𝑛−𝑚 .

Notice that if 𝑎 ∈ 𝑅 is an invertible element, then 𝑅𝑎 = 𝑅 and hence 𝑅/𝑅𝑎 = 0.

Therefore the proposition of item (a) is stablished since we can cut off of the direct sum

every summand 𝑅/𝑅𝑎 𝑗 where 𝑎 𝑗 is invertible. Let 𝑏 ∈ 𝑅 be any element, then given

any 𝑟 + 𝑅𝑏 ∈ 𝑅/𝑅𝑏 we find that

𝑏(𝑟 + 𝑅𝑏) = 𝑏𝑟 + 𝑅𝑏 = 𝑟𝑏 + 𝑅𝑏 = 𝑅𝑏

therefore 𝑅/𝑅𝑏 is a torsion 𝑅-module. This shows that 𝑀 is torsion-free if and only if

𝑀 ≃ 𝑅𝑟 , which proves item (b). As we just noted, one has tor𝑀 ≃
⊕𝑚

𝑗=1
𝑅/𝑅𝑎 𝑗 , and

𝑀 is a torsion module we have Ann

Notice that this isn’t finished: it is part of the lost work—this chapter was the

most affected by the losses.

♮

Chinese Remainder Theorem
Theorem 9.4.3 (Chinese remainder). Let 𝑅 be a commutative ring, and 𝔞1, . . . , 𝔞𝑘 be

ideals of 𝑅 such that 𝔞𝑖 + 𝔞𝑗 = 𝑅 for all 𝑖 ≠ 𝑗. Then:

• We have the equality 𝔞1 ∩ · · · ∩ 𝔞𝑘 = 𝔞1 · . . . · 𝔞𝑘 .
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• The natural projection 𝑅 ↠ 𝑅/𝔞1 × · · · × 𝑅/𝔞𝑘 is surjective, and induces a natural

isomorphism of rings

𝑅

𝔞1 . . . 𝔞𝑘
≃ (𝑅/𝔞1) × · · · × (𝑅/𝔞𝑘)

Proof. In particular, we have 𝔞𝑗 + 𝔞𝑘 = 𝑅 for all 1 ⩽ 𝑗 ⩽ 𝑘 − 1. Therefore, for all such

indices there exists 𝑎 𝑗 ∈ 𝔞𝑘 such that 1 − 𝑎 𝑗 ∈ 𝔞𝑗 , hence

(1 − 𝑎1) . . . (1 − 𝑎𝑘−1) ∈ 𝔞1 · . . . · 𝔞𝑘−1,

and since 𝑎 𝑗 ∈ 𝔞𝑘 , then 1 −∏𝑘−1

𝑗=1
(1 − 𝑎 𝑗) ∈ 𝔞𝑘 . This shows that

(𝔞1 · . . . · 𝔞𝑘−1) + 𝔞𝑘 = 𝑅. (9.3)

Notice that 𝔞1 · . . . · 𝔞𝑘 ⊆ 𝔞1 ∩ · · · ∩ 𝔞𝑘 , thus it remains to prove the other side of the

inclusion. From our last paragraph, we know that 𝔞1 ∩ · · · ∩ 𝔞𝑘 ⊆ 𝔞1 · . . . · 𝔞𝑘 for all

𝑘 ⩾ 3. Since 𝑘 = 1 is trivial, we just need to prove the case for 𝑘 = 2. Let 𝔟, 𝔠 ⊆ 𝑅 be

ideals such that 𝔟 + 𝔠 = 𝑅—then there exists 𝑏0 ∈ 𝔟 and 𝑐0 ∈ 𝔠 such that 𝑏0 + 𝑐0 = 1. If

𝑥 ∈ 𝔟 ∩ 𝔠, then 𝑥 = 𝑏0𝑥 + 𝑐0𝑥, implying in 𝑥 ∈ 𝔟 · 𝔠. Thus 𝔟 ∩ 𝔠 ⊆ 𝔟 · 𝔠.
We now prove the second assertion via induction on 𝑘. For the base case 𝑘 = 1,

the statement follows trivially from the first isomorphism theorem. Assume as the

hypothesis of induction that the statement is true 𝑘 − 1 > 1—that is, we have an

isomorphism 𝑅/(𝔞1 · . . . · 𝔞𝑘−1) ≃ (𝑅/𝔞1) × · · · × (𝑅/𝔞𝑘−1). Consider the natural map

𝜋:𝑅 −→ 𝑅

𝔞1 · . . . · 𝔞𝑘−1

× (𝑅/𝔞𝑘). (9.4)

From Eq. (9.3) the statement is reduced for the case of two ideals 𝔟 ≔ 𝔞1 · . . . · 𝑎𝑘−1 and

𝔠 ≔ 𝔞𝑘 such that 𝔟 + 𝔠 = 𝑅. Let 𝑏, 𝑐 ∈ 𝑅 be any two elements—we shall show that there

exists 𝑟 ∈ 𝑅 such that 𝑟 − 𝑏 ∈ 𝔟 and 𝑟 − 𝑐 ∈ 𝔠. Since 𝔟 and 𝔠 are relatively prime, let as

before 𝑏0 + 𝑐0 = 1 and define 𝑟 ≔ 𝑏0𝑐 + 𝑐0𝑏. Then, one has

𝑟 = 𝑏0𝑐 + (1 − 𝑏0)𝑏 = 𝑏 + 𝑏0(𝑐 − 𝑏) ≡ 𝑏 (mod 𝔟)
𝑟 = (1 − 𝑐0)𝑐 + 𝑐0𝑏 = 𝑐 + 𝑐0(𝑏 − 𝑐) ≡ 𝑐 (mod 𝔠)

since 𝑏0 ∈ 𝔟 and 𝑐0 ∈ 𝔠. Therefore 𝑟 − 𝑐 ∈ 𝔟 and 𝑟 − 𝑏 ∈ 𝔠 a wanted. This shows that the

natural morphism of rings 𝜋 (see Eq. (9.4)) is surjective. From our first considerations,

we know that ker𝜋 = 𝔟 ∩ 𝔠 = 𝔟 · 𝔠, therefore the first isomorphism theorem establishes

that 𝑅/(𝔟 · 𝔠) ≃ (𝑅/𝔟) × (𝑅/𝔠). ♮

Corollary 9.4.4 (Chinese remainder for PIDs). Let 𝑅 be a principal ideal domain, and

𝑎1, . . . , 𝑎𝑘 ∈ 𝑅 be elements such that gcd(𝑎𝑖 , 𝑎 𝑗) = 1 for all pairs 𝑖 ≠ 𝑗. Then the natural

map 𝑟 + (𝑎1 · · · 𝑎𝑘) ↦→ (𝑟 + (𝑎1), . . . , 𝑟 + (𝑎𝑘)) establishes an isomorphism of rings

𝑅/(𝑎1 · · · 𝑎𝑘) ≃
𝑅

(𝑎1)
× · · · × 𝑅

(𝑎𝑘)
.

9.5 Unique Factorisation Domains
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Chapter 10

Linear Algebra Over Rings

Remark 10.0.1 (Which side?). For the remainder of the chapter, if 𝑀 is said to be an

𝑅-module, then𝑀 can be either a left or right𝑅-module—and𝑅 need not be commutative—
we use this to generalize propositions for both left and right modules simultaneously,

whenever possible. On the other hand, if we specify the side of the multiplicative

structure of 𝑀, then it may well be the case that the proposition does only work for this

strict case or that the distinction between right and left modules is important in some

way.

Remark 10.0.2 (Algebras and commutative rings). We shall sometimes address a com-

mutative ring by 𝑘—for instance, in the case of a 𝑘-algebra 𝐴.

10.1 Free Modules

Construction
As always, if 𝑆 is a set and 𝑀 is an 𝑅-module, for some ring 𝑅, we define 𝑀⊕𝑆 to be

the collection of finitely supported set-functions 𝑆→ 𝑀. We define on 𝑀⊕𝑆 an 𝑅-module

structure as follows: for every 𝛼 ∈ 𝑀⊕𝑆 and 𝑟 ∈ 𝑅 we define

(𝑟𝛼)(𝑠) ≔ 𝑟(𝛼(𝑠)).

If we consider the module of 𝑅 over itself, we can define a set-function 𝜄: 𝑆 → 𝑅⊕𝑆

by mapping 𝑠 ↦→ s, where

s(𝑥) ≔
{

1, if 𝑥 = 𝑠,

0, if 𝑥 ≠ 𝑠.

For every set 𝑆, we define a corresponding module module 𝐹𝑅𝑆 composed of of

formal sums

∑
𝑠∈𝑆 𝑎𝑠𝑠 such that 𝑎𝑠 ∈ 𝑅 is non-zero only for finitely many 𝑠 ∈ 𝑆.

Proposition 10.1.1. There exists a natural isomorphism of 𝑅-modules 𝐹𝑅𝑆 ≃ 𝑅⊕𝑆.

Proof. Let Φ: 𝐹𝑅𝑆 → 𝑅⊕𝑆 be a map given by

∑
𝑠∈𝑆 𝑎𝑠𝑠 ↦→

∑
𝑠∈𝑆 𝑎𝑠s. Clearly, such map

is injective and preserves both multiplicative and additive structures, thus Φ is an 𝑅-

module morphism. Moreover, if 𝛼 ∈ 𝑅⊕𝑆 is any function, since 𝛼 has finite support, the
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formal sum

∑
𝑠∈𝑆 𝛼(𝑠)𝑠 is a well defined element of 𝐹𝑅𝑆. Also, mapping this element

under Φ yields

∑
𝑠∈𝑆 𝛼(𝑠)s and, for every 𝑥 ∈ 𝑆, we have

∑
𝑠∈𝑆 𝛼(𝑠)s(𝑥) = 𝛼(𝑠)x(𝑥) =

𝛼(𝑥). Therefore the map is surjective, hence an isomorphism. ♮

Proof. Let 𝐴 and 𝐵 be two sets such that 𝐹𝑅𝐴 = 𝐹𝑅𝐵. In particular, it follows that for

all 𝑎 ∈ 𝐴, there exists an element 𝑎 =
∑𝑛
𝑗=1
𝑟 𝑗𝑏 𝑗 ∈ 𝐹𝑅𝐵, moreover, each 𝑏𝑖 ∈ 𝐵 can be

written as

∑𝑚
𝑗=1
𝑟 𝑗(𝑏𝑖)𝑎 𝑗 ♮

Proposition 10.1.2 (Free module universal property). Let 𝑅 be a ring and 𝑆 be any set.

Given any 𝑅-module 𝑀 and a set-function 𝑓 : 𝑆 → 𝑀, there exists a unique 𝑅-module
morphism 𝜙: 𝐹𝑅𝑆→ 𝑀 such that the following diagram commutes in Set1

:

𝐹𝑅𝑆 𝑀

𝑆

𝜙

𝜄

𝑓

where 𝜄: 𝑆→ 𝐹𝑅𝑆 is the mapping 𝑠 ↦→ 𝑠.

Proof. Let 𝜙: 𝐹𝑅𝑆 → 𝑀 be such that 𝜙(∑𝑠∈𝑆 𝑎𝑠𝑠) ↦→
∑
𝑠∈𝑆 𝑎𝑠 𝑓 (𝑠) for any

∑
𝑠∈𝑆 𝑎𝑠𝑠 ∈

𝐹𝑅𝑆 so that clearly 𝜙𝜄 = 𝑓 since 𝜙𝜄(𝑠) = 𝜙(𝑠) = 𝑓 (𝑠). Moreover, for any two∑
𝑠∈𝑆 𝑎𝑠𝑠,

∑
𝑠∈𝑆 𝑏𝑠𝑠 ∈ 𝐹𝑅𝑆 we have

𝜙

(∑
𝑠∈𝑆

𝑎𝑠𝑠 +
∑
𝑠∈𝑆

𝑏𝑠𝑠

)
= 𝜙

(∑
𝑠∈𝑆
(𝑎𝑠 + 𝑏𝑠)𝑠

)
=

∑
𝑠∈𝑆
(𝑎𝑠 + 𝑏𝑠) 𝑓 (𝑠) =

∑
𝑠∈𝑆

𝑎𝑠 𝑓 (𝑠) +
∑
𝑠∈𝑆

𝑏𝑠 𝑓 (𝑠)

= 𝜙

(∑
𝑠∈𝑆

𝑎𝑠𝑠

)
+ 𝜙

(∑
𝑠∈𝑆

𝑏𝑠𝑠

)
.

Furthermore, 𝜙 certainly preserves the multiplicative structure by 𝑅 elements. There-

fore 𝜙 is an 𝑅-module morphism. Since 𝑓 completely determines the image of 𝜙, it is

the unique morphism such that 𝜙𝜄 = 𝑓 . ♮

Corollary 10.1.3. The mapping 𝜄: 𝑆 ↩→ 𝐹𝑅𝑆 given by 𝑠 ↦→ 𝑠 is injective.

Proof. For any pair 𝑠, 𝑠′ ∈ 𝑆 of distinct elements, consider the module 𝑀 ≔ 𝐹𝑅{𝑠, 𝑠′}
and a set-function 𝑓 : 𝑆→ 𝑀 with 𝑓 (𝑠) = 𝑠 and 𝑓 (𝑠′) = 𝑠′. Then, by the universal of free

modules, there exists a unique morphism of 𝑅-modules 𝜙: 𝐹𝑅𝑆→ 𝑀 such that 𝜙𝜄 = 𝑓 .

If 𝜄(𝑠)was equal to 𝜄(𝑠′), then 𝑓 (𝑠) 𝑓 (𝑠′), which cannot be the case—thus 𝜄(𝑠) ≠ 𝜄(𝑠′) for

all 𝑠, 𝑠′ ∈ 𝑆 distinct, hence 𝜄 is injective. ♮

Proposition 10.1.4. Let 𝐴 ≔ {1, . . . , 𝑛} be a set of 𝑛 elements and define a map

𝜄:𝐴→ 𝑅[𝑥1, . . . , 𝑥𝑛] by 𝑗 ↦→ 𝑥 𝑗 . Then 𝑅[𝑥1, . . . , 𝑥𝑛] is a free commutative 𝑅-algebra on 𝐴.

Proof. We prove that 𝑅[𝑥1, . . . , 𝑥𝑛] satisfies the universal property for 𝐴. Let 𝛼:𝑅→ 𝑀

be any 𝑅-algebra and 𝑓 :𝐴 → 𝑀 be a set-function. From Proposition 8.2.9 we find a

unique extension 𝛼:𝑅[𝑥1, . . . , 𝑥𝑛] → 𝑆 such that 𝛼|𝑅 = 𝛼 and 𝛼(𝑥 𝑗) ≔ 𝑓 (𝑗). Therefore,

𝛼 is the uniquely determined 𝑅-algebra morphism such that 𝛼𝜄 = 𝑓 . ♮
1
It is to be noted the subtlety of not adding a dashed arrow (denoting uniqueness) for 𝜙 in the

diagram—this is done purposefully since the diagram is commutative in the category of sets, so there

may well be a distinct set-function 𝐹𝑅𝑆→ 𝑀 also making the diagram commute in Set.
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Free Modules from Subsets
Given any 𝑅-module 𝑀 and a subset 𝑆 ⊆ 𝑀 of its elements, one can define a free

module 𝑅⊕𝑆 out of 𝑆 and, from the universal property of free modules, there exist a

unique 𝑅-map 𝜙:𝑅⊕𝑆 → 𝑀 such that 𝜙𝜄 = 𝑖, where 𝜄: 𝑆 ↩→ 𝑅⊕𝑆 and 𝑖: 𝑆 ↩→ 𝑀 is the

canonical inclusion.

It is to be noted that the image 𝜙(𝑅⊕𝑆) ⊆ 𝑀 is a submodule of 𝑀 and its elements

are of the form

∑
𝑠∈𝑆 𝑎𝑠𝑠 for 𝑎𝑠 ∈ 𝑅 non-zero only for finitely many 𝑠 ∈ 𝑆. We’ll denote

the submodule generated by 𝑆 on 𝑀 by the notation ⟨𝑆⟩.

Definition 10.1.5 (Finitely generated module). An 𝑅-module 𝑀 is said to be finitely
generated exactly when there exists a finite subset𝑆 ⊆ 𝑀 such that𝑀 = ⟨𝑆⟩. Equivalently,

𝑀 is finitely generated if there exists a surjective 𝑅-map 𝑅⊕𝑛 ↠ 𝑀 for a positive integer

𝑛 ∈ Z>0.

Remark 10.1.6 (Submodules). The reader should be cautious when working with

finitely generated modules, for instance, it is not true that a finitely generated mod-

ule has finitely generated modules.

For instance, if we consider the ring of polynomials 𝑃 ≔ Z[𝑥1, 𝑥2, . . . ] on infinitely

many variables, then𝑃 = ⟨1⟩ is finitely generated as a𝑃-module. However, if we consider

the ideal 𝔞 ≔ (𝑥1, 𝑥2, . . . ) ⊆ 𝑃, one cannot take a finite collection of polynomials of

𝑃 and generate all of 𝔞. Indeed, if 𝑆 ⊆ 𝑃 is any finite collection, since polynomials

have finitely many terms, there must exist, for all 𝑝(𝑥1, 𝑥2, . . . ) ∈ 𝑆, a maximum index

𝑗 ∈ Z>0 such that 𝑥 𝑗 appears as a variable in 𝑝 with a non-zero coefficient. Taking the

maximum index over all polynomials of 𝑆, we are still left with only a finite index, say

𝑛 ∈ Z>0, such that 𝑥𝑛 is the highest-index variable appearing any of the polynomials

of 𝑆—hence 𝑥𝑛+1 is not contemplated by any of the polynomials of 𝑆, therefore this set

cannot generate 𝔞.

Definition 10.1.7 (Noetherian module). An 𝑅-module 𝑀 is said to be a Noetherian
module if every submodule of 𝑀 is finitely generated as an 𝑅-module.

We can state the definition for Noetherian rings (see Definition 8.3.35) equivalently

as follows: a ring 𝑅 is said to be a Noetherian if 𝑅 is a Noetherian 𝑅-module.

Lemma 10.1.8. Let 𝑀 be an 𝑅-module, and 𝑁 ⊆ 𝑀 be a submodule. Then if both 𝑁

and 𝑀/𝑁 are finitely generated, then 𝑀 is finitely generated.

Proof. Let 𝑁 = ⟨𝐴⟩ and 𝑀/𝑁 = ⟨𝐵⟩ for finite sets 𝐴 ⊆ 𝑁 and 𝐵 ⊆ 𝑀/𝑁 . If 𝑚 ∈ 𝑀 is

any element, then the class 𝑚 + 𝑁 ∈ 𝑀/𝑁 can be written as 𝑚 + 𝑁 =
∑
𝑏∈𝐵 𝑟𝑏𝑏 + 𝑁 for

𝑟𝑏 ∈ 𝑅. Moreover, since 𝑚 −∑
𝑏∈𝐵 𝑟𝑏𝑏 ∈ 𝑁 , we can write 𝑚 −∑

𝑏∈𝐵 𝑟𝑏𝑏 =
∑
𝑎∈𝐴 𝑟𝑎𝑎 for

𝑟𝑎 ∈ 𝑅. Therefore

𝑚 =

∑
𝑎∈𝐴

𝑟𝑎𝑎 +
∑
𝑏∈𝐵

𝑟𝑏𝑏.

This shows that 𝐴 ∪ 𝐵 generates 𝑀, thus 𝑀 is finitely generated. ♮

Proposition 10.1.9. Let 𝑀 be an 𝑅-module, and 𝑁 ⊆ 𝑀 be a submodule. Then 𝑀 is

Noetherian if and only if both 𝑁 and 𝑀/𝑁 are Noetherian.
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Proof. Analogous to the proof of Proposition 8.3.36, if 𝑀 is a Noetherian module, then

the natural projection 𝜋:𝑀 ↠ 𝑀/𝑁 shows that 𝑀/𝑁 is Noetherian. Since 𝑁 is a

submodule of 𝑀, then 𝑁 is finitely generated and every submodule 𝑃 ⊆ 𝑁 is also a

submodule of 𝑀, thus 𝑃 must be finitely generated.

For the converse, suppose both 𝑀/𝑁 and 𝑁 are Noetherian. Fix any submodule

𝑃 ⊆ 𝑀. Consider the submodule 𝑃∩𝑁 of both 𝑃 and𝑁—from the hypothesis that𝑁 is

Noetherian, 𝑃 ∩𝑁 is finitely generated. By Proposition 8.4.53 we find that there exists

a canonical isomorphism 𝑃/(𝑃 ∩ 𝑁) ≃ (𝑁 + 𝑃)/𝑁 . Since (𝑁 + 𝑃)/𝑁 is a submodule of

𝑀/𝑁 , by the hypothesis that 𝑀/𝑁 is Noetherian it follows that 𝑃/(𝑃 ∩ 𝑁) is finitely

generated. From Lemma 10.1.8 we find that 𝑃 itself is finitely generated, making 𝑀

Noetherian. ♮

Corollary 10.1.10. Given a Noetherian ring 𝑅, any finitely generated 𝑅-module 𝑀 is

Noetherian.

Proof. Since 𝑀 is finitely generated, there exists a surjective 𝑅-module morphism

𝑝:𝑅⊕𝑛 ↠ 𝑀, for some 𝑛 ∈ Z>0—therefore 𝑀 ≃ 𝑅⊕𝑛/ker 𝑝. Now, if 𝑅⊕𝑛 is Noetherian,

by Proposition 10.1.9, then ker 𝑝 and 𝑅⊕𝑛/ker 𝑝 are both Noetherian, and therefore 𝑀

is Noetherian.

We prove that 𝑅⊕𝑛 is Noetherian by induction on 𝑛. For 𝑛 = 1 we have that 𝑅⊕1 ≃ 𝑅
is Noetherian. Assume that 𝑅⊕(𝑛−1)

is Noetherian for some 𝑛 > 1. Notice that the

inclusion 𝜄:𝑅⊕(𝑛−1) ↩→ 𝑅⊕𝑛 mapping (𝑟1, . . . , 𝑟𝑛−1) ↦→ (𝑟1, . . . , 𝑟𝑛−1, 0) is an 𝑅-map and

makes 𝑅⊕(𝑛−1)
into a submodule of 𝑅⊕𝑛 . Considering the canonical projection of the

𝑛-th coordinate 𝜋𝑛 :𝑅⊕𝑛 ↠ 𝑅, we have ker𝜋𝑛 = 𝑅⊕(𝑛−1)
. By the first isomorphism

theorem we obtain an isomorphism

𝑅⊕𝑛/𝑅⊕(𝑛−1) ≃ 𝑅,

therefore 𝑅⊕𝑛/𝑅⊕(𝑛−1)
is Noetherian. Applying Proposition 10.1.9 we find that 𝑅⊕𝑛 is

Noetherian—thus 𝑀 is Noetherian. ♮

Finite Generation of 𝑅-Algebras
Definition 10.1.11. Let 𝐴 be an 𝑅-algebra. We define the following two distinct con-

cepts regarding the finiteness of the generation of 𝐴:

(a) The 𝑅-algebra 𝐴 is said to be finite if there exists a surjective 𝑅-module morphism

𝜙:𝑅⊕𝑛 ↠ 𝐴

for some 𝑛 ∈ Z>0, so that

𝐴 ≃ 𝑅⊕𝑛/ker 𝜙,

where ker 𝜙 is a submodule of 𝑅⊕𝑛 . In other words, 𝐴 is finitely generated as a

module over 𝑅. This nomenclature is unfortunately misleading: even though we

say that 𝐴 is finite, 𝐴 may well be an infinite set.
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(a) The 𝑅-algebra 𝐴 is said to be of finite type if there exists a surjective 𝑅-algebra
morphism

𝛼:𝑅[𝑥1, . . . , 𝑥𝑛]↠ 𝐴

for some 𝑛 ∈ Z>0, so that

𝐴 ≃ 𝑅[𝑥1, . . . , 𝑥𝑛]/ker 𝛼,

where ker 𝛼 is an ideal of the ring 𝑅[𝑥1, . . . , 𝑥𝑛]. In other words, 𝐴 is finitely

generated as an algebra over 𝑅.

Remark 10.1.12 (Finite type but not finite). Let 𝐴 be an 𝑅-algebra. If 𝐴 is finite, then

𝐴 is also of finite type. On the other hand, if we consider the 𝑅-algebra 𝑅[𝑥], we find

that 𝑅[𝑥] is clearly of finite type, but there exists no surjective 𝑅-map from 𝑅⊕𝑛 to 𝑅[𝑥],
therefore 𝑅[𝑥] isn’t finite.

10.2 Linear Independence & Bases

Linear Independence
Definition 10.2.1 (Linear independence). Let 𝐽 be a set and 𝑀 be an 𝑅-module. An

indexed set 𝑗: 𝐽 → 𝑀 is said to be linearly independent if the unique𝑅-module morphism

𝜙: 𝐹𝑅𝐽 → 𝑀, making the diagram

𝐹𝑅𝐽 𝑀

𝐽

𝜙

𝜄

𝑗

commute in Set, is injective. The indexed set 𝑗 is said to generate 𝑀 if 𝜙 is surjective.
Finally, if 𝜙 is an isomorphism, then 𝑗 is a basis of 𝑀—in this case, since 𝐹𝑅𝐽 ≃ 𝑅⊕𝐽 , then

𝑅⊕𝐽 ≃ 𝑀.

Corollary 10.2.2. An 𝑅-module is free if and only if it admits a basis.

Proof. If 𝑀 is free, then there exists a set 𝑆 such that 𝑀 ≃ 𝐹𝑅𝑆, then 𝑆 is a basis for 𝑀.

For the converse, if 𝑀 admits a basis 𝑆, then 𝐹𝑅𝑆 ≃ 𝑀. ♮

As with vector spaces we’ll intentionally identify an indexed set 𝑗: 𝐽 → 𝑀 simply

by 𝐽 itself and say that 𝐽 is a subset of 𝑀. The good old abuse of notation.

Remark 10.2.3 (Singletons). Singletons do not need to be linearly independent. A

simple example is {3} ⊆ Z/9Z.

The following lemma regarding maximality of linearly independent sets is equiva-

lent to the Axiom of Choice.

Lemma 10.2.4 (Maximality). Let 𝑀 be an 𝑅-module and 𝑆 ⊆ 𝑀 be a linearly indepen-

dent set. There exists a maximal linearly independent subset of 𝑀 containing 𝑆.
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Proof. Let 𝒮 be the non-empty collection of linearly independent sets of 𝑀 containing

𝑆. Notice that a the union of a chain of elements of 𝒮 is again a linearly independent

set containing 𝑆—thus 𝒮 is closed under arbitrary unions. In other words, every chain

of elements has an upper bound in 𝒮. By Zorn’s lemma, it follows that the collection

𝒮 has a maximal element. ♮

Remark 10.2.5 (Maximality, generation, and bases). It should be noted right away

that being a maximal linear independent set does not imply that the set generated

the module. For instance, {2} ⊆ Z is a maximal linearly independent subset of Z
containing {2}, but obviously it doesn’t generate Z. This, however is true for the case

of vector spaces.

On the other hand, every base of a module is necessarily a maximal linearly inde-

pendent set.

Definition 10.2.6 (Invariant basis number). A ring 𝑅 is said to satisfy the invariant basis
number (IBN) property if 𝑅𝑚 ≃ 𝑅𝑛 as 𝑅-modules if and only if 𝑚 = 𝑛.

Corollary 10.2.7. A ring 𝑅 does not satisfy the invariant basis number property if and

only if there exists distinct natural numbers 𝑛, 𝑚 ∈ N, and matrices 𝐴 ∈ 𝑀𝑚×𝑛(𝑅) and

𝐵 ∈ 𝑀𝑛×𝑚(𝑅) such that

𝐴𝐵 = id𝑚 and 𝐵𝐴 = id𝑛 .

Corollary 10.2.8. Every field satisfies the invariant basis number property.

Proposition 10.2.9. Let 𝑓 :𝑅 → 𝑆 be a ring morphism, for any two rings 𝑅 and 𝑆. If 𝑆

satisfies the invariant basis number property, then so does 𝑅.

Proof. Let 𝐴 ≔ [𝑎𝑖 𝑗] ∈ 𝑀𝑚×𝑛(𝑅) and 𝐵 ≔ [𝑏𝑖 𝑗] ∈ 𝑀𝑛×𝑚(𝑅) be matrices and define both

𝑓 𝐴 ≔ [ 𝑓 (𝑎𝑖 𝑗)] ∈ 𝑀𝑚×𝑛(𝑆) and 𝑓 𝐵 ≔ [ 𝑓 (𝑏𝑖 𝑗)] ∈ 𝑀𝑛×𝑛(𝑆). Notice that since 𝑓 is a ring

morphism we have ( 𝑓 𝐴)( 𝑓 𝐵) = 𝑓 (𝐴𝐵). Since we cannot have ( 𝑓 𝐴)( 𝑓 𝐵) and ( 𝑓 𝐵)( 𝑓 𝐴)
equal to their respective identities, it follows that 𝐴𝐵 and 𝐵𝐴 are also not equal to the

identity matrices—therefore 𝑅 is satisfies the IBN property. ♮

Theorem 10.2.10. All commutative rings satisfy the invariant basis number property.

Proof. Let 𝑅 be a commutative ring. By Proposition 9.2.8 we find that 𝑅 contains a

proper maximal ideal 𝔪—therefore the quotient ring 𝑅/𝔪 is a field. Considering the

canonical projection 𝑅 ↠ 𝑅/𝔪, we obtain, by Proposition 10.2.9, that 𝑅 is IBN since

fields are IBN ♮

Example 10.2.11. Let 𝑉 be an infinite dimensional 𝑘-vector space, for some field 𝑘. The

ring 𝑅 ≔ EndVect𝑘 (𝑉) of endomorphisms of 𝑉 does not satisfy the IBN property.

First we prove that EndVect𝑘 (𝑉 ⊕𝑉) ≃ 𝑅4
. Notice that any 𝑘-linear map 𝑓 :𝑉 ⊕𝑉 →

𝑉⊕𝑉 can be decomposed into its projections 𝑓1, 𝑓2:𝑉⊕𝑉 → 𝑉 . Further, each projection

𝑓𝑗 can be again decomposed into unique 𝑘-linear morphisms 𝑝 𝑗 , 𝑞 𝑗 :𝑉 → 𝑉 such that

𝑓𝑗 = 𝑝 𝑗 + 𝑞 𝑗—for 𝑗 ∈ {1, 2}. Therefore, the map 𝑓 is uniquely determined by the

quadruple (𝑝1, 𝑞1, 𝑝2, 𝑞2), where 𝑓 = (𝑝1 + 𝑞1, 𝑝2 + 𝑞2). Hence we may map bĳectively

EndVect𝑘 (𝑉 ⊕ 𝑉) → 𝑅4
via 𝑓 ↦→ (𝑝1, 𝑞1, 𝑝2, 𝑞2).
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Notice that, since 𝑉 is infinite dimensional, we have dim𝑘 𝑉 = dim𝑘(𝑉 ⊕ 𝑉)—thus

𝑉 ≃ 𝑉 ⊕ 𝑉 , and hence EndVect𝑘 (𝑉 ⊕ 𝑉) ≃ EndVect𝑘 (𝑉) (see Proposition 8.4.21). Notice

that from our earlier result, we just concluded that 𝑅 ≃ 𝑅4
, which proves that 𝑅 does

not satisfy the IBN property.

Example 10.2.12. Let 𝑀 ≔
∏

𝑗∈N Z be a Z-module and a ring 𝑅 ≔ End𝑍-Mod(𝑀). We’ll

show that 𝑅 does not satisfy the IBN property.

Define parallel Z-module morphisms 𝜙,𝜓:𝑀 ⇒ 𝑀 given by

𝜙(𝑎1, 𝑎2, . . . ) ≔ (𝑎1, 𝑎3, 𝑎5, . . . ),
𝜓(𝑎1, 𝑎2, . . . ) ≔ (𝑎2, 𝑎4, 𝑎6, . . . ).

Then, if 𝑓 ∈ 𝑅 is any endomorphism, let 𝑓𝑗 :𝑀 → Z be its 𝑗-th projection. Define

endomorphisms 𝑔, ℎ:𝑀 ⇒ 𝑀, whose projections are given by

𝑔2𝑗−1 ≔ 𝑓𝑗 for odd 𝑗 ∈ Z>0 and zero for the remaining projections,

ℎ2𝑗 ≔ 𝑓𝑗 for even 𝑗 ∈ Z>0 and zero for the remaining projections.

Then we obtain the equality

𝜙𝑔 + 𝜓ℎ = (𝑔1, 𝑔3, 𝑔5, . . . ) + (ℎ2, ℎ4, ℎ6, . . . )
= ( 𝑓1, 0, 𝑓3, 0, 𝑓5, . . . ) + (0, 𝑓2, 0, 𝑓4, 0 𝑓6, . . . )
= 𝑓

which is uniquely defined for 𝑓—hence {𝜙,𝜓} is a basis for the right-𝑅-module 𝑅 (over

itself). From this we conclude that 𝑅 ≃ 𝑅2
by mapping 𝑓 ↦→ (𝑔, ℎ) and with an inverse

(𝑔, ℎ) ↦→ 𝜙𝑔 + 𝜓ℎ = 𝑓 . This shows that 𝑅 does not satisfy the invariant basis number

property.

Free Modules Basis
Lemma 10.2.13. Let 𝑅 be an integral domain, and 𝑀 ≔ 𝑅⊕𝐴 be a free 𝑅-module.

Considering the inclusion 𝑀 ↩→ Frac(𝑅)⊕𝐴, a subset 𝑆 ⊆ 𝑀 is linearly independent in

𝑀 if and only if it is linearly independent in Frac(𝑅)⊕𝐴.

Proof. We do the proof of both statements via the contrapositive. Define the notation

𝑉 ≔ Frac(𝑅)⊕𝐴. Suppose 𝑆 is linearly independent in 𝑉 , then there exists a collection

of elements (𝑎𝑠/𝑏𝑠)𝑠∈𝑆 for 𝑎𝑠/𝑏𝑠 ∈ Frac(𝑅) non-zero only for finitely many 𝑠 ∈ 𝑆—but

not all zero—such that ∑
𝑠∈𝑆

𝑎𝑠

𝑏𝑠
· 𝑠 = 0 (10.1)

Consider the finite set 𝑆′ ≔ {𝑠 ∈ 𝑆 : 𝑎𝑠 ≠ 0}. Since 𝑏𝑠 ≠ 0 for all 𝑠 ∈ 𝑆′, one can consider

the non-zero finite product 𝑏 ≔
∏

𝑠∈𝑆′ 𝑏𝑠 . Notice that, for all 𝑠0 ∈ 𝑆 we have

𝑏 · 𝑎𝑠0

𝑏𝑠0

=

( ∏
𝑠∈𝑆∖{𝑠0}

𝑏𝑠

)
𝑎𝑠0
,
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which is simply an element of 𝑅 since the denominator of the fraction is 1. We then

define a collection (𝑐𝑠)𝑠∈𝑆 as 𝑐𝑠′ ≔
∏

𝑠∈𝑆∖{𝑠′} 𝑏𝑠 for all 𝑠′ ∈ 𝑆′, and 𝑐𝑠 ≔ 1 for all 𝑠 ∈ 𝑆∖𝑆′.
Notice that Eq. (10.1) is equivalent to∑

𝑠∈𝑆
(𝑐𝑠𝑎𝑠)𝑠 = 0, (10.2)

with coefficients 𝑐𝑠𝑎𝑠 ∈ 𝑅 for which finitely many are non-zero—but not all are zero—

therefore Eq. (10.2) lies in 𝑀. From this we conclude that 𝑆 is linearly dependent on

𝑀.

For the converse, suppose that 𝑆 is linearly dependent on 𝑀, then there exists a

collection (𝑟𝑠)𝑠∈𝑆—of elements 𝑟𝑠 ∈ 𝑅 that are non-zero for only finitely many 𝑠 ∈ 𝑆,

and not all zero—such that ∑
𝑠∈𝑆

𝑟𝑠𝑠 = 0. (10.3)

From the inclusion 𝑅 ↩→ Frac(𝑅), we see that 𝑟𝑠 ∈ Frac(𝑅) for all 𝑠 ∈ 𝑆, and therefore

Eq. (10.3) lies in both 𝑀 and 𝑉—which proves that 𝑆 is also linearly dependent in

𝑉 . ♮

Proposition 10.2.14. Let 𝑅 be an integral domain, and 𝑀 be a free 𝑅-module. If 𝐵 is a

maximal linearly independent subset of 𝑀, and 𝑆 is a linearly independent subset of

𝑀, then

|𝑆| ⩽ |𝐵|.
Moreover, if 𝐶 is another maximal linearly independent subset of 𝑀, then

|𝐶| = |𝐵|.

Proof. By Lemma 10.2.13 it is equivalent to prove the proposition for a field 𝑅 = 𝑘 and

a 𝑘-vector space 𝑀 = 𝑉 .

We construct a map 𝜄: 𝑆 → 𝐵 inductively. Assume a well-ordering on the set 𝑆.

We use transfinite induction—that is, assume 𝜄 is defined, injectively, for all 𝑤 < 𝑣 for

some 𝑣 ∈ 𝑆, and define 𝐵′ to consist of the elements of 𝐵 but for all 𝑤 < 𝑣 we replace

𝜄(𝑤) ∈ 𝐵 by 𝑤. Our inductive hypothesis will be that 𝐵′ is still a maximal linearly

independent set of 𝑉 .

We now define 𝜄(𝑣). Since by hypothesis the set 𝐵′ is maximal, then 𝐵′ ∪ {𝑣} must

be linearly dependent, so that there exists a collection (𝑎 𝑗)𝑛𝑗=0
of elements 𝑎 𝑗 ∈ 𝑘, not all

zero, such that

𝑎0𝑣 + 𝑎1𝑏1 + · · · + 𝑎𝑛𝑏𝑛 = 0 (10.4)

for some finite subset (𝑏 𝑗)𝑛𝑗=1
⊆ 𝐵′. Since 𝐵′ is linearly independent, it must be the case

that 𝑎0 ≠ 0. Moreover, since 𝑆 is also linearly independent, it follows that not all 𝑏 𝑗 can

be members of 𝑆. With a possible change of indexing, we may thus assume that 𝑎1 ≠ 0

and 𝑏1 ∈ 𝐵′ ∖ 𝑆—this implies that 𝑏1 ≠ 𝑗(𝑤) for all 𝑤 < 𝑣, hence we may set 𝜄(𝑣) ≔ 𝑏1

and not loose injectivity of 𝜄.
Consider now the set 𝐵′′, whose elements are those of 𝐵′ but with 𝑏1 = 𝜄(𝑣) replaced

by 𝑣. Since 𝐵′ is linearly independent, then 𝐵′′∖ 𝑣 is linearly independent therefore, by
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Eq. (10.4) we find 𝑣 = −∑𝑛
𝑗=1

𝑎 𝑗
𝑎0

𝑏 𝑗 , hence no subset of 𝐵′′—containing or not 𝑣—can be

linearly dependent, since that would imply the linear dependence of 𝐵′. We conclude

that 𝐵′′ is linearly independent and maximal, which finishes the transfinite induction

and proves that the injective set-function 𝜄: 𝑆 ↣ 𝐵 can be constructed. This shows that

|𝑆| ⩽ |𝐵|. For the equality, we can simply do the construction of injective maps 𝐶 ↣ 𝐵

and 𝐵↣ 𝐶 and conclude that |𝐶| = |𝐵|. ♮

Corollary 10.2.15. Let 𝑅 be an integral domain, and 𝐴 and 𝐵 be sets. Then there exists

an isomorphism of 𝑅-modules 𝐹𝑅𝐴 ≃ 𝐹𝑅𝐵 if and only if there exists a bĳection 𝐴 ≃ 𝐵.

Proof. If 𝐹𝑅𝐴 ≃ 𝐹𝑅𝐵, then𝐴 and 𝐵 are maximal linearly independent sets of the “same”

module, which by Proposition 10.2.14 implies in |𝐴| = |𝐵|.
If |𝐴| = |𝐵|, let 𝑓 :𝐴 ≃−→ 𝐵 be a bĳective set function, and consider the canonical

inclusions 𝑖𝐴:𝐴 ↩→ 𝐹𝑅𝐴 and 𝑖𝐵: 𝐵 ↩→ 𝐹𝑅𝐵. Consider the indexed sets 𝑗𝐴 ≔ 𝑖𝐵 𝑓 :𝐴 →
𝐹𝑅𝐵 and 𝑗𝐵 ≔ 𝑖𝐴 𝑓

−1
: 𝐵→ 𝐹𝑅𝐴—both of which are injective, since are a composition of

an injection with a bĳection. The are unique induced 𝑅-module morphisms 𝜙: 𝐹𝑅𝐴→
𝐹𝑅𝐵 and𝜓: 𝐹𝑅𝐵→ 𝐹𝑅𝐴 are, by construction, such that𝜙𝑖𝐴 = 𝑗𝐴 and𝜓𝑖𝐵 = 𝑗𝐵. Consider

the following commutative diagram in Set:

𝐹𝑅𝐴 𝐹𝑅𝐵 𝐹𝑅𝐴 𝐹𝑅𝐵

𝐴 𝐵 𝐴 𝐵

𝜙 𝜓 𝜙

𝑖𝐴

𝑓

𝑖𝐵

𝑓 −1

𝑖𝐴

𝑓

𝑖𝐵

Using the universal property on the first two squares we find that 𝜓𝜙 is the unique

𝑅-module morphism induced by 𝑖𝐴—but since id𝐹𝑅𝐴 also satisfies the property, it

follows that 𝜓𝜙 = id𝐹𝑅𝐴. Analogously, applying the universal property on the last

two squares we obtain 𝜙𝜓 = id𝐹𝑅𝐵. Therefore 𝜙 and 𝜓 are inverses of each other and

𝐹𝑅𝐴 ≃ 𝐹𝑅𝐵. ♮

Lemma 10.2.16. Let 𝑅 be a commutative ring, and 𝐹 be a free 𝑅-module with a basis

𝐵. If 𝔪 ⊆ 𝑅 is a maximal ideal, the collection (𝑏 + 𝔪𝐹)𝑏∈𝐵 forms a basis of the vector

space 𝐹/(𝔪𝐹) over the field 𝑅/𝔪2
.

Proof. We shall prove that 𝐵/(𝔪𝐹) ≔ (𝑏 + 𝔪𝐹)𝑏∈𝐵 forms a minimal generating set of

𝐹/(𝔪𝐹)—so that by Lemma 5.6.17 we obtain that 𝐵/(𝔪𝐹) is a basis. If 𝑥+𝔪𝐹 ∈ 𝐹/(𝔪𝐹) is
any element, consider a representative 𝑥 ∈ 𝐹 and let (𝑥𝑏)𝑏∈𝐵 be a collection of elements

𝑥𝑏 ∈ 𝑅—which are non-zero only for finitely many 𝑏 ∈ 𝐵—such that 𝑥 =
∑
𝑏∈𝐵 𝑥𝑏𝑏.

Taking the natural projection 𝐹 ↠ 𝐹/(𝔪𝐹)of sets, we find that 𝑥+𝔪𝐹 =
( ∑

𝑏∈𝐵 𝑥𝑏𝑏
)
+𝔪𝐹.

2
Let 𝑅 be a commutative ring. If 𝔞 ⊆ 𝑅 is an ideal, and 𝑀 is an 𝑅-module, we there exists a natural

structure of (𝑅/𝔞)-module that can be endowed on the abelian group 𝑀/(𝔞𝑀) via the multiplication

(𝑟 + 𝔞) · (𝑚 + 𝔞𝑀) ≔ 𝑟𝑚 + 𝔞𝑀.
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By the (𝑅/𝔪)-module structure of 𝐹/(𝔪𝐹), we find that

𝑥 +𝔪𝐹 =

(∑
𝑏∈𝐵

𝑥𝑏𝑏

)
+𝔪𝐹 =

∑
𝑏∈𝐵

𝑥𝑏𝑏 +𝔪𝐹 =

∑
𝑏∈𝐵
(𝑥𝑏 +𝔪)(𝑏 +𝔪𝐹).

From construction, the collection (𝑥𝑏 + 𝔪)𝑏∈𝐵 is composed of finitely many non-zero

elements 𝑥𝑏 +𝔪 ∈ 𝑅/𝔪. From this we conclude that 𝐵/(𝔪𝐹) is indeed a generating set

for 𝐹/(𝔪𝐹).
How can I finish this proof? One can prove the linear independence or minimal-

ity of 𝐵/(𝔪𝐹), but what is the easiest way out?

♮

Proposition 10.2.17. Let 𝑅 be a non-zero commutative ring. If 𝐹 is a free 𝑅-module

and both 𝐴 and 𝐵 are basis of 𝐹, then |𝐴| = |𝐵|.

Proof. From Proposition 9.2.8 we know that 𝑅 admits a maximal ideal 𝔪 ⊆ 𝑅. We

know from Lemma 10.2.16 that the collections (𝑎 + 𝔪𝐹)𝑎∈𝐴 and (𝑏 + 𝔪𝐹)𝑏∈𝐵 are both

basis for the (𝑅/𝔪)-vector space 𝐹/(𝔪𝐹). Since basis of vector spaces have the same

cardinality, it follows that |𝐴| = |𝐵|. ♮

Definition 10.2.18 (Rank). Let 𝑅 be an integral domain. We define the rank of a free

𝑅-module𝑀 to be the cardinality of a maximal linearly independent subset of𝑀—this

cardinal shall be denoted rank𝑅𝑀. If 𝑅 = 𝑘 is a field, then 𝑀 is a 𝑘-vector space and

thus rank𝑘 𝑀 = dim𝑘 𝑀.

Proposition 10.2.19. Let 𝑅 be an integral domain and 𝑀 be an 𝑅-module. If 𝑀 is

generated by a subset 𝑆 ⊆ 𝑀, then 𝑆 contains a maximal linearly independent subset

of 𝑀—hence |𝑆| ⩾ rank𝑅𝑀.

Proof. By Lemma 10.2.13, we can treat the case for the field 𝑘 ≔ Frac(𝑅) and a vector

space 𝑉 ≔ 𝑀. Consider the power set 2
𝑆

of subsets of 𝑆, ordered by inclusion—

in particular, let 𝒮 ⊆ 2
𝑆

contain all linearly independent subsets of 𝑆. By Zorn’s

lemma, there exists a maximal linearly independent set 𝐵 ∈ 𝒮 of 2
𝑆
. Since maximal

linearly independent sets form a basis (mind you, this is true only for vector spaces),

then in particular 𝑆 is contained in the span of 𝐵—therefore 𝐵 is a maximal linearly

independent set generating 𝑉 , that is, 𝐵 is a basis for 𝑉 . ♮

Theorem 10.2.20 (Every module is the quotient of a free module). Given a ring 𝑅,

every right-𝑅-module 𝑀 (or left-𝑅-module) is a quotient of a free right-𝑅-module 𝐹

(or left-𝑅-module). Moreover, 𝑀 is finitely generated if and only if one can choose a

finitely generated free module 𝐹.

Proof. Define a free right-𝑅-module 𝐹 ≔ 𝑅⊕|𝑀| and let (𝑥𝑚)𝑚∈𝑀 be a basis of 𝐹. By the

universal property of free modules, the indexing of the basis of 𝐹 induces a unique

morphism of right-𝑅-modules 𝑝: 𝐹 → 𝑀 such that 𝑝(𝑥𝑚) = 𝑚 for all 𝑚 ∈ 𝑀—which

by construction is surjective. From the first isomorphism theorem we find that

𝑀 ≃ 𝐹/ker 𝑔,
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therefore 𝑀 is indeed the quotient of a free module.

For the last proposition, if 𝐹 can be chosen to be finitely generated, then it is

immediate that 𝑀 is finitely generated. For the converse, suppose that 𝑀 is finitely

generated and 𝑀 = ⟨𝑚1, . . . , 𝑚𝑛⟩. Define the free 𝑅-module 𝐹 ≔ 𝑅⊕𝑛 with a basis

{𝑥1, . . . , 𝑥𝑛} and consider the 𝑅-map 𝑝: 𝐹→ 𝑀 defined by 𝑝(𝑥 𝑗) ≔ 𝑚 𝑗 for each 1 ⩽ 𝑗 ⩽
𝑛. Since ⟨𝑝(𝑥1), . . . , 𝑝(𝑥𝑛)⟩ = ⟨𝑚1, . . . , 𝑚𝑛⟩, then 𝑝 is surjective, therefore the statement

holds true. ♮

Corollary 10.2.21. For any 𝑅-module 𝑀 there exists an exact sequence of 𝑅-modules

𝐺 𝐹 𝑀 0

for free 𝑅-modules 𝐺 and 𝐹.

Direct Sums & Products of Free 𝑅-Modules
Proposition 10.2.22. Let (𝑀 𝑗)𝑗∈𝐽 be a family of free 𝑅-modules. Then the direct sum⊕

𝑗∈𝐽 𝑀 𝑗 is free.

Proof. Let (𝑆 𝑗)𝑗∈𝐽 be set of basis for each respective 𝑀 𝑗 , and define 𝑆 ≔
⋃
𝑗∈𝐽 𝑆 𝑗 . Let 𝑁

be any 𝑅-module and 𝑓 : 𝑆→ 𝑁 a set-function. Since 𝑀 𝑗 is free for all 𝑗 ∈ 𝐽, there exists

a unique morphism 𝜙 𝑗 :𝑀 𝑗 → 𝑁 such that the diagram

𝑀 𝑗 𝑁

𝑆 𝑗

𝜙 𝑗

𝑓 |𝑆𝑗

commutes in Set. From the universal property of coproduct, the collection (𝜙 𝑗)𝑗∈𝐽
defines a unique morphism 𝜙:

⊕
𝑗∈𝐽 𝑀 𝑗 → 𝑁 such that the diagram

𝑀 𝑗

⊕
𝑗∈𝐽 𝑀 𝑗 𝑁

𝜙 𝑗

𝜙

commutes in 𝑅-Mod for all 𝑗 ∈ 𝐽. Therefore in particular⊕
𝑗∈𝐽 𝑀 𝑗 𝑁

𝑆

𝜙

𝑓

commutes in Set—which implies that

⊕
𝑗∈𝐽 𝑀 𝑗 is free. ♮

Remark 10.2.23. If 𝑀 is a free 𝑅-module and 𝑁 is a free submodule of 𝑀, it does not
follow that the quotient 𝑀/𝑁 is free. For instance, take 𝑀 ≔ Z and the free submodule

𝑁 ≔ 2Z, then 𝑀/𝑁 is not free since {1} is not linearly independent in Z/2Z.
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Interesting Examples

Example 10.2.24. Let 𝑅 be an integral domain, and 𝑀 be a free 𝑅-module. If 𝑎 ∈ 𝑅 and

𝑚 ∈ 𝑀 are such that 𝑎𝑚 = 0, than either 𝑎 = 0 or 𝑚 = 0.

Let 𝑆 be a basis for 𝑀 and consider 𝑅 as a module over itself. Let 𝑓 : 𝑆 ↣ 𝑅 be any

injective set-function. Since 𝜄: 𝑆 ↩→ 𝑀 is injective, then the unique 𝑅-module morphism

𝜙:𝑀 → 𝑅—making the diagram

𝑀 𝑅

𝑆

𝜙

𝜄

𝑓

commute in Set—must be injective, therefore ker 𝜙 = 0. Notice that if 𝑎𝑚 = 0 then

since 𝜙(0) = 0 we have 𝜙(𝑎𝑚) = 𝑎𝜙(𝑚) = 0 but since 𝑅 is an integral domain, then

either 𝑎 = 0 or 𝜙(𝑚) = 0—that is, 𝑚 ∈ ker 𝜙, which implies in 𝑚 = 0.

Example 10.2.25. Let 𝑀 be a free Z-module, and 𝑣 ∈ 𝑀 a non-zero element. Then

there exists only finitely many 𝑛 ∈ Z such that the equation 𝑣 = 𝑛𝑥 has a solution

𝑥 ∈ 𝑀.

Let 𝑆 be a basis for 𝑀, and let 𝑣 =
∑
𝑠∈𝑆 𝑎𝑠𝑠—where 𝑎𝑠 ∈ Z is non-zero for only

finitely many 𝑠 ∈ 𝑆, but not all zero. Let 𝑛 ∈ Z be an integer such that there exists a

solution 𝑥 =
∑
𝑠∈𝑆 𝑏𝑠𝑠 ∈ 𝑀 for 𝑣 = 𝑛𝑥, then since 𝑆 is a basis it follows that∑

𝑠∈𝑆
(𝑎𝑠 − 𝑛𝑏𝑠)𝑠 = 0

implies in 𝑎𝑠 = 𝑛𝑏𝑠 for all 𝑠 ∈ 𝑆. Hence 𝑛 must be a divisor of all 𝑎𝑠—thus be

necessarily have 𝑛 ⩽ gcd(𝑎𝑠)𝑠∈𝑆. Since the greatest common divisor is finite, then 𝑛

can only assume a finite number of values for there to be a solution of 𝑣 = 𝑛𝑥 in 𝑀.

Remark 10.2.26. The direct product of a family of free modules need not be free. To see

this, we construct the following example.

Let 𝑀 ≔
∏

𝑗∈N Z, we’ll show that 𝑀 is not a free Z-module. Define the submodule

𝑁 ≔
⊕

𝑗∈N Z of 𝑀. Suppose, for the sake of contradiction, that 𝑀 admits a basis 𝐵.

Notice that since each element of 𝑁 has only finitely many non-zero entries, it

follows that for each 𝑛 ∈ N the of elements with 𝑛 non-zero entries can be represented

by a sequence of pairs (𝑎 𝑗 , 𝑖 𝑗)𝑛𝑗=1
with 𝑎 𝑗 ∈ Z and a corresponding index 𝑖 𝑗 ∈ N.

Therefore, the number of elements with 𝑛 non-zero entries is given by the finite product

of countable sets (Z ×N)𝑛—which is itself countable. Then the number of elements of

𝑁 is given by the countable union

⋃
𝑛∈N(

⋃
𝑗∈N Z𝑛), which is again countable.

Let 𝐵0 ⊆ 𝐵 be the collection of all basis elements that appear when expanding the

elements of 𝑁 in terms of 𝐵—such collection is necessarily countable since 𝑁 itself is

countable. The free module𝑁0 ≔ 𝐹𝑅𝐵0 ⊆ 𝑀 will then contain𝑁 . Since 𝐵0 is countable

and the elements of 𝑁0 are finite linear combinations of the elements of 𝐵0, then 𝑁0 is

countable.
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Consider the module 𝑀 ≔ 𝑀/𝑁0, has a basis 𝐵 ∖ 𝐵0. From Example 10.2.25, for

every non-zero element 𝑥 ∈ 𝑀 there exists only finitely many 𝑛 ∈ N such that the

equation 𝑥 = 𝑛𝑚 admits a solution 𝑚 ∈ 𝑀.

Consider the subset

𝑆 ≔ {(𝑏 𝑗)𝑗∈N ∈ 𝑀 : 𝑏 𝑗 = (±𝑗!)𝑎 𝑗 , with 𝑎 𝑗 ∈ Z},

which has cardinality of the continuum, 2
ℵ0

, hence 𝑆 is uncountable. Therefore there

exists 𝑠 ∈ 𝑆 such that 𝑠 ∉ 𝑁0. Notice however that, from the construction of 𝑆, every

𝑛 ∈ N is such that the equation 𝑠 = 𝑛𝑚 has a solution 𝑚 ∈ 𝑀—but since 𝑠 ∉ 𝑁0, this

also implies that 𝑠 = 𝑛𝑚 has a solution 𝑚 ∈ 𝑀/𝑁0 for all 𝑛 ∈ N. This contradicts our

last paragraph since 𝑀/𝑁0 is supposedly free! From this we conclude that 𝑀/𝑁0 must

not be free, and 𝑀 should not admit a basis. Thus 𝑀 is not a free Z-module.

10.3 Exact Sequences & Decompositions of Modules

Direct Summands
Definition 10.3.1 (Direct summand). Let 𝑃 be an 𝑅-module and 𝑀 be a submodule of

𝑃. We say that 𝑀 is a direct summand of 𝑃 if there exists a submodule 𝑁 of 𝑃 satisfying

𝑀 ∩ 𝑁 = {0}, called a complement of 𝑀, for which

𝑃 = 𝑀 ⊕ 𝑁.

Definition 10.3.2 (Retract). Let 𝑀 be an 𝑅-module. A submodule 𝑁 of 𝑀 is said to be

a retract of 𝑀 if there exists an 𝑅-module morphism 𝜌:𝑀 → 𝑁 such that 𝜌(𝑛) = 𝑛 for

all 𝑛 ∈ 𝑁—such morphism is called a retraction.

Proposition 10.3.3 (Direct summands & retractions). Given 𝑅-modules 𝑃 and 𝑀, the

module 𝑀 is a direct summand of 𝑃 if and only if there exists a retraction 𝜌:𝑃 → 𝑀, in

this case 𝑃 ≃ 𝑀 ⊕ ker 𝜌.

Proof. Suppose the retract 𝜌 exists. Let 𝑝 ∈ 𝑃 be any element and consider the element

𝜌(𝑝) ∈ 𝑀. Notice that 𝜌(𝑝−𝜌(𝑝)) = 𝜌(𝑝)−𝜌(𝜌(𝑝)) = 𝜌(𝑝)−𝜌(𝑝) = 0, thus 𝑝−𝜌(𝑝) ∈ ker 𝜌.

Since 𝑝 = 𝜌(𝑝) + (𝑝 − 𝜌(𝑝)), then 𝑃 = 𝑀 + ker 𝜌. Moreover, if 𝑠 ∈ 𝑆 ∩ ker 𝜙 it follows

that 𝜌(𝑠) = 𝑠 and 𝜌(𝑠) = 0, therefore 𝑠 = 0—thus 𝑆 ∩ ker 𝜙 = {0}, and 𝑃 = 𝑀 ⊕ ker 𝜌.

For the converse, suppose that 𝑀 is a direct summand of 𝑃 and let 𝑁 be its

complement. Since any element 𝑝 ∈ 𝑃 can be written uniquely as a sum 𝑝 = 𝑚 + 𝑛
for 𝑚 ∈ 𝑀 and 𝑛 ∈ 𝑁 , the map 𝜌:𝑃 → 𝑀 given by 𝑚 + 𝑛 ↦→ 𝑚 is well defined and

unique—also being an 𝑅-module morphism. Notice also that 𝜌|𝑀 = id𝑀 . ♮

Corollary 10.3.4. If 𝑃 = 𝑀 ⊕ 𝑁 and 𝑀 ⊆ 𝐴 ⊆ 𝑃, then

𝐴 = 𝑀 ⊕ (𝐴 ∩ 𝑁).

Proof. Let 𝜌:𝑃 → 𝑀 be a retraction, so that ker 𝜌 = 𝑁 . Since 𝑀 ⊆ 𝐴, then 𝜌|𝐴 is

a retraction between 𝐴 and 𝑀, and ker(𝜌|𝐴) = 𝐴 ∩ 𝑁 . This shows that 𝐴 ∩ 𝑁 is a

complement of 𝑀 in 𝐴 and hence 𝐴 = 𝑀 ⊕ (𝐴 ∩ 𝑁). ♮
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Corollary 10.3.5. Let 𝑀 be an 𝑅-module, and 𝑝:𝑀 → 𝑀 be an idempotent endomor-

phism (that is, 𝑝2 = 𝑝). Then there exists a canonical isomorphisms

𝑀 ≃ im 𝑝 ⊕ ker 𝑝.

Proof. Notice that the induced map 𝑝:𝑀 → im 𝑝 given by 𝑝(𝑚) = 𝑝(𝑚) is a morphism

of 𝑅-modules such that 𝑝(ℓ ) = 𝑝(ℓ ) = ℓ for all ℓ ∈ im 𝑝—since 𝑝2 = 𝑝. This implies that

𝑝 is a retraction and from Proposition 10.3.3 it follows that 𝑀 ≃ im 𝑝 ⊕ ker 𝑝. ♮

Proposition 10.3.6. Let𝑀 be an 𝑅-module and (𝑀 𝑗)𝑛𝑗=1
be a family of 𝑅-modules. Then

𝑀 ≃ 𝑀1 ⊕ · · · ⊕ 𝑀𝑛

if and only if there exists a collection of 𝑅-module morphisms (𝜙 𝑗 :𝑀 → 𝑀)𝑛
𝑗=1

such

that im 𝜙 𝑗 ≃ 𝑀 𝑗 for all 𝑗, we have 𝜙𝑖𝜙 𝑗 = 0 for each pair 𝑖 ≠ 𝑗, and

∑𝑛
𝑗=1

𝜙 𝑗 = id𝑀 .

Proof. Suppose 𝜓:𝑀1 ⊕ · · · ⊕ 𝑀𝑛
≃−→ 𝑀 is an isomorphism, then every element of

𝑚 ∈ 𝑀 can be uniquely written as a sum 𝑚 =
∑𝑛
𝑗=1

𝑎 𝑗𝜓((𝛿𝑖 𝑗𝑚 𝑗)𝑛𝑖=1
) for 𝑎 𝑗 ∈ 𝑅 and

𝑚 𝑗 ∈ 𝑀 𝑗 . Define, for 1 ⩽ 𝑗 ⩽ 𝑛, a morphism 𝜙𝑘 :𝑀 → 𝑀 given by

𝑛∑
𝑗=1

𝑎 𝑗𝜓((𝛿𝑖 𝑗𝑚 𝑗)𝑛𝑖=1
)

𝜙𝑘↦−−→ 𝑎𝑘𝜓((𝛿𝑖𝑘𝑚𝑘)𝑛𝑖=1
).

Clearly one has 𝜙𝑖𝜙 𝑗 = 0 for indices 𝑖 ≠ 𝑗, and 𝜙1 + · · · + 𝜙𝑛 = id𝑀 . Also, the

map Φ𝑗 : im 𝜙 𝑗 → 𝑀 𝑗 given by 𝑎 𝑗𝜓((𝛿𝑖 𝑗𝑚 𝑗)𝑛𝑖=1
) ↦→ 𝑎 𝑗𝑚 𝑗 establishes an isomorphism

im 𝜙 𝑗 ≃ 𝑀 𝑗 .

For the converse, suppose that the collection of morphisms (𝜙 𝑗)𝑛𝑗=1
exist and satisfy

the required properties. Let 𝑁 be any 𝑅-module, together with a family of morphisms

(𝜓 𝑗 :𝑁 → im 𝜙 𝑗). There exists a uniquely defined morphism 𝜂:𝑁 → 𝑀 given by

𝑛 ↦→ ∑𝑛
𝑗=1

𝜓 𝑗(𝑛) such that the following diagram

𝑁

𝑀 im 𝜙 𝑗 ≃ 𝑀 𝑗

𝜂

𝜓 𝑗

𝜙 𝑗

for all 1 ⩽ 𝑗 ⩽ 𝑛. This shows that 𝑀 satisfies the universal property for the product of

the family (𝑀 𝑗)𝑛𝑗=1
, hence 𝑀 ≃ 𝑀1 ⊕ · · · ⊕ 𝑀𝑛 . ♮

Exact Sequences
Just like in the category of groups or vector spaces, we define an exact sequence of

modules as follows.

Definition 10.3.7 (Exact sequence). A sequence (𝑑𝑛 :𝑀𝑛 → 𝑀𝑛−1)𝑛∈Z of 𝑅-module

morphisms is said to form an exact sequence

. . . 𝑀𝑛+1 𝑀𝑛 𝑀𝑛−1 . . .
𝑑𝑛+1 𝑑𝑛

254



if for all 𝑛 ∈ Z we have im 𝑑𝑛+1 = ker 𝑑𝑛 . In particular, a sequence is said to be exact in
𝑀𝑚 if im 𝑑𝑚+1 = ker 𝑑𝑚—thus an exact sequence is exact in each of its modules.

Proposition 10.3.8. Let 𝐴, 𝐵 and 𝐶 be 𝑅-modules. The following are properties con-

cerning exact sequences:

(a) A sequence

0 𝐴 𝐵
𝜙

is exact if and only if 𝜙 is injective.

(b) A sequence

𝐵 𝐶 0

𝜓

is exact if and only if 𝜓 is surjective.

(c) A sequence

0 𝐴 𝐵 0
𝜅

is exact if and only if 𝜅 is an isomorphism.

Proof. (a) If the sequence is exact then ker 𝜙 = 0 and 𝜙 is injective. For the converse,

if 𝜙 is injective, then ker 𝜙 = 0 and since the image of the morphism 0→ 𝐴 must

be zero, the exactness condition is satisfied.

(b) If the sequence is exact then im𝜓 = ker(𝐵 → 0) = 𝐵 and 𝜓 is surjective. If on the

contrary we have 𝜓 surjective, then again im𝜓 = 𝐵, and since the kernel of the

morphism 𝐵→ 0 is the whole module 𝐵, it follows that the sequence is exact.

(c) From the previous two items we have that 𝜅 is both injective and surjective, thus

a bĳection—and since bĳective morphisms of 𝑅-modules are isomorphisms, the

statement follows.

♮

Definition 10.3.9. An exact sequence of 𝑅-modules of the form

0 𝐴 𝐵 𝐶 0

is said to be a short exact sequence. Moreover, we shall call such a sequence an extension
of 𝐴 by 𝐶—we may sometimes name 𝐵 as the “extension”.

Proposition 10.3.10 (Isomorphism theorems). We now restate the isomorphism theo-

rems of 𝑅-modules in terms of exact sequences:

(a) If 0 → 𝐴
𝑓
↣ 𝐵

𝑔
↠ 𝐶 → 0 is a short exact sequence, then there exists natural

isomorphisms

𝐴 ≃ im 𝑓 and 𝐵/im 𝑓 ≃ 𝐶.
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(b) Let 𝑀 be an 𝑅-module, and 𝑆 and 𝑇 be both submodules of 𝑀. Then the following

commutative diagram has short exact rows and the third vertical morphism is an

isomorphism:

0 𝑆 ∩ 𝑇 𝑆 𝑆
𝑆∩𝑇 0

0 𝑇 𝑆 + 𝑇 𝑆+𝑇
𝑇 0

≃

(c) Let 𝑀 be an 𝑅-module, and consider submodules 𝑆 and 𝑇 of 𝑀 such that 𝑆 ⊆ 𝑇.

Then there exists a short exact sequence

0 𝑆/𝑇 𝑀/𝑇 𝑀/𝑆 0
𝜄 𝜋

Proof. (a) Since 𝑓 is an injection, the induced morphism 𝑓 :𝐴 ≃−→ im 𝑓 is an isomor-

phism. Moreover, since ker 𝑔 = im 𝑓 and 𝑔 is a surjection, by the first isomorphism

theorem we have 𝐵/im 𝑓 ≃ 𝐶.

(b) By the second isomorphism theorem, the mapping 𝑆/(𝑆 ∩ 𝑇) → (𝑆 + 𝑇)/𝑇 given

by 𝑠 + 𝑆 ∩ 𝑇 ↦→ 𝑠 + 𝑇 is an isomorphism.

(c) Simply define 𝜄 as the inclusion 𝑆/𝑇 ↩→ 𝑀/𝑇—so that im 𝜄 = 𝑆/𝑇—and 𝜋 as the

natural projection 𝑀/𝑇 ↠ 𝑀/𝑆 mapping 𝑚 + 𝑇 ↦→ 𝑚 + 𝑆. Since 𝜋 is surjective

and, as argued in Proposition 8.4.54, ker𝜋 = 𝑆/𝑇. Therefore ker𝜋 = im 𝜄—the

sequence is exact.

♮

Proposition 10.3.11. Let 0 → 𝑀 𝑗

𝛼 𝑗
↣ 𝑁𝑗

𝛽 𝑗
↠ 𝐿 𝑗 → 0 be a short exact sequence of

𝑅-modules for all 1 ⩽ 𝑗 ⩽ 𝑛. Then the induced sequence

0

⊕𝑛
𝑗=1

𝑀 𝑗

⊕𝑛
𝑗=1

𝑁𝑗

⊕𝑛
𝑗=1
𝐿 𝑗 0

𝛼 𝛽

Proof. • We first prove the injectivity of 𝛼. Notice that (𝑚 𝑗)𝑗 ∈ ker 𝛼 if and only if

𝛼 𝑗(𝑚 𝑗) = 0—which implies in 𝑚 𝑗 = 0 since 𝛼 𝑗 is injective—therefore (𝑚 𝑗)𝑗 = 0.

This implies in ker 𝛼 = 0, hence 𝛼 is injective.

• For the surjectivity of 𝛽, let (ℓ 𝑗)𝑗 ∈
⊕𝑛

𝑗=1
𝐿 𝑗 be any element. Since each 𝛽 𝑗 is

surjective, there exists 𝑛 𝑗 ∈ 𝑁𝑗 such that 𝛽 𝑗(𝑛 𝑗) = ℓ 𝑗 . Now, if we consider the

element (𝑛 𝑗)𝑗 ∈
⊕𝑛

𝑗=1
𝑁𝑗 , we obtain 𝛽(𝑛 𝑗)𝑗 = (𝛽 𝑗(𝑛 𝑗))𝑗 = (ℓ 𝑗)𝑗 .

• For the exactness in

⊕𝑛
𝑗=1

𝑁𝑗 we prove that im 𝛼 = ker 𝛽. Let (𝑚 𝑗)𝑗 ∈
⊕𝑛

𝑗=1
be

any element, then by definition 𝛼(𝑚 𝑗)𝑗 = (𝛼 𝑗(𝑚 𝑗))𝑗 ≔ (𝑛 𝑗)𝑗 . Since each 𝑛 𝑗 ∈ im 𝛼 𝑗
and im 𝛼 𝑗 ⊆ ker 𝛽 𝑗 , it follows that 𝛽 𝑗(𝑛 𝑗) = 0. Then 𝛽(𝑛 𝑗)𝑗 = (𝛽 𝑗(𝑛 𝑗))𝑗 = 0, which

implies in im 𝛼 ⊆ ker 𝛽.

For the converse inclusion, let (𝑛 𝑗)𝑗 ∈ ker 𝛽 be any element— then in particular

we must have 𝑛 𝑗 ∈ ker 𝛽 𝑗 . Since ker 𝛽 𝑗 ⊆ im 𝛼 𝑗 for all 1 ⩽ 𝑗 ⩽ 𝑛, then there exists
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𝑚 𝑗 ∈ 𝑀 𝑗 such that 𝛼 𝑗(𝑚 𝑗) = 𝑛 𝑗 . Therefore one obtains 𝛼(𝑚 𝑗)𝑗 = (𝛼 𝑗(𝑚 𝑗))𝑗 = (𝑛 𝑗)𝑗 ,
which shows that ker 𝛽 ⊆ im 𝛼. Thus im 𝛼 = ker 𝛽.

♮

Lemma 10.3.12. Consider the diagram

0 0

𝐴 𝐾

𝑋

𝐷 𝐵

0 0

𝛼 𝜅

𝛽𝛿

composed of short exact sequences of 𝑅-modules. Then 𝜅𝛼:𝐴→ 𝐾 is an isomorphism

if and only if 𝛽𝛿:𝐷 → 𝐵 is an isomorphism.

Proof. From symmetry of the sequences we simply prove the forward implication. That

is, suppose 𝜅𝛼 is an isomorphism. For injectivity, let 𝑑 ∈ ker 𝛽𝛿 be any element then

𝛿(𝑑) ∈ ker 𝛽. By exactness, there exists 𝑎 ∈ 𝐴 such that 𝛼(𝑎) = 𝛿(𝑑). However, since

𝛿(𝑑) ∈ ker𝜅, then 𝜅𝛼(𝑎) = 0—and by the injectivity of 𝜅𝛼 we find that 𝑎 = 0, implying

in 𝛿(𝑑) = 0. Since 𝛿 is also injective, then 𝑑 = 0, therefore ker 𝛽𝛿 = 0, proving that 𝛽𝛿 is

injective.

For surjectivity, take any 𝑏 ∈ 𝐵 and, since 𝛽 is surjective, let 𝑥 ∈ 𝑋 be such that

𝛽(𝑥) = 𝑏. Consider the element 𝜅(𝑥) ∈ 𝐾—since 𝜅𝛼 is surjective, there exists 𝑎 ∈ 𝐴 for

which 𝜅𝛼(𝑎) = 𝜅(𝑥), thus 𝑥 − 𝛼(𝑎) ∈ ker𝜅. From exactness there must exist 𝑑 ∈ 𝐷 for

which 𝛿(𝑑) = 𝑥 − 𝛼(𝑎). With this in hands we obtain

𝛽𝛿(𝑑) = 𝛽(𝑥 − 𝛼(𝑎)) = 𝛽(𝑥) − 𝛽𝛼(𝑎) = 𝛽(𝑥) = 𝑏,

proving that 𝛽𝛿 is surjective. ♮

Split Exact Sequences
Definition 10.3.13 (Split sequence). A short exact sequence

0 𝐴 𝐵 𝐶 0
𝜄 𝑝

is said to be split if 𝑝 is a split epimorphism—that is, there exists a morphism of

𝑅-modules (a section of 𝑝) 𝑠:𝐶 ↣ 𝐵 such that 𝑝𝑠 = id𝐶 .
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Proposition 10.3.14 (Split sequence extension). If the short exact sequence

0 𝐴 𝐵 𝐶 0
𝜄 𝑝

is split, then there exists a natural isomorphism of 𝑅-modules

𝐵 ≃ 𝐴 ⊕ 𝐶.

Proof. Since the sequence is split, let 𝑠:𝐶 → 𝐵 be the section of 𝑝. We’ll show that

𝐵 = im 𝜄 ⊕ im 𝑠. Let 𝑏 ∈ 𝐵 be any element, then

𝑝(𝑏 − 𝑠𝑝(𝑏)) = 𝑝(𝑏) − 𝑝(𝑠𝑝(𝑏))
= 𝑝(𝑏) − (𝑝𝑠)𝑝(𝑏)
= 𝑝(𝑏) − id𝐶 𝑝(𝑏)
= 0,

therefore 𝑏 − 𝑠𝑝(𝑏) ∈ ker 𝑝. Since the sequence is exact, im 𝜄 = ker 𝑝, there exists

𝑎 ∈ 𝐴 such that 𝜄(𝑎) = 𝑏 − 𝑠𝑝(𝑏)—thus 𝑏 = 𝜄(𝑎) + 𝑠𝑝(𝑏). From this we conclude

that 𝐵 = im 𝜄 + im 𝑠. For this to be a direct summand, it remains to prove that the

intersection of the images is empty. Suppose that 𝑥 ∈ 𝐵 is common to both images, so

that there exists 𝑎 ∈ 𝐴 and 𝑐 ∈ 𝐶 such that 𝜄(𝑎) = 𝑥 = 𝑠(𝑐). Post-composing with 𝑝

we get 𝑝(𝑥) = 𝑝𝜄(𝑎) = 0, thus 𝑥 ∈ ker 𝑝. Moreover, 𝑝𝑠(𝑐) = 0 but since 𝑝𝑠 = id𝐶 , then

𝑐 = 0—thus 𝑠(𝑐) = 0 and 𝑥 = 0. We conclude that

𝐵 = im 𝜄 ⊕ im 𝑠,

but im 𝜄 ≃ 𝐴 and im 𝑠 ≃ 𝐶—since both are injective maps—then 𝐵 ≃ 𝐴 ⊕ 𝐶. Notice

that this could also be extracted as a consequence of Corollary 10.3.5. ♮

Remark 10.3.15. It should be emphasized that the converse of Proposition 10.3.14 does
not hold in general. For instance, consider cyclic free groups 𝐴 ≔ ⟨𝑎⟩ and 𝐵 ≔ ⟨𝑏⟩ of

orders 2 and 4, respectively. Endowing such groups with the structure of Z-modules,

we can define morphisms 𝜄:𝐴→ 𝐵 mapping 𝑎 ↦→ 2𝑏, and 𝑝: 𝐵→ 𝐴 with 𝑏 ↦→ 𝑎, then

the sequence

0 𝐴 𝐵 𝐴 0
𝜄 𝑝

is exact but does not split since idZ/4Z ̸≃ idZ/2Z⊕ idZ/2Z.

Proposition 10.3.16 (Equivalent definition for split sequences). A short exact sequence

0→ 𝐴
𝜄−→ 𝐵

𝑝
−→ 𝐶 → 0 is split if and only if 𝜄 is a split monomorphism—that is, there

exists a morphism 𝑟: 𝐵→ 𝐴 such that 𝑟𝜄 = id𝐴. Moreover, if 𝑠:𝐶 → 𝐵 is the section of

𝑝, then

𝑠𝑝 + 𝜄𝑟 = id𝐵 .

Proof. Suppose the sequence splits and let 𝑠:𝐶 ↣ 𝐵 be a section of 𝑝, then by Propo-

sition 10.3.14 we have 𝐵 ≃ im 𝜄 ⊕ im 𝑠. Since 𝜄 and 𝑠 are both injective maps, for every

𝑏 ∈ 𝐵 there exists a unique pair 𝑎 ∈ 𝐴 and 𝑐 ∈ 𝐶 such that 𝑏 = 𝜄(𝑎) + 𝑠(𝑐). We define
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a map 𝑟: 𝐵 → 𝐴 given by 𝑟(𝑏) = 𝑟(𝜄(𝑎) + 𝑠(𝑐)) ≔ 𝑎. Therefore, for all 𝑎 ∈ 𝐴, we have

𝑟𝜄(𝑎) = 𝑎—thus 𝑟 is a retract of 𝜄.
Suppose, for the converse, that 𝜄 is a split monomorphism with a retract 𝑟: 𝐵 ↠ 𝐴.

Notice that

(𝜄𝑟)2 = (𝜄𝑟)(𝜄𝑟) = 𝜄(𝑟𝜄)𝑟 = 𝜄 id𝐵 𝑟 = 𝜄𝑟,

therefore 𝜄𝑟: 𝐵→ 𝐵 is an idempotent endomorphism. From Corollary 10.3.5 we obtain

that 𝐵 = ker(𝜄𝑟) ⊕ im(𝜄𝑟). Since 𝑟 is surjective, then im(𝜄𝑟) = im 𝜄. Moreover, since

𝑝 is surjective, given any 𝑐 ∈ 𝐶, there exists 𝑏 ∈ 𝐵 such that 𝑝(𝑏) = 𝑐. From the

decomposition of 𝐵, there exists 𝑘 ∈ ker(𝜄𝑟) and 𝑎 ∈ 𝐴 such that 𝑏 = 𝑘 + 𝜄(𝑎), therefore

𝑐 = 𝑝(𝑏) = 𝑝(𝑘 + 𝜄(𝑎)) = 𝑝(𝑘) + 𝑝𝜄(𝑎) = 𝑝(𝑘),

since im 𝜄 = ker 𝑝. Thus we may define a map 𝑠:𝐶 → 𝐵 as 𝑠(𝑐) = 𝑠(𝑝(𝑘)) ≔ 𝑘, so that

𝑠𝑝 = id𝐵. We conclude that 𝑝 is a split epimorphism, which implies that the sequence

is split.

For the second statement, notice that

(𝑠𝑝 + 𝜄𝑟)(𝑏) = (𝑠𝑝 + 𝜄𝑟)(𝜄(𝑎) + 𝑠(𝑐))
= (𝑠𝑝) 𝑓 (𝑎) + (𝑠𝑝)𝑠(𝑐) + (𝜄𝑟)𝜄(𝑎) + (𝜄𝑟)𝑠(𝑐)
= 𝑠(𝑝 𝑓 (𝑎)) + 𝑠(𝑝𝑠(𝑐)) + 𝜄(𝑟𝜄(𝑎)) + 𝜄(𝑟𝑠(𝑐))
= 𝜄(𝑎) + 𝑠(𝑐),

therefore 𝑠𝑝 + 𝜄𝑟 = id𝐵. ♮

Proposition 10.3.17. If 𝐹:𝑅-Mod → Ab is an additive functor of either variance, then

there exists a natural isomorphism of abelian groups

𝐹(𝑀 ⊕ 𝑁) ≃ 𝐹𝑀 ⊕ 𝐹𝑁.

In particular, if 𝐹 is covariant then the mapping 𝑥 ↦→ ((𝐹𝜋𝑀)𝑥, (𝐹𝜋𝑁 )𝑥) is an isomorphism—

where 𝜋𝑀 :𝑀 ⊕ 𝑁 → 𝑀 and 𝜋𝑁 :𝑀 ⊕ 𝑁 → 𝑁 are natural projections.

Proof. Consider the projections 𝜋𝑀 , 𝜋𝑁 and inclusions 𝜄𝑀 and 𝜄𝑁 . From definition of

the direct sum:

(a) Since 𝜋𝑀 𝜄𝑀 = id𝑀 and 𝜋𝑁 𝜄𝑁 = id𝑁 then

𝐹 id𝑀 = id𝐹𝑀 = 𝐹(𝜋𝑀 𝜄𝑀) = 𝐹𝜋𝑀𝐹𝜄𝑀 ,

𝐹 id𝑁 = id𝐹𝑁 = 𝐹(𝜋𝑁 𝜄𝑁 ) = 𝐹𝜋𝑁𝐹𝜄𝑁 .

(b) Since 𝜋𝑀 𝜄𝑁 = 0:𝑁 → 𝑀 and 𝜋𝑁 𝜄𝑀 = 0:𝑀 → 𝑁 we can use Proposition 8.4.19 to

obtain that

0 = 𝐹0 = 𝐹(𝜋𝑀 𝜄𝑁 ) = 𝐹𝜋𝑀𝐹𝜄𝑁 ∈ MorAb(𝐹𝑁, 𝐹𝑀),
0 = 𝐹0 = 𝐹(𝜋𝑁 𝜄𝑀) = 𝐹𝜋𝑁𝐹𝜄𝑀 ∈ MorAb(𝐹𝑀, 𝐹𝑁).
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(c) Since 𝜄𝑀𝜋𝑀 + 𝜄𝑁𝜋𝑁 = id𝑀⊕𝑁 , using the additivity of 𝐹 we obtain (for the case

where 𝐹 is covariant)

id𝐹(𝑀⊕𝑁) = 𝐹 id𝑀⊕𝑁 = 𝐹(𝜄𝑀𝜋𝑀 + 𝜄𝑁𝜋𝑁 ) = 𝐹(𝜄𝑀𝜋𝑀) + 𝐹(𝜄𝑁𝜋𝑁 )
= 𝐹𝜄𝑀𝐹𝜋𝑀 + 𝐹𝜄𝑁𝐹𝜋𝑁

Therefore the maps 𝐹𝜋𝑀 : 𝐹(𝑀⊕𝑁) → 𝐹𝑀 and 𝐹𝜋𝑁 : 𝐹(𝑀⊕𝑁) → 𝐹𝑁 act as projections,

while 𝐹𝜄𝑀 : 𝐹𝑀 → 𝐹(𝑀 ⊕ 𝑁) and 𝐹𝜄𝑁 : 𝐹𝑁 → 𝐹(𝑀 ⊕ 𝑁) are inclusions. Such maps

satisfy all the requirements from Proposition 10.3.16 and therefore there exists a natural

isomorphism 𝐹(𝑀 ⊕ 𝑁) ≃ 𝐹𝑀 ⊕ 𝐹𝑁 . ♮

Proposition 10.3.18. Let 0→ 𝐴
𝑓
↣ 𝐵

𝑔
↠ 𝐹→ 0 be a short exact sequence of𝑅-modules.

If 𝐹 is a free 𝑅-module, then the sequence is split. That is, every short exact sequence

ending with a free module is split.

Proof. Let (𝑒 𝑗)𝑗∈𝐽 be a basis for 𝐹. Since 𝑔 is surjective, let (𝑏 𝑗)𝑗∈𝐽 be a collection such

that 𝑔(𝑏 𝑗) = 𝑒 𝑗 . By the free module universal property, define the unique morphism

𝜌: 𝐹 → 𝐵 mapping 𝜌(𝑒 𝑗) ↦→ 𝑏 𝑗 for each 𝑗 ∈ 𝐽. Then notice that 𝑔𝜌(𝑒 𝑗) = 𝑔(𝑏 𝑗) = 𝑒 𝑗 , thus

we can again use the the uniqueness of the morphism of the universal property of free

modules to obtain that 𝑔𝜌 = id𝐹. Therefore we conclude that the sequence is split. ♮

Example 10.3.19. Every short exact sequence of vector spaces is split. Indeed, any

vector space admits a basis, which implies that a vector space is free—hence by Propo-

sition 10.3.18 we obtain the proposition.

Proposition 10.3.20. If 0→ 𝐴
𝑓
↣ 𝐵

𝑔
↠ 𝐶 → 0 is a short exact sequence of 𝑅-modules,

then the following are properties concerning finite generation:

(a) If both 𝐴 and 𝐶 are finitely generated modules, then 𝐵 is finitely generated.

(b) If 𝐵 is finitely generated, then 𝐶 is finitely generated.

Proof. (a) Let 𝐴 ≔ ⟨𝑎1, . . . , 𝑎𝑛⟩ and 𝐶 ≔ ⟨𝑐1, . . . , 𝑐𝑚⟩. Define (𝑏′
𝑗
)𝑚
𝑗=1

be a collection

of elements 𝑏 𝑗 ∈ 𝑔−1(𝑐 𝑗)—which is ensured to exist by the surjectivity of 𝑔—and

(𝑏 𝑗)𝑛𝑗=1
to be the collection 𝑏 𝑗 ≔ 𝑓 (𝑎 𝑗). We’ll show that 𝑋 ≔ (𝑏1, . . . , 𝑏𝑛 , 𝑏

′
1
, . . . , 𝑏′𝑚)

is a generating set for 𝐵. Let 𝑏 ∈ 𝐵 be any element, then since 𝐶 is finitely generated,

we can write

𝑔(𝑏) =
𝑚∑
𝑗=1

𝑐 𝑗𝑟
′
𝑗 =

𝑚∑
𝑗=1

𝑔(𝑏′𝑗)𝑟′𝑗 =
𝑚∑
𝑗=1

𝑔(𝑏′𝑗𝑟′𝑗) = 𝑔
( 𝑚∑
𝑗=1

𝑏′𝑗𝑟
′
𝑗

)
for some collection of elements 𝑟′

𝑗
∈ 𝑅. Hence 𝑥 ≔ 𝑏 − ∑𝑚

𝑗=1
𝑏′
𝑗
𝑟′
𝑗
∈ ker 𝑔. Notice

however that, since 𝐴 is generated by (𝑎 𝑗)𝑛𝑗=1
, then in particular im 𝑓 = ker 𝑔 is

generated by (𝑏 𝑗)𝑛𝑗=1
. Therefore there exists a collection (𝑟 𝑗)𝑛𝑗=1

of elements 𝑟 𝑗 ∈ 𝑅
such that

𝑏 =

𝑚∑
𝑗=1

𝑏′𝑗𝑟
′
𝑗 +

𝑛∑
𝑗=1

𝑏 𝑗𝑟 𝑗 .
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This shows that the finite set 𝑋—whose cardinality is 𝑚 + 𝑛—generates the 𝑅-

module 𝐵, proving the proposition.

(b) For item (b), one may notice that since the sequence is exact, then in partic-

ular 𝑔: 𝐵 ↠ 𝐶 is surjective. Moreover, since 𝐵 is finitely generated, we let

𝐵 = ⟨𝑏1, . . . , 𝑏𝑘⟩. Given any 𝑐 ∈ 𝐶 one has 𝑏 ∈ 𝐵 such that 𝑔(𝑏) = 𝑐. By the

generating property, we have 𝑏 =
∑𝑘
𝑗=1
𝑏 𝑗𝑟 𝑗 for a collection (𝑟 𝑗)𝑘𝑗=1

of ring elements

𝑟 𝑗 ∈ 𝑅. Therefore, by the morphism property of 𝑔 we obtain

𝑐 = 𝑔(𝑏) = 𝑔
( 𝑘∑
𝑗=1

𝑏 𝑗𝑟 𝑗

)
=

𝑘∑
𝑗=1

𝑔(𝑏 𝑗)𝑟 𝑗 .

This shows that 𝐶 is finitely generated by the collection (𝑔(𝑏 𝑗))𝑘𝑗=1
.

♮

Morphisms of Exact Sequences
Definition 10.3.21 (Morphisms of short exact sequences). A morphism between short

exact sequences of 𝑅-modules 0→ 𝐴 → 𝐵 → 𝐶 → 0 and 0→ 𝑋 → 𝑌 → 𝑍 → 0 is a

triple (𝛼, 𝛽, 𝛾), of morphisms of 𝑅-modules making the following diagram commute

0 𝐴 𝐵 𝐶 0

0 𝑋 𝑌 𝑍 0

𝛼 𝛽 𝛾

Definition 10.3.22 (Equivalent sequences). Two short exact sequences of 𝑅-modules

0 → 𝐴 ↣ 𝐵 ↠ 𝐶 → 0 and 0 → 𝑋 ↣ 𝑌 ↠ 𝑍 → 0 are said to be equivalent if 𝐴 = 𝑋,

𝐶 = 𝑍 and there exists an isomorphism of 𝑅-modules 𝐵𝑖𝑠𝑜𝑌 such that the diagram

0 𝐴 𝐵 𝐶 0

0 𝑋 𝑌 𝑍 0

≃

commutes in 𝑅-Mod.

Proposition 10.3.23. Let 𝐴
𝛼−→ 𝐵

𝛽
↠ 𝐶 → 0 and 𝑋

𝜒−→ 𝑌
𝛾
↠ 𝑍→ 0 be exact sequences. If

there exists a surjective morphism 𝑓 :𝐴↠ 𝑋 and an isomorphism 𝑔: 𝐵 ≃−→ 𝑌 such that

𝑔𝛼 = 𝜒 𝑓 , then there exists a unique isomorphism ℎ:𝐶 → 𝑍 making the diagram

𝐴 𝐵 𝐶 0

𝑋 𝑌 𝑍 0

𝛼

𝑓

𝛽

𝑔 ≃ ℎ ≃

𝜒 𝛾

commutative in 𝑅-Mod.
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Proof. Let 𝑐 ∈ 𝐶 be any element. Since 𝛽 is surjective, there exists 𝑏 ∈ 𝐵 such that

𝛽(𝑏) = 𝑐, thus we may define ℎ:𝐶 → 𝑍 as the mapping 𝑐 ↦→ 𝛾𝑔(𝑎). To see that ℎ is

well defined, consider 𝑏′ ∈ 𝛽−1(𝑐), then 𝛽(𝑏− 𝑏′) = 0 and since ker 𝛽 = im 𝛼, there exists

𝑎 ∈ 𝐴 such that 𝛼(𝑎) = 𝑏 − 𝑏′. Therefore

𝛾𝑔(𝑏) − 𝛾𝑔(𝑏′) = 𝛾𝑔(𝑏 − 𝑏′) = 𝛾𝑔𝛼(𝑎) = 𝛾𝜒 𝑓 (𝑎) = 0

since im 𝜒 = ker 𝛾—thus ℎ is indeed well defined, is a 𝑅-module morphism, and

makes the diagram commute. For the uniqueness of ℎ, suppose ℎ′:𝐶 → 𝑍 is another

morphism making the diagram commute—that is, ℎ′𝛽 = 𝛾𝑔. For any 𝑐 ∈ 𝐶, let

𝑏 ∈ 𝛽−1(𝑐) and notice that

ℎ′(𝑐) = ℎ′𝛽(𝑏) = 𝛾𝑔(𝑏) = ℎ𝛽(𝑏) = ℎ(𝑏),

therefore ℎ′ = ℎ.

We now show that ℎ is an isomorphism. Let 𝑐 ∈ ker ℎ be any element, and

𝑏 ∈ 𝛽−1(𝑐), then 0 = ℎ𝛽(𝑏) = 𝛾𝑔(𝑏)—therefore 𝑔(𝑏) ∈ ker 𝛾 = im 𝜒, thus there exists

𝑥 ∈ 𝑋 such that 𝜒(𝑥) = 𝑔(𝑏). From the surjectivity of 𝑓 , there exists 𝑎 ∈ 𝐴 such that

𝑓 (𝑎) = 𝑥. Since the first square is commutative,

𝑔𝛼(𝑎) = 𝜒 𝑓 (𝑎) = 𝜒(𝑥) = 𝑔(𝑏),

but since 𝑔 is injective then 𝛼(𝑎) = 𝑏. Therefore we conclude that

𝑐 = 𝛽(𝑏) = 𝛽𝛼(𝑎) = 0,

since ker 𝛽 = im 𝛼. Hence ker ℎ = 0 and ℎ is injective.

For the surjectivity of ℎ, let 𝑧 ∈ 𝑍 be any element. Since 𝛾 is surjective, let 𝑦 ∈ 𝑌 be

such that 𝛾(𝑦) = 𝑧, then from the surjectivity of 𝑔, we let 𝑏 ∈ 𝐵 be an element such that

𝑔(𝑏) = 𝑦, then from the commutativity of the second square we obtain

ℎ𝛽(𝑏) = 𝛾𝑔(𝑏) = 𝛾(𝑦) = 𝑧

thus 𝛽(𝑏) ∈ 𝐶 has image 𝑧 under ℎ, and ℎ is therefore surjective. ♮

Proposition 10.3.24. Let 0→ 𝐴
𝛼
↣ 𝐵

𝛽
−→ 𝐶 and 0→ 𝑋

𝜒
↣ 𝑌

𝛾
−→ 𝑍 be exact sequences.

If there exists morphisms 𝑔: 𝐵→ 𝑌 and ℎ:𝐶 → 𝑍 such that 𝛾𝑔 = ℎ𝛽, then there exists

a unique morphism 𝑓 :𝐴→ 𝑋 such that

0 𝐴 𝐵 𝐶

0 𝑋 𝑌 𝑍

𝛼

𝑓

𝛽

𝑔 ℎ

𝜒 𝛾

commutes in 𝑅-Mod. Moreover, if both 𝑔 and ℎ are isomorphisms, then 𝑓 is an isomor-
phism.
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Proof. Let 𝑎 ∈ 𝐴 be any element and define 𝛼(𝑎) ≔ 𝑏. Since the top row is exact we

have 𝑏 ∈ ker 𝛽. From the commutativity of the second square, we find

𝛾𝑔(𝑏) = ℎ𝛽(𝑏) = ℎ(0) = 0

therefore 𝑔(𝑏) ∈ ker 𝛾. Since the bottom row is exact, there must exist 𝑥 ∈ 𝑋 such that

𝜒(𝑥) = 𝑔(𝑏). Define a map 𝑓 :𝐴→ 𝑋 by sending 𝑎 ↦→ 𝑥 as described above. From the

injectivity of 𝛼 and 𝜒, one has that 𝛼−1(𝑏) = {𝑎} and 𝜒−1(𝑔(𝑏)) = {𝑥}, therefore 𝑓 is

well defined. If 𝑎, 𝑎′ ∈ 𝐴, and 𝑟 ∈ 𝑅 are any elements, defining 𝛼(𝑎) ≔ 𝑏 and 𝛼(𝑎′) ≔ 𝑏′

𝛼(𝑎𝑟 + 𝑎′) = 𝛼(𝑎)𝑟 + 𝛼(𝑎′) = 𝑏𝑟 + 𝑏′. Moreover, 𝑔(𝑏), 𝑔(𝑏′) ∈ ker 𝛾 thus there exists

𝑥, 𝑥′ ∈ 𝑋 such that 𝜒(𝑥) = 𝑔(𝑏) and 𝜒(𝑥′) = 𝑔(𝑏′). Therefore

𝑓 (𝑎𝑟 + 𝑎′) = 𝑥𝑟 + 𝑥′ = 𝑓 (𝑎)𝑟 + 𝑓 (𝑎′),

which shows that 𝑓 is a morphism of 𝑅-modules. For the commutativity of the first

square we have, for any 𝑎 ∈ 𝐴,

𝑔𝛼(𝑎) = 𝑔(𝑏) = 𝜒(𝑥) = 𝜒 𝑓 (𝑎).

For the second statement, suppose that both 𝑔 and ℎ are isomorphisms. Let 𝑎 ∈
ker 𝑓 be any element, then if 𝛼(𝑎) = 𝑏 we obtain by commutativity of the first square

that

𝑔𝛼(𝑎) = 𝑔(𝑏) = 𝜒 𝑓 (𝑎) = 𝜒(0) = 0,

but since 𝑔 is injective, then 𝑏 = 0. Therefore 𝛼(𝑎) = 0, which implies in 𝑎 = 0, since

𝛼 is injective. This shows that ker 𝑓 = 0 and thus 𝑓 is injective. For surjectivity, let

𝑥 ∈ 𝑋 be any element, and let 𝑦 ≔ 𝜒(𝑥) so that 𝑦 ∈ ker 𝛾 by the exactness of the bottom

row. Since 𝑔 is surjective, let 𝑏 ∈ 𝐵 such that 𝑔(𝑏) = 𝑦. From the commutativity of the

second square we have

ℎ𝛽(𝑏) = 𝛾𝑔(𝑏) = 𝛾(𝑦) = 0,

therefore 𝛽(𝑏) ∈ ker ℎ. Since ℎ is injective, then 𝛽(𝑏) = 0 and thus 𝛽 ∈ im 𝛼 from the

exactness of the top row. Let 𝑎 ∈ 𝐴 be such that 𝛼(𝑎) = 𝑏, then from the commutativity

of the first square we get

𝜒 𝑓 (𝑎) = 𝑔𝛼(𝑎) = 𝑔(𝑏) = 𝑦.

Since 𝜒 is injective and 𝜒(𝑥) = 𝑦, then 𝑓 (𝑎) = 𝑥. Therefore 𝑓 is an isomorphism. ♮

Proposition 10.3.25 (Five lemma). Consider the following commutative diagram in

𝑅-Mod, whose rows are exact:

𝐴1 𝐴2 𝐴3 𝐴4 𝐴5

𝐵1 𝐵2 𝐵3 𝐵4 𝐵5

𝜙1 𝜙2 𝜙3 𝜙4 𝜙5

The following properties hold:

(a) If 𝜙2 and 𝜙4 are surjective and 𝜙5 is injective, then 𝜙3 is surjective.
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(b) If 𝜙2 and 𝜙4 are injective and 𝜙1 is surjective, then 𝜙3 is injective.
(c) If 𝜙1, 𝜙2, 𝜙4 and 𝜙5 are isomorphisms, then 𝜙3 is an isomorphism.

Proof. Let 𝛼 𝑗 :𝐴 𝑗 → 𝐴 𝑗+1 and 𝛽 𝑗 : 𝐵 𝑗 → 𝐵 𝑗+1 for 1 ⩽ 𝑗 ⩽ 4 be the morphisms shown in

the diagram. We prove each item:

(a) Let 𝑏3 ∈ 𝐵3 be any element, and define 𝑏4 ≔ 𝛽3(𝑏3). Since 𝜙4 is surjective, there

exists 𝑎4 ∈ 𝐴4 such that 𝜙4(𝑎4) = 𝑏4. From the exactness of the bottom row we have

𝑏4 ∈ ker 𝛽4, since 𝑏4 ∈ im 𝛽3. By the commutativity of the forth square we have

𝜙5𝛼4(𝑎4) = 𝛽4𝜙4(𝑎4) = 𝛽4(𝑏4) = 0

therefore 𝛼4(𝑎4) ∈ ker 𝜙5. Since 𝜙5 is injective, then 𝑎4 ∈ ker 𝛼4. By the exactness

of the top row, there exists 𝑎3 ∈ 𝐴3 such that 𝛼3(𝑎3) = 𝑎4. From the commutativity

of the third square we get

𝛽3𝜙3(𝑎3) = 𝜙4𝛼3(𝑎3) = 𝜙4(𝑎4) = 𝑏4.

Since 𝛽3(𝑏3) = 𝑏4 = 𝛽3𝜙3(𝑎3), then 𝜙3(𝑎3) − 𝑏3 ∈ ker 𝛽3. Using again the exactness

of the bottom row, there exists 𝑏2 ∈ 𝐵2 such that 𝛽2(𝑏2) = 𝜙3(𝑎3) − 𝑏3. Since 𝜙2 is

surjective, there exists 𝑎2 ∈ 𝐴2 such that 𝜙2(𝑎2) = 𝑏2. From the commutativity of

the second square one has

𝜙3𝛼2(𝑎2) = 𝛽2𝜙2(𝑎2) = 𝛽2(𝑏2) = 𝜙3(𝑎3) − 𝑏3,

which implies in 𝜙3(𝑎3 − 𝛼2(𝑎2)) = 𝑏3. This proves the surjectivity of 𝜙3.

(b) Let 𝑎3 ∈ ker 𝜙3 be any element. By the commutativity of the third square we obtain

𝜙4𝛼3(𝑎3) = 𝛽3𝜙3(𝑎3) = 𝛽3(0),

thus 𝛼3(𝑎3) ∈ ker 𝜙4—but since 𝜙4 is injective, then 𝑎3 ∈ ker 𝛼3. From the exactness

of the top row, there exists 𝑎2 ∈ 𝐴2 such that 𝛼2(𝑎2) = 𝑎3. By the commutativity of

the second square we have

𝛽2𝜙2(𝑎2) = 𝜙3𝛼2(𝑎2) = 𝜙3(𝑎3) = 0,

hence 𝜙2(𝑎2) ∈ ker 𝛽2. From the exactness of the bottom row there must exist

𝑏1 ∈ 𝐵1 such that 𝛽1(𝑏1) = 𝜙2(𝑎2). Since 𝜙1 is surjective, let 𝑎1 ∈ 𝐴1 be such that

𝜙1(𝑎1) = 𝑏1. Using the commutativity of the first square we obtain

𝜙2𝛼1(𝑎1) = 𝛽1𝜙1(𝑎1) = 𝛽1(𝑏1) = 𝜙2(𝑎2),

therefore 𝜙2(𝛼1(𝑎1)− 𝑎2) = 0. Since 𝜙2 is injective, then 𝛼1(𝑎1) = 𝑎2. From exactness

of the top row, we have 𝑎2 ∈ ker 𝛼2, but since 𝛼2(𝑎2) = 𝑎3, then 𝑎3 = 0. This shows

that ker 𝜙3 = 0, thus 𝜙3 is injective.

(c) This last item is a direct consequence of the above items (a) and (b).
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♮

Proposition 10.3.26 (3 × 3 lemma). Consider the following commutative diagram in

𝑅-Mod, whose columns are exact:

0 0 0

0 𝐴 𝐵 𝐶 0

0 𝑋 𝑌 𝑍 0

0 𝐿 𝑆 𝐷 0

0 0 0

𝛼

𝑓1

𝛽

𝑔1 ℎ1

𝜒

𝑓2

𝛾

𝑔2 ℎ2

𝜆 𝜎

Then, the following properties hold:

(a) If the bottom two rows are exact, then the top row is exact.
(b) If the top two rows are exact, then the bottom row is exact.

Proof. Let’s diagram chase!

(a) First we show that im 𝛼 ⊆ ker 𝛽. Let 𝑎 ∈ 𝐴 be any element and define 𝑏 ≔ 𝛼(𝑎),
𝑥 ≔ 𝑓1(𝑎) and 𝑦 ≔ 𝜒(𝑥). From the commutativity of the top left square:

𝑔1𝛼(𝑎) = 𝜒 𝑓1(𝑎) = 𝜒(𝑥) = 𝑦,

thus 𝑔1(𝑏) = 𝑦. Since 𝑦 ∈ im 𝜒, by the exactness of the middle row we obtain

𝑦 ∈ ker 𝛾. From the commutativity of the top right square:

ℎ1𝛽(𝑏) = 𝛾𝑔1(𝑏) = 𝛾(𝑦) = 0,

therefore 𝛽(𝑏) ∈ ker ℎ1, and since ℎ1 is injective, we conclude that 𝛽(𝑏) = 0. There-

fore im 𝛼 ⊆ ker 𝛽 as wanted.

For the final part, we show that ker 𝛽 ⊆ im 𝛼. Let 𝑏 ∈ ker 𝛽 be any element. From

the commutativity of the top right square:

𝛾𝑔1(𝑏) = ℎ1𝛽(𝑏) = ℎ1(0) = 0

therefore 𝑔1(𝑏) ∈ ker 𝛾. From the exactness of the middle row there exists 𝑥 ∈ 𝑋
such that 𝜒(𝑥) = 𝑔1(𝑏). From both the commutativity of the bottom left square and

the exactness of the middle row:

𝛾 𝑓2(𝑥) = 𝑔2𝜒(𝑥) = 𝑔2𝑔1(𝑏) = 0,

265



hence 𝑓2(𝑥) ∈ ker 𝛾, but since 𝛾 is injective we conclude that 𝑥 ∈ ker 𝑓2. From

the exactness of the left column there exists 𝑎 ∈ 𝐴 such that 𝑓1(𝑎) = 𝑥. By the

commutativity of the top left square:

𝑔1𝛼(𝑎) = 𝜒 𝑓1(𝑎) = 𝜒(𝑥) = 𝑦.

Since 𝑔1 is injective and 𝑔1(𝑏) = 𝑦, then 𝛼(𝑎) = 𝑏. Thus ker 𝛽 ⊆ im 𝛼.

(b) We show that im𝜆 ⊆ ker 𝜎. Let ℓ ∈ 𝐿 be any element and define 𝑠 ≔ 𝛾(ℓ ). Since

𝑓2 is surjective, let 𝑥 ∈ 𝑋 be such that 𝑓2(𝑥) = ℓ . From the exactness of the middle

row we have 𝑦 ≔ 𝜒(𝑥) ∈ ker 𝛾. By the commutativity of the bottom left square:

𝑔2𝜒(𝑥) = 𝜆 𝑓2(𝑥) = 𝜆(ℓ ) = 𝑠,

therefore 𝑔2(𝑦) = 𝑠. Now using the commutativity of the bottom right square:

𝜎𝑔2(𝑦) = ℎ2𝛾(𝑦) = ℎ2(0) = 0,

then 𝜎(𝑠) = 0, hence im𝜆 ⊆ ker 𝜎.

Finally, we show that ker 𝜎 ⊆ im𝜆. Let 𝑠 ∈ ker 𝜎 be any element. Since 𝑔2 is

surjective, let 𝑦 ∈ 𝑌 be such that 𝑔2(𝑦) = 𝑠. From the commutativity of the bottom

right square:

ℎ2𝛾(𝑦) = 𝜎𝑔2(𝑦) = 𝜎(𝑠) = 0,

therefore 𝛾(𝑦) ∈ ker ℎ2. From the exactness of the right column, there exists 𝑐 ∈ 𝐶
such that ℎ1(𝑐) = 𝛾(𝑦). Since 𝛽 is surjective, there exists 𝑏 ∈ 𝐵 for which 𝛽(𝑏) = 𝑐.

Using the commutativity of the top right square:

𝛾𝑔1(𝑏) = ℎ1𝛽(𝑏) = ℎ1(𝑐) = 𝛾(𝑦),

hence 𝛾(𝑦 − 𝑔1(𝑏)) = 0. By the exactness of the middle row, we can find 𝑥 ∈ 𝑋 such

that 𝜒(𝑥) = 𝑦 − 𝑔1(𝑏). Applying the commutativity of the bottom left square:

𝜆 𝑓2(𝑥) = 𝑔2𝜒(𝑥) = 𝑔2(𝑦 − 𝑔1(𝑏)) = 𝑔2(𝑦) − 𝑔2𝑔1(𝑏) = 𝑔2(𝑦) = 𝑠,

therefore 𝑠 ∈ im𝜆. Thus indeed ker 𝜎 ⊆ im𝜆.

♮

Proposition 10.3.27. Consider the following commutative diagram in 𝑅-Mod:

0 𝐴 𝐵 𝐶 0

0 𝑋 𝑌 𝑍 0

𝛼

≃ 𝜙1

𝛽

≃ 𝜙2 ≃𝜙3

𝜒 𝛾

Then the top row is exact if and only if the bottom row is exact.
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Proof. (⇒) Suppose the top row is exact. We prove that the bottom row is exact in two

parts:

• We show that im 𝜒 ⊆ ker 𝛾. Let 𝑥 ∈ 𝑋 be any element, and define 𝑦 ≔ 𝜒(𝑥).
Since 𝜙1 is surjective, let 𝑎 ∈ 𝐴 be such that 𝜙1(𝑎) = 𝑥. By the commutativity of

the first square:

𝜙2𝛼(𝑎) = 𝜒𝜙1(𝑎) = 𝜒(𝑥) = 𝑦.

From the exactness of the top row we have 𝑏 ≔ 𝛼(𝑎) ∈ ker 𝛽. Hence, by the

commutativity of the second square:

𝛾𝜙2(𝑏) = 𝛾(𝑦) = 𝜙3𝛽(𝑏) = 𝜙3(0) = 0,

thus 𝑦 ∈ ker 𝛾—which implies in im 𝜒 ⊆ ker 𝛾.

• We now show that ker 𝛾 ⊆ im 𝜒. Let 𝑦 ∈ ker 𝛾 be any element. Since 𝜙2 is

surjective, let 𝑏 ∈ 𝐵 be such that 𝜙2(𝑏) = 𝑦. From the commutativity of the

second square:

𝜙3𝛽(𝑏) = 𝛾𝜙2(𝑏) = 𝛾(𝑦) = 0,

thus 𝛽(𝑏) ∈ ker 𝜙3—but since 𝜙3 is injective, then 𝑏 ∈ ker 𝛽. From the exactness

of the top row we find 𝑎 ∈ 𝐴 such that 𝛼(𝑎) = 𝑏. Using the commutativity of the

first square:

𝜒𝜙1(𝑎) = 𝜙2𝛼(𝑎) = 𝜙2(𝑏) = 𝑦,

therefore 𝑦 ∈ im 𝜒 and ker 𝛾 ⊆ im 𝜒.

(⇐) If on the contrary we assume that the bottom row is exact, since 𝜙1, 𝜙2 and 𝜙3

are invertible, one can simply consider the following commutative diagram:

0 𝑋 𝑌 𝑍 0

0 𝐴 𝐵 𝐶 0

𝜒

≃ 𝜙−1

1

𝛾

≃ 𝜙−1

2
≃𝜙−1

3

𝛼 𝛽

We can now apply the first part of the proof and conclude that the sequence of modules

0→ 𝐴→ 𝐵→ 𝐶 → 0 is exact. ♮

Lemma 10.3.28 (Snake lemma). Consider the following commutative diagram in𝑅-Mod:

0 𝐴 𝐵 𝐶 0

0 𝑋 𝑌 𝑍 0

𝑓 𝑔 ℎ

There exists an exact sequence:

0 ker 𝑓 ker 𝑔 ker ℎ

coker 𝑓 coker 𝑔 coker ℎ 0
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Exact Functors
Definition 10.3.29. Let 𝐹:𝑅-Mod→ Ab be a covariant functor, and 𝐺:𝑅-Modop → Ab be

a contravariant functor. Consider a sequence of 𝑅-modules

0 𝐴 𝐵 𝐶 0

𝑓 𝑔
,

We define the following notions:

(a) If 0 → 𝐴 → 𝐵 → 𝐶 is exact, the functor 𝐹 is said to be left exact if the induced

sequence of abelian groups

0 𝐹𝐴 𝐹𝐵 𝐹𝐶
𝐹 𝑓 𝐹𝑔

is exact. Dually, 𝐺 is said to be right exact if

𝐺𝐶 𝐺𝐵 𝐺𝐴 0

𝐺𝑔 𝐺 𝑓

is an exact sequence.

(b) If 𝐴 → 𝐵 → 𝐶 → 0 is exact, the functor 𝐹 is said to be right exact if the induced

sequence of abelian groups

𝐹𝐴 𝐹𝐵 𝐹𝐶 0

𝐹 𝑓 𝐹𝑔

is exact. Dually, 𝐺 is said to be left exact if

0 𝐺𝐶 𝐺𝐵 𝐺𝐴
𝐺𝑔 𝐺 𝑓

is an exact sequence.

(c) If 0→ 𝐴→ 𝐵→ 𝐶 → 0 is short exact, the functor 𝐹 is said to be exact if the induced

sequence of abelian groups

0 𝐹𝐴 𝐹𝐵 𝐹𝐶 0

𝐹 𝑓 𝐹𝑔

is exact. Analogously, 𝐺 is said to be exact if

0 𝐺𝐶 𝐺𝐵 𝐺𝐴 0

𝐺𝑔 𝐺 𝑓

Proposition 10.3.30. Given any 𝑅-module 𝑀, the functors

Mor𝑅-Mod(𝑀,−):𝑅-Mod −→ Ab and Mor𝑅-Mod(−, 𝑀):𝑅-Modop −→ Ab

are both left-exact.

268



Proof. (a) We first show that Mor𝑅-Mod(𝑀,−) is exact. Let 0→ 𝐴
𝑓
↣ 𝐵

𝑔
−→ 𝐶 be an exact

sequence of 𝑅-modules, and consider the induced sequence of abelian groups

0 Mor𝑅-Mod(𝑀, 𝐴) Mor𝑅-Mod(𝑀, 𝐵) Mor𝑅-Mod(𝑀, 𝐶).𝑓∗ 𝑔∗

First we show that 𝑓∗ is injective. Let ℓ ∈ ker 𝑓∗ be any morphism, then by definition

we have 𝑓∗(ℓ ) = 𝑓 ℓ = 0. Since 𝑓 is injective, we have ker 𝑓 = 0, which implies in

im ℓ = 0—hence ℓ = 0. This shows that ker 𝑓∗ = 0, therefore 𝑓∗ is an injective map.

To show that the induced sequence is exact in Mor𝑅-Mod(𝑀, 𝐵), we prove that

im 𝑓∗ = ker 𝑔∗. Let ℓ ∈ im 𝑓∗ be any element and let 𝑘 ∈ Mor𝑅-Mod(𝑀, 𝐴) be such that

𝑓∗(𝑘) = 𝑓 𝑘 = ℓ . Since the original sequence is exact, we have

𝑔∗(ℓ ) = 𝑔ℓ = 𝑔( 𝑓 𝑘) = 0

since im 𝑓 = ker 𝑔. Therefore ℓ ∈ ker 𝑔∗ and im 𝑓∗ ⊆ ker 𝑔∗.

For the converse of this inclusion, let ℎ ∈ ker 𝑔∗ be any map so that 𝑔ℎ(𝑚) = 0 for

all 𝑚 ∈ 𝑀—therefore ℎ(𝑚) ∈ ker 𝑔 and by exactness this means that there must

exist 𝑎 ∈ 𝐴 such that 𝑓 (𝑎) = 𝑚, which is unique since 𝑓 is an injective map. Define

𝑝:𝑀 → 𝐴 by mapping 𝑚 ↦→ 𝑎 if ℎ(𝑚) = 𝑓 (𝑎). To check that 𝑝 is a morphism of

modules, let 𝑚, 𝑚′ ∈ 𝑀 be elements and let 𝑎, 𝑎′ ∈ 𝐴 be such that ℎ(𝑚) = 𝑓 (𝑎) and

ℎ(𝑚′) = 𝑓 (𝑎′). Then since

ℎ(𝑚 + 𝑚′) = ℎ(𝑚) + ℎ(𝑚′) = 𝑓 (𝑎) + 𝑓 (𝑎′) = 𝑓 (𝑎 + 𝑎′),

then 𝑝(𝑚 + 𝑚′) = 𝑎 + 𝑎′ = 𝑝(𝑚) + 𝑝(𝑚′). If 𝑟 ∈ 𝑅 is any ring element, then one also

has

ℎ(𝑚𝑟) = ℎ(𝑚)𝑟 = 𝑓 (𝑎)𝑟 = 𝑓 (𝑎𝑟),
therefore 𝑝(𝑚𝑟) = 𝑎𝑟 = 𝑝(𝑚)𝑟. Then we conclude that 𝑝 ∈ MorMor𝑅(𝑀, 𝐴) and

therefore 𝑓∗(𝑝) = ℎ, showing that ℎ ∈ im 𝑓∗ and that ker 𝑔∗ ⊆ im 𝑓∗. This finishes

the proof that im 𝑓∗ = ker 𝑔∗.

(b) We now prove the left exactness of the contravariant functor MorMor𝑅(−, 𝑀). Let

𝐴
𝑖−→ 𝐵

𝑝
↠ 𝐶 → 0 be an exact sequence of 𝑅-modules, and consider the induced

sequence of abelian groups

0 Mor𝑅-Mod(𝐶, 𝑀) Mor𝑅-Mod(𝐵, 𝑀) Mor𝑅-Mod(𝐴, 𝑀).
𝑝∗ 𝑖∗

We first show the injectivity of 𝑝∗. Let ℎ ∈ ker 𝑝∗ be any map, then for every 𝑏 ∈ 𝐵
one has ℎ𝑝(𝑏) = 0, therefore im 𝑝 ⊆ ker ℎ. Since 𝑝 is surjective, im 𝑝 = 𝐶 and since

ker ℎ ⊆ 𝐶, then we conclude that ker ℎ = im 𝑝 = 𝐶 and therefore ℎ = 0.

Let’s now show that im 𝑝∗ = ker 𝑖∗. If 𝑔 ∈ Mor𝑅-Mod(𝐶, 𝑀) is any map, then one has

𝑖∗𝑝∗(𝑔) = 𝑖∗(𝑔𝑝) = (𝑔𝑝)𝑖 = 𝑔(𝑝𝑖) = 0,
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from the fact that im 𝑖 = ker 𝑝. Therefore 𝑔 ∈ ker 𝑖∗ and im 𝑝∗ ⊆ ker 𝑖∗. For the

converse, take 𝑔 ∈ ker 𝑖∗. Define a map 𝑓 :𝐶 → 𝑌 by 𝑐 ↦→ 𝑔(𝑏) if 𝑐 = 𝑝(𝑏)—an

element 𝑏 ∈ 𝐵 with such property is ensured to exist by the surjectivity of 𝑝. To

check that 𝑓 is well defined, let 𝑏, 𝑏′ ∈ 𝐵 be any two elements with 𝑝(𝑏) = 𝑝(𝑏′)—
then 𝑝(𝑏 − 𝑏′) = 0, which implies that there exists 𝑎 ∈ 𝐴 such that 𝑖(𝑎) = 𝑏 − 𝑏′.
Moreover, since 𝑖∗(𝑔) = 𝑔𝑖 = 0, then

𝑔𝑖(𝑎) = 𝑔(𝑏 − 𝑏′) = 𝑔(𝑏) − 𝑔(𝑏′) = 0,

therefore 𝑓 (𝑏) = 𝑓 (𝑏′). To show that 𝑓 is a morphism of 𝑅-modules, let 𝑟 ∈ 𝑅 and

𝑐, 𝑐′ ∈ 𝐶 be any elements with corresponding 𝑏, 𝑏′ ∈ 𝐵 for which 𝑝(𝑏) = 𝑐 and

𝑝(𝑏′) = 𝑐′. Then 𝑝(𝑏 + 𝑏′) = 𝑐 + 𝑐′ and then

𝑓 (𝑐 + 𝑐′) = 𝑔(𝑏 + 𝑏′) = 𝑔(𝑏) + 𝑔(𝑏′) = 𝑓 (𝑐) + 𝑓 (𝑐′).

Moreover, we have 𝑝(𝑏𝑟) = 𝑝(𝑏)𝑟 = 𝑐𝑟, hence

𝑓 (𝑐𝑟) = 𝑔(𝑏𝑟) = 𝑔(𝑏)𝑟 = 𝑓 (𝑐)𝑟.

This shows that 𝑓 is indeed 𝑅-linear. Therefore we can finally note that 𝑝∗( 𝑓 ) =
𝑓 𝑝 = 𝑔 so that 𝑔 ∈ im 𝑝∗, hence ker 𝑖∗ ⊆ im 𝑝∗.

♮

Remark 10.3.31. The functors Mor𝑅-Mod(𝑀,−) and Mor𝑅-Mod(−, 𝑀) are not right-exact.

In other words, if 0 → 𝐴
𝑓
−→ 𝐵 is an exact sequence of 𝑅-modules, it is not always true

that the sequence of abelian groups Mor𝑅-Mod(𝐴, 𝑀)
𝑓 ∗

−→Mor𝑅-Mod(𝐵, 𝑀) → 0 is exact.

For instance, one can take the exact sequence 0 → Z
𝑓
↣ Z where 𝑓 (𝑥) ≔ 2𝑥, and

the module 𝑀 ≔ Z/2Z, so that MorZ-Mod(Z, 𝑀) = {0,𝜋}—where 𝜋: Z ↠ Z/2Z is the

natural projection. Therefore the induced map 𝑓 ∗: MorZ-Mod(Z, 𝑀) → MorZ-Mod(Z, 𝑀)
is not surjective, since 𝜋 ↦→ 𝜋 𝑓 = 0.

Proposition 10.3.32 (Converse of Proposition 10.3.30). Consider 𝑅-modules 𝐴, 𝐵 and

𝐶, and morphisms of 𝑅-modules 𝑓 :𝐴→ 𝐵 and 𝑔: 𝐵→ 𝐶. We have the following two

properties concerning the functors Mor𝑅-Mod(𝑀,−) and Mor𝑅-Mod(−, 𝑀):

(a) If the sequence of abelian groups

0 Mor𝑅-Mod(𝑀, 𝐴) Mor𝑅-Mod(𝑀, 𝐵) Mor𝑅-Mod(𝑀, 𝐶)𝑓∗ 𝑔∗

is exact for every 𝑀 ∈ 𝑅-Mod, then the corresponding sequence of 𝑅-modules

0 𝐴 𝐵 𝐶
𝑓 𝑔

is also exact.

270



(b) If the sequence of abelian groups

0 Mor𝑅-Mod(𝐶, 𝑀) Mor𝑅-Mod(𝐵, 𝑀) Mor𝑅-Mod(𝐴, 𝑀).
𝑔∗ 𝑓 ∗

is exact for every 𝑀 ∈ 𝑅-Mod, then the corresponding sequence of 𝑅-modules

𝐴 𝐵 𝐶 0

𝑓 𝑔

is also exact.

Proof. (a) We first show the injectivity of 𝑓 . Let 𝑀 ≔ ker 𝑓 and consider the natural

inclusion 𝜄 ∈ Mor𝑅-Mod(𝑀, 𝐴), then 𝑓∗(𝜄) = 𝑓 𝜄 = 0, but since 𝑓∗ is injective then

𝜄 = 0—which implies in ker 𝑓 = 0.

For the proof that im 𝑓 = ker 𝑔, take 𝑀 ≔ im 𝑓 and consider the natural inclusion

𝑖 ∈ Mor𝑅-Mod(𝑀, 𝐵). Since 𝑓 is injective, the induced map 𝑓 :𝐴→ im 𝑓 is a bĳection,

therefore one may define ℓ : im 𝑓 → 𝐴 by ℓ = ( 𝑓 )−1
. Notice that 𝑓∗(ℓ ) = 𝑓 ℓ = 𝑖,

therefore 𝑖 ∈ im 𝑓∗. Since im 𝑓∗ ⊆ ker 𝑔∗, then 𝑔∗(𝑖) = 𝑔𝑖 = 0, which implies in

im 𝑓 ⊆ ker 𝑔.

For the converse inclusion, define 𝑀 ≔ ker 𝑔 and consider the canonical inclusion

𝑗 ∈ Mor𝑅-Mod(𝑀, 𝐵), so that 𝑔∗(𝑗) = 𝑔 𝑗 = 0. From the exactness of the sequence

of abelian groups, there must exist ℎ ∈ Mor𝑅-Mod(𝑀, 𝐴) such that 𝑓∗(ℓ ) = 𝑓 ℓ = 𝑗—

therefore, for all 𝑏 ∈ ker 𝑔 there exists ℓ (𝑏) ∈ 𝐴 such that 𝑓 (ℓ (𝑏)) = 𝑏, thus ker 𝑔 ⊆
im 𝑓 .

(b) First we prove that 𝑔 is surjective. Since the sequence is exact for all modules 𝑀,

take 𝑀 ≔ 𝐶/im 𝑔 and let 𝜋:𝐶 ↠ 𝑀 be the natural projection morphism. Then we

have 𝑔∗(𝜋) = 𝜋𝑔 = 0, but since 𝑔∗ is injective we find 𝜋 = 0—which can only be the

case if im 𝑔 = 𝐶, therefore 𝑔 is surjective.

We shall now show that im 𝑓 = ker 𝑔. Notice that since im 𝑔∗ ⊆ ker 𝑓 ∗ then

𝑓 ∗𝑔∗ = 0 but then (𝑔 𝑓 )∗ = 0 since Mor𝑅-Mod(−, 𝑀) is contravariant. Therefore, if we

take 𝑀 ≔ 𝐶 and consider the element id𝐶 ∈ Mor𝑅-Mod(𝐶, 𝑀), we obtain

0 = (𝑔 𝑓 )∗(id𝐶) = id𝐶(𝑔 𝑓 ) = 𝑔 𝑓 ,

therefore im 𝑓 ⊆ ker 𝑔.

For the other side of the inclusion, consider the module 𝑀 ≔ 𝐵/im 𝑓 and let

𝑝: 𝐵 → 𝑀, then denote the natural projection morphism—so that 𝑓 ∗(𝑝) = 𝑝 𝑓 = 0.

Since the sequence of abelian groups is exact, there must exist ℎ ∈ Mor𝑅-Mod(𝐶, 𝑀)
such that 𝑔∗(ℎ) = ℎ𝑔 = 𝑝. If, for the sake of contradiction, ker 𝑔 is not contained in

im 𝑓 , there must exist 𝑏 ∈ 𝐵 such that 𝑔(𝑏) = 0 but 𝑏 ∉ im 𝑓 . This however implies

that 𝑝(𝑏) ≠ 0, while ℎ𝑔(𝑏) = 𝑝(𝑏)—and since 𝑔(𝑏) = 0 then ℎ𝑔(𝑏) = 0, which is a

contradiction. This shows that ker 𝑔 ⊆ im 𝑓 .

♮
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Lemma 10.3.33. Consider the following sequence of 𝑅-modules: sequence of 𝑅-

modules

0 𝐴 𝐵 𝐶 0

𝑓 𝑔
(10.5)

We have the following:

(a) The sequence Eq. (10.5) is split short exact if and only if for every 𝑅-module 𝑋 the

induced sequence of abelian groups

0 Mor𝑅-Mod(𝑋, 𝐴) Mor𝑅-Mod(𝑋, 𝐵) Mor𝑅-Mod(𝑋, 𝐶) 0

𝑓∗ 𝑔∗

is exact.
(b) The sequence Eq. (10.5) is split short exact if and only if for every 𝑅-module 𝑌 the

induced sequence of abelian groups

0 Mor𝑅-Mod(𝐶,𝑌) Mor𝑅-Mod(𝐵, 𝑌) Mor𝑅-Mod(𝐴,𝑌) 0

𝑔∗ 𝑓 ∗

is exact.

Proof. We shall only prove item (a) since (b) is merely its dual. (⇒) Since Mor𝑅-Mod(𝑋,−)
is left exact, it suffices to show that 𝑔∗ is an epimorphism. Since 𝑔 is a retract, there exists

𝑢:𝐶 → 𝐵 such that 𝑔𝑢 = id𝐶 = 𝑔∗𝑢, therefore given any morphism 𝑡 ∈ Mor𝑅-Mod(𝑋, 𝐶)
there exists a morphism 𝑢𝑡 ∈ Mor𝑅-Mod(𝑋, 𝐵) such that 𝑔∗(𝑢𝑡) = 𝑔𝑢𝑡 = 𝑡—which shows

that 𝑔∗ is surjective.

(⇐) By Proposition 10.3.32 we know that 0 → 𝐴 → 𝐵 → 𝐶 is exact. If we now

choose 𝑋 ≔ 𝐶 then there exists a map 𝑣:𝐶 → 𝐵 such that 𝑔∗𝑣 = 𝑔𝑣 = id𝐶 from the fact

that 𝑔∗ is an epimorphism—thus surjective. This shows that 𝑔 admits a right inverse,

thus 𝑔 is a split epimorphism. ♮

Theorem 10.3.34. Let 𝐴 and 𝐵 be a pair of 𝑘-algebras, where 𝑘 is a commutative ring,

and consider a pair of functors 𝐹 : 𝐴-Mod → 𝐵-Mod : 𝐺. If the pair (𝐹, 𝐺) is adjunct,

then 𝐹 is right-exact and 𝐺 is left exact.

Proof. By definition, for any pair of modules 𝑀 ∈ 𝐴-Mod and 𝑋 ∈ 𝐵-Mod there exists a

natural isomorphism

𝜃𝑀𝑋 : Mor𝐵-Mod(𝐹𝑀, 𝑋) ≃−→Mor𝐴-Mod(𝑀, 𝐺𝑋).

Let 𝐿
𝑓
−→ 𝑀

𝑔
−→ 𝑁 → 0 an exact sequence of 𝐴-modules. The naturality of the map 𝜃

implies that the following diagram commutes for any 𝑋 ∈ 𝐵-Mod:

0 Mor𝐵-Mod(𝐹𝑁, 𝑋) Mor𝐵-Mod(𝐹𝑀, 𝑋) Mor𝐵-Mod(𝐹𝐿, 𝑋)

0 Mor𝐴-Mod(𝑁, 𝐺𝑋) Mor𝐴-Mod(𝑀, 𝐺𝑋) Mor𝐴-Mod(𝐿, 𝐺𝑋)

(𝐹𝑔)∗

𝜃𝑁𝑋 ≃

(𝐹 𝑓 )∗

𝜃𝑀,𝑋 ≃ 𝜃𝐿,𝑋

(𝐺𝑔)∗ (𝐺 𝑓 )∗
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Since Mor𝐴-Mod(−, 𝐺𝑋) is left-exact then the inferior row is exact, and since the vertical

morphisms are isomorphisms, then the superior row is also exact. Using Proposi-

tion 10.3.32 item (b) we obtain that 𝐹𝐿
𝐹 𝑓
−−→ 𝐹𝑀

𝐹𝑔
−−→ 𝐹𝑁 → 0, therefore 𝐹 is right exact.

Analogously we can show that 𝐺 is left exact. ♮

10.4 Bimodules
Definition 10.4.1 (Bimodule). Let𝑅 and 𝑆 be any two rings, and𝑀 be an abelian group.

We say that 𝑀 is a (𝑅, 𝑆)-bimodule if 𝑀 is both a left-𝑅-module and a right-𝑆-module,

and 𝑀 must satisfy the associative law:

𝑟(𝑚𝑠) = (𝑟𝑚)𝑠,

for all 𝑟 ∈ 𝑅, 𝑚 ∈ 𝑀, and 𝑠 ∈ 𝑆.

Example 10.4.2. Let 𝑅 be a commutative ring and 𝑀 be an 𝑅-module, then we can

define the structure of (𝑅, 𝑅)-bimodule on 𝑀 by making the identification 𝑟𝑚 = 𝑚𝑟

for any 𝑟 ∈ 𝑅 and 𝑀. Such identification respects the module structure since, given

any other 𝑟′ ∈ 𝑅 one has

(𝑟𝑟′)𝑚 = 𝑟(𝑟′𝑚) = 𝑟′𝑚𝑟 = (𝑚𝑟)𝑟′ = 𝑚(𝑟𝑟′) = 𝑚(𝑟′𝑟).

Proposition 10.4.3. Let 𝑅 and 𝑆 be rings, and 𝑀 be a (𝑅, 𝑆)-bimodule. The following

properties concern the relations between functors Mor(𝑀,−) and Mor(−, 𝑀), and

bimodules:

(a) For any left-𝑅-module 𝐵we have that Mor𝑅Mod(𝑀, 𝐵) is a left-𝑆-module with a product

𝑠 · 𝑓 :𝑀 → 𝐵 mapping 𝑚 ↦→ 𝑓 (𝑚𝑠) for any 𝑓 ∈ Mor𝑅Mod(𝑀, 𝐵) and 𝑠 ∈ 𝑆. This can

be summarized by the fact that

Mor𝑅Mod(𝑀,−): 𝑅Mod −→ 𝑆Mod

is a covariant functor.

(b) For any right-𝑆-module 𝐵 we have that MorMod𝑆(𝑀, 𝐵) is a right-𝑅-module with a

product 𝑓 · 𝑟:𝑀 → 𝐵 mapping 𝑚 ↦→ 𝑓 (𝑟𝑚) for any 𝑓 ∈ MorMod𝑆(𝑀, 𝐵) and 𝑠 ∈ 𝑆.

This can be summarized by the fact that

MorMod𝑆(𝑀,−): Mod𝑆 −→ Mod𝑅

is a covariant functor.

(c) For any right-𝑆-module 𝐴 we have that MorMod𝑆(𝐴, 𝑀) is a left-𝑅-module with a

product 𝑟 · 𝑓 :𝐴→ 𝑀 mapping 𝑚 ↦→ 𝑟 𝑓 (𝑚). This is summarized by the fact that

MorMod𝑆(−, 𝑀): Mod𝑆op −→ 𝑅Mod

is a contravariant functor.
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(d) For any left-𝑅-module 𝐴 we have that Mor𝑅Mod(𝐴, 𝑀) is a right-𝑆-module with a

product 𝑓 · 𝑠:𝐴→ 𝑀 mapping 𝑚 ↦→ 𝑓 (𝑚)𝑠. This is summarized by the fact that

Mor𝑅Mod(−, 𝑀): 𝑅Modop −→ Mod𝑆

is a contravariant functor.

Proof. The proof of the above statements are rather repetitive, but we shall lay all of

them down:

(a) Given a morphism 𝑓 ∈ Mor𝑅Mod(𝑀, 𝐵), elements 𝑠, 𝑠′ ∈ 𝑆 and any 𝑚 ∈ 𝑀, one has

((𝑠𝑠′) · 𝑓 )(𝑚) = 𝑓 (𝑚(𝑠𝑠′)) = 𝑓 ((𝑚𝑠)𝑠′) = (𝑠′ · 𝑓 )(𝑚𝑠) = (𝑠 · (𝑠′ · 𝑓 ))(𝑚),

therefore (𝑠𝑠′)· 𝑓 = 𝑠 ·(𝑠′· 𝑓 ). This shows that Mor𝑅Mod(𝑀, 𝐵) is a left-𝑆-module. Now,

if 𝑔: 𝐵→ 𝐶 is any morphism of left-𝑅-modules, consider the map 𝑔∗: Mor𝑅Mod(𝑀, 𝐵) →
Mor𝑅Mod(𝑀, 𝐶). Take a morphism 𝑓 ∈ Mor𝑅Mod(𝑀, 𝐵) and consider any two ele-

ments 𝑠 ∈ 𝑆 and 𝑚 ∈ 𝑀, then

𝑔∗(𝑠 𝑓 )(𝑚) = 𝑔(𝑠 𝑓 )(𝑚) = 𝑔 𝑓 (𝑚𝑠) = 𝑠(𝑔 𝑓 (𝑚)) = 𝑠𝑔∗( 𝑓 )(𝑚),

which shows that 𝑔∗ is indeed a morphism between left-𝑆-modules.

(b) Let 𝑓 ∈ MorMod𝑆(𝑀, 𝐵), and 𝑟, 𝑟′ ∈ 𝑅 be any elements, then given any 𝑚 ∈ 𝑀 one

has

( 𝑓 · (𝑟𝑟′))(𝑚) = 𝑓 ((𝑟𝑟′)𝑚) = 𝑓 (𝑟(𝑟′𝑚)) = ( 𝑓 · 𝑟)(𝑟′𝑚) = (( 𝑓 · 𝑟) · 𝑟′)(𝑚).

Therefore MorMod𝑆(𝑀, 𝐵) has a structure of right-𝑅-module. Let 𝑔: 𝐵 → 𝐶 be any

morphism of right-𝑆-modules and consider its induced map 𝑔∗: MorMod𝑆(𝑀, 𝐵) →
MorMod𝑆(𝑀, 𝐶). If 𝑓 ∈ MorMod𝑆(𝑀, 𝐵) is any morphism, consider elements 𝑟 ∈ 𝑅
and 𝑚 ∈ 𝑀, then

𝑔∗(( 𝑓 · 𝑟))(𝑚) = 𝑔( 𝑓 · 𝑟)(𝑚) = 𝑔 𝑓 (𝑟𝑚) = 𝑟(𝑔 𝑓 (𝑚)) = 𝑟𝑔∗( 𝑓 )(𝑚).

Therefore 𝑔∗ is a morphism between right-𝑅-modules.

(c) Let 𝑓 ∈ MorMod𝑆(𝐴, 𝑀) be any morphism, and consider two elements 𝑟, 𝑟′ ∈ 𝑅.

From the product definition we obtain, for any 𝑚 ∈ 𝑀:

((𝑟𝑟′) · 𝑓 )(𝑚) = (𝑟𝑟′) 𝑓 (𝑚) = 𝑟(𝑟′ 𝑓 (𝑚)) = 𝑟(𝑟′ · 𝑓 )(𝑚) = (𝑟 · (𝑟′ · 𝑓 ))(𝑚),

which shows that MorMod𝑆(𝐴, 𝑀) has a structure of left-𝑅-module. For the sec-

ond part of the proposition, consider a morphism 𝑔:𝐴 → 𝐵 between right-𝑆-

modules, and its corresponding map 𝑔∗: MorMod𝑆(𝐵, 𝑀) → MorMod𝑆(𝐴, 𝑀). Let

𝑓 ∈ MorMod𝑆(𝐵, 𝑀), 𝑟 ∈ 𝑅, and 𝑏 ∈ 𝐵 be any elements, then one has

𝑔∗(𝑟 · 𝑓 )(𝑚) = (𝑟 · 𝑓 ) ◦ 𝑔(𝑚) = 𝑟 𝑓 (𝑔(𝑚)) = 𝑟𝑔∗( 𝑓 )(𝑚).

Therefore 𝑔∗ is a morphism between left-𝑅-modules.
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(d) Let 𝑓 ∈ Mor𝑅Mod(𝐴, 𝑀) be any morphism and take elements 𝑠, 𝑠′ ∈ 𝑆, then for any

𝑚 ∈ 𝑀 we have

( 𝑓 · (𝑠𝑠′))(𝑚) = 𝑓 (𝑚)(𝑠𝑠′) = ( 𝑓 (𝑚)𝑠)𝑠′ = ( 𝑓 · 𝑠)(𝑚)𝑠′ = (( 𝑓 · 𝑠) · 𝑠′)(𝑚),

therefore Mor𝑅Mod(𝐴, 𝑀) has the structure of a right-𝑆-module. For the last part,

take any morphism 𝑔:𝐴 → 𝐵 of left-𝑅-modules and consider the induced map

𝑔∗: Mor𝑅Mod(𝐵, 𝑀) → Mor𝑅Mod(𝐴, 𝑀). If 𝑓 ∈ Mor𝑅Mod(𝐵, 𝑀), 𝑠 ∈ 𝑆, and 𝑏 ∈ 𝐵 are

any elements, then one has

𝑔∗( 𝑓 · 𝑠)(𝑚) = ( 𝑓 · 𝑠) ◦ 𝑔(𝑚) = 𝑓 𝑔(𝑚)𝑠𝑔∗( 𝑓 )(𝑚)𝑠.

This shows that 𝑔∗ is a morphism between right-𝑆-modules.

♮

Example 10.4.4. If 𝑅 is a commutative ring, and 𝐴 and 𝐵 are 𝑅-modules, then both

modules also have the structure of (𝑅, 𝑅)-bimodules (see Example 10.4.2). From Propo-

sition 10.4.3 we find that

Mor(𝑅,𝑅)-Mod(𝐴,−):(𝑅, 𝑅)-Mod −→ (𝑅, 𝑅)-Mod,
Mor(𝑅,𝑅)-Mod(−, 𝐵):(𝑅, 𝑅)-Modop −→ (𝑅, 𝑅)-Mod

are the Mor functors.

Corollary 10.4.5. Let 𝑅 be a ring and 𝑀 be a left-𝑅-module. Then Mor𝑅Mod(𝑅, 𝑀) is a

left-𝑅-module and there exists a natural isomorphism of left-𝑅-modules

Mor𝑅Mod(𝑅, 𝑀) ≃ 𝑀,

mapping 𝑓 ↦→ 𝑓 (1).

Proof. Since𝑅 has a natural structure of (𝑅, 𝑅)-bimodule, by means of item (a) of Propo-

sition 10.4.3 we obtain that Mor𝑅Mod(𝑅, 𝑀)has a structure of left-𝑅-module via the prod-

uct 𝑟 · 𝑓 ∈ Mor𝑅Mod(𝑅, 𝑀) mapping 𝑎 ↦→ 𝑓 (𝑎𝑟)—where 𝑟 ∈ 𝑅 and 𝑓 ∈ Mor𝑅Mod(𝑅, 𝑀)
are any two elements.

We first shows that the map 𝜙: Mor𝑅Mod(𝑅, 𝑀) → 𝑀 given by 𝑓 ↦→ 𝑓 (1) is a

morphism of left-𝑅-modules. Let 𝑓 , 𝑔 ∈ Mor𝑅Mod(𝑅, 𝑀) be any two elements, then

𝜙( 𝑓 + 𝑔) = ( 𝑓 + 𝑔)(1) = 𝑓 (1) + 𝑔(1) = 𝜙( 𝑓 ) + 𝜙(𝑔). Moreover, if 𝑟 ∈ 𝑅 then

𝜙(𝑟 · 𝑓 ) = (𝑟 · 𝑓 )(1) = 𝑓 (1 · 𝑟) = 𝑓 (𝑟) = 𝑓 (𝑟 · 1) = 𝑟 𝑓 (1) = 𝑟𝜙( 𝑓 ).

Therefore 𝜙 is indeed a morphism as wanted. For injectivity it is simple to realize that

𝜙( 𝑓 ) = 𝑓 (1) = 0 if and only if 𝑓 = 0, since 𝑓 (𝑟) = 𝑓 (𝑟 · 1) = 𝑟 𝑓 (1)—therefore ker 𝜙 = 0.

Moreover, given any 𝑚 ∈ 𝑀, there exists a morphism 𝑔:𝑅→ 𝑀 uniquely determined

by 𝑔(1) ≔ 𝑚, so that 𝜙(𝑔) = 𝑚. ♮
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Theorem 10.4.6. Let 𝑅 and 𝑆 be any two rings, and 𝑀 be an (𝑅, 𝑆)-bimodule. Then for

any collection (𝐵 𝑗)𝑗∈𝐽 of left-𝑅-modules, the natural isomorphism of abelian groups

Mor𝑅Mod

(
𝐴,

∏
𝑗∈𝐽

𝐵 𝑗
)
≃

∏
𝑗∈𝐽

Mor𝑅Mod(𝐴, 𝐵𝑗)

is also an isomorphism of left-𝑆-modules.

Proof. Define 𝐵 ≔
∏

𝑗∈𝐽 𝐵 𝑗 , and name the isomorphism by 𝜙—which maps 𝑓 ↦→
(𝜋 𝑗 𝑓 )𝑗∈𝐽 , where 𝜋 𝑗 is the 𝑗-th canonical projection. Notice that, given any morphism

𝑓 ∈ Mor𝑅Mod(𝐴, 𝐵), 𝑠 ∈ 𝑆 and 𝑎 ∈ 𝐴, we have

𝜋 𝑗 ◦ (𝑠 · 𝑓 )(𝑎) = 𝜋 𝑗( 𝑓 (𝑎𝑠)) = 𝜋 𝑗 𝑓 (𝑎𝑠) = (𝑠 · (𝜋 𝑗 𝑓 ))(𝑎)

for any 𝑗 ∈ 𝐽. Therefore, we conclude that

𝜙(𝑠 · 𝑓 ) = (𝜋 𝑗(𝑠 · 𝑓 ))𝑗∈𝐽 = (𝑠 · (𝜋 𝑗 𝑓 ))𝑗∈𝐽 = 𝑠(𝜋 𝑗 𝑓 )𝑗∈𝐽 = 𝑠𝜙( 𝑓 ),

which proves that 𝜙 is a morphism of left-𝑆-modules. Since 𝜙 is also an isomorphism

of abelian groups, then 𝜙 is bĳective, thus 𝜙 is indeed an isomorphism of left-𝑆-

modules. ♮

Definition 10.4.7 (Dual module). Let 𝑀 be a right-𝑅-module (or left). We define the

dual module of 𝑀 to be the left-𝑅-module (or right):

𝑀∗ ≔ MorMod𝑅(𝑀, 𝑅).

10.5 Projective Modules

Lifting Property For Projective Modules
Theorem 10.5.1 (Free modules have the lifting property). Let 𝑅 be a ring and 𝐹 be a free

𝑅-module. For every surjective morphism of 𝑅-modules 𝑝:𝑀 → 𝑁 and morphism

ℎ: 𝐹 → 𝑁 , there exists a unique morphism ℓ : 𝐹 → 𝑀, called lifting of ℎ, such that the

diagram

𝐹

𝑀 𝑁 0

ℎ

ℓ

𝑝

commutes in 𝑅-Mod.

Proof. Since 𝐹 is free, let 𝐵 ≔ (𝑏 𝑗)𝑗∈𝐽 be a basis for 𝐹. From the surjectivity of 𝑝, for every

𝑗 ∈ 𝐽 there exists 𝑚 𝑗 ∈ 𝑀 such that 𝑝(𝑚 𝑗) = ℎ(𝑏 𝑗). From the free module universal

property there exists a unique ℓ : 𝐹 → 𝑀 such that ℓ (𝑏 𝑗) = 𝑚 𝑗 for each 𝑗 ∈ 𝐽. From

construction we have 𝑝ℓ (𝑏 𝑗) = 𝑝(𝑚 𝑗) = ℎ(𝑏 𝑗), therefore 𝑝ℓ = ℎ, since 𝐵 generates 𝐹, and

the diagram commutes. ♮
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Remark 10.5.2 (Uniqueness of the lift). The lift ℓ of ℎ need not be unique in case 𝐹 isn’t

free!

Definition 10.5.3 (Projective module). Let 𝑅 be a ring and 𝑃 be an 𝑅-module. We say

that 𝑃 is a projective 𝑅-module if

Mor𝑅-Mod(𝑃,−):𝑅-Mod −→ Ab

is an exact covariant functor.

Proposition 10.5.4 (Equivalences for projective modules). Let 𝑅 be a ring and 𝑃 be an

𝑅-module. The following properties are equivalent:

(a) The module 𝑃 is projective.

(b) For every exact sequence of 𝑅-modules 𝑀
𝑔
↠ 𝑁 → 0 the sequence of abelian

groups

Mor𝑅-Mod(𝑃, 𝑀) Mor𝑅-Mod(𝑃, 𝑁) 0

𝑔∗

is exact. Equivalently, for every ℎ:𝑃 → 𝑁 , there exists a lifting ℓ :𝑃 → 𝑁 of ℎ—not
necessarily unique—such that the diagram

𝑃

𝑀 𝑁 0

ℎ

ℓ

𝑝

is commutative in 𝑅-Mod.

(c) Every short exact sequence of 𝑅-modules of the form

0 𝐿 𝑀 𝑃 0

is a split sequence.

(d) The module 𝑃 is a direct summand of a free 𝑅-module.

(e) There exists a collection (𝑥 𝑗)𝑗∈𝐽 of elements 𝑥 𝑗 ∈ 𝑃, and a collection of associated

morphisms of 𝑅-modules (𝜙 𝑗 :𝑃 → 𝑅)𝑗∈𝐽3 such that, for all 𝑥 ∈ 𝑃 we have:

• The elements 𝜙 𝑗(𝑥) ∈ 𝑅 are non-zero for only finitely many 𝑗 ∈ 𝐽.
• The element 𝑥 can be written as 𝑥 =

∑
𝑗∈𝐽 𝑥 𝑗𝜙 𝑗(𝑥).

Proof. From the definition, the equivalence of (a) and (b) is immediate. We prove the

following:

3
The collection of pairs (𝑥 𝑗 , 𝜙 𝑗 :𝑃 → 𝑅)𝑗∈𝐽 is sometimes referred to as the dual “basis”, but it should

be noted right away that such family may not form a basis for the module 𝑃—not every projective module is
free!
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• (b)⇒ (c). Let 𝑔:𝑀 ↠ 𝑃 be the epimorphism depicted in the sequence. Consider

the identity morphism id𝑃 :𝑃 → 𝑃 and apply (b) to obtain 𝜌:𝑃 → 𝑀 such that

𝑃

𝑀 𝑃 0

id𝑃

𝜌

𝑔

is a commutative diagram of 𝑅-modules. Notice that 𝑔𝜌 = id𝑃 , therefore 𝜌 is a

section of 𝑔—thus the sequence splits.

• (c) ⇒ (d). Via Theorem 10.2.20 let 𝑝: 𝐹 ↠ 𝑀 be a surjective morphism of 𝑅-

modules, where 𝐹 is free. Thus we have a short exact sequence

0 ker 𝑝 𝐹 𝑃 0.
𝑝

By item (c) we find that the above sequence is split, therefore if 𝜄:𝑃 ↣ 𝐹 is a

section of 𝑝, then

𝐹 = ker 𝑝 ⊕ im 𝜄 ≃ ker 𝑝 ⊕ 𝑃.

• (d)⇒ (b). Let 𝑓 :𝑀 ↠ 𝑁 be a surjective morphism of 𝑅-modules, and 𝜓:𝑃 → 𝑁

be any morphism. By item (d), let 𝐹 be a free module with 𝐹 ≃ 𝑃 ⊕ 𝑃′, where

𝑃′ is the complement 𝑅-module of 𝑃 with respect to 𝐹—also, let 𝐵 be a basis

of 𝐹. Considering the natural projection 𝜋𝑃 : 𝐹 ↠ 𝑃, define a map 𝜙′: 𝐹 → 𝑀

as follows: given 𝑏 ∈ 𝐵, by the surjectivity of 𝑓 , there exists 𝑚 ∈ 𝑀 such that

𝑓 (𝑚) = 𝜓𝜋𝑃(𝑏)—we shall define 𝜙′(𝑏) ≔ 𝑚. It is easily seen that 𝜙′ is 𝑅-linear,

and that 𝑓 𝜙′ = 𝜓𝜋𝑃 . Moreover, the surjectivity of 𝑓 implies that 𝜙′ is the unique

morphism of modules with such property. Considering the natural inclusion

𝜄𝑃 :𝑃 ↩→ 𝐹—which is a section of 𝜋𝑃—define 𝜙 ≔ 𝜙′𝜄𝑃 :𝑃 → 𝑀 and notice that

𝑓 𝜙 = 𝑓 (𝜙′𝜄𝑃) = ( 𝑓 𝜙′)𝜄𝑃 = (𝜓𝜋𝑃)𝜄𝑃 = 𝜓(𝜋𝑃 𝜄𝑃) = 𝜓.

This finishes the proof of the equivalence of the items (a), (b), (c), and (d). For item (e),

we shall prove its equivalence with (d).

• (d) ⇒ (e). Via item (d), there exists an indexing set 𝐽 and an isomorphism

𝜓:

⊕
𝑗∈𝐽 𝑅

≃−→ 𝑃⊕ 𝑃′, where 𝑃′ is the complement of 𝑃. If 𝜋𝑃 :𝑃⊕ 𝑃′↠ 𝑃 denotes

the canonical projection, define a collection (𝑥 𝑗)𝑗∈𝐽 by 𝑥 𝑗 ≔ 𝜋𝑃𝜓(𝑒 𝑗)—where 𝑒 𝑗 ≔

(𝛿𝑖 𝑗)𝑖∈𝐽 . Let 𝜄𝑃 :𝑃 ↩→ 𝑃⊕𝑃′ be the canonical inclusion of 𝑃, and𝜋 𝑗 :
⊕

𝑗∈𝐽 𝑅 ↠ 𝑅 be

the canonical projection of the 𝑗-th coordinate. Define a collection of morphisms

(𝜙 𝑗)𝑗∈𝐽 by 𝜙 𝑗 ≔ 𝜋 𝑗𝜓−1𝜄𝑃 :𝑃 → 𝑅, so that—since 𝜓−1𝜄𝑃(𝑥) ∈
⊕

𝑗∈𝐽 𝑅 has finitely

many non-zero components—there are finitely many 𝑗 ∈ 𝐽 such that𝜋 𝑗𝜓−1𝜄𝑃(𝑥) ∈
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𝑅 is non-zero. For the last condition of item (e), if 𝑥 ∈ 𝑃 is any element, we have

𝑥 = 𝜋𝑃 𝜄𝑃(𝑥) = 𝜋𝑃(𝜓𝜓−1)𝜄𝑃(𝑥) = 𝜋𝑃𝜓(𝜓−1𝜄𝑃)(𝑥) = 𝜋𝑃𝜓(𝜙 𝑗(𝑥))𝑗∈𝐽

= 𝜋𝑃𝜓

(∑
𝑗∈𝐽

𝑒 𝑗𝜙 𝑗(𝑥)
)
=

∑
𝑗∈𝐽

𝜋𝑃𝜓(𝑒 𝑗𝜙 𝑗(𝑥)) =
∑
𝑗∈𝐽

𝜋𝑃𝜓(𝑒 𝑗)𝜙 𝑗(𝑥)

=

∑
𝑗∈𝐽

𝑥 𝑗𝜙 𝑗(𝑥).

• (e)⇒ (d). The collection (𝜙 𝑗)𝑗∈𝐽 induces, by the universal property of the product,

a unique morphism of 𝑅-modules 𝜙:𝑃 → ∏
𝑗∈𝐽 𝑅 mapping 𝑥 ↦→ (𝜙 𝑗(𝑥))𝑗∈𝐽 . For

any 𝑥 ∈ 𝑃we know from hypothesis that the collection (𝜙 𝑗(𝑥))𝑗∈𝐽 has finitely many

non-zero elements, therefore im 𝜙 ⊆
⊕

𝑗∈𝐽 𝑅. Then we may naturally restrict the

codomain of 𝜙, obtaining a morphism 𝜙:𝑃 →
⊕

𝑗∈𝐽 𝑅. Define a collection (𝑒 𝑗)𝑗∈𝐽
where 𝑒 𝑗 ≔ (𝛿𝑖 𝑗)𝑖∈𝐽 , and consider an 𝑅-linear map 𝜆:

⊕
𝑗∈𝐽 𝑅 → 𝑃 defined by

sending 𝑒 𝑗 ↦→ 𝑥 𝑗 . By hypothesis, one has

𝜆𝜙(𝑥) = 𝜆(𝜙 𝑗(𝑥))𝑗∈𝐽 =
∑
𝑗∈𝐽

𝑥 𝑗𝜙 𝑗(𝑥) = 𝑥,

therefore 𝜙 is a section of 𝜆, showing that 𝜆 is a split epimorphism. Thus 𝑃 is a

direct summand of the free module

⊕
𝑗∈𝐽 𝑅.

♮

Example 10.5.5. From Theorem 10.5.1 we find that every free module is a projective

module.

Example 10.5.6. Let 𝑅 be a ring. If there exists an idempotent element 𝑒 ∈ 𝑅 (that is,

𝑒2 = 𝑒), then we have a decomposition 𝑅 = 𝑒𝑅 ⊕ (1 − 𝑒)𝑅. Therefore 𝑒𝑅 is projective.

Indeed, given 𝑟 ∈ 𝑅 we can write it as 𝑟 = 𝑒𝑟 + (1 − 𝑒)𝑟—so that 𝑅 = 𝑒𝑅 + (1 − 𝑒)𝑅.

Moreover, if 𝑎 ∈ 𝑒𝑅 ∩ (1 − 𝑒)𝑅, let 𝑟, 𝑟′ ∈ 𝑅 be such that 𝑎 = 𝑒𝑟 = (1 − 𝑒)𝑟′, however,

notice that

𝑎 = 𝑒𝑟 = 𝑒(𝑒𝑟) = 𝑒((1 − 𝑒)𝑟′) = (𝑒 − 𝑒2)𝑟′ = (𝑒 − 𝑒)𝑟′ = 0.

Therefore 𝑒𝑅 ∩ (1 − 𝑒)𝑅 = 0, thus 𝑅 = 𝑒𝑅 ⊕ (1 − 𝑒)𝑅.

As an example of a projective module that isn’t free: if 𝑒 is a central in 𝑅, then given

any 𝑒𝑟 ∈ 𝑒𝑅 we have

(𝑒𝑟)(1 − 𝑒) = 𝑒𝑟 − (𝑒𝑟)𝑒 = 𝑒𝑟 − 𝑒(𝑟𝑒) = 𝑒𝑟 − 𝑒(𝑒𝑟) = 𝑒𝑟 − 𝑒𝑟 = 0.

That is, the singleton {𝑒𝑟} is 𝑅-linearly dependent—therefore 𝑒𝑅 does not admit a basis.

Proposition 10.5.7. Let (𝑃𝑗)𝑗∈𝐽 be a family of𝑅-modules. Then the module𝑃 ≔
⊕

𝑗∈𝐽 𝑃𝑗
is projective if and only if 𝑃𝑗 is projective for each 𝑗 ∈ 𝐽.
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Proof. Suppose that 𝑃 is projective, then we let 𝐹 be a free module of which 𝑃 is a

direct summand, say 𝐹 = 𝑃 ⊕ 𝑃′. If 𝜎: 𝐽 → 𝐽 is any permutation, we know that⊕
𝑗∈𝐽 𝑃𝑗 ≃

⊕
𝑗∈𝐽 𝑃𝜎(𝑗), therefore for all 𝑖 ∈ 𝐽 we have

𝐹 = 𝑃 ⊕ 𝑃′ =
(⊕

𝑗∈𝐽
𝑃𝑗

)
⊕ 𝑃′ ≃

(
𝑃𝑖 ⊕

⊕
𝑗∈𝐽∖𝑖

𝑃𝑗

)
⊕ 𝑃′ = 𝑃𝑖 ⊕

((⊕
𝑗∈𝐽∖𝑖

𝑃𝑗

)
⊕ 𝑃′

)
Since 𝑃𝑖 is a direct summand of a free module, it is a projective module.

For the converse, suppose that 𝑃𝑗 is projective for all 𝑗 ∈ 𝐽. Let 𝑔:𝑀 ↠ 𝑁 be

a surjective morphism of 𝑅-modules, and 𝜙:𝑃 → 𝑁 be any morphism. Since 𝑃𝑗 is

projective, if 𝜄 𝑗 :𝑃𝑗 ↩→ 𝑃 is the canonical inclusion, there exists a morphism 𝜓 𝑗 :𝑃𝑗 → 𝑀

making the diagram

𝑃𝑗

𝑀 𝑁 0

𝜙𝜄 𝑗

𝜓 𝑗

𝑔

commute in 𝑅-Mod. By the universal property of the coproduct 𝑃, the collection of

morphisms (𝜓 𝑗)𝑗∈𝐽 induce a unique morphism 𝜓:𝑃 → 𝑀 such that 𝜓𝜄 𝑗 = 𝜓 𝑗 for all

𝑗 ∈ 𝐽. To show that 𝑔𝜓 = 𝜙, notice that, given any (𝑥 𝑗)𝑗∈𝐽 ∈ 𝑃, one has

𝑔𝜓(𝑥 𝑗)𝑗∈𝐽 = 𝑔
(∑
𝑗∈𝐽

𝜓 𝑗(𝑥 𝑗)
)
=

∑
𝑗∈𝐽

𝑔𝜓 𝑗(𝑥 𝑗) =
∑
𝑗∈𝐽

𝜙𝜄 𝑗(𝑥 𝑗) = 𝜙(𝑥 𝑗)𝑗∈𝐽 .

Therefore, the following diagram commutes in 𝑅-Mod:

𝑃

𝑀 𝑁 0

𝜙

𝜓

𝑔

which shows that 𝑃 is a projective module. ♮

Proposition 10.5.8 (Eilenberg’s trick). Let 𝑃 be a projective 𝑅-module. Then there exists

a free 𝑅-module 𝐹 such that the direct sum 𝑃 ⊕ 𝐹 is a free module.

Proof. Since 𝑃 is projective, there exists a free 𝑅-module 𝐹′ and an 𝑅-module 𝑄 such

that 𝐹′ = 𝑃 ⊕ 𝑄. Notice that

(𝑃 ⊕ 𝑄) ⊕ 𝐹′ = 𝑃 ⊕ (𝑄 ⊕ (𝑃 ⊕ 𝑄)) = 𝑃 ⊕ ((𝑄 ⊕ 𝑃) ⊕ 𝑄)
is a direct sum of free modules, thus also free—however, (𝑄 ⊕ 𝑃) ⊕ 𝑄 may not be free,

since 𝑄 is only ensured to be projective. However, if we define 𝐹 ≔
⊕

𝑗∈N(𝑄 ⊕ 𝑃),
then 𝐹 is a direct sum of projective modules and hence projective itself. Using the fact

that 𝑃 ⊕ (𝑄 ⊕ 𝑃) = (𝑃 ⊕ 𝑄) ⊕ 𝑃, we obtain

𝑃 ⊕ 𝐹 = 𝑃 ⊕
⊕
𝑗∈N
(𝑄 ⊕ 𝑃) =

⊕
𝑗∈N
(𝑃 ⊕ 𝑄),

which is a direct sum of free modules—hence a projective module. Therefore 𝐹 satisfies

the requirement of the statement. ♮
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Proposition 10.5.9 (Schanuel). Let 𝑃 and 𝑃′ be projective 𝑅-modules. If there exists

short exact sequences

0 𝐾 𝑃 𝑀 0

0 𝐾′ 𝑃′ 𝑀 0

𝑓 𝑔

𝜙 𝜓

of 𝑅-modules, then there exists an isomorphism of 𝑅-modules

𝐾 ⊕ 𝑃′ ≃ 𝐾′ ⊕ 𝑃.

Proof. Since 𝑃 is projective, there exists a morphism of 𝑅-modules 𝜀:𝑃 → 𝑃′ such that

the diagram

𝑃

𝑃′ 𝑀 0

𝑔

𝜀

𝜓

commutes in 𝑅-Mod. Notice that for any 𝑘 ∈ 𝐾 one has

𝜓𝜀 𝑓 (𝑘) = 𝑔 𝑓 (𝑘) = 0,

therefore 𝜀 𝑓 (𝑘) ∈ ker𝜓. Since ker𝜓 ⊆ im 𝜙, there must exist 𝑘′ ∈ 𝐾′ such that

𝜙(𝑘′) = 𝜀 𝑓 (𝑘)—which needs to be unique with such image since 𝜙 is injective. Define

𝛿:𝐾 → 𝐾′ to be the map 𝑘 ↦→ 𝑘′, where 𝑘′ ∈ 𝐾′ is as described above. So far, we have

the following commutative diagram in 𝑅-Mod

0 𝐾 𝑃 𝑀 0

0 𝐾′ 𝑃′ 𝑀 0

𝑓

𝛿

𝑔

𝜀

𝜙 𝜓

We now define a map 𝜔:𝐾 → 𝐾′⊕𝑃 given by 𝑘 ↦→ (𝛿(𝑘), 𝑓 (𝑘)), and 𝛾:𝐾′⊕𝑃 → 𝑃′ by

(𝑘′, 𝑝) ↦→ 𝜀(𝑝) − 𝜙(𝑘′). Notice that both maps are clearly 𝑅-linear and from definition

(𝑘′, 𝑝) ∈ ker 𝛾, that is, 𝜀(𝑝) = 𝜙(𝑘′) if and only if there exists a common 𝑘 ∈ 𝐾 for

which 𝑓 (𝑘) = 𝑝 and 𝛿(𝑘) = 𝑘′—therefore ker 𝛾 = im 𝜔. To show that 𝜔 is injective,

let 𝑘 ∈ ker 𝜔 be any element, then from definition (𝛿(𝑘), 𝑓 (𝑘)) = (0, 0), but since 𝑓 is

injective, then 𝑘 = 0—thus ker 𝜔 = 0 and 𝜔 is injective. For the surjectivity of 𝛾, if

𝑝′ ∈ 𝑃′, let 𝑝 ∈ 𝑃 be such that 𝑔(𝑝) = 𝜓(𝑝′)—which exists because 𝑔 is surjective. Then

by the commutativity of the right square one has

𝜓𝜀(𝑝) = 𝑔(𝑝) = 𝜓(𝑝′),

that is, 𝜀(𝑝) − 𝑝′ ∈ ker𝜓 and thus exists 𝑘′ ∈ 𝐾′ for which 𝜙(𝑘′) = 𝜀(𝑝) − 𝑝′. This shows

that

𝛾(𝑘′, 𝑝′) = 𝜀(𝑝) − 𝜙(𝑘′) = 𝑝′,
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so that 𝛾 is surjective.

We’ve just shown that the sequence

0 𝐾 𝐾′ ⊕ 𝑃 𝑃′ 0
𝜔 𝛾

is short exact. Since 𝑃′ is projective, the sequence is also split and therefore there exists

an isomorphism of 𝑅-modules 𝐾′ ⊕ 𝑃 ≃ 𝐾 ⊕ 𝑃′. ♮

Theorem 10.5.10 (Projective resolution). For any given 𝑅-module 𝑀 there exists an

exact sequence

· · · 𝑃𝑛 𝑃𝑛−1 · · · 𝑃1 𝑃0 𝑀 0

𝑓𝑛 𝑓𝑛−1 𝑓1 𝑓0

where each 𝑅-module 𝑃𝑗 is projective.

Proof. Notice that since every 𝑅-module is the quotient of a free 𝑅-module (see The-

orem 10.2.20), which is projective, then 𝑀 ≃ 𝑃0/𝑇 for some free 𝑅-module 𝑃0. Take

𝑓0:𝑃0 ↠ 𝑀 to be the canonical projection. For the remainder of the sequence take

(𝑃𝑗 , 𝑓𝑗) = ker 𝑓𝑗−1 for 𝑗 > 0. ♮

Finitely Generated Projective Modules
Proposition 10.5.11. Let 𝑃 be a finitely generated projective right-𝑅-module (or left).

Then the dual module 𝑃∗ is a projective left-𝑅-module (or right).

Proof. If 𝑃 is finitely generated and projective we can choose a finitely generated free

right-𝑅-module 𝐹 of which 𝑃 is a direct summand—say, 𝐹 = 𝑃 ⊕ 𝑃′. Since 𝐹 is finitely

generated, there exists 𝑛 ∈ Z>0 such that 𝐹 ≃
⊕𝑛

𝑗=1
𝑅. We know that there exists a

natural isomorphism of left-𝑅-modules

𝐹∗ = MorMod𝑅(𝑃 ⊕ 𝑃′, 𝑅) ≃MorMod𝑅(𝑃, 𝑅) ⊕MorMod𝑅(𝑃′, 𝑅) = 𝑃∗ ⊕ 𝑃′∗.

Moreover, we can rewrite the morphism set using the fact that 𝐹 is finitely generated:

𝐹∗ ≃MorMod𝑅

( 𝑛⊕
𝑗=1

𝑅, 𝑅
)
≃

𝑛⊕
𝑗=1

MorMod𝑅(𝑅, 𝑅) ≃
𝑛⊕
𝑗=1

𝑅,

therefore 𝐹∗ is a finitely generated free left-𝑅-module. Since 𝑃∗ is a direct summand of

𝐹∗, then 𝑃∗ is a finitely generated projective left-𝑅-module. ♮

Proposition 10.5.12. Let 𝑃 be a right-𝑅-module (or left). The double dual 𝑃∗∗ is a right-
𝑅-module (or left), and the natural evaluation map

eval:𝑃 −→ 𝑃∗∗

sending 𝑥 ↦→ eval𝑥 :𝑃∗ → 𝑅—where eval𝑥( 𝑓 ) = 𝑓 (𝑥)—is an injective morphism of right-
𝑅-modules.
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Proof. Let (𝑥 𝑗 , 𝜙 𝑗)𝑗∈𝐽 be the dual “basis” of 𝑃, where 𝑥 𝑗 ∈ 𝑃 and 𝜙 𝑗 ∈ 𝑃∗. If 𝑥 ∈ ker eval,

then 𝑓 (𝑥) = 0 for all 𝑓 ∈ 𝑃∗—thus in particular 𝑥 =
∑
𝑗∈𝐽 𝑥 𝑗𝜙 𝑗(𝑥) = 0. This shows that

ker eval = 0, thus the evaluation morphism is injective. ♮

Proposition 10.5.13. Let 𝑃 be a finitely generated projective right-𝑅-module (or left),

with a dual “basis” (𝑥 𝑗 , 𝜙 𝑗)𝑛𝑗=1
. The following properties hold:

(a) The finite collection (𝜙 𝑗 , eval𝑥 𝑗 )𝑛𝑗=1
forms a dual “basis” for the dual module 𝑃∗.

(b) The dual 𝑃∗ is a finitely generated projective left-𝑅-module (or right), with a generating

set (𝜙 𝑗)𝑛𝑗=1
.

(c) The double dual 𝑃∗∗ is a finitely generated projective right-𝑅-module (or left), with a

generating set (eval𝑥 𝑗 )𝑛𝑗=1
.

(d) The natural evaluation morphism eval:𝑃 ↣ 𝑃∗∗ is an isomorphism of right-𝑅-

modules (or left).

Proof. (a) Let 𝑓 ∈ 𝑃∗ be any functional, then given any 𝑥 ∈ 𝑃 one has

𝑛∑
𝑗=1

eval𝑥 𝑗 ( 𝑓 )𝜙 𝑗(𝑥) =
𝑛∑
𝑗=1

𝑓 (𝑥 𝑗𝜙 𝑗(𝑥)) = 𝑓
( 𝑛∑
𝑗=1

𝑥 𝑗𝜙 𝑗(𝑥)
)
= 𝑓 (𝑥),

therefore 𝑓 =
∑𝑛
𝑗=1

eval𝑥 𝑗 ( 𝑓 )𝜙 𝑗—which proves that (𝜙 𝑗 , eval𝑥 𝑗 )𝑗 is a dual basis for

𝑃∗.

(b) It is immediate from the last item’s proof that (𝜙 𝑗)𝑛𝑗=1
is a generating set for 𝑃∗.

Moreover, since 𝑃∗ admits a dual basis it follows that 𝑃∗ is projective.

(c) Define a map eval
∗
:𝑃∗ → (𝑃∗∗)∗ given by 𝑓 ↦→ eval

∗
𝑓 ∈ MorMod𝑅(𝑃∗∗, 𝑅), where

eval
∗
𝑓 (Φ) ≔ Φ( 𝑓 ) for any Φ ∈ Mor𝑅Mod(𝑃∗, 𝑅). Notice that, for any 𝑓 ∈ 𝑃∗ one has

𝑛∑
𝑗=1

eval𝑥 𝑗 ( 𝑓 ) eval
∗
𝜙 𝑗
(Φ) =

𝑛∑
𝑗=1

𝑓 (𝑥 𝑗)Φ(𝜙 𝑗) =
𝑛∑
𝑗=1

Φ( 𝑓 (𝑥 𝑗)𝜙 𝑗) = Φ

( 𝑛∑
𝑗=1

𝑓 (𝑥 𝑗)𝜙 𝑗

)
= Φ( 𝑓 ),

that is, Φ =
∑𝑛
𝑗=1

eval𝑥 𝑗 · eval
∗
𝜙 𝑗
(Φ). Therefore (eval𝑥 𝑗 )𝑛𝑗=1

is a generating set for 𝑃∗∗,

and (eval
∗
𝜙 𝑗
, eval𝑥 𝑗 )𝑛𝑗=1

is a dual “basis” for 𝑃∗∗. Therefore 𝑃∗∗ is a finitely generated

projective right-𝑅-module.

(d) Given an elementΦ ∈ 𝑃∗∗, we can rewrite it asΦ =
∑𝑛
𝑗=1

eval𝑥 𝑗 · eval
∗
𝜙 𝑗
(Φ), therefore,

if we take

∑𝑛
𝑗=1

𝑥 𝑗Φ(𝜙 𝑗) ∈ 𝑃, one obtains

eval

( 𝑛∑
𝑗=1

𝑥 𝑗Φ(𝜙 𝑗)
)
=

𝑛∑
𝑗=1

eval(𝑥 𝑗Φ(𝜙 𝑗)) =
𝑛∑
𝑗=1

eval(𝑥 𝑗)Φ(𝜙 𝑗)

=

𝑛∑
𝑗=1

eval𝑥 𝑗 ·Φ(𝜙 𝑗) =
𝑛∑
𝑗=1

eval𝑥 𝑗 · eval
∗
𝜙 𝑗
(Φ)

= Φ.
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This shows that eval is also a surjective morphism. Therefore eval is an isomor-

phism of right-𝑅-modules

𝑃 ≃ 𝑃∗∗.

♮

10.6 Injective Modules

Lifting Property for Injective Modules
Definition 10.6.1 (Injective module). Let 𝑅 be a ring, and 𝐸 be an 𝑅-module. We say

that 𝐸 is an injective 𝑅-module if

Mor𝑅-Mod(−, 𝐸):𝑅-Modop −→ Ab

is an exact contravariant functor.

Proposition 10.6.2. Let 𝐸 be an 𝑅-module. The following are equivalent properties:

(a) The module 𝐸 is injective.

(b) Given any exact sequence of 𝑅-modules 0→ 𝑀
𝑓
↣ 𝑁 , the sequence

Mor𝑅-Mod(𝑁, 𝐸) Mor𝑅-Mod(𝑀, 𝐸) 0

𝑓 ∗

is an exact sequence of abelian groups

(c) For any injective morphism of 𝑅-modules 𝑓 :𝑀 ↣ 𝑁 , and morphism 𝜙:𝑀 → 𝐸,

there exists a morphism 𝜓:𝑁 → 𝐸—we do not require uniqueness—for which the

diagram

𝐸

0 𝑀 𝑁
𝑓

𝜙

𝜓

is commutative in 𝑅-Mod.

(d) Any short exact sequence of 𝑅-modules of the form

0 𝐸 𝐴 𝐵 0

is split.

Proof. The equivalence between (a) and (b) comes exactly from the definition of what

an injective module is. We first prove the equivalence between (b) and (c), then the

equivalence between (c) and (d):
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• (b) ⇒ (c). If we let 0 → 𝑀
𝑓
↣ 𝑁 be any exact sequence of 𝑅-modules, then

by (b) we know that 𝑓 ∗: Mor𝑅-Mod(𝑁, 𝐸) ↠ Mor𝑅-Mod(𝑀, 𝐸) is a surjective mor-

phism. Therefore, if we are given any 𝜙 ∈ Mor𝑅-Mod(𝑀, 𝐸), one can choose a

𝜓 ∈ Mor𝑅-Mod(𝑁, 𝐸) such that 𝑓 ∗(𝜓) = 𝜓 𝑓 = 𝜙.

• (c)⇒ (b). Let 0→ 𝑀
𝑓
↣ 𝑁 be any exact sequence of 𝑅-modules, then if we are

given any morphism 𝜙:𝑀 → 𝐸, we can find 𝜓:𝑁 → 𝐸 such that 𝜙 = 𝑓𝜓, but

𝑓𝜓 = 𝑓 ∗(𝜓), therefore we’ve just shown that the map 𝑓 ∗ is surjective.

• (c)⇒ (d). Let 0→ 𝐸
𝑓
↣ 𝐴↠ 𝐵→ 0 be a short exact sequence of𝑅-modules. If we

consider the identity morphism id𝐸, by item (c) we are able to find a morphism

𝜓:𝐴 → 𝐸 such that 𝜓 𝑓 = id𝐸—therefore 𝑓 is a split monomorphism and the

sequence splits.

• (d)⇒ (c). Let 0→ 𝐿
𝑓
↣ 𝑀 be an exact sequence of 𝑅-modules and let 𝜙: 𝐿→ 𝐸

be a morphism. We may define an 𝑅-module

𝑋 ≔
𝐸 ⊕ 𝑀

{(𝜙(𝑥),− 𝑓 (𝑥)) : 𝑥 ∈ 𝐿} ,

and—given the natural projection 𝜋:𝐸 ⊕ 𝑀 ↠ 𝑋 and the canonical inclusion

morphisms 𝜄𝐸:𝐸 ↩→ 𝐸 ⊕ 𝑀 and 𝜄𝑀 :𝑀 ↩→ 𝐸 ⊕ 𝑀—we define ℓ𝐸:𝐸 → 𝑋 and

ℓ𝑀 :𝑀 → 𝑋 by ℓ𝐸 ≔ 𝜋𝜄𝐸 and ℓ𝑀 ≔ 𝜋𝜄𝑀 . By Proposition 8.4.66, we know that

(𝑋, ℓ𝐸 , ℓ𝑀) is the pushout of the pair ( 𝑓 , 𝜙):

𝐿 𝑀

𝐸 𝑋

𝑓

𝜙
⌜

ℓ𝑀

ℓ𝐸

Let 𝑒 ∈ ker ℓ𝐸 be any element, then

ℓ𝐸(𝑒) = [𝑒 , 0] ∈ {[𝜙(𝑥),− 𝑓 (𝑥)] : 𝑥 ∈ 𝐿}.

Let 𝑥𝑒 ∈ 𝐿 be such that (𝑒 , 0) = (𝜙(𝑥𝑒),− 𝑓 (𝑥𝑒)), then 𝑥𝑒 ∈ ker 𝑓—but since 𝑓 is

injective, it follows that 𝑥𝑒 = 0. Therefore 𝑒 = 𝜙(0) = 0.

From this we can consider the following short exact sequence

0 𝐸 𝑋 coker ℓ𝐸 0

ℓ𝐸

which by item (d) is split—therefore there exists a retract 𝑟:𝑋 → 𝐸 of ℓ𝐸, that is,

𝑟ℓ𝐸 = id𝐸. From this we can create a morphism 𝜓:𝑀 → 𝐸 given by 𝜓 ≔ 𝑟ℓ𝑀—

we’ll show that this map satisfies the condition for item (c). Let 𝑥 ∈ 𝐿 be any

element and notice that

𝜓 𝑓 (𝑥) = (𝑟ℓ𝑀) 𝑓 (𝑥) = 𝑟[0, 𝑓 (𝑥)] = 𝑟[𝜙(𝑥), 0] = 𝑟(ℓ𝐸(𝜙(𝑥))) = (𝑟ℓ𝐸)𝜙(𝑥) = 𝜙(𝑥),

therefore 𝜓 𝑓 = 𝜙 as needed, which proves that 𝐸 is injective.
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♮

Corollary 10.6.3. Let 𝑀 be an 𝑅-module, and 𝐸 be a submodule of 𝑀. If 𝐸 is injective,
then it is a direct summand of 𝑀.

Proof. Indeed, since the short exact sequence

0 𝐸 𝑀 𝑀/𝐸 0
𝜄 𝜋

𝜌

is split, where 𝜌 is a section of 𝜋. Therefore

𝑀 = im 𝜄 ⊕ im 𝜌 = 𝐸 ⊕ im 𝜌.

♮

Proposition 10.6.4. Any direct summand of an injective𝑅-module is an injective𝑅-module

Proof. Let 𝐸 = 𝑋 ⊕ 𝑌, and consider a morphism 𝜙: 𝐿→ 𝑋, and an injective morphism

𝑓 : 𝐿 ↣ 𝑀. If 𝜄𝑋 :𝑋 ↩→ 𝐸, we can define a morphism 𝜙′: 𝐿 → 𝐸 given by 𝜙′ ≔ 𝜄𝑋𝜙.

Since 𝐸 is injective, there exists 𝜓′:𝑀 → 𝐸 such that 𝜓′ 𝑓 = 𝜙′. However, taking the

canonical projection 𝜋𝑋 :𝐸 ↠ 𝑋 we can define 𝜓:𝑀 → 𝑋 to be given by 𝜓 ≔ 𝜋𝑋𝜓′—
therefore the diagram

𝑋

0 𝐿 𝑀

𝜙

𝑓

𝜓

is commutative in 𝑅-Mod, hence 𝑋 is injective. ♮

Proposition 10.6.5. Let (𝐸 𝑗)𝑗∈𝐽 be a collection of 𝑅-modules. Then the product

∏
𝑗∈𝐽 𝐸 𝑗

is an injective 𝑅-module if and only if 𝐸 𝑗 is injective for each 𝑗 ∈ 𝐽.

Proof. (⇒) We know that any permutation 𝜎: 𝐽 ≃−→ 𝐽 is such that

∏
𝑗∈𝐽 𝐸 𝑗 ≃

∏
𝑗∈𝐽 𝐸𝜎(𝑗) in

𝑅-Mod. Therefore, for any 𝑖 ∈ 𝐽 we have a natural isomorphism∏
𝑗∈𝐽

𝐸 𝑗 ≃ 𝐸𝑖 ×
( ∏
𝑗∈𝐽∖𝑖

𝐸 𝑗

)
,

which by Proposition 10.6.4 implies in the injectivity of 𝐸𝑖 .

(⇐) Let 𝐸 𝑗 be injective for each 𝑗 ∈ 𝐽. Let 𝑓 : 𝐿 ↣ 𝑀 be any injective morphism

of 𝑅-modules and consider a morphism 𝜙: 𝐿 → 𝐸. Since each 𝐸 𝑗 is injective, define

(𝜓 𝑗 :𝑀 → 𝐸 𝑗)𝑗∈𝐽 to be the collection of morphisms such that the diagram∏
𝑗∈𝐽 𝐸 𝑗 𝐸 𝑗

0 𝐿 𝑀

𝜋𝑗

𝜙

𝑓

𝜓 𝑗
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commutes for all 𝑗 ∈ 𝐽—where 𝜋 𝑗 is the natural 𝑗-th projection. From the universal

property of products, the collection (𝜓 𝑗)𝑗∈𝐽 defines a unique morphism 𝜓:𝑀 → 𝐸 such

that 𝜋 𝑗𝜓 = 𝜓 𝑗 for each 𝑗 ∈ 𝐽. Note that 𝜓 𝑓 and 𝜙 are equal if and only if each of their

projections match, but since

𝜋 𝑗(𝜓 𝑓 ) = (𝜋 𝑗𝜓) 𝑓 = 𝜓 𝑗 𝑓 = 𝜋 𝑗𝜙,

then 𝜓 𝑓 = 𝜙 and the diagram ∏
𝑗∈𝐽 𝐸 𝑗

0 𝐿 𝑀

𝜙

𝑓

𝜓

commutes in 𝑅-Mod—therefore

∏
𝑗∈𝐽 𝐸 𝑗 is an injective module. ♮

Remark 10.6.6. Contrary to the behaviour of projective modules, the direct sum of a
collection of injective modules need not be injective.

Lemma 10.6.7. Let 𝑅 be an integral domain and consider its field of fractions Frac(𝑅)
as an 𝑅-module. The following holds:

(a) Let 𝐼 ⊆ Frac(𝑅) be an𝑅-submodule of the𝑅-module Frac(𝑅), and let 𝜙: 𝐼 → Frac(𝑅)
be a morphism of 𝑅-modules. Then there exists 𝑞 ∈ Frac(𝑅) such that 𝜙(𝑦) = 𝑞𝑦 for

all 𝑦 ∈ 𝐼.
(b) Let 𝔞 be a submodule (ideal) of 𝑅. Then any morphism of 𝑅-modules 𝜙: 𝔞 →

Frac(𝑅) can be extended to a morphism 𝜙:𝑅→ Frac(𝑅).

Proof. (a) If 𝐼 = 0, then 𝜙 = 0 and any 𝑞 ∈ Frac(𝑅) satisfies the requirement. On the

contrary, suppose 𝐼 is non-zero, and fix any non-zero 𝑏 ≔ 𝑤/𝑧 ∈ 𝐼. If 𝑎 ≔ 𝑢/𝑣 ∈
Frac(𝑅) is any other element, let 𝑟 ≔ 𝑧𝑣 so that

𝑏𝑟 = 𝑏(𝑧𝑣) = (𝑏𝑧)𝑣 = 𝑤𝑣 ∈ 𝑅 and 𝑎𝑟 = 𝑎(𝑧𝑣) = 𝑎(𝑣𝑧) = (𝑎𝑣)𝑧 = 𝑢𝑧 ∈ 𝑅,

where we used the commutativity of 𝑅 in order to have 𝑎𝑟 ∈ 𝑅. Therefore one has

𝜙((𝑏𝑎)𝑟) = 𝜙(𝑏(𝑎𝑟)) = 𝜙(𝑏) · (𝑎𝑟),
𝜙((𝑏𝑎)𝑟) = 𝜙((𝑎𝑏)𝑟) = 𝜙(𝑎(𝑏𝑟)) = 𝜙(𝑎) · (𝑏𝑟).

Thus 𝜙(𝑎)𝑏𝑟 = 𝜙(𝑏)𝑎𝑟—multiplying this equality by (𝑏𝑟)−1 ∈ Frac(𝑅)we obtain

𝜙(𝑎) = 𝜙(𝑏) · (𝑎𝑟)(𝑏𝑟)−1 = 𝜙(𝑏) · (𝑎𝑏−1) = 𝜙(𝑏) · (𝑏−1𝑎) = (𝜙(𝑏) · 𝑏−1)𝑎.

Therefore we may define 𝑞 ≔
𝜙(𝑏)
𝑏 ∈ Frac(𝑅), so that 𝜙(𝑦) = 𝑞𝑦.

287



(b) Given any morphism of 𝑅-modules 𝜙: 𝔞 → Frac(𝑅), let 𝑞 ∈ Frac(𝑅) be such that

𝜙(𝑦) = 𝑞𝑦—which exists because of the last items’s result. Define 𝜙:𝑅 → Frac(𝑅)
to be an 𝑅-module morphism given by 𝜙(1) ≔ 𝑞—this completely defines 𝜓 since

𝜙(𝑟) = 𝜙(1 · 𝑟) = 𝜙(1)𝑟 = 𝑞𝑟. Therefore the diagram

Frac (𝑅)

0 𝔞 𝑅

𝜙

𝜙

♮

Theorem 10.6.8 (Baer’s criterion). Let 𝐸 be a right-𝑅-module (or left). Then 𝐸 is injective
if and only if for every right ideal (or left) 𝔞 of 𝑅, and morphism of right-𝑅-modules (or

left) 𝜙: 𝔞→ 𝐸, there exists an extension 𝜙:𝑅→ 𝐸 of 𝜙—that is, the diagram

𝐸

0 𝔞 𝑅

𝜙

𝜙

is commutative in Mod𝑅 (or 𝑅Mod).

Proof. (⇒) If 𝐸 is injective, then the existence of the extension follows immediately.

(⇐) Suppose the latter condition is satisfied. Consider morphisms 𝜙: 𝐿 → 𝐸, and

𝑓 : 𝐿 ↣ 𝑀 injective, in Mod𝑅. Define ℒ to be the collection of all pairs (𝐿′,𝜓′: 𝐿′ → 𝐸)
such that 𝑓 (𝐿) ⊆ 𝐿′ ⊆ 𝑀, where 𝐿′ is a submodule of 𝑀, and 𝜓′ 𝑓 = 𝜙. Notice that

since 𝑓 is injective we may define 𝜓′ ≔ 𝜙 ◦ ( 𝑓 | 𝑓 (𝐿))−1
and take 𝐿′ ≔ 𝑓 (𝐿), proving that

ℒ is a non-empty set.

We define a partial order ≼ onℒ as follows: (𝐿′,𝜓′) ≼ (𝐿′′,𝜓′′) if and only if 𝐿′ ⊆ 𝐿′′
and 𝜓′′|𝐿′ = 𝜓′. Define an ascending chain (with respect to ≼) of pairs (𝐿′

𝑗
,𝜓′

𝑗
)𝑗∈𝐽 of

elements ofℒ, and let 𝐿′
M

≔
⋃
𝑗∈𝐽 𝐿

′
𝑗
. From construction, one has that 𝑓 (𝐿) ⊆ 𝐿′

M
⊆ 𝑀,

where 𝐿′
M

is a submodule of 𝑀. Define a morphism 𝜓′
M

: 𝐿′
M
→ 𝐸 as follows: if 𝑥 ∈ 𝐿′

𝑗
,

define 𝜓′
M
(𝑥) ≔ 𝜓′

𝑗
(𝑥)—which is well defined because given (𝐿′

𝑗
,𝜓′

𝑗
) ≼ (𝐿′

𝑖
,𝜓′

𝑖
), one has

𝜓𝑖|𝐿 𝑗 = 𝜓 𝑗 . From its construction the pair (𝐿′
M
,𝜓′

M
) is a maximal element of the chain

(𝐿′
𝑗
,𝜓′

𝑗
).

Since ℒ is non-empty and every chain of elements has a maximal element, we can

use Zorn’s lemma to conclude that ℒ admits a maximal element (𝐿0,𝜓0). If, for the

sake of contradiction, there exists an element 𝑥 ∈ 𝑀 ∖ 𝐿0, define a right-ideal

𝔞 ≔ {𝑟 ∈ 𝑅 : 𝑥𝑟 ∈ 𝐿0} ⊆ 𝑅,
and a morphism 𝜆: 𝔞 → 𝐸 by 𝑟 ↦→ 𝜓0(𝑥𝑟) = 𝜓0(𝑥)𝑟. From hypothesis, 𝜆 admits an

extension 𝜆:𝑅→ 𝐸 making the diagram

𝐸

0 𝔞 𝑅

𝜆

𝜆
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commute in Mod𝑅. Define a map 𝜓1: 𝐿0 + 𝑥𝑅 → 𝐸 by 𝜓1(𝑦 + 𝑥𝑟) ≔ 𝜓0(𝑦) + 𝜆(𝑟),
which is certainly a morphism of right-𝑅-modules. To prove that 𝜓1 is well defined, if

𝑦 + 𝑥𝑟 = 𝑦′ + 𝑥𝑟′ ∈ 𝐿0 + 𝑥𝑅 then 𝑦 − 𝑦′ = 𝑥(𝑟′ − 𝑟) ∈ 𝑥𝑅, therefore 𝑦 − 𝑦′ ∈ 𝐿0, while

𝑥(𝑟′− 𝑟) ∈ 𝑥𝑅. This implies in 𝑟′− 𝑟 ∈ 𝔞, therefore both 𝜓0(𝑦 − 𝑦′) and 𝜆(𝑟′− 𝑟). Finally,

we see that

𝜓0(𝑦 − 𝑦′) = 𝜓0(𝑥(𝑟′ − 𝑟)) = 𝜆(𝑟′ − 𝑟) = 𝜆(𝑟′ − 𝑟) = 𝜆(𝑟′) − 𝜆(𝑟),

therefore 𝜓1(𝑦 + 𝑥𝑟) = 𝜓1(𝑦′ + 𝑥𝑟′), thus 𝜓1 is indeed well defined morphism. From

construction, we have 𝐿0 ⊆ 𝐿0 + 𝑥𝑅 and 𝜓1|𝐿0
= 𝜓0, which implies in

(𝐿0,𝜓1) ≼ (𝐿0 + 𝑥𝑅,𝜓1),

contradicting the maximality of (𝐿0,𝜓1). Therefore it must be the case that 𝐿0 = 𝑀,

which implies in 𝜓0:𝑀 → 𝐸 being such that 𝜓0 𝑓 = 𝜙. We conclude that the morphism

of right-𝑅-modules 𝜓0 makes the diagram

𝐸

0 𝐿 𝑀

𝜙

𝑓

𝜓0

commutative in Mod𝑅, showing that 𝐸 is an injective module. ♮

Corollary 10.6.9. Let 𝑅 be an integral domain. Then the following holds:

(a) The field of fractions Frac(𝑅) is an injective 𝑅-module
(b) Every Frac(𝑅)-module is an injective 𝑅-module.
(c) Every vector space is injective.

Proof. (a) Notice that by Lemma 10.6.7 item (b) we find that Frac(𝑅) satisfies the lifting

property of injective modules described by Baer’s criterion, therefore Frac(𝑅) is an

injective 𝑅-module.

(b) Let 𝑀 be a Frac(𝑅)-module, and 𝔞 ⊆ 𝑅 be a non-zero ideal of 𝑅—if 𝔞 where zero,

then the extension property would be satisfies right away. Since 𝑀 is a module

over a field, it’s a free module and we can assume that 𝑀 ≃
⊕

𝑗∈𝐽 Frac(𝑅) for some

set 𝐽.

Let 𝜙: 𝔞 → 𝑀 be any morphism of 𝑅-modules. If 𝜋 𝑗 ∈ Mor𝑅-Mod(𝑀, Frac(𝑅))
denotes the canonical projection of the 𝑗-th coordinate, we define a collection

( 𝑓𝑗 : 𝔞 → Frac(𝑅))𝑗∈𝐽 of 𝑅-module morphisms by 𝑓𝑗 ≔ 𝜋 𝑗𝜙 for each 𝑗 ∈ 𝐽. Notice

that since

𝜙(𝑎) = ( 𝑓𝑗(𝑎))𝑗∈𝐽 = ( 𝑓𝑗(1)𝑎)𝑗∈𝐽 ∈
⊕
𝑗∈𝐽

Frac(𝑅) ≃ 𝑀,

it must be the case that 𝑓𝑗(1) is non-zero only for finitely many 𝑗 ∈ 𝐽. Therefore

𝑢 ≔ ( 𝑓𝑗(1))𝑗∈𝐽 is an element of 𝑀 and we can define completely define a morphism
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of 𝑅-modules 𝜙:𝑅 → 𝑀 by mapping 𝜙(1) ≔ 𝑢. We conclude that such map

extends 𝜙, that is

𝑀

0 𝔞 𝑅

𝜙

𝜙

is a commutative diagram in 𝑅-Mod—which, by Baer’s criterion, proves that 𝑀 is

injective.

(c) Given a 𝑘-vector space𝑉 , where 𝑘 is any field, we know that 𝑘 = Frac(𝑘). Therefore

𝑉 is an injective 𝑘-module by item (b).

♮

Proposition 10.6.10 (Schanuel’s dual (see Proposition 10.5.9)). Let 𝐸 and 𝐸′ be injective

𝑅-modules. If there exists short exact sequences

0 𝑀 𝐸 𝐿 0

0 𝑀 𝐸′ 𝐿′ 0

𝑓 𝑔

𝜙 𝜓

of 𝑅-modules, then there exists an isomorphism of 𝑅-modules

𝐸 ⊕ 𝐿′ ≃ 𝐸′ ⊕ 𝐿.

Proof. From the injectivity of 𝐸′, there exists a morphism of 𝑅-modules 𝜀:𝐸→ 𝐸′ such

that the diagram

𝐸′

0 𝑀 𝐸

𝜙

𝑓

𝜀

commutes in 𝑅-Mod. Define a collection (𝑒ℓ )ℓ∈𝐿 where 𝑔(𝑒ℓ ) = ℓ—which is possible

because 𝑔 is surjective—and define the map 𝜆: 𝐿→ 𝐿′ to be given by ℓ ↦→ 𝜓𝜀(ℓ ), then 𝜆
is certainly a morphism of 𝑅-modules and 𝜆𝑔 = 𝜓𝜀. We’ve constructed the following

commutative diagram

0 𝑀 𝐸 𝐿 0

0 𝑀 𝐸′ 𝐿′ 0

𝑓 𝑔

𝜀 𝜆

𝜙 𝜓

in 𝑅-Mod. Define mappings 𝛼:𝐸→ 𝐸′ ⊕ 𝐿 given by 𝑒 ↦→ (𝜀(𝑒), 𝑔(𝑒)), and 𝛽:𝐸′ ⊕ 𝐿→ 𝐿′

by (𝑒′, ℓ ) ↦→ 𝜆(ℓ )−𝜓(𝑒′). From construction, both are 𝑅-module morphisms. Moreover,

notice that (𝑒′, ℓ ) ∈ ker 𝛽 if and only if 𝜆(ℓ ) = 𝜓(𝑒′), hence if we take 𝑒 ∈ 𝐸 such that

𝑔(𝑒) = ℓ , we find by the commutativity of the right square that

𝜓𝜀(𝑒) = 𝜆𝑔(𝑒) = 𝜆(ℓ ) = 𝜓(𝑒′).
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Therefore 𝜀(𝑒) − 𝑒′ ∈ ker𝜓 and by exactness there exists 𝑚 ∈ 𝑀 for which 𝜙(𝑚) =
𝜀(𝑒) − 𝑒′. From the commutativity of the left square one has

𝜀 𝑓 (𝑚) = 𝜀(𝑒) − 𝑒′,

thus 𝜀(𝑒 − 𝑓 (𝑚)) = 𝑒′. Notice that

𝛼(𝑒 − 𝑓 (𝑚)) = (𝜀(𝑒 − 𝑓 (𝑚)), 𝑔(𝑒 − 𝑓 (𝑚))) = (𝑒′, 𝑔(𝑒) − 𝑔 𝑓 (𝑚)) = (𝑒′, 𝑔(𝑒)) = (𝑒′, ℓ ),

which proves that (𝑒′, ℓ ) ∈ im 𝛼. Therefore ker 𝛽 ⊆ im 𝛼. For the converse, given any

𝑒 ∈ 𝐸 we have

𝛽𝛼(𝑒) = 𝛽(𝜀(𝑒), 𝑔(𝑒)) = 𝜆𝑔(𝑒) − 𝜓𝜀(𝑒) = 0

since 𝜆𝑔 = 𝜓𝜀—thus im 𝛼 ⊆ ker 𝛽.

We now show that 𝛼 is injective, while 𝛽 is surjective. If 𝑒 ∈ ker 𝛼 then by definition

(𝜀(𝑒), 𝑔(𝑒)) = 0. Since im 𝑓 = ker 𝑔, let 𝑚 ∈ 𝑀 be such that 𝑓 (𝑚) = 𝑒. By the

commutativity of the left square we know that

𝜙(𝑚) = 𝜀 𝑓 (𝑚) = 𝜀(𝑒) = 0,

but 𝜙 is injective, thus 𝑚 = 0. This proves that 𝑒 = 𝑓 (𝑚) = 0 and therefore ker 𝛼 = 0.

For surjectivity, let ℓ ′ ∈ 𝐿′ be any element. Since 𝜓 is surjective, choose 𝑒′ ∈ 𝐸′ with

image 𝜓(𝑒′) = ℓ ′. Taking the pair (−𝑒′, 0) ∈ 𝐸′ ⊕ 𝐿 we get

𝛽(−𝑒′, 0) = 𝜆(0) − 𝜓(−𝑒′) = 𝜓(𝑒′) = ℓ ,

therefore 𝛽 is surjective.

In the last two paragraphs we’ve shown that the sequence of 𝑅-modules

0 𝐸 𝐸′ ⊕ 𝐿 𝐿′ 0
𝛼 𝛽

is short exact. Since 𝐸 is injective, then the sequence splits, proving the existence of an

isomorphism 𝐸′ ⊕ 𝐿 ≃ 𝐸 ⊕ 𝐿′. ♮

Divisible Modules
Definition 10.6.11 (Divisible module). Let 𝑅 be a domain, and 𝐷 be an 𝑅-module. We

say that 𝐷 is a divisible 𝑅-module if for all 𝑥 ∈ 𝐷 and 𝑟 ∈ 𝑅 ∖ {0}, there exists 𝑦 ∈ 𝐷 for

which 𝑦𝑟 = 𝑥.

Proposition 10.6.12. Let 𝑅 be an integral domain. The following holds:

(a) The field of fractions Frac(𝑅) is a divisible 𝑅-module.

(b) The sum (either direct or not) of divisible 𝑅-modules is a divisible 𝑅-module.

(c) The direct product of divisible 𝑅-modules is a divisible 𝑅-module.

(d) If 𝐷 is a divisible 𝑅-module and 𝜙:𝐷 → 𝑀 is a morphism of 𝑅-modules, then the

image 𝜙(𝐷) ⊆ 𝑀 is a divisible 𝑅-module.
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(e) The quotient of a divisible 𝑅-module is a divisible 𝑅-module.

(f) Every direct summand of a divisible 𝑅-module is itself a divisible 𝑅-module.

Proof. (a) Given any element 𝑥 ≔ 𝑢/𝑣 ∈ Frac(𝑅) and a non-zero 𝑟 ∈ 𝑅, one has

𝑦 ≔ 𝑢/(𝑣𝑟) ∈ Frac(𝑅) such that

𝑦𝑟 =
𝑢

𝑣𝑟
· 𝑟 = 𝑢

𝑣
= 𝑥.

(b) Let (𝐷𝑗)𝑗∈𝐽 be a family of divisible 𝑅-modules. First we prove that the sum of the

family is divisible. Let

∑
𝑗∈𝐹 𝑥 𝑗 ∈

∑
𝑗∈𝐽 𝐷𝑗 be any element, where 𝐹 ⊆ 𝐽 is a finite

subset. If 𝑟 ∈ 𝑅 is any non-zero element, since 𝐷𝑗 is divisible, let 𝑦 𝑗 ∈ 𝐷𝑗 be such

that 𝑦 𝑗𝑟 = 𝑥 𝑗 . Since 𝐹 is finite, we have

∑
𝑗∈𝐹 𝑦 𝑗 ∈

∑
𝑗∈𝐽 𝐷𝑗 , therefore(∑

𝑗∈𝐹
𝑦 𝑗

)
𝑟 =

∑
𝑗∈𝐹

𝑦 𝑗𝑟 =
∑
𝑗∈𝐹

𝑥 𝑗 .

This proves that

∑
𝑗∈𝐽 𝐷𝑗 is a divisible 𝑅-module.

We now consider the direct sum

⊕
𝑗∈𝐽 𝐷𝑗 and any element (𝑥 𝑗)𝑗∈𝐽 ∈

⊕
𝑗∈𝐽 𝐷𝑗 . If

𝑟 ∈ 𝑅 is non-zero, define a collection (𝑦 𝑗)𝑗∈𝐽 as follows: if 𝑥 𝑗 = 0, let 𝑦 𝑗 = 0 ∈ 𝐷𝑗 ,

otherwise we use the divisibility of𝐷𝑗 and let 𝑦 𝑗 ∈ 𝐷𝑗 be an element such that 𝑦 𝑗𝑟 =

𝑥 𝑗 . Since finitely many 𝑗 ∈ 𝐽 have a non-zero 𝑥 𝑗 , it follows that (𝑦 𝑗)𝑗∈𝐽 ∈
⊕

𝑗∈𝐽 𝐷𝑗 .

Therefore we have

(𝑦 𝑗)𝑗∈𝐽𝑟 = (𝑦 𝑗𝑟)𝑗∈𝐽 = (𝑥 𝑗)𝑗∈𝐽 ,
proving that

⊕
𝑗∈𝐽 𝐷𝑗 is a divisible 𝑅-module.

(c) Let (𝐷𝑗)𝑗∈𝐽 be a collection of divisible 𝑅-modules, and let (𝑥 𝑗)𝑗∈𝐽 ∈
∏

𝑗∈𝐽 𝐷𝑗 be any

element. If 𝑟 ∈ 𝑅 is a non-zero element, we define a collection (𝑦 𝑗)𝑗∈𝐽 ∈
∏

𝑗∈𝐽 𝐷𝑗

such that 𝑦 𝑗𝑟 = 𝑥 𝑗—which is possible since each𝐷𝑗 is divisible. Therefore (𝑦 𝑗)𝑗∈𝐽𝑟 =
(𝑦 𝑗𝑟)𝑗∈𝐽 = (𝑥 𝑗)𝑗∈𝐽 , proving that the direct product

∏
𝑗∈𝐽 𝐷𝑗 is a divisible 𝑅-module.

(d) Let 𝑚 ∈ 𝜙(𝐷) be any element and take 𝑑 ∈ 𝜙−1(𝑚). Given any non-zero 𝑟 ∈ 𝑅,

since 𝐷 is divisible, let 𝑦 ∈ 𝐷 be such that 𝑦𝑟 = 𝑑. Applying 𝜙 to such element,

𝑚 = 𝜙(𝑑) = 𝜙(𝑦𝑟) = 𝜙(𝑦)𝑟.

Since 𝜙(𝑦) ∈ 𝜙(𝐷), this shows that 𝑚 is divisible by 𝑟—hence 𝜙(𝐷) is a divisible

𝑅-module.

(e) Given a divisible 𝑅-module 𝐷 and a submodule 𝑄 ⊆ 𝐷, the natural projection

𝜋:𝐷 ↠ 𝐷/𝑄 shows that 𝜋(𝐷) = 𝐷/𝑄 is a divisible 𝑅-module via last item’s result.

(f) Let 𝐷 be a divisible 𝑅-module and suppose that 𝐷 = 𝑋 ⊕ 𝑌. Then the natural

projection 𝜋𝑋 :𝐷 ↠ 𝑋 has an image 𝜋𝑋(𝐷) = 𝑋—therefore 𝑋 is divisible by the

result of item (d).

♮

Proposition 10.6.13 (Injective module is divisible). Let 𝑅 be an integral domain. Then

every injective 𝑅-module is a divisible 𝑅-module.
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Proof. Let 𝐸 be an injective 𝑅-module, and 𝑥 ∈ 𝐸 be any element. If 𝑟 ∈ 𝑅 is any non-

zero element, consider the submodule (ideal) 𝑟𝑅 ⊆ 𝑅—which is free with a basis {𝑟}.
By the injectivity of 𝐸, if 𝜙: 𝑟𝑅 → 𝐸 is defined by 𝜙(𝑟) ≔ 𝑥, there exists an extension

𝜓:𝑅→ 𝐸 such that 𝜓|𝑟𝑅 = 𝜙. Therefore one has

𝑥 = 𝜓(𝑟) = 𝜓(1 · 𝑟) = 𝜓(1)𝑟,
which proves that 𝑥 is divisible by 𝑟, and hence 𝐸 itself is a divisible 𝑅-module. ♮

Proposition 10.6.14 (Divisible modules in PIDs). Let 𝑅 be a principal ideal domain. The

following holds:

(a) An 𝑅-module is injective if and only if it is divisible.
(b) Every quotient of an injective 𝑅-module is itself injective.

Proof. (a) If 𝑅 is a principal ideal domain, then in particular it’s an integral domain,

therefore any injective 𝑅-module is divisible. We prove the converse. Let 𝐷 be a

divisible 𝑅-module and take any non-zero submodule (ideal) 𝔞 of 𝑅, together with

a morphism of 𝑅-modules 𝜙: 𝔞 → 𝐸. Since 𝑅 is a PID, assume 𝔞 = 𝑎𝑅 for some

non-zero 𝑎 ∈ 𝑅. By the divisibility of 𝐷, we know that there exists 𝑑 ∈ 𝐷 such

that 𝜙(𝑎) = 𝑑𝑎—that is, 𝜙(𝑎) ∈ 𝐷 is divisible by 𝑑. We define a map 𝜓:𝑅 → 𝐷

by mapping 𝑟 ↦→ 𝑑𝑟, which is clearly a morphism of 𝑅-modules. Notice that if

𝑥 ≔ 𝑎𝑟 ∈ 𝔞 is any element, then

𝜓(𝑥) = 𝜓(𝑎𝑟) = 𝜓(𝑎)𝑟 = (𝑑𝑎)𝑟 = 𝜙(𝑎)𝑟 = 𝜙(𝑎𝑟) = 𝜙(𝑥),
that is, 𝜓 extends 𝜙, making the diagram

𝐷

0 𝔞 𝑅

𝜙

𝜓

commutative in 𝑅-Mod and showing that 𝐷 is injective.

(b) Let 𝐸 be an injective module, hence divisible since 𝑅 is in particular an integral

domain. Therefore, if 𝑀 ⊆ 𝐸 is any submodule, we know that 𝐸/𝑀 is a divisible

𝑅-module by Proposition 10.6.12 item (e). Therefore, by the fact that 𝑅 is a PID,

we use last item’s result to obtain that 𝐸/𝑀 is injective.

♮

Corollary 10.6.15 (Embedding abelian groups into injective ones). Every abelian group
can be embedded as a subgroup of an injective abelian group.

Proof. Let 𝑀 be an abelian group (Z-module) and by Theorem 10.2.20 we know that

there exists a free abelian group 𝐹 ≔
⊕

𝑗∈𝐽 Z such that 𝑀 = 𝐹/𝐾 for some subgroup

𝐾 ⊆ 𝐹. Considering the natural inclusion morphism 𝜄: Z ↩→ Q of Z-modules, we find

that 𝐹 is a submodule of the Z-module

⊕
𝑗∈𝐽 Q. Since Q is a divisible Z-module, by

Proposition 10.6.12 we find that 𝐸 ≔ (
⊕

𝑗∈𝐽 Q)/𝐾 is again a divisible Z-module. Since

Z is a PID, by Proposition 10.6.14 we find that 𝐸 is injective. Therefore the proposition

follows by the natural inclusion 𝑀 = 𝐹/𝐾 ↩→ 𝐸. ♮
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Theorem 10.6.16 (Embedding modules into injective ones). Every right-𝑅-module (or

left) can be embedded as a submodule of some injective right-𝑅-module (or left).

Proof. Let 𝑀 be any right-𝑅-module. By Corollary 10.6.15, let 𝐷 be an injective

abelian group containing the abelian group 𝑀. Considering the isomorphism 𝑀 ≃
MorMod𝑅(𝑅, 𝑀) given by 𝑚 ↦→ 𝑓𝑚—where 𝑓𝑚(𝑟) ≔ 𝑚𝑟—we have an injective right-𝑅-

module morphism 𝑀 ↣ MorModZ(𝑅, 𝐷) given by the composition:

𝑀 MorMod𝑅(𝑅, 𝑀) MorModZ(𝑅, 𝑀) MorModZ(𝑅, 𝐷)
≃

This proves that𝑀 can be embedded as a subgroup of the right-𝑅-module MorModZ(𝑅, 𝐷).
♮

Proposition 10.6.17. Let 𝐷 be a divisible abelian group and 𝑅 be any ring. Then the

abelian group MorModZ(𝑅, 𝐷) is an injective right-𝑅-module (also, MorZMod(𝑅, 𝐷) is an

injective left-𝑅-module), with a product

( 𝑓 · 𝑟)(𝑥) ≔ 𝑓 (𝑟𝑥)
for every 𝑓 ∈ MorModZ(𝑅, 𝐷), and 𝑟, 𝑥 ∈ 𝑅.

Proof. We take 𝐷 to be a right-Z-module—which is isomorphic to the left module

since Z is commutative. Any ring 𝑅 has the structure of (𝑅,Z)-bimodule, thus the

product is well defined and produces a structure of right-𝑅-module in the abelian

group MorModZ(𝑅, 𝐷).
We now prove that MorModZ(𝑅, 𝐷) is injective using Baer’s criterion. Since Z is a

PID, the divisibility of 𝐷 implies that it is an injective Z-module. Let 𝔞 ⊆ 𝑅 be any

right-ideal of 𝑅 and 𝜙: 𝔞→MorModZ(𝑅, 𝐷) be a morphism of 𝑅-modules. Define a map

𝜙′: 𝔞→ 𝐷 by 𝑎 ↦→ 𝜙(𝑎)(1), which is a morphism of right-Z-modules. By the injectivity

of 𝐷, there exists a morphism of right-Z-modules 𝜓′:𝑅→ 𝐷 such that the diagram

𝐷

0 𝔞 𝑅

𝜙′

𝜓′

commutes in ModZ. Define a morphism of right-𝑅-modules 𝜓:𝑅 → MorModZ(𝑅, 𝐷) by

assigning 𝜓(1) ≔ 𝜓′, which completely determines 𝜓 since

𝜓(𝑠)(𝑟) = (𝜓(1)𝑠)(𝑟) = (𝜓′𝑠)(𝑟) = 𝜓′(𝑠𝑟)
for any 𝑠, 𝑟 ∈ 𝑅. Moreover, if 𝑎 ∈ 𝔞 is any element, then for any 𝑟 ∈ 𝑅 one has

𝜓(𝑎)(𝑟) = 𝜓′(𝑎𝑟) = 𝜙′(𝑎𝑟) = 𝜙(𝑎𝑟)(1) = (𝜙(𝑎)𝑟)(1) = 𝜙(𝑎)(𝑟),
since 𝑎𝑟 ∈ 𝔞. Therefore 𝜓|𝔞 = 𝜙, making the diagram

MorModZ(𝑅, 𝐷)

0 𝔞 𝑅

𝜙

𝜓

commute in Mod𝑅—which shows that MorModZ(𝑅, 𝐷) is an injective right-𝑅-module. ♮
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Lemma 10.6.18. Let 𝐸 be an injective 𝑅-module, and 0 → 𝐴
𝛼
↣ 𝐵

𝛽
↠ 𝐶 → 0 be a

short exact sequence of 𝑅-modules. If there exists a morphism 𝛾:𝐴→ 𝐸, then one can

complete the given exact sequence to a commutative diagram in 𝑅-Mod:

0 𝐴 𝐵 𝐶 0

0 𝐸 𝑃 𝐶 0

𝛼

𝛾

𝛽

𝛾′

𝛼′ 𝛽′

whose rows are short exact sequences.

Proof. Let 𝑃 be the pushout of the pair (𝛾, 𝛼), that is:

𝑃 ≔
𝐸 ⊕ 𝐵

{(𝛾(𝑎),−𝛼(𝑎)) ∈ 𝐸 ⊕ 𝐵 : 𝑎 ∈ 𝐴}

together with natural inclusion maps 𝛼′:𝐸 → 𝑃 given by 𝑒 ↦→ [𝑒 , 0] and 𝛾′: 𝐵 → 𝑃

sending 𝑏 ↦→ [0, 𝑏]. Define 𝛽′:𝑃 → 𝐶 to be the mapping [𝑒 , 𝑏] ↦→ 𝛽(𝑏). To see that 𝛽′ is
well defined, let [𝑒 , 𝑏] = [𝑒′, 𝑏′] and notice this means that there exists a common 𝑎 ∈ 𝐴
such that 𝛼(𝑎) = 𝑏 − 𝑏′ and 𝛾(𝑎) = 𝑒 − 𝑒′. Since the top row is exact, then

0 = 𝛽𝛼(𝑎) = 𝛽(𝑏 − 𝑏′) = 𝛽(𝑏) − 𝛽(𝑏′),

that is, 𝛽′[𝑒 , 𝑏] = 𝛽′[𝑒′, 𝑏′]. Also it is clear that 𝛽′ is a morphism of 𝑅-modules and that

𝛽′𝛾′ = 𝛽.

Given any 𝑒 ∈ ker 𝛼′ one has 𝛼′(𝑒) = [𝑒 , 0] = [0, 0], that is, there exists 𝑎 ∈ 𝐴 for

which (𝛾(𝑎),−𝛼(𝑎)) = (𝑒 , 0) but since 𝛼 is injective, then 𝑎 = 0—proving that ker 𝛼′ = 0

and that 𝛼′ is injective. For the surjectivity of 𝛽′, we use the fact that 𝛽 is surjective: given

any 𝑐 ∈ 𝐶, there exists 𝑏 ∈ 𝐵 for which 𝛽(𝑏) = 𝑐—therefore 𝛽′𝛾′(𝑏) = 𝛽′[0, 𝑏] = 𝛽(𝑏) = 𝑐,

showing that 𝛽′ is surjective.

We now show the exactness of the bottom row. Since 𝛽′𝛼′(𝑒) = 𝛽′[𝑒 , 0] = 𝛽(0) = 0,

then im 𝛼′ ⊆ ker 𝛽′. Given any [𝑒 , 𝑏] ∈ ker 𝛽′ by definition we have 𝛽(𝑏) = 0, therefore

by exactness of the top row there must exist 𝑎 ∈ 𝐴 such that 𝛼(𝑎) = 𝑏. Therefore

[𝑒 , 𝑏] = [𝑒 , 𝛼(𝑎)] = [𝑒 , 𝛼(𝑎)] + [𝛾(𝑎),−𝛼(𝑎)] = [𝑒 + 𝛾(𝑎), 0]

since [𝛾(𝑎),−𝛼(𝑎)] = [0, 0]. From this we obtain that 𝛼′(𝑒 + 𝛾(𝑎)) = [𝑒 , 𝑏] and hence

ker 𝛽′ ⊆ im 𝛼′. ♮

Proposition 10.6.19. An 𝑅-module 𝐸 is injective if and only if every short exact sequence

of 𝑅-modules

0 𝐸 𝐵 𝐶 0

𝑓 𝑔

ending with a cyclic module 𝐶 is split.

Proof. The forward implication is immediate since any short exact sequence of right-𝑅-

modules starting with an injective module is split. For the converse, assume that 𝐸 has

the described property, and let 𝔟 ⊆ 𝑅 be any right-ideal together with a morphism of
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right-𝑅-modules 𝜙: 𝔟→ 𝐸. Considering the short exact sequence 0→ 𝔟 ↩→ 𝑅 ↠ 𝑅/𝔟,

using Lemma 10.6.18 there exists a commutative diagram

0 𝔟 𝑅 𝑅/𝔟 0

0 𝐸 𝑃 𝑅/𝔟 0

𝜄

𝜙 𝜙′

𝛼

Since 𝑅/𝔟 is a cyclic right-𝑅-module, by hypothesis the bottom sequence splits, proving

the existence of a retract 𝑞:𝑃 → 𝐸 such that 𝑞𝛼 = id𝐸. Therefore the composition

𝑞𝜙′:𝑅 → 𝐸 is a morphism of right-𝑅-modules such that (𝑞𝜙)𝜄 = 𝜙, making the

diagram

𝐸

0 𝔟 𝑅𝜄

𝜙

𝑞𝜙

commute in Mod𝑅. Thus by Baer’s criterion 𝐸 is an injective module. ♮

Example 10.6.20. The Z-module Q/Z is injective.

Proof. Since Z is a principal integral domain and Q/Z is divisible, then Q/Z is also

injective. ♮

Theorem 10.6.21. Let 𝑅 be a ring. There exists enough injective modules in the category

𝑅-Mod—that is, every 𝑅-module is a submodule of an injective 𝑅-module.

Write (see stacks project).

10.7 Injective Cogenerator Modules
Definition 10.7.1 (Injective cogenerator). An injective 𝑅-module 𝑄 is said to be cogen-

erator if for all non-zero 𝑅-modules 𝑀 we have Mor𝑅-Mod(𝑀,𝑄) ≠ 0.

Lemma 10.7.2. The Z-module Q/Z is an injective cogenerator of 𝑍-Mod.

Proof. Let 𝑀 be a non-zero Z-module, and let 𝑚 ∈ 𝑀 ∖ 0. We have two cases:

• If 𝑚 has infinite order, define a map 𝑢: Z𝑚 → Q/Z given by 𝑢(𝑥) ≔ 1/2 + Z.

• If 𝑚 has a finite order 𝑛, define a morphism 𝑢: Z𝑚 → Q/Z to be given by

𝑢(𝑥) ≔ 1/𝑛 + Z.

Since Q/Z is an injective Z-module, the non-zero morphism 𝑢 can be extended to a

morphism 𝑣:𝑀 → Q/Z, which is also non-zero. Therefore MorZ-Mod(𝑀,Q/Z) ≠ 0. ♮
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Proposition 10.7.3. Let 𝑄 be an injective cogenerator 𝑅-module. For every 𝑅-module

𝑀 there exists a set Λ and a monomorphism 𝑀 ↣ 𝑄|Λ|.
In other words, if there exists an injective cogenerator object in 𝑅-Mod, then any

module of 𝑅-Mod can be made a submodule of an injective one.

Proof. Let Λ ≔ Mor𝑅-Mod(𝑀,𝑄), which contains non-zero morphisms since 𝑄 is as-

sumed to be an injective cogenerator. Define a map 𝑓 :𝑀 → 𝑄|Λ| to be given by

𝑥 ↦→ (𝑢(𝑥))𝑢∈Λ, which is an 𝑅-linear morphism. Let 𝑚 ∈ 𝑀 be any non-zero element

and take a non-zero morphism 𝑣:𝑅𝑚 → 𝑄. By the injectivity of 𝑄 we find an exten-

sion 𝑣:𝑀 → 𝑄 of 𝑣. In particular, since 𝑣 is non-zero, then 𝑣(𝑚) ≠ 0 and therefore

𝑓 (𝑚) ≠ 0—showing that 𝑓 has null-kernel and thus is a monomorphism. ♮

Proposition 10.7.4 (Every category 𝐴-Mod has an injective cogenerator). Let 𝐴 be a

𝑘-algebra, where 𝑘 is a commutative ring. The right 𝐴-module MorModZ(𝐴𝐴Z,Q/Z) is

an injective cogenerator in Mod𝐴.

Proposition 10.7.5 (Injective resolution). Let 𝑘 be a commutative ring and 𝐴 be a

𝑘-algebra. For any 𝐴-module 𝑀 there exists an exact sequence

0 𝑀 𝐸0 𝐸1 · · · 𝐸𝑛 𝐸𝑛+1 · · ·𝑓0 𝑓1 𝑓𝑛+1

where each 𝐴-module 𝐸 𝑗 is injective. Such sequence is called an injective resolution of

𝑀.

Definition 10.7.6 (Injective presentation). An injective presentation of an 𝐴-module 𝑀

is an injective resolution composed of only two injective modules:

0 𝑀 𝐸0 𝐸1

Lemma 10.7.7. Let 𝑄 be an injective cogenerator of 𝐴-Mod. A sequence of 𝐴-modules

𝐿 𝑀 𝑁
𝑓 𝑔

is exact if and only if the induced sequence of 𝑘-modules

Mor𝐴-Mod(𝑁, 𝑄) Mor𝐴-Mod(𝑀,𝑄) Mor𝐴-Mod(𝐿, 𝑄)
𝑔∗ 𝑓 ∗

is exact.

Proof. • (⇒) Since 𝑄 is injective, the contravariant functor Mor𝐴-Mod(−, 𝑄) is exact

and therefore if 𝐿→ 𝑀 → 𝑁 is exact then the induced sequence is also exact.

• (⇐) Assume that the induced sequence is exact. We must show that 𝑔 𝑓 = 0.

To that end suppose, for the sake of contradiction, that there exists ℓ ∈ 𝐿 such

that 𝑔 𝑓 ℓ ≠ 0 ∈ 𝑁 . Since 𝑄 is a cogenerator, there exists a non-zero morphism
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⟨𝑔 𝑓 ℓ⟩ → 𝑄 and, using the fact that 𝑄 is injective, there exists an extension

𝑢:𝑁 → 𝑄 of such non-zero morphism:

𝑄

⟨𝑔 𝑓 ℓ⟩ 𝑁

𝑢

which certainly satisfies 𝑢𝑔 𝑓 ℓ ≠ 0. This shows that 𝑓 ∗𝑔∗ = (𝑔 𝑓 )∗ is non-zero,

which is a contradiction since we are assuming that the induced sequence is

exact. This shows that 𝑔 𝑓 = 0 and thus im 𝑓 ⊆ ker 𝑔.

To prove the other side of the inclusion, let𝑚 ∈ ker 𝑔 be any element and suppose,

for the sake of contradiction, that 𝑚 ∉ im 𝑓 . Define 𝑝:𝑀 ↠ coker 𝑓 to be the

canonical projection, which therefore satisfies 𝑝𝑚 ≠ 0. Since 𝑄 is an injective

cogenerator, there exists a non-zero morphism ⟨𝑚 + im 𝑓 ⟩ → 𝑄 and since 𝑄

is injective, there exists an extension 𝑣: coker 𝑓 → 𝑄 such that the following

diagram commutes:

𝑄

⟨𝑚 + im 𝑓 ⟩ coker 𝑓

𝑣

thus in particular 𝑣𝑝𝑚 ≠ 0. From definition, 𝑝 𝑓 = 0 and therefore 𝑓 ∗(𝑣𝑝) =
𝑣𝑝 𝑓 = 0, hence 𝑣𝑝 ∈ ker 𝑓 ∗ = im 𝑔∗. Thus there exists 𝑤:𝑁 → 𝑄 such that

𝑔∗𝑤 = 𝑤𝑔 = 𝑣𝑝, forming the following commutative diagram

𝐿 𝑀 𝑁

coker 𝑓 𝑄

𝑓 𝑔

𝑝 𝑤

𝑣

However, since we are assuming that 𝑚 ∈ ker 𝑔 then

0 = 𝑔𝑚 = 𝑤𝑔𝑚 = 𝑣𝑝𝑚 ≠ 0,

which is a contradiction, therefore it must be the case that 𝑚 ∈ im 𝑓 . This shows

us that ker 𝑔 ⊆ im 𝑓 , therefore the sequence is exact.

♮

10.8 Essential Extensions and Injective Envelopes
Definition 10.8.1 (Essential extension). Let 𝑀 be an 𝐴-module. An 𝐴-module 𝐸 is said

to be an essential extension of 𝑀 if the following are satisfied:

(a) 𝑀 is a submodule of 𝐸.
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(b) Any non-zero submodule 𝑁 ⊆ 𝐸 has a non-trivial intersection with 𝑀—that is,

𝑁 ∩𝑀 ≠ 0.

We shall also say that 𝑀 is an essential submodule of 𝐸.

Example 10.8.2. The Z-module Q is an essential extension of Z.

Definition 10.8.3 (Essential monomorphism). A monomorphism 𝑓 :𝑀 ↣ 𝐸 in 𝐴-Mod

is said to be essential if for any morphism of 𝐴-modules 𝑔:𝐸 → 𝐹 such that the

composition 𝑔 𝑓 is a monomorphism then 𝑔 is a monomorphism.

Lemma 10.8.4. Let 𝑓 : 𝐿 ↣ 𝑀 and 𝑔:𝑀 ↣ 𝐿 be monomorphisms in 𝐴-Mod. The

following properties hold:

(a) If both 𝑓 and 𝑔 are essential, then the composition 𝑔 𝑓 is an essential monomor-

phism.

(b) If the composition 𝑔 𝑓 is an essential monomorphism, then 𝑔 is an essential

monomorphism.

Proof. (a) Let ℎ:𝑁 → 𝑆 be a morphism of 𝐴-modules such that ℎ𝑔 𝑓 : 𝐿 ↣ 𝑆 is a

monomorphism then (ℎ𝑔) 𝑓 is a monomorphism and since 𝑓 is essential then ℎ𝑔 is

a monomorphism. Using that 𝑔 is essential we conclude that ℎ is a monomorphism.

(b) Assume that 𝑔 𝑓 : 𝐿 ↣ 𝑁 is an essential monomorphism. Therefore if ℎ:𝑁 → 𝑆 in

𝐴-Mod is such that ℎ𝑔 is a monomorphism then in particular (ℎ𝑔) 𝑓 = ℎ(𝑔 𝑓 ) is a

monomorphism. Since 𝑔 𝑓 is assumed to be essential then ℎ must be a monomor-

phism. This shows that 𝑔 is essential.

♮

Proposition 10.8.5. A monomorphism 𝑓 :𝑀 ↣ 𝐸 is essential if and only if 𝐸 is an

essential extension of the image 𝑓 𝑀.

Proof. • (⇒) Assume that 𝑓 is essential and let 𝑁 ⊆ 𝐸 be a submodule such that

𝑁 ∩ 𝑓 𝑀 = 0. If 𝑝:𝐸 ↠ 𝐸/𝑁 is the canonical projection, then if 𝑥 ∈ ker(𝑝 𝑓 ) it

follows that 𝑓 𝑥 ∈ ker 𝑝 = 𝑁—therefore 𝑓 𝑥 ∈ 𝑁 ∩ 𝑓 𝑀 and hence 𝑓 𝑥 = 0, thus

𝑥 ∈ ker 𝑓 = 0. This shows that 𝑝 𝑓 :𝑀 ↣ 𝐸/𝑁 is a monomorphism, therefore it

must be the case that 𝑁 = ker(𝑝 𝑓 ) = 0.

• (⇐) Assume that 𝐸 is an essential extension of 𝑓 𝑀 and let 𝑔:𝐸→ 𝐿 in 𝐴-Mod be

such that 𝑔 𝑓 :𝑀 ↣ 𝐿 is a monomorphism. Suppose, for the sake of contradiction,

that 𝑔 isn’t a monomorphism—that is, ker 𝑔 ≠ 0. Since ker 𝑔 is not trivial then

ker 𝑔 ∩ 𝑓 𝑀 ≠ 0 and there must exist 𝑥 ∈ 𝑀 with 𝑓 𝑥 ≠ 0 such that 𝑓 𝑥 ∈ ker 𝑔.

This contradicts the fact that 𝑔 𝑓 is a monomorphism, since ker(𝑔 𝑓 ) = 0. Hence 𝑔

must be such that ker 𝑔 = 0, thus a monomorphism.

♮

Lemma 10.8.6 (Injectives & essential extensions). A module is injective if and only if it

does not admit any proper essential extensions.
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Proof. • (⇒) Suppose that 𝑀 is injective and let 𝐸 be an 𝐴-module with 𝑀 as one

of its proper submodules. Since 𝑀 is injective, then the following sequence is

split:

0 𝑀 𝐸 𝐸/𝑀 0

Hence 𝐸 ≃ 𝑀 ⊕ 𝐸/𝑀 and 𝑀 ∩𝐸/𝑀 = 0 and thus 𝐸 isn’t an essential extension of

𝑀.

• (⇐) Let 𝑀 be an 𝐴-module that does not admit proper essential extensions.

Using Theorem 10.6.21, let 𝐸 be an injective 𝐴-module containing 𝑀. Via Zorn’s

lemma, the collection of all submodules of 𝐸 having a trivial intersection with

𝑀 admits a maximal element 𝑁 ⊆ 𝐸. Let 𝜄:𝑀 ↩→ 𝐸 be the canonical inclusion,

and 𝜋:𝐸 ↠ 𝐸/𝑁 be the canonical projection. Since ker(𝜋𝜄) = 𝑀 ∩ 𝑁 = 0, then

𝜋𝜄:𝑀 ↣ 𝐸/𝑁 is a monomorphism. By the maximality of 𝑁 we find that 𝐸/𝑁
is an essential extension of 𝑀: indeed, if 𝐿/𝑁 ⊆ 𝐸/𝑁 is a non-zero submodule

then 𝑁 ⊊ 𝐿 is a proper submodule and hence 𝐿 ∩ 𝑀 ≠ 0 by hypothesis—

therefore (𝐿/𝑁) ∩ 𝑀 ≠ 0. By hypothesis 𝑀 does not admit a proper essential

extension, therefore 𝐸/𝑁 = 𝑀. This shows that 𝜋𝜄 = id𝑀 and therefore 𝜄 is a

split monomorphism, proving that 𝑀 is a direct summand of 𝐸, and hence 𝑀 is

injective.

♮

Definition 10.8.7 (Maximal essential extension). An essential extension 𝐸 of 𝑀 is said

to be maximal if, given an essential extension 𝐸′ of 𝑀 such that 𝐸 ⊆ 𝐸′ then 𝐸′ = 𝐸.

Theorem 10.8.8. Let 𝐸 be an 𝐴-module, and 𝑀 be a submodule of 𝐸. The following

conditions are equivalent:

(a) 𝐸 is a maximal essential extension of 𝑀.

(b) 𝐸 is an essential extension of 𝑀 and is injective.

(c) 𝐸 is injective and, if 𝐼 is an injective module such that 𝑀 ⊆ 𝐼 ⊆ 𝐸, then 𝐼 = 𝐸.

Furthermore, every 𝐴-module admits a maximal essential extension.

Proof. • (a⇒ b) Since 𝐸 is a maximal essential extension, in particular 𝐸 does not

admit a proper essential extension—therefore by Lemma 10.8.6 it follows that 𝐸

is injective.

• (b ⇒ c) Suppose, for the sake of contradiction, that there exists an injective 𝐼

such that 𝑀 ⊆ 𝐼 ⊊ 𝐸. From injectivity, 𝐼 is a direct summand of 𝐸 and since by

hypothesis we have 𝐼 ≠ 𝐸, it follows that there exists a non-zero 𝐼′ ⊆ 𝐸 such that

𝐸 = 𝐼 ⊕ 𝐼′. Since 𝑀 ⊆ 𝐼 and 𝐼 ∩ 𝐼′ = 0 then 𝑀 ∩ 𝐼′ = 0, which is a contradiction

from the fact that 𝐸 is an essential extension.

• (c⇒ a) From Theorem 10.6.21 there exists an injective 𝐴-module 𝐽 such that 𝑀

is one of its submodules. Define ℰ to be the collection of all essential extensions

of 𝑀 contained in 𝐽. Since 𝑀 itself is an element of ℰ, then ℰ is a non-empty

set which can made a poset via inclusion. It follows from Zorn’s lemma that ℰ
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admits a maximal element 𝐸. We now prove that 𝐸 is a maximal extension of 𝑀.

Suppose, on the contrary, that there exists an essential extension 𝐸′ of 𝑀 such

that 𝐸 ⊆ 𝐸′. By injectivity of 𝐸, there exists an extension 𝜄:𝐸′ ↩→ 𝐽 of the inclusion

𝑖:𝐸 ↩→ 𝐽 so that the following diagram commutes:

𝐽

0 𝐸 𝐸′
𝑖

𝜄

Therefore 𝜄 is a monomorphism, which shows that 𝐸′ ⊆ 𝐽 hence 𝐸′ ∈ ℰ and by

maximality of 𝐸 it follows that 𝐸′ = 𝐸. This shows that 𝐸 is a maximal essential

extension of 𝑀.

♮

10.9 Tensor Products
Definition 10.9.1 (Biadditive and bilinear maps). Let 𝑅 be a ring and consider a right

𝑅-module 𝐴, and a left 𝑅-module 𝐵, and an abelian group 𝐺. A map 𝑓 :𝐴 × 𝐵→ 𝐺 is

said to be 𝑅-biadditive if, for any pairs (𝑎, 𝑏), (𝑎′, 𝑏′) ∈ 𝐴 × 𝐵 and scalar 𝑟 ∈ 𝑅 we have

the following conditions satisfied:

(a) 𝑓 (𝑎 + 𝑎′, 𝑏) = 𝑓 (𝑎, 𝑏) + 𝑓 (𝑎′, 𝑏).
(b) 𝑓 (𝑎, 𝑏 + 𝑏′) = 𝑓 (𝑎, 𝑏) + 𝑓 (𝑎, 𝑏′).
(c) 𝑓 (𝑎𝑟, 𝑏) = 𝑓 (𝑎, 𝑟𝑏).

Further, if 𝑅 is commutative, we say that 𝑓 is 𝑅-bilinear if it also satisfies:

(d) 𝑓 (𝑎𝑟, 𝑏) = 𝑓 (𝑎, 𝑟𝑏) = 𝑟 𝑓 (𝑎, 𝑏).

Now let 𝐴 be a 𝑘-algebra, where 𝑘 is a commutative ring, and consider modules 𝐿𝐴
and 𝐴𝑀. Then we define a morphism of 𝑘-modules 𝑔: 𝐿 ×𝑀 → 𝑋 to be 𝐴-bilinear if

• 𝑔(ℓ𝛼 + ℓ ′𝛽, 𝑚) = 𝑔(ℓ , 𝑚)𝛼 + 𝑔(ℓ ′, 𝑚)𝛽, for any 𝛼, 𝛽 ∈ 𝑘.
• 𝑔(ℓ , 𝑚𝛼 + 𝑚′𝛽) = 𝑔(ℓ , 𝑚)𝛼 + 𝑔(ℓ , 𝑚′)𝛽, for any 𝛼, 𝛽 ∈ 𝑘.
• 𝑔(ℓ 𝑎, 𝑚) = 𝑔(ℓ , 𝑎𝑚).

Definition 10.9.2 (Tensor product). Let 𝑅 be a ring and consider right and left 𝑅-

modules 𝐴𝑅 and 𝑅𝐵. The tensor product of 𝐴 and 𝐵 is an abelian group 𝐴⊗𝑅 𝐵 together

with an 𝑅-biadditive map 𝑡:𝐴 × 𝐵→ 𝐴 ⊗𝑅 𝐵 such that, for every abelian group 𝐺 and

any 𝑅-biadditive map 𝑓 :𝐴 × 𝐵 → 𝐺, there exists a unique abelian group morphism

𝜙:𝐴 ⊗𝑅 𝐵→ 𝐺 such that the following triangle commutes:

𝐴 × 𝐵 𝐺

𝐴 ⊗𝑅 𝐵
𝑡

𝑓

𝜙
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Lemma 10.9.3 (Uniqueness up to isomorphism). Let 𝑋 and 𝑌 be tensor products for

𝑅-modules 𝐴𝑅 and 𝑅𝐵, then there exists a natural isomorphism 𝑋 ≃ 𝑌.

Proof. Let 𝑡𝑋 :𝐴×𝐵→ 𝑋 and 𝑡𝑌 :𝐴×𝐵→ 𝑌 be their respectively associated𝑅-biadditive

map. Consider the universal property of the tensor product applied to both (𝑋, 𝑡𝑋)
and (𝑌, 𝑡𝑌): we obtain unique morphisms of groups 𝜙1:𝑋 → 𝑌 and 𝜙2:𝑌 → 𝑋 such

that the following diagram commutes

𝑋 𝐴 × 𝐵 𝑋

𝑌𝜙1

𝑡𝑋

𝑡𝑌

𝑡𝑋

𝜙2

𝑌 𝐴 × 𝐵 𝑌

𝑋𝜙2

𝑡𝑌

𝑡𝑋

𝑡𝑌

𝜙1

From the left diagram we see that id𝑋 :𝑋 → 𝑋 also makes the diagram commute and

on the right diagram id𝑌 :𝑌 → 𝑌 is also a possible morphism satisfying commutativity.

Since the morphisms 𝜙1 and 𝜙2 are uniquely chosen, then the compositions 𝜙1𝜙2 and

𝜙2𝜙1 are also unique. Therefore it follows that 𝜙1𝜙2 = id𝑌 and 𝜙2𝜙1 = id𝑋—hence

𝑋 ≃ 𝑌. ♮

Lemma 10.9.4 (Existence). Given a ring 𝑅 together with right and left 𝑅-modules 𝐴𝑅
and 𝑅𝐵, their tensor product 𝐴 ⊗𝑅 𝐵 exists.

Proof. Let 𝐹 be the free abelian group with basis 𝐴×𝐵, and consider the subgroup 𝑆 of

𝑆 generated by elements of the following form, for any (𝑎, 𝑏), (𝑎′, 𝑏′) ∈ 𝐴×𝐵 and 𝑟 ∈ 𝑅:

• (𝑎, 𝑏 + 𝑏′) − (𝑎, 𝑏) − (𝑎, 𝑏′),
• (𝑎 + 𝑎′, 𝑏) − (𝑎, 𝑏) − (𝑎′, 𝑏),
• (𝑎𝑟, 𝑏) − (𝑎, 𝑟𝑏).

We’ll show that the quotient 𝐹/𝑆 is the wanted tensor product 𝐴⊗𝑅 𝐵. Define the map

𝑡:𝐴 ⊗ 𝐵 → 𝐹/𝑆 naturally by mapping (𝑎, 𝑏) ↦→ (𝑎, 𝑏) + 𝑆. From the definition of 𝑆 we

obtain freely that 𝑡 is 𝑅-biadditive.

Let 𝐺 be any abelian group and 𝑓 :𝐴×𝐵→ 𝐺 any 𝑅-biadditive map. Then from the

free group theorem there exists a unique morphism of groups 𝜙: 𝐹 → 𝐺 determined

by mapping (𝑎, 𝑏) ↦→ 𝑓 (𝑎, 𝑏). Moreover, 𝑆 ⊆ ker 𝜙 from the fact that we imposed 𝑅-

biadditiveness in 𝑓 . Therefore, by the quotient theorem 𝜙 induces a unique morphism

of groups 𝜓: 𝐹/𝑆→ 𝐺 satisfying 𝜓𝑡 = 𝑓 :

𝐴 × 𝐵

𝐹 𝐺

𝐹/𝑆

𝑓

𝑡
𝜙

𝜓

This shows that 𝐹/𝑆 satisfies the universal property of the tensor product and thus

𝐴 ⊗𝑅 𝐵 ≃ 𝐹/𝑆. ♮

302



Proposition 10.9.5. Consider a morphism of left 𝑅-modules 𝜆:𝐴𝑅 → 𝐵𝑅 and a mor-

phism of right 𝑅-modules 𝜌: 𝑅𝑋 → 𝑅𝑌. The maps 𝜆 and 𝜌 induce a unique morphism

of abelian groups

𝜆 ⊗ 𝜌:𝐴 ⊗𝑅 𝑋 −→ 𝐵 ⊗𝑅 𝑌.

This morphism is given by the mapping 𝑎 ⊗ 𝑥 ↦→ 𝜆(𝑎) ⊗ 𝜌(𝑥).

Proof. Let 𝜙:𝐴 × 𝑋 → 𝐵 ⊗𝑅 𝑌 be the map given by 𝜙(𝑎, 𝑏) ≔ 𝑎 ⊗ 𝑏. Then for any 𝑟 ∈ 𝑅
one has

𝜙(𝑎𝑟, 𝑏) = 𝜆(𝑎𝑟) ⊗ 𝜌(𝑏) = 𝜆(𝑎)𝑟 ⊗ 𝜌(𝑏) = 𝜆(𝑎) ⊗ 𝑟𝜌(𝑏) = 𝜆(𝑎) ⊗ 𝜌(𝑟𝑏) = 𝜙(𝑎, 𝑟𝑏).

Thus 𝜙 is 𝑅-biadditive. The morphism uniquely induced morphism 𝐴⊗𝑅 𝑋 → 𝐵⊗𝑅𝑌
is exactly 𝜆 ⊗ 𝜌 as described above. ♮

Corollary 10.9.6. Consider right 𝑅-module morphisms 𝐴
𝜌1−→ 𝐵

𝜌2−→ 𝐶 and morphisms

of left 𝑅-modules 𝑋
𝜆1−→ 𝑌

𝜆2−→ 𝑍. Then we have a composition

(𝜌2 ⊗ 𝜆2) ◦ (𝜌1 ⊗ 𝜆1) = 𝜌2𝜌1 ⊗ 𝜆2𝜆1.

Lemma 10.9.7 (Additive tensoring functors). Let 𝐴 be a right 𝑅-module and 𝐵 be a left

𝑅-module.

(a) There exists an additive functor 𝐹𝐴: 𝑅Mod → Ab given by 𝐹𝐴(𝐵) = 𝐴 ⊗𝑅 𝐵 and

𝐹𝐴(𝛽) = id𝐴 ⊗𝛽. We shall denote this functor by 𝐴 ⊗𝑅 −.

(b) There exists an additive functor 𝐺𝐵: Mod𝑅 → Ab mapping 𝐺𝐵(𝐴) = 𝐴 ⊗𝑅 𝐵 and

𝐺𝐵(𝛼) = 𝛼 ⊗ id𝐵. This functor will be denoted by − ⊗𝑅 𝐵.

Corollary 10.9.8 (Induced isomorphisms). Let 𝑓 ∈ MorMod𝑅(𝑀, 𝑁) and 𝑔 ∈ Mor𝑅Mod(𝐿, 𝐾)
be isomorphisms. The induced morphism 𝑓 ⊗ 𝑔:𝑀⊗𝑅 𝐿→ 𝑁 ⊗𝑅 𝐾 is an isomorphism

of abelian groups.

Proof. The functor − ⊗𝑅 𝐿 takes 𝑓 to the isomorphism 𝑓 ⊗ id𝐿 and 𝑀 ⊗𝑅 − takes 𝑔 to

the isomorphism id𝑀 ⊗𝑔. The composition ( 𝑓 ⊗ id𝐿)(id𝑀 ⊗𝑔) = 𝑓 ⊗ 𝑔 will thus be an

isomorphism. ♮

Proposition 10.9.9 (Extending scalars). Let 𝑅 be a ring and consider a subring 𝑆 ⊆ 𝑅.

(a) Let 𝐴 ∈ (𝑅, 𝑆)-Mod, then for any 𝐵 ∈ 𝑆Mod the tensor product 𝐴 ⊗𝑆 𝐵 inherits a

natural structure of a left 𝑅-module: for any 𝑟 ∈ 𝑅 and 𝑎 ⊗ 𝑏 ∈ 𝐴 ⊗𝑆 𝐵 we have

𝑟(𝑎 ⊗ 𝑏) = (𝑟𝑎) ⊗ 𝑏.
(b) Let 𝐵 ∈ (𝑆, 𝑅)-Mod, then for any 𝐴 ∈ Mod𝑆 the tensor product 𝐴 ⊗𝑆 𝐵 inherits a

natural structure of a right 𝑅-module: for any 𝑟 ∈ 𝑅 and 𝑎 ⊗ 𝑏 ∈ 𝐴 ⊗𝑆 𝐵 we have

(𝑎 ⊗ 𝑏)𝑟 = 𝑎 ⊗ (𝑏𝑟).
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Proof. We shall prove only the first proposition since the other follows analogously.

Given any 𝑟 ∈ 𝑅, consider the left multiplication morphism 𝑟 mul:𝐴 → 𝐴 and the

morphism of groups 𝑟 mul⊗ id𝐵 under the functor − ⊗𝑆 𝐵. Notice that this map

associates 𝑎 ⊗ 𝑏 ↦→ 𝑟 mul(𝑎) ⊗ 𝑏 = (𝑟𝑎) ⊗ 𝑏. It is trivial to verify that 𝑟 mul induces a

multiplicative left 𝑅-module structure on the abelian group 𝐴 ⊗𝑆 𝐵—transforming it

into a left 𝑅-module. ♮

Example 10.9.10. If 𝑅 is ring and 𝑆 is any subring of 𝑅, then 𝑅 has a structure of (𝑅, 𝑆)-
bimodule and therefore for any given left 𝑆-module 𝑀 we can obtain a left 𝑅-module

𝑅 ⊗𝑆 𝑀. That is, the procedure shown in Proposition 10.9.9 allows one to extend the

scalars associated to a module.
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Part III

Combinatorics
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Chapter 11

A Short Toy-Manual of Graphs

11.1 Basic Principles of Combinatorics
Notation 11.1.1 (𝑘-subsets). Given a set 𝐴, we define a 𝑘-subset—where 0 ⩽ 𝑘 ⩽ |𝐴|—
to be the a subset of𝐴with exactly 𝑘 elements. We denote the collection of all 𝑘-subsets

of 𝐴 as [𝐴]𝑘 .

Notation 11.1.2 (Range). For any 𝑛 ∈ N, we denote by [𝑛] the set of natural numbers

{1, . . . , 𝑛}.

Definition 11.1.3 (Partition). Given a set 𝑉 , a partition is a collection 𝑉1, . . . , 𝑉𝑛 such

that for each 𝑣 ∈ 𝑉 there exists a unique index 1 ⩽ 𝑖 ⩽ 𝑛 such that 𝑣 ∈ 𝑉𝑖 .

Definition 11.1.4 (Colouring). Given a set 𝑉 we define an 𝑟-colouring of 𝑉 , for 𝑟 ∈ N,

to be a function 𝑉 → [𝑟].

Axiom 11.1.5 (Pigeon hole principle). Given a collection 𝑉 of 𝑛 elements and an 𝑟-

colouring 𝑐:𝑉 → [𝑟], with 𝑟 < 𝑛, then there exists at least one colour 𝑗 ∈ [𝑟] such that

𝑐(𝑣) = 𝑗 = 𝑐(𝑣′) for distinct elements 𝑣, 𝑣′ ∈ 𝑉 .

Lemma 11.1.6 (Stifel relation). Given numbers 𝑛, 𝑘 ⩾ 1 with 𝑘 ⩽ 𝑛, we have(
𝑛 + 1

𝑘 + 1

)
=

(
𝑛

𝑘

)
+

(
𝑛

𝑘 + 1

)
.

Proof. The left side of the equation counts the number of sets with 𝑘 + 1 elements out

of [𝑛 + 1]. For the interpretation of the right side, let 𝑥 ∈ [𝑛 + 1] be any fixed element,

then consider:

• The number of sets composed of 𝑘 + 1 elements of [𝑛 + 1] ∖ 𝑥 ≃ [𝑛] is given by(
𝑛
𝑘+1

)
.

• The number of sets composed of 𝑘+1 elements of [𝑛+1] containing 𝑥 is the same

as

(
𝑛
𝑘

)
since one of the 𝑘 + 1 elements is already fixed (the element 𝑥).

Notice that a subset 𝐴 ⊆ [𝑛 + 1] either contains or doesn’t contain 𝑥, thus we have

proven the identity. ♮
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11.2 General Definition Of a Graph
Definition 11.2.1 (General Graph). We define a general graph𝐺 = (𝑉, 𝐸, 𝑑) as a collection

of disjoint sets 𝑉 and 𝐸—called, respectively, the vertices and edges of 𝐺—together

with a map 𝑑 that defines the relations of incidence (see Definition 11.2.2) between

vertices and edges—that is, it defines the formation of edges between vertices.

Definition 11.2.2 (Incidence). We say that a vertex 𝑥 is incident with an edge 𝑒 if 𝑥 ∈ 𝑒.
Moreover if 𝑥 ∈ 𝑒, we say that 𝑒 is an edge at 𝑥.

In order to ease the the way on which we talk about graphs, I’ll introduce some

notation that I judge will be quite appropriate to avoid confusion.

Notation 11.2.3 (Vertices and edges of a graph). Given a graph 𝐺, its collection of

vertices and edges are denoted by, respectively, Vert(𝐺) and Edge(𝐺).

Notation 11.2.4 (Existence of an edge). Let 𝐺 be any graph and consider two vertices

𝑥, 𝑦 ∈ Vert(𝐺). We denote the relation of existence of an edge joining 𝑥 and 𝑦 by

Edge(𝑥, 𝑦)—that is, if Edge(𝑥, 𝑦) is true, there exists an edge 𝑒 ∈ Edge(𝐺) such that

𝑥 and 𝑦 are its end-vertices, otherwise, if Edge(𝑥, 𝑦) is false, then there is no edge

joining the two vertices.

Definition 11.2.5 (Adjacency). Given vertices 𝑥, 𝑦 ∈ 𝑉 , we say that 𝑥 and 𝑦 are neigh-

bours if Edge(𝑥, 𝑦)—in such case, 𝑥 and 𝑦 are said to be end-vertices of the existent

edge joining them.

We say that two edges 𝑒 and 𝑔 are adjacent or neighbours if there exists a unique

vertex 𝑥 common to both of them—𝑥 ∈ 𝑒 and 𝑥 ∈ 𝑔.

A set of vertices, or edges, is said to be independent if no pair of elements is adjacent.

An independent set of vertices 𝑉 is called stable.

Definition 11.2.6 (Diagonal set of vertices). Let 𝐺 = (𝑉, 𝐸) be a graph. We define

the diagonal subset of 𝑉 to be the collection Δ𝑉 = {(𝑥, 𝑥) : 𝑥 ∈ 𝑉}. So that we have

𝑉2 ∖ Δ𝑉 = {(𝑥, 𝑦) : 𝑥 ≠ 𝑦}—the collection of ordered pairs of distinct vertices.

The following definition will be useful when we are talking about graphs in which

there is no concept of direction, that is, an edge joining 𝑥 and 𝑦 is exactly the same as

the edge joining 𝑦 and 𝑥—that is, edges have no intrinsic orientation. Graph theorists

like to think about graphs as being entities that satisfy such invariance on the order of

the vertices—but, when it’s possible, we shall take the most general approach.

Definition 11.2.7 (Edge invariance). We define the set ⟨𝑉⟩2 to be the quotient

⟨𝑉⟩2 = (𝑉2 ∖ Δ𝑉)/(𝑥,𝑦)∼(𝑦,𝑥).

Notation 11.2.8 (Collection of edges). Given sets 𝑋 and 𝑌, we denote the collection of

all edges of the form 𝑥𝑦, where 𝑥 ∈ 𝑋 and 𝑦 ∈ 𝑌, by Edge(𝑋,𝑌). The collection of all

edges that a given vertex 𝑥 is incident with is denoted Edge(𝑥).
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Definition 11.2.9 (Order and size). Let 𝐺 be a graph. We define the order of 𝐺 as

|𝐺| = |Vert(𝐺)|, moreover, the size of 𝐺 is defined as ∥𝐺∥ = |Edge(𝐺)|.

Definition 11.2.10 (Trivial graph). A graph 𝐺 is said to be trivial if |𝐺| ⩽ 1. In the case

of the 0 order, we denote the graph as ∅.

11.3 The Simple Graph — Looping All Over
Definition 11.3.1 (Simple Graph). A simple graph is defined to be a graph𝐺 = (𝑉, 𝐸, 𝑑)
(in the sense of Definition 11.2.1) where

𝑑:𝐸→ 𝑉2/(𝑥,𝑦)∼(𝑦,𝑥), mapping 𝑒
𝑑↦−→ (𝑥, 𝑦) = (𝑦, 𝑥)

That is, 𝑑 defines a reflexive and symmetric relation — that is, Edge(𝑥, 𝑥) is true for all

𝑥 ∈ 𝑉 , and Edge(𝑥, 𝑦) = Edge(𝑦, 𝑥) for all pairs 𝑥, 𝑦 ∈ 𝑉 .

We’ll now construct a category for simple graphs using presheaves on the the

following category.

Definition 11.3.2 (Walking simple graph). A walking simple graph is defined as a

category S consisting of

• An object 𝑉 , called the set of vertices — containing elements 𝑥.

• An object 𝐸, called the set of edges — containing ordered pairs 𝑒 = (𝑥, 𝑦), where

𝑥, 𝑦 ∈ 𝑉 .

• Morphisms 𝑠, 𝑡:𝐸 → 𝑉 called source and target, respectively — given an edge

𝑒 = (𝑥, 𝑦) we have 𝑒
𝑠↦−→ 𝑥 and 𝑒

𝑡↦−→ 𝑦. We also impose that the map defined by

𝑒 ↦→ (𝑠(𝑒), 𝑡(𝑒)) in EndSet(𝐸) is injective.

• Identity morphisms id𝑉 :𝑉 → 𝑉 and id𝐸:𝐸 → 𝐸 (reflexivity of vertices and

edges).

• An automorphism 𝜎:𝐸 ≃−→ 𝐸 called symmetry — mapping 𝑒 = (𝑥, 𝑦) 𝜎↦−→ (𝑦, 𝑥).

Proposition 11.3.3 (Simple graph is a presheaf). Let S be a walking simple graph. A

simple graph is a presheaf

𝐺: Sop → Set.

Proof. The source and target morphisms correspond to 𝐺(𝑠), 𝐺(𝑡):𝐺(𝐸) → 𝐺(𝑉) in

such a way that, given any 𝑒 = (𝑥, 𝑦) ∈ 𝐺(𝐸), 𝑒 𝐺(𝑠)↦−−−→ 𝑥 and 𝑒
𝐺(𝑡)↦−−−→ 𝑦 (edges have sources

and targets). Moreover, since the map 𝑒 ↦→ (𝑠(𝑒), 𝑡(𝑒)) is injective, if 𝑒 , 𝑒′ ∈ 𝐺(𝐸) are

edges such that (𝑠(𝑒), 𝑡(𝑒)) = (𝑠(𝑒′), 𝑡(𝑒′)), then 𝑒 = 𝑒′ (edges are well defined). The

automorphism 𝜎 corresponds to 𝐺(𝜎):𝐺(𝐸) → 𝐺(𝐸) which is again an automorphism

and hence defines an equivalence between edges (𝑥, 𝑦) and (𝑦, 𝑥)— which implies that

the source and target of an edge are indiscernible from each other. ♮
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Definition 11.3.4 (Morphism of simple graphs). We define morphisms of simple

graphs in two equivalent ways — respectively following Definition 11.3.1 and Propo-

sition 11.3.3:

• A morphism 𝐺 → 𝐻 of simple graphs 𝐺 = (𝑉, 𝐸) and 𝐻 = (𝑉 ′, 𝐸′) is a map

𝑓 :𝑉 → 𝑉 ′ such that Edge(𝑥, 𝑦) implies Edge( 𝑓 (𝑥), 𝑓 (𝑦)).
• Let 𝐺 = (𝑉, 𝐸, 𝑠, 𝑡) and 𝐻 = (𝑉 ′, 𝐸′, 𝑠′, 𝑡′) be simple graphs. A morphism 𝐺→ 𝐻

is a natural transformation 𝛼:𝐺⇒ 𝐻

Sop Set

𝐺

𝐻

𝛼

Where 𝛼 is defined by a pair of morphisms 𝛼𝑉 :𝑉 → 𝑉 ′ and 𝛼𝐸:𝐸→ 𝐸′ such that

the following diagrams commute

𝐸 𝑉

𝐸′ 𝑉 ′

𝑠

𝛼𝐸 𝛼𝑉

𝑠′

𝐸 𝑉

𝐸′ 𝑉 ′

𝑡

𝛼𝐸 𝛼𝑉

𝑡′

from the symmetric and reflective relations in Mor(S)we see that this is equivalent

to the commutativity of the diagram
1

𝐸 𝑉2/(𝑥,𝑦)∼(𝑦,𝑥)

𝐸′ 𝑉 ′2/(𝑥′,𝑦′)∼(𝑦′,𝑥′)

𝑠×𝑡

𝛼𝐸 𝛼𝑉×𝛼𝑉

𝑠′×𝑡′

Definition 11.3.5 (Simple graphs category). The category of simple graphs, denoted

by sGraph, consists of simple graphs and morphisms between them. That is, sGraph =

SetS
op

— the category of presheaves on the walking simple graphs category S.

11.4 The Simple Loopless Graph
Sometimes (and by that I mean almost always) graph theorists like the incidence

relation to be irreflexive—loops are therefore forbidden, that is, Edge(𝑥, 𝑥) is always

false for any 𝑥 ∈ 𝑉—but this construction does not get us a good category. We are

1
Where, for any 𝑒 ∈ 𝐸, 𝑒′ ∈ 𝐸′, and (𝑥, 𝑦) ∈ ⟨𝑉⟩2, we define the maps 𝑠 × 𝑡, 𝑠′ × 𝑡′ and 𝛼𝑉 × 𝛼𝑉 as

– 𝑒
𝑠×𝑡↦−−→ (𝑠(𝑒), 𝑡(𝑒)) = (𝑡(𝑒), 𝑠(𝑒)).

– 𝑒′
𝑠′×𝑡′↦−−−→ (𝑠′(𝑒′), 𝑡′(𝑒′)) = (𝑡′(𝑒′), 𝑠′(𝑒′)).

– (𝑥, 𝑦) 𝛼𝑉×𝛼𝑉↦−−−−−→ (𝛼𝑉 (𝑥), 𝛼𝑉 (𝑦)) = (𝛼𝑉 (𝑦), 𝛼𝑉 (𝑥)).
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going to reserve the word “simple graph” to mean a simple graph with loops and the

word “graph” for simple graphs with no loops. The following is a formal definition of

a loopless simple graph—a “graph”.

Definition 11.4.1 (Graph). 𝐺 = (𝑉, 𝐸, 𝑑) is said to be a graph if

𝑑:𝐸→ ⟨𝑉⟩2, mapping 𝑒
𝑑↦−→ (𝑥, 𝑦) = (𝑦, 𝑥) and 𝑥 ≠ 𝑦.

That is, Edge(𝑥, 𝑦) if and only if Edge(𝑦, 𝑥), and Edge(𝑥, 𝑥) is always false.

From now on we are mostly going to assume the existence of the incidence relation

map 𝑑 (symmetric and irreflexive) and simply denote a graph 𝐺 by (𝑉, 𝐸)—where we

assume that 𝐺 is a simple loopless graph.

Definition 11.4.2 (Morphism of graphs). Let 𝐺 = (𝑉, 𝐸) and 𝐻 = (𝑉 ′, 𝐸′) be graphs. A

morphism𝐺→ 𝐻 is a map 𝜑:𝑉 → 𝑉 ′ such that Edge(𝑥, 𝑦) implies Edge(𝜑(𝑥), 𝜑(𝑦))—
that is, adjacency of vertices need to be preserved.

Definition 11.4.3 (Graph category). We define the category of simple loopless graphs,

denoted by Graph, as the category with graph objects and morphisms of graphs.

Lemma 11.4.4 (Stable preimage). Let 𝜑:𝐺 → 𝐻 be a morphism of graphs, then, for

any 𝑥′ ∈ Vert(𝐻), the collection 𝜑−1(𝑥′) ⊆ Vert(𝐺) is stable in 𝐺.

Proof. Suppose, for the sake of contradiction, that there exists vertices 𝑥, 𝑦 ∈ 𝜑−1(𝑥)
such that Edge(𝑥, 𝑦) is true in 𝐺. In particular, this implies that Edge(𝜑(𝑥), 𝜑(𝑦)) =
Edge(𝑥′, 𝑥′) is true in𝐻, which is forbidden—hence there can be no such pair of vertices

in 𝜑−1(𝑥′). ♮

Definition 11.4.5 (Graph property). A class of graphs is said to be a property of graphs

if it is closed up to isomorphism.

Definition 11.4.6 (Graph invariant). A map 𝜙: Graph→ 𝑆—where 𝑆 ∈ Set, possibly R
for instance—is said to be a graph invariant if for all 𝐺, 𝐺′ ∈ Graph such that 𝐺 ≃ 𝐺′
then

𝜙(𝐺) = 𝜙(𝐺′).

Definition 11.4.7 (Union and intersections). Let 𝐺 = (𝑉, 𝐸), 𝐺′ = (𝑉 ′, 𝐸′) ∈ Graph. We

define their union as the graph

𝐺 ∪ 𝐺′ = (𝑉 ∪𝑉 ′, 𝐸 ∪ 𝐸′).

Analogously, their intersection is defined as

𝐺 ∩ 𝐺′ = (𝑉 ∩𝑉 ′, 𝐸 ∩ 𝐸′).

Definition 11.4.8 (Complete Graph). A graph 𝐺 is said to be complete if for all pairs

of vertices 𝑥, 𝑦 ∈ 𝐺, Edge(𝑥, 𝑦) is true.

311



Notation 11.4.9. We denote by 𝐾𝑛 the complete graph on 𝑛 vertices.

Definition 11.4.10 (Subgraph). Let 𝐺 = (𝑉, 𝐸) and 𝐺′ = (𝑉 ′, 𝐸′) be graphs. 𝐺′ is said

to be a subgraph of 𝐺—denoted 𝐺′ ⊆ 𝐺—if 𝑉 ′ ⊆ 𝑉 and 𝐸′ ⊆ 𝐸. On the other hand, 𝐺

is said to be a supergraph of 𝐺′.

Definition 11.4.11 (Induced subgraph). Let 𝐺′ = (𝑉 ′, 𝐸′) be a subgraph of 𝐺. 𝐺′ is said

to be an induced subgraph of 𝐺 if for all 𝑥, 𝑦 ∈ 𝑉 , then Edge𝐺′(𝑥, 𝑦) if Edge𝐺(𝑥, 𝑦). We

denote 𝐺′ = 𝐺[𝑉 ′]. If 𝐺[𝑉 ′] = 𝐺, then we say that 𝐺′ is a spanning subgraph of 𝐺.

Definition 11.4.12 (Embedding of graphs). Let 𝐺 and 𝐻 be graphs. A morphism

of graphs 𝜄:𝐻 ↩→ 𝐺 is said to be an embedding of 𝐻 into 𝐺 if its underlying map

Vert(𝐻)↣ Vert(𝐺) is injective.

Definition 11.4.13 (Deletion vertices or edges). Let 𝐺 = (𝑉, 𝐸) be a graph and𝑉 ′ ⊆ 𝑉 a

subset of the vertices of𝐺. The deletion of the parts of𝐺 associated with the vertices𝑉 ′

is defined as the graph 𝐺[𝑉 ∖𝑉 ′]—which we’ll shortly identify as 𝐺∖𝑉 ′. Equivalently

we define the deletion of edges 𝐸′ ⊆ 𝐸 as the graph 𝐺 − 𝐸′ ≔ (𝑉, 𝐸 ∖ 𝐸′).

Notice that the non-connected vertices are not deleted from the resulting graph

𝐺 ∖ 𝐸′, contrary to the case of the deletion of vertices 𝐺 ∖ 𝑉 ′, where edges with

endpoints out of 𝑉 ′ where removed.

Definition 11.4.14 (Edge-maximal). Given a graph property 𝑃, a graph 𝐺 = (𝑉, 𝐸) is

said to be edge-maximal with respect to 𝑃 if 𝐺 ∈ 𝑃 and for all 𝐸′ ⊋ 𝐸 the graph (𝑉, 𝐸′)
does not have the property 𝑃.

Definition 11.4.15 (Clique). Let 𝐺 be a graph and 𝑆 ⊆ Vert(𝐺) be a subset with 𝑘

vertices. If the graph 𝐺[𝑆] is complete, we call it a 𝑘-clique. Trivially, 𝐺[𝑆] ≃ 𝐾𝑘 .

Definition 11.4.16 (Complement graph). Given a graph 𝐺 = (𝑉, 𝐸), the complement

of 𝐺 is defined as the graph 𝐺 = (𝑉, ⟨𝑉⟩2 ∖ 𝐸).

Definition 11.4.17 (Line graph). Given a graph 𝐺, the line graph of 𝐺, denoted by

𝐿(𝐺), is the graph such that, if 𝑒 = (𝑥, 𝑦), 𝑒′ = (𝑦, 𝑧) ∈ Edge(𝐺) are adjacent edges then

Edge𝐿(𝐺)(𝑥, 𝑧)—that is 𝐿(𝐺) = (Vert(𝐺), 𝐸)where

𝐸 = {(𝑥, 𝑧) ∈ ⟨𝑉⟩2 : Edge𝐺(𝑥, 𝑦) and Edge𝐺(𝑦, 𝑧) for some 𝑦 ∈ Vert(𝐺)}.

Definition 11.4.18 (Join). Let 𝐺 = (𝑉, 𝐸), 𝐺′ = (𝑉 ′, 𝐸′) ∈ Graph be disjoint—𝐺∩𝐺′ = ∅.

We define their join as the graph 𝐺 ∗ 𝐺′ with vertices 𝑉 ∪ 𝑉 ′ and edges 𝐸 ∪ 𝐸′ ∪ 𝐸∗,
where 𝐸∗ is defined as 𝐸∗ = {(𝑥, 𝑦) : 𝑥 ∈ 𝐺, 𝑦 ∈ 𝐺′}—that is, the collection of all edges

connecting the vertices of 𝐺 and 𝐺′.

The join definition fails to be a coproduct in the category of graphs exactly be-

cause of the addition of the 𝐸∗ edges—the edges between elements of 𝐺 with 𝐺′ in

𝐺 ∗ 𝐺′ cannot be ensured to be preserved by a morphism 𝐺 ∗ 𝐺′ → 𝐻 as described in

Proposition 11.6.4.
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Vertex Degree
Notation 11.4.19 (Neighbourhood). Given a graph 𝐺, we denote by 𝑁(𝑣) the collection

of all neighbours of 𝑣 ∈ 𝐺.

Definition 11.4.20 (Degree). Let 𝐺 be a graph, we define the degree (or valency) of a

vertex 𝑣 ∈ 𝐺 as deg 𝑣 = |𝑁(𝑣)|. If 𝐺 is a finite graph,

• The minimum degree of 𝐺 is defined as 𝛿(𝐺) = min𝑣∈Vert(𝐺) deg 𝑣.

• The maximum degree of 𝐺 is defined as Δ(𝐺) = max𝑣∈Vert(𝐺) deg 𝑣.

• The average degree of 𝐺 is defined as

deg𝐺 =
1

|𝐺|
∑

𝑣∈Vert(𝐺)
deg 𝑣.

• The edge-vertex ratio of 𝐺 is 𝜖(𝐺) = ∥𝐺∥
|𝐺| . Since an edge is composed of two

vertices, the sum

∑
𝑣∈Vert(𝐺) deg 𝑣 counts every edge exactly twice, so that 𝜖(𝐺) =

1

2

∑
𝑣∈Vert(𝐺) deg 𝑣. Thus we arrive in the relation 𝜖(𝐺) = 1

2
deg𝐺.

Lemma 11.4.21. The number of vertices of odd degree in a graph is even.

Proof. Let 𝐺 be a graph. Since ∥𝐺∥ ∈ N and ∥𝐺∥ = 1

2

∑
𝑣∈Vert(𝐺) deg 𝑣, then∑

𝑣∈Vert(𝐺)
deg 𝑣

is even. If the number of odd degree vertices where odd, then the sum of their degrees

would also be odd. Since the sum of even degree vertices is always even, it is necessary

for the number of odd degree vertices to be even. ♮

Proposition 11.4.22 (Edge-dense subgraph). Let 𝐺 be a finite graph with size ∥𝐺∥ ⩾ 1.

Then there exists a subgraph 𝐻 ⊆ 𝐺 such that

𝛿(𝐻) > 𝜖(𝐻) ⩾ 𝜖(𝐺).

Proof. We’ll construct the subgraph 𝐻 by means of a chain of consequent single vertex

deletion—as in Definition 11.4.13. Let 𝐻0 = 𝐺 Notice that, if we want to have the

edge-vertex ratio unaltered (or increased) by the deletion, we got to choose a vertex

𝑣 ∈ 𝐻0—if existent—such that the graph 𝐻1 = 𝐻0 ∖ 𝑣 has 𝜖(𝐻1) ⩾ 𝜖(𝐻0), that is, deg 𝑣

has to satisfy

𝜖(𝐻1) =
∥𝐻0∥ − deg 𝑣

|𝐻0| − 1

⩾
∥𝐻0∥
|𝐻0|

= 𝜖(𝐻0).

Solving the above equation for the degree of 𝑣, we find that deg 𝑣 ⩽ 𝜖(𝐻0). Since

𝛿(𝐻0) ⩽ deg𝐻0 ⩽ Δ(𝐻0) and 𝜖(𝐻0) ⩽ deg𝐻0, then deg 𝑣 ⩽ Δ(𝐻0)—that is, 𝛿(𝐻1) ⩽
𝛿(𝐻0). If such vertex doesn’t exists in Vert(𝐻0), we terminate our algorithm and
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find 𝐻 = 𝐻0 = 𝐺. Otherwise, we continue recursively, generating a finite chain of

subgraphs—the finiteness of the chain comes from the fact that 𝐺 itself is finite

𝐺 = 𝐻0 ⊃ 𝐻1 ⊃ 𝐻2 ⊃ · · · ⊃ 𝐻𝑛 = 𝐻

for some 𝑛 ∈ N. Where 𝜖(𝐻𝑗+1) ⩾ 𝜖(𝐻𝑗) and 𝛿(𝐻𝑗+1) ⩾ 𝛿(𝐻𝑗) for all 0 ⩽ 𝑗 < 𝑛. At some

point the chain will terminate into the subgraph 𝐻. Moreover, since the recursion

terminates in 𝐻 ≠ ∅, then necessarily deg 𝑣 > 𝜖(𝐻) for all 𝑣 ∈ 𝐻—in particular, this

implies in 𝛿(𝐻) > 𝜖(𝐻). ♮

Definition 11.4.23 (Regular graph). A graph 𝐺 is said to be 𝑘-regular—for some 𝑘 ∈
N—if deg 𝑣 = 𝑘 for all 𝑣 ∈ 𝐺.

11.5 Path to Glory
Definition 11.5.1 (Walk). A walk on a graph 𝐺 is defined to be a subgraph 𝑊 ⊆ 𝐺—

assume |𝑊 | = 𝑛 + 1 for some 𝑛 ∈ N—such that there exists a surjective map

ℓ : [𝑛]↠ Vert(𝑊)
satisfying the condition of Edge𝐺(ℓ (𝑘−1), ℓ (𝑘)) for all 1 < 𝑘 < 𝑛. We’ll generally assume

this underlying surjective vertex-labelling map and denote 𝑊 = (ℓ (1), . . . , ℓ (𝑛)) =
(𝑣1, . . . , 𝑣𝑛). The walk𝑊 is said to be closed if 𝑣1 = 𝑣𝑛 .

Definition 11.5.2 (Length). We define the length of a walk𝑊 to be its size ∥𝑊∥.

Definition 11.5.3 (Walk operations). Given a path 𝑊 = (𝑣0, . . . , 𝑣𝑛) we can define the

following:

• (Subwalk) Let 𝑣 𝑗 ∈ Vert(𝑊) be any vertex. We define a subwalk of 𝑊 restricted

to 𝑣 𝑗 to be one of the following subgraphs of 𝑊 : 𝑣 𝑗𝑊 = (𝑣 𝑗 , 𝑣 𝑗+1, . . . , 𝑣𝑛) and

𝑊𝑣 𝑗 = (𝑣0, . . . , 𝑣 𝑗−1, 𝑣 𝑗). We can also define excluding subwalk induced by 𝑣 𝑗 to

be �̆� 𝑗𝑊 = (𝑣 𝑗+1, . . . , 𝑣𝑛) and𝑊�̆� 𝑗 = (𝑣0, . . . , 𝑣 𝑗−1).
• (Inner walk) The inner walk of𝑊 is given by �̆� = (𝑣1, . . . , 𝑣𝑛−1).
• (Walk concatenation) Let𝑄 = (𝑤0, . . . , 𝑤𝑚) be a walk. If 𝑃 and𝑄 have coinciding

endings, say 𝑣𝑛 = 𝑤0 = 𝑥, we can define the concatenation of 𝑃 with 𝑄 to be the

walk 𝑃𝑄 = (𝑣0, . . . , 𝑣𝑛−1, 𝑥, 𝑤1, . . . , 𝑤𝑚).

Definition 11.5.4 (Path). We define a path to be walk with no repeating vertices. A

path graph 𝑃𝑛 is a graph of order 𝑛 and size 𝑛 − 1 such that there exists a bĳective map

ℓ𝑛 : [𝑛] ≃−→ Vert(𝑃𝑛)
for which Edge𝑃𝑛

(ℓ𝑛(𝑘 − 1), ℓ𝑛(𝑘)) for all 1 < 𝑘 < 𝑛. We’ll usually assume the existence

of the underlying vertex-labelling bĳection ℓ𝑛 . This way we can naturally write the

path 𝑃𝑛 as a unique sequence of vertices (𝑣1, . . . , 𝑣𝑛) up to isomorphism of graphs.

Given a graph 𝐺, we define a path of size 𝑛 on 𝐺 to be the induced subgraph of 𝐺

given by 𝐺[𝜄(𝑃𝑛)], where 𝜄:𝑃𝑛 ↩→ 𝐺 is an embedding of graphs—see Definition 11.4.12.

The underlying labelling is now given by the composition 𝜄ℓ𝑛 : [𝑛] → Vert(𝐺).
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Since a path is just a special type of walk, every operation described on Defini-

tion 11.5.3 is carried over to the path graphs.

Proposition 11.5.5 (Transforming paths into walks). A map 𝜙:𝑃𝑛 → 𝐺 is a morphism

of graphs if and only if the sequence (𝜙(𝑣0), . . . , 𝜙(𝑣𝑛−1)) is a walk on 𝐺.

Proof. Throughout, assume 1 < 𝑗 < 𝑛. If𝜙 is a morphism of graphs then Edge𝑃𝑛
(𝑣 𝑗−1, 𝑣 𝑗)

implies Edge𝐺(𝜙(𝑣 𝑗−1), 𝜙(𝑣 𝑗)) thus inducing a walk on 𝐺. On the other hand, if

(𝜙(𝑣1), . . . , 𝜙(𝑣𝑛))

is a walk on 𝐺, then since the only edges on 𝑃𝑛 occur between consequent vertices 𝑣 𝑗−1

and 𝑣 𝑗 , we have that 𝜙 indeed preserves the adjacency structure of the path 𝑃𝑛 , that is,

Edge𝑃𝑛
(𝑣 𝑗−1, 𝑣 𝑗) implies Edge𝐺(𝜙(𝑣 𝑗−1), 𝜙(𝑣 𝑗))—hence 𝜙 is a morphism. ♮

Lemma 11.5.6 (Paths on walks). Let𝑊 be a walk. If 𝑥, 𝑦 ∈ Vert(𝑊), then there exists a

path 𝑃 ⊆ 𝑊 such that 𝑥, 𝑦 ∈ Vert(𝑃).

Proof. Assume𝑊 is a 𝑘-walk and contains 𝑥 and 𝑦 at its end-vertices—if not, we would

be analogously analysing the subwalk 𝑥𝑊𝑦. Let ℓ : [𝑘] ↠ Vert(𝑊) be a surjective

labelling on𝑊—since 𝑥 and 𝑦 are end-vertices, we have

ℓ (1) = 𝑥 and ℓ (𝑘) = 𝑦. (11.1)

Let 𝒞 be the collection of all cycles on 𝑊—refer to Definition 11.5.10. Define the

equivalence relation ∼ on the vertices Vert(𝑊) to be so that 𝑣 ∼ 𝑢 if and only if

𝑣, 𝑢 ∈ Vert(𝐶) for some 𝐶 ∈ 𝒞 .

The quotient graph 𝑊/∼ (see Definition 11.6.1) is a path joining the vertex classes

𝑥 and 𝑦. To see that, we can first construct an equivalence relation ∼ℓ on the indexing

set [𝑘], defined as follows: 𝑖 ∼ℓ 𝑗 if and only if ℓ (𝑖) ∼ ℓ (𝑗)—clearly [𝑘]/∼ℓ is an indexing

set for the vertices of the quotient graph. Lets assume that [𝑘]/∼ℓ = {1, . . . , 𝑚}. Let

ℓ ′: [𝑘]/∼ℓ → Vert(𝑊/∼) be a labelling on𝑊/∼ defined as ℓ ′(𝑗) = ℓ (𝑗). Using Eq. (11.1),

the sequence of vertices (ℓ ′(1), . . . , ℓ ′(𝑚)) is such that ℓ ′(1) = 𝑥 and ℓ ′(𝑚) = 𝑦. Also,

Edge𝑊/∼(ℓ ′(𝑗), ℓ ′(𝑗 + 1)) = Edge𝑊 (ℓ (𝑗), ℓ (𝑗 + 1)) is always true (because 𝑊 is a walk).

So far, we’ve shown that 𝑊/∼ is a walk between 𝑥 and 𝑦—we now need to show that

no vertex is repeated in the given labelled sequence, which is actually trivial. Suppose

that ℓ ′(𝑖) = ℓ ′(𝑗), then from definition of ℓ ′ we have ℓ (𝑖) = ℓ (𝑗), which implies that

ℓ (𝑖) ∼ ℓ (𝑗) and hence 𝑖 ∼ℓ 𝑗—thus 𝑖 = 𝑗. This shows that

𝑊/∼ = (𝑥, ℓ ′(1), . . . , ℓ ′(𝑚 − 1), 𝑦)

is indeed a path joining 𝑥 and 𝑦.

For the last part we just need to consider the embedding of graphs 𝜄:𝑊/∼ ↩→ 𝑊

such that Edge𝑊/∼(𝑣, 𝑢) implies Edge𝑊 (𝜄(𝑣), 𝜄(𝑢)). The sequence of vertices

𝜄(𝑊/∼) B (𝜄(𝑥), 𝜄ℓ ′(1), . . . , 𝜄ℓ ′(𝑚 − 1), 𝜄(𝑦)) ⊆ 𝑊

is clearly a path on 𝑊 joining the vertices 𝜄(𝑥) = 𝑥 and 𝜄(𝑦) = 𝑦. Hence, 𝑃 = 𝑊[im 𝜄]
gives us the wanted path—finally the proposition is proved. ♮
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The last proof may have got really clumsy at some points, so here goes an example

of the basic operations we’ve developed and used throughout the proof. Let 𝑊 =

(𝑥, 𝑣1, . . . , 𝑣12, 𝑦) be a walk, visually given by—where 𝑣5 = 𝑣2 and 𝑣11 = 𝑣6

𝑣4 𝑣3

𝑥 𝑣2 𝑣12

𝑣1 𝑣6 𝑦

𝑣10 𝑣7

𝑣9 𝑣8

Now, the process of taking the quotient of the graph amounts to the identification of

the cycles

𝒞 = {𝑊[{𝑣2, 𝑣3, 𝑣4, 𝑣5}], 𝑊[{𝑣6, 𝑣7, 𝑣8, 𝑣9, 𝑣10, 𝑣11}]}
The cycles are respectively reduced to classes 𝑣2 and 𝑣3, both elements of Vert(𝑊)/∼.

The quotient graph𝑊/∼ can be visually depicted as follows

𝑥 𝑣2 𝑣4

𝑣1 𝑣3 𝑦

Now for the embedding of graphs 𝜄:𝑊/∼ ↩→ 𝑊 , we can view 𝑃 = 𝑊[im 𝜄] as the

subgraph consisting of the red edges and their end-vertices—that is, the collection of

vertices {𝑥, 𝑣1, 𝑣2, 𝑣6, 𝑣12, 𝑦}—which can be visualised as follows

𝑣4 𝑣3

𝑥 𝑣2 𝑣12

𝑣1 𝑣6 𝑦

𝑣10 𝑣7

𝑣9 𝑣8

Corollary 11.5.7 (Distances & morphisms of graphs). Consider graphs 𝐺 and 𝐻. If

𝜙:𝐺→ 𝐻 is a morphism of graphs then, for all 𝑥, 𝑦 ∈ 𝐺, we have

𝑑𝐻(𝜙(𝑥), 𝜙(𝑦)) ⩽ 𝑑𝐺(𝑥, 𝑦).

Proof. Assume 𝜙 is a morphism. Suppose 𝑥, 𝑦 ∈ 𝐺 are separated by a finite distance—

if not, the proposition follows trivially. Let 𝑃𝑘 be a minimal path on 𝐺 joining 𝑥 and

𝑦. Since 𝜙 is a morphism, the image 𝜙(𝑃𝑘) ⊆ 𝐻 is a walk where 𝜙(𝑥), 𝜙(𝑦) ∈ 𝑃𝑘—this

follows directly from Proposition 11.5.5. Now, using Lemma 11.5.6 on 𝜙(𝑃𝑘) and the

vertices 𝜙(𝑥) and 𝜙(𝑦), it follows that there exists a path 𝑃 ⊆ 𝜙(𝑃𝑘) joining 𝜙(𝑥) and

𝜙(𝑦). Moreover, clearly ∥𝑃∥ ⩽ ∥𝜙(𝑃𝑘)∥ ⩽ 𝑘, thus 𝑑𝐻(𝜙(𝑥), 𝜙(𝑦)) ⩽ 𝑑𝐺(𝑥, 𝑦). ♮
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Definition 11.5.8 (Path between sets). Let 𝐴 and 𝐵 be disjoint sets of vertices. 𝑃 =

(𝑣0, . . . , 𝑣𝑛) is said to be an 𝐴-𝐵 path if 𝑣0 ∈ 𝐴 and 𝑣𝑛 ∈ 𝐵.

Definition 11.5.9 (Independent paths). Two paths are said to be independent if their

inner path share no vertex.

Cycles
Definition 11.5.10. A cycle is a closed walk with size at least 3. A 𝑘-cycle is a cycle 𝐶𝑘

whose length is 𝑘.

A 𝑘-cycle on a graph 𝐺 is the induced subgraph of 𝐺 given by 𝐺[𝜄(𝐶𝑘)] such that

𝜄:𝐶𝑘 → 𝐺 is an embedding of graphs.

Definition 11.5.11 (Chords). Let 𝐺 be a graph and 𝐶 be a cycle on 𝐺. Given 𝑥, 𝑦 ∈ 𝐶,

a chord is an edge (𝑥, 𝑦) ∈ Edge(𝐺) such that Edge𝐶(𝑥, 𝑦) is false.

Definition 11.5.12 (Induced cycle). An induced cycle on a graph is a cycle with no

chords.

Definition 11.5.13 (Distance). Let 𝐺 be a graph and 𝑥, 𝑦 ∈ Vert(𝐺) be any vertices. Let

𝒫 be the collection of all paths in 𝐺 containing the vertices 𝑥 and 𝑦. If 𝒫 is non-empty,

we define the distance of 𝑥 and 𝑦 on 𝐺 to be the minimum length of the subpaths

linking 𝑥 to 𝑦, in other words

𝑑𝐺(𝑥, 𝑦) = min

𝑃∈𝒫
∥𝑥𝑃𝑦∥.

On the other hand, if 𝒫 is empty, then 𝑑𝐺(𝑥, 𝑦) = ∞.

Definition 11.5.14 (Miscellaneous definitions). We define the following:

(a). (Girth) The girth of a graph 𝐺 is the minimum length of a cycle on 𝐺. In other

words, let 𝒞 be the collection of all cycles on 𝐺, the girth of 𝐺 is

𝑔(𝐺) = min

𝐶∈𝒞
∥𝐶∥.

(b). (Circumference) The circumference of a graph 𝐺 is the maximal length of a cycle

on 𝐺. In other words, let 𝒞 be the collection of all cycles on 𝐺. If 𝒞 is non-empty,

we set

circ(𝐺) = max

𝐶∈𝒞
∥𝐶∥.

(c). (Diameter) The diameter of a graph𝐺 is the maximal distance between two vertices

of 𝐺, that is

diam(𝐺) = max

𝑥,𝑦∈Vert(𝐺)
𝑑𝐺(𝑥, 𝑦).

Proposition 11.5.15. Let 𝐺 be a graph such that 𝛿(𝐺) ⩾ 2. Then there exists a path on

𝐺 with length 𝛿(𝐺) and a cycle on 𝐺 with length at least 𝛿(𝐺) + 1.
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11.6 Universal Properties of Graph

Quotients

Definition 11.6.1 (Quotient). Let 𝐺 be a graph and ∼ be an equivalence relation

on the collection of vertices Vert(𝐺). We define the quotient graph 𝐺/∼ to be the

graph whose vertices are the vertex classes Vert(𝐺)/∼ and whose edges are such that

Edge𝐺/∼([𝑥], [𝑦]) if and only if Edge𝐺(𝑥, 𝑦).

Proposition 11.6.2 (Universal property of quotients). The quotient graph is a quotient

in the category Graph. In other words, let𝐺 be a graph and∼ be an equivalence relation

on Vert(𝐺). Consider any graph 𝐻 together with a morphism of graphs 𝜓:𝐺 → 𝐻.

Then there exists a unique morphism of graphs 𝜙:𝐺/∼ → 𝐻 such that the following

diagram commutes

𝐺 𝐻

𝐺/∼
𝜋

𝜓

𝜙

where 𝜋 is the naturally defined projection.

Proof. First we show that 𝜙 is indeed unique. Suppose 𝜙1 and 𝜙2 are both morphisms

that satisfy the commutativity of the diagram. Given any 𝑥 ∈ Vert(𝐺) we have 𝜓(𝑥) =
𝜙1([𝑥]) = 𝜙2([𝑥]) and since 𝜋(Vert(𝐺)) = Vert(𝐺/∼) (surjective property) then 𝜙1

and 𝜙2 have equal images throughout their whole domain — implying 𝜙1 = 𝜙2.

To show that 𝜙 is a morphism of graphs, it is sufficient to consider any 𝑥, 𝑦 ∈ 𝐺

such that Edge𝐺(𝑥, 𝑦): 𝜓 being a morphism implies Edge𝐺(𝜓(𝑥),𝜓(𝑦)), then — since

𝜙([𝑥]) = 𝜓(𝑥) and 𝜙([𝑦]) = 𝜓(𝑦)— we get that Edge𝐺(𝜙([𝑥]), 𝜙([𝑦])) is true. ♮

Coproducts

Definition 11.6.3 (Coproduct). Let 𝐺 = (𝑉, 𝐸) and 𝐻 = (𝑉 ′, 𝐸′) be graphs, we define

their coproduct 𝐺 ⊕ 𝐻 to be the disjoint union of vertices and edges of the original

graphs — that is, 𝐺 ⊕ 𝐻 = (𝑉 ⨿𝑉 ′, 𝐸 ⨿ 𝐸′)2.

Proposition 11.6.4 (Universal property of coproducts). Given graphs 𝐺, 𝐻 ∈ Graph,
the graph 𝐺 ⊕ 𝐻 is a coproduct of 𝐺 and 𝐻 in the category of simple loopless graphs.

That is, given any graph 𝑊 ∈ Graph and graph morphisms 𝑓 :𝐺→𝑊 and 𝑔:𝐻 →𝑊 ,

there exists a unique graph morphism 𝜙:𝐺⊕𝐻 →𝑊 such that the following diagram

2⨿ denotes the standard disjoint union in Set.
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commutes

𝐺 𝐻

𝐺 ⊕ 𝐻

𝑊

𝜄𝐺

𝑓

𝜄𝐻

𝑔𝜙

Where the inclusion morphisms 𝜄𝐺 and 𝜄𝐻 are naturally defined.

Proof. Notice that 𝜙 is defined by a map of vertices Vert(𝐺) ∪Vert(𝐻) → Vert(𝑊)with

the restriction that Edge𝐺⊕𝐻(𝑥, 𝑦) implies Edge𝑊 (𝜙(𝑥), 𝜙(𝑦)), we’ll first prove that 𝑓

together with 𝑔 completely identify 𝜙. Let 𝑣 ∈ 𝐺 ⊕ 𝐻 be any vertex. If 𝑣 ∈ Vert(𝐺),
suppose 𝑓 (𝑣) = ℎ then necessarily 𝜙𝜄𝐺(𝑣) = ℎ. On the other hand, if 𝑣 ∈ Vert(𝐻)
and if 𝑔(𝑣) = ℎ′ then 𝜙𝜄𝐻(𝑣) = ℎ′. Since cod 𝜙 = Vert(𝐺) ⨿ Vert(𝐻) and we have

𝜄𝐺(𝐺) = Vert(𝐺) and 𝜄𝐻(𝐻) = Vert(𝐻), this shows that 𝑓 and 𝑔 completely determine

the image of 𝜙 — hence 𝜙 is uniquely defined.

Finally we show that 𝜙 is indeed a morphism of graphs. Given 𝑥, 𝑦 ∈ Vert(𝐺),
suppose Edge𝐺(𝑥, 𝑦), then Edge𝑊 ( 𝑓 (𝑥), 𝑓 (𝑦)) = Edge𝑊 (𝜙(𝑥), 𝜙(𝑦)) — since 𝜙(𝑥) =
𝑓 (𝑥) and 𝜙(𝑦) = 𝑓 (𝑦). The case 𝑥, 𝑦 ∈ Vert(𝐻) is completely analogous and we’ll

therefore omit for the sake of brevity. We don’t need to inspect the case where 𝑥 ∈
Vert(𝐺) and 𝑦 ∈ Vert(𝐻) since Edge𝐺⊕𝐻(𝑥, 𝑦) is always false in such instance. Thus 𝜙
is a morphism of graphs. ♮

Products
Definition 11.6.5 (Kronecker product). Let 𝐺, 𝐻 ∈ Graph. We define the Kronecker

product of 𝐺 and 𝐻 to be the graph 𝐺 ⊗ 𝐻 = (𝑉, 𝐸) whose vertices are 𝑉 = Vert(𝐺) ×
Vert(𝐻) and edges defined by Edge𝐺⊗𝐻(𝑣 ⊗ ℎ, 𝑣′ ⊗ ℎ′) if and only if Edge𝐺(𝑣, 𝑣′) and

Edge𝐻(ℎ, ℎ′).

Proposition 11.6.6 (Products). The Kronecker product as defined above is a product in

the category of simple loopless graphs Graph. That is, given graphs 𝐺, 𝐻,𝑊 ∈ Graph
and graph morphisms 𝑓 :𝑊 → 𝐺 and 𝑔:𝑊 → 𝐻, there exists a unique morphism of

graphs 𝜙:𝑊 → 𝐺 ⊗ 𝐻 such that the following diagram commutes

𝑊

𝐺 ⊗ 𝐻

𝐺 𝐻

𝜙𝑓 𝑔

𝜋𝐻𝜋𝐺

Where 𝜋𝐺 and 𝜋𝐻 are the naturally defined projection morphisms.
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Proof. Consider the morphism 𝜙:𝑊 → 𝐺 ⊗ 𝐻 defined by the mapping 𝑤
𝜙
↦−→ 𝑓 (𝑤) ⊗

𝑔(𝑤). Let 𝑤, 𝑤′ ∈ Vert(𝑊) be any vertices such that Edge𝑊 (𝑤, 𝑤′), since 𝑓 and 𝑔

are graph morphisms, then Edge𝐺( 𝑓 (𝑤), 𝑓 (𝑤′)) and Edge𝐻(𝑔(𝑤), 𝑔(𝑤′)). Since 𝜙(𝑤) =
𝑓 (𝑤)⊗ 𝑔(𝑤) and 𝜙(𝑤′) = 𝑓 (𝑤′)⊗ 𝑔(𝑤′) it follows from the construction of the Kronecker

product that Edge𝐺⊗𝐻(𝜙(𝑤), 𝜙(𝑤′)). This shows that 𝜙 is a graph morphism.

We now inspect its uniqueness. Let 𝜙, 𝜙′ ∈ MorGraph(𝑊, 𝐺 ⊗ 𝐻) be morphisms

satisfying the commutativity of the diagram. Then 𝑓 = 𝜋𝐺𝜙 = 𝜋𝐺𝜙′ and 𝑔 = 𝜋𝐻𝜙 =

𝜋𝐻𝜙′, thus, given any 𝑤 ∈ 𝑊 we have 𝜋𝐺𝜙(𝑤) = 𝜋𝐺𝜙′(𝑤) and 𝜋𝐻𝜙(𝑤) = 𝜋𝐻𝜙′(𝑤),
which implies in 𝜙(𝑤) = 𝜙′(𝑤). Therefore 𝜙 is unique. ♮

11.7 Ramsey and Schur theorem
Theorem 11.7.1 (Ramsey theorem on graphs). Given 𝑟 ∈ N⩾1 we have that the colour-

ing function 𝒞 :

(N
2

)
→ [𝑟] is such that there exists an infinite monochromatic subset

𝐴 ⊆ N, that is, for all 𝑎, 𝑏 ∈ 𝐴, we have 𝒞(𝑎𝑏) = 𝑖 ∈ [𝑟].
Proof. Firstly, define the sets Γ𝑘(𝑥) ≔ {𝑦 ∈ N : 𝒞(𝑥𝑦) = 𝑘 ∈ [𝑟]}. We know that for any

element 𝑥 ∈ N the colouring function 𝒞 provides at most 𝑟 of such sets. Notice that for

every vertex 𝑣𝑖 ∈ N there are infinitely many edges connecting to other vertices of N
this way we conclude that since [𝑟] partitions N only into a finite number of subsets,

by the pigeonhole principle, we can conclude that there is one set, which we’ll denote

by Γ𝑘𝑖 , that is infinite.

Let now the sequence (𝑣𝑛)𝑛∈N such that for all 𝑛 ∈ N, 𝑣𝑛 ∈ Γ𝑘𝑛−1
(𝑣𝑛−1) for some

colour 𝑘𝑛−1 ∈ [𝑟]. A trivial result of such construction is that given any 𝑛 ∈ 𝑁 we have

𝒞(𝑣𝑛𝑣𝑛−1) = 𝑘𝑛−1. In fact we can extend such result by simply recalling that since we

are always taking the infinite sets, surely we’ll get the sequence(
Γ𝑘𝑛 (𝑣𝑛)

)
𝑛∈N such that N ⊇ Γ𝑘1

(𝑣1) ⊇ Γ𝑘2
(𝑣2) ⊇ . . .

What this means is that given any pair {𝑣𝑖 , 𝑣 𝑗} of elements of such sequence, we

have that 𝒞(𝑣𝑖 , 𝑣 𝑗) = 𝑘
min{𝑖 , 𝑗}. Define now the sequence

(
𝑘

min{𝑖 , 𝑗}
)
{𝑖 , 𝑗}∈(N

2
)
, since this is a

sequence with infinitely many elements, we can say that the finite colouring [𝑟] induces

a finite partitioning of such sequence. By the pigeonhole principle we conclude finally

that there exists an infinite monochromatic subsequence. With this we conclude the

proof since this construction is obtained directly from (𝑣𝑛)𝑛∈N. ♮

We actually didn’t stated the general version of Ramsey theorem, which extends

for the colouring of the set

(
𝑋
𝑘

)
where 𝑋 is a countably infinite poset and 𝑘 ∈ N.

Definition 11.7.2 (Hypergraph). An ordered pair 𝐻 = (𝑉, 𝐸) of sets, where 𝑉 are the

vertices and 𝐸 the hyperedges, is called an hypergraph if 𝐸 ⊆
(
𝑉
𝑘

)
, thus an edge connect

two or more vertices.

Theorem 11.7.3 (Ramsey theorem on Hypergraphs). Let 𝑋 a countably infinite poset.

Then, for all 𝑘, 𝑟 ∈ N, the colouring 𝒞 :

(
𝑋
𝑘

)
→ [𝑟] is such that there exists an infinite

subset 𝐴 ⊆ 𝑋 such that, for all 𝑎, 𝑏 ∈ 𝐴, we have 𝒞(𝑎𝑏) = 𝑖 ∈ [𝑟].
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Proof. We proceed via induction on 𝑘. For the case 𝑘 = 1 we have that

(
𝑋
1

)
= 𝑋 and

thus the colouring 𝒞 induces a partition of the infinite set 𝑋 into a finite number of

subsets. By the pigeonhole principle we conclude that there is one of such subsets that

is infinite and also monochromatic.

For the inductive step, let 𝜃 ∈ 𝑋 be the smallest element of 𝑋 (we can do such

a thing since we said 𝑋 was a poset), let the colouring 𝒞 :

(
𝑋
𝑘+1

)
→ [𝑟] and another

colouring

𝒞0:

(
𝑋 ∖ {𝜃}

𝑘

)
−→ [𝑟] such that 𝒞0(𝐸) ≔ 𝒞(𝐸 ∪ {𝜃}), for all 𝐸 ∈

(
𝑋

𝑘

)
.

By the inductive hypothesis we say that there exists an infinite subset 𝑋0 ⊆ 𝑋 such

that, for all 𝐸0 ∈
(𝑋0

𝑘

)
, we have 𝒞0(𝐸0) = 𝑐0 ∈ [𝑟].

Now let 𝑋′
0
≔ {𝑥 ∈ 𝑋0 : 𝜃 < 𝑥} and define 𝑥1 ≔ min(𝑋0). As before, set the

colouring 𝒞1:

(𝑋′
0

𝑘

)
→ [𝑟] such that 𝒞1(𝐸) ≔ 𝒞(𝐸 ∪ {𝑥1}). Since 𝑋′

0
is an infinite set

by construction, we know from the pigeonhole principle that there exists an infinite

subset 𝑋1 ⊆ 𝑋′
0

such that, for all 𝐸1 ∈
(𝑋1

𝑘

)
, we have 𝒞1(𝐸1) = 𝑐1 ∈ [𝑟].

We continue constructing a sequence of elements (𝜃, 𝑥1, 𝑥2, . . . ) in such a way that

we have a corresponding sequence (𝑐0, 𝑐1, 𝑐2, . . . ) of colours. Note now that we can

construct a new and final colouring function

𝒞 ′: {𝜃, 𝑥1, 𝑥2, . . . } → [𝑟] such that 𝒞 ′(𝑥 𝑗) ≔ 𝑐 𝑗 ∈ [𝑟].

There are countably infinite elements on the domain and only finite colours, the par-

titioning is such that the pigeonhole principle is applicable and thus there is a infinite

subset 𝐴 ⊆ {𝜃, 𝑥1, 𝑥2, . . . } ⊆ 𝑋 such that for all 𝑥 ∈ 𝐴 we have 𝒞 ′(𝑥) = 𝑐 ∈ [𝑟]. This

concludes the proof. ♮
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Chapter 12

Topological Spaces

12.1 Topology
Definition 12.1.1 (Topology). Let 𝑋 be a set and 𝜏 ⊆ 2

𝑋
. We say that 𝜏 is a topology

for 𝑋 if the following properties are satisfied

(T1) 𝑋,∅ ∈ 𝜏.

(T2) The arbitrary union of elements of 𝜏 is an element of 𝜏.

(T3) The finite intersection of elements of 𝜏 is an element of 𝜏.

The elements of the topology 𝜏 are called open sets of 𝑋.

Example 12.1.2. We proceed by listing some examples of topologies that are somewhat

interesting, they are included here in order to familiarize the reader with the possible

constructions for the topology on a given set 𝑋:

• 𝜏1 = {𝑈 ⊆ 𝑋 : 𝑈 = ∅ or 𝑋 ∖𝑈 is finite} is the cofinite topology on 𝑋.

• 𝜏2 = {𝑈 ⊆ 𝑋 : 𝑈 = ∅ or 𝑋 ∖𝑈 is countable} is the cocountable topology on 𝑋.

• Let 𝑝 ∈ 𝑋, then 𝜏3 = {𝑈 ⊆ 𝑋 : 𝑈 = ∅ or 𝑝 ∈ 𝑈} is the particular point topology on

𝑋.

• Let 𝑝 ∈ 𝑋, then 𝜏4 = {𝑈 ⊆ 𝑋 : 𝑈 = 𝑋 or 𝑝 ∉ 𝑈} is the excluded point topology on

𝑋.

• The collection 2
𝑋

forms what is called the discrete topology on 𝑋.

Definition 12.1.3 (Comparing topologies). Let 𝑋 be a set, and 𝜏 and 𝜏′ be topologies

on 𝑋. If 𝜏′ ⊇ 𝜏, then we say that

• 𝜏′ is finer than 𝜏. Moreover, if 𝜏 is strictly contained in 𝜏′, we say that 𝜏′ is strictly

finer than 𝜏

• 𝜏 is coarser than 𝜏′. Moreover, if 𝜏 is strictly contained in 𝜏′, we say that 𝜏′ is

strictly coarser than 𝜏

In general, we say that two topologies are comparable if either of them contains the

other.
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Topological Basis
Definition 12.1.4 (Basis). Let 𝑋 be a topological space. A collection ℬ ⊆ 2

𝑋
is said to

be a basis for the topology of 𝑋 if it satisfies the following

(B1) Every element of ℬ is an open set of 𝑋.

(B2) Every open subset𝑈 ⊆ 𝑋 can be written as a union of elements of 𝐵, that is, exists

{𝐵𝑖}𝑖∈𝐼 ⊆ ℬ for which𝑈 =
⋃
𝑖∈𝐼 𝐵𝑖 .

Proposition 12.1.5 (Necessary and sufficient condition for a basis). Let 𝑋 be a set and

ℬ ⊆ 2
𝑋

. Then ℬ is a basis for some topology of 𝑋 if and only if it satisfies

B1 𝑋 =
⋃
𝐵∈ℬ 𝐵.

B2 If 𝑥 ∈ 𝐴 ∩ 𝐵, where 𝐴, 𝐵 ∈ ℬ, then there exists 𝐶 ∈ ℬ such that 𝑥 ∈ 𝐶 ⊆ 𝐴 ∩ 𝐵.

Proof. Let ℬ be a basis for the space 𝑋. Let 𝑝 ∈ 𝑋 be any point and let 𝑈 ⊆ 𝑋 be a

neighbourhood of 𝑥. From the definition of a basis, there exists a subcollection of sets

such that their union equals𝑈 , which implies in the existence of 𝐵 ∈ ℬ such that 𝑥 ∈ 𝐵.

Moreover, since 𝐵 ⊆ 𝑋 for all 𝐵 ∈ ℬ, it follows that 𝑋 =
⋃
𝐵∈ℬ 𝐵. Let 𝐴, 𝐵 ⊆ ℬ be any

intersecting sets of ℬ and take any point 𝑝 ∈ 𝐴 ∩ 𝐵. Notice that 𝐴 ⊆ 𝐵 ⊆ 𝑋 is open,

hence there exists a subcollection of open sets of the basisℬ whose union equals 𝐴∩𝐵.

It is immediate that there exist 𝐶 ∈ ℬ such that 𝑝 ∈ 𝐶 and necessarily 𝐶 ⊆ 𝐴 ∩ 𝐵.

Let ℬ ⊆ 2
𝑋

satisfying both conditions specified above. We first show that ℬ is a

collection of open sets. Let 𝜏 be the collection of all possible unions of sets of ℬ. From

the first property, 𝑋 ∈ 𝜏 and clearly ∅ ∈ 𝜏 — satisfying Item 1. From construction,

unions of sets in 𝜏 are unions of unions of sets of ℬ, which is certainly contained in

𝜏 — hence the collection satisfies Item 2. Let 𝑇, 𝑇′ ∈ 𝜏 be any intersecting sets and,

for every 𝑝 ∈ 𝑇 ∩ 𝑇′, choose any 𝐵, 𝐵′ ⊆ ℬ such that 𝑝 ∈ 𝐵 ⊆ 𝑇 and 𝑝 ∈ 𝐵′ ⊆ 𝑇′ —

which are ensured to exist. From the second property of ℬ, there exists 𝐶 ∈ ℬ such

that 𝑝 ∈ 𝐶 ⊆ 𝐵 ∩ 𝐵′, thus 𝐶 ⊆ 𝐵 ∩ 𝐵′ and, in particular 𝐶 ⊆ 𝑇 ∩ 𝑇′. We can see that

𝑇 ∩𝑇′ is again the union of a collection of elements of ℬ, hence 𝜏 is closed under finite

intersections, satisfying Item 1. We can now finally conclude that 𝜏 is a topology on

𝑋 and hence ℬ is composed of open sets of 𝑋 — and, even better than that, 𝜏 is the

unique topology generated by ℬ. ♮

Definition 12.1.6 (Subbase). Let (𝑋, 𝜏) be a topological space. A collection 𝒮 ⊆ 𝜏 is

called a subbase for (𝑋, 𝜏) if the collection of all finite intersections𝑈1∩· · ·∩𝑈𝑛 , where

𝑈𝑖 ∈ 𝒮, is a base for (𝑋, 𝜏).

Definition 12.1.7 (Weight). Let 𝑋 be a topological space and 𝔅 be the collection of all

bases for the topology of 𝑋. We define the weight of 𝑋 as

𝑤(𝑋) = min

ℬ∈𝔅
|ℬ|.

Definition 12.1.8 (Basis at a point). Let 𝑋 be a topological space and 𝑝 ∈ 𝑋 be any fixed

point. We define the collectionℬ𝑝 ⊆ 2
𝑋

of neighbourhoods of 𝑝 to be the neighbourhood
basis for the topology of 𝑋 at 𝑝 if for any neighbourhood 𝑈𝑝 ⊆ 𝑋, there exists 𝐵 ∈ ℬ𝑝
such that 𝐵 ⊆ 𝑈𝑝 .
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Definition 12.1.9. Let (𝑋, 𝜏) be a topological space. Let 𝑥 ∈ 𝑋 be any point and consider

𝔅𝑥 the collection of all bases at 𝑥. Then we define the character of 𝑋 at the point 𝑥 as

𝜒(𝑥, (𝑋, 𝜏)) = min

ℬ𝑥∈𝔅𝑥

|ℬ𝑥|

Closed and Open Sets
The notion of a closed set and an open set are closely related — pardon for the pun.

They have a dual relationship, allowing for us to define topologies via either of them.

Lets first define what we mean by a closed set.

Definition 12.1.10 (Closed set). Let 𝑋 be a topological space. We define a set 𝐴 ⊆ 𝑋 to

be closed if 𝑋 ∖ 𝐴 is open.

The following proposition realizes the idea that the duality of open and closed sets

allow us to work with topological spaces by analysing both open and closed elements

of the space of interest.

Proposition 12.1.11. If 𝑋 is a topological space, then

1. The sets 𝑋 and ∅ are closed.

2. The finite union of closed sets is closed.

3. The arbitrary intersection of closed sets is closed.

Proof. Notice that 𝑋 ∖𝑋 = ∅ and 𝑋 ∖∅ = 𝑋 are both open sets from Definition 12.1.1,

hence 𝑋 and ∅ are closed. Let {𝐶 𝑗}𝑛𝑗=1
be a finite collection of closed sets, then

𝑋∖
⋃𝑛
𝑗=1
𝐶 𝑗 =

⋂𝑛
𝑗=1
𝑋∖𝐶 𝑗 but since 𝑋∖𝐶 𝑗 is open for all 𝑗, then their finite intersection

is open and hence 𝑋 ∖
⋃𝑛
𝑗=1
𝐶 𝑗 is also open, which implies by definition that

⋃𝑛
𝑗=1
𝐶 𝑗

is closed. Consider now any collection of closed sets {𝐶 𝑗}𝑗∈𝐽 — where 𝐽 is possibly

infinite. Then 𝑋 ∖
⋂
𝑗∈𝐽 𝐶 𝑗 =

⋃
𝑗∈𝐽 𝑋 ∖ 𝐶 𝑗 is open by the arbitrary union of open sets

being open, hence

⋂
𝑗∈𝐽 𝐶 𝑗 is closed. ♮

We now define four important operations on sets of a topological space, which will

accompany us for the rest of these notes on general point-set topology.

Definition 12.1.12. Let 𝑋 be a topological space and 𝐴 ⊆ 𝑋 be a set. We define

(a) The closure of 𝐴 is the least closed set, Cl𝐴, that contains 𝐴. This can be equiva-

lently described as

Cl𝐴 =

⋂
{𝐹 ⊆ 𝑋 : 𝐴 ⊆ 𝐹 and 𝐹 is closed}.

(b) The interior of 𝐴 is the biggest open set Int𝐴 contained in 𝐴. That is

Int𝐴 =

⋃
{𝑈 ⊆ 𝑋 : 𝑈 ⊆ 𝐴,𝑈 is open}.
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(c) The exterior of 𝐴 in 𝑋 is defined as

Ext𝐴 = 𝑋 ∖ Cl𝐴.

(d) The boundary of 𝐴 in 𝑋 is defined as

𝜕𝐴 = 𝑋 ∖ (Int𝐴 ∪ Ext𝐴).

Remark 12.1.13. For the remainder of this section, unless specified on the contrary, we

let 𝑋 be any topological space and 𝐴 ⊆ 𝑋 be any subset of 𝑋.

Proposition 12.1.14. Int𝐴 and Ext𝐴 are open sets, while on the other hand Cl𝐴 and

𝜕𝐴 are closed sets.

Proof. Since Int𝐴 is the union of a collection of open sets, Int𝐴 is open. Cl𝐴 is the

intersection of a collection of closed sets, hence Cl𝐴 is closed. The exterior set Ext𝐴

is simply the complement of a closed set, hence it’s open. The boundary of 𝐴 is the

complement of the union of open sets (which is open), hence 𝜕𝐴 is closed. ♮

Proposition 12.1.15. The following are equivalences on the definitions of open and

closed sets.

(a) Open set equivalences:

• 𝐴 is open.

• 𝐴 = Int𝐴.

• 𝐴 contains none of its boundary points, i.e. 𝐴 ∩ 𝜕𝐴 = ∅.

• For all 𝑥 ∈ 𝐴 there exists a neighbourhood𝑈 ⊆ 𝐴 containing 𝑥.

(b) Closed set equivalences:

• 𝐴 is closed.

• 𝐴 = Cl𝐴.

• For all 𝑥 ∈ 𝑋 ∖ 𝐴, there exists a neighbourhood𝑈 ⊆ 𝑋 ∖ 𝐴 of 𝑥.

Proof. (a) Let 𝐴 be open, then, in particular, 𝐴 ∈ {𝑈 ⊆ 𝑋 : 𝑈 ⊆ 𝐴,𝑈 is open},
thus 𝐴 = Int𝐴. Moreover, from the definition of 𝜕𝐴 it follows that 𝐴 ∩ 𝜕𝐴 =

Int𝐴 ∩ 𝐴 ∖ (Int𝐴 ∪ Ext𝐴) = ∅. On the other hand, if 𝑝 ∈ 𝐴 is any point, then 𝐴

itself is a neighbourhood of 𝑝.

In order to finish the equivalence chain, let 𝐴 be such that all of its points have a

neighbourhood contained in 𝐴. We can then define the collection of neighbour-

hoods 𝒰 = {𝑈𝑝 ⊆ 𝐴 : 𝑝 ∈ 𝐴, 𝑝 ∈ 𝑈}. Notice that 𝐴 ⊆ ⋃
𝑈∈𝒰 𝑈 and the opposite

inclusion is clearly true — thus 𝐴 is the union of a collection of open sets of 𝑋,

hence 𝐴 is open.
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(b) Let 𝐴 be closed, then 𝐴 is clearly the least closed set containing itself, implying in

𝐴 = Cl𝐴. Let 𝑥 ∈ 𝑋 ∖ 𝐴 be any point. Since 𝑋 ∖ 𝐴 is open, we use the previous

equivalence for open sets to conclude that there exists 𝑈 ⊆ 𝑋 ∖ 𝐴 neighbourhood

of 𝑥. To conclude the equivalence chain, suppose the last property is true for 𝑋∖𝐴.

Then 𝑋 ∖𝐴 is open by the previous item, which, in turn, this implies that 𝐴 closed.

♮

Proposition 12.1.16 (Basis criterion for open sets). Let 𝑋 a topological space and ℬ a

base for the topology of 𝑋. A set 𝐴 ⊆ 𝑋 is open if and only if for all points 𝑝 ∈ 𝐴 there

exists a neighbourhood of 𝑝, 𝐵𝑝 ∈ ℬ, such that 𝐵𝑝 ⊆ 𝐴.

Proof. Let 𝐴 be open, then there exists a collection of elements of ℬ whose union is 𝐴

— which implies that there exists, for all 𝑝 ∈ 𝐴, a set 𝐵 ⊆ ℬ such that 𝑝 ∈ 𝐵 and 𝐵 ⊆ 𝐴.

For the contrary, if 𝑝 ∈ 𝐴 is any point and 𝐵 ∈ ℬ is the corresponding neighbourhood

𝑝 ∈ 𝐵 ⊆ 𝐴, then from Proposition 12.1.15 we find that 𝐴 is open. ♮

Proposition 12.1.17. The following propositions are equivalent, regarding points on

the closure of a set 𝐴

(a) 𝑥 ∈ Cl𝐴.

(b) Every neighbourhood𝑈 ⊆ 𝑋 of 𝑥 is such that𝑈 ∩ 𝐴 ≠ ∅.

(c) There exists a basis ℬ𝑥 at the point 𝑥 such that for all𝑈 ∈ ℬ𝑥 we have𝑈 ∩ 𝐴 = ∅.

Proof. (a) implies (b): Let 𝑥 ∈ 𝑋 and suppose that (b) is false for 𝑥, so that there exists

𝑈 ⊆ 𝑋 neighbourhood of 𝑥 such that𝑈∩𝐴 = ∅. Then𝐴 ⊆ 𝑋∖𝑈 , that is,𝐴 is a subset of

the complement of𝑈 . Since𝑈 is open, then𝑋∖𝑈 ∈ 𝐶𝐴 ≔ {𝐹 ⊆ 𝑋 : 𝐴 ⊆ 𝐹, 𝐹 is closed}.
From the definition of closure, we have that Cl𝐴 ⊆ 𝑋 ∖𝑈 and therefore 𝑥 ∉ Cl𝐴. (b)

implies (c): From the definition of a basis at the point 𝑥, we know that every 𝑈 ∈ ℬ𝑥
is a neighbourhood of 𝑥, hence if (b) is true for 𝑥, proposition (c) follows immediately.

(c) implies (a): Let 𝑥 ∈ 𝑋 such that 𝑥 ∉ Cl𝐴, so that proposition (a) is false for 𝑥.

From the definition of closure, there exists 𝐹 ⊆ 𝐶𝐴 such that 𝑥 ∉ 𝐹. Consider the open

complement𝑉 = 𝑋 ∖ 𝐹 so that 𝑥 ∈ 𝑉 and𝑉 ∩𝐴 = ∅. Hence, given any basis at 𝑥 there

exists a neighbourhood of 𝑥, say 𝑈 , such that 𝑈 ⊆ 𝑉 and hence 𝑈 ∩ 𝐴 = ∅, which

implies that proposition (c) is false for 𝑥. ♮

Corollary 12.1.18. If 𝑈 is an open set and 𝑈 ∩ 𝐴 = ∅, then 𝑈 ∩ Cl𝐴 = ∅. Also, if 𝑈

and 𝑉 are disjoint sets, then𝑈 ∩ Cl𝑉 = Cl𝑈 ∩𝑉 = ∅.

Proof. Suppose 𝑈 ∩ 𝐴 = ∅ and that there exists 𝑥 ∈ 𝑈 ∩ Cl𝐴, so that 𝑥 ∈ Cl𝐴. Since

𝑈 is open, it is a neighbourhood of 𝑥, hence from Proposition 12.1.17 we find that

𝑈 ∩ 𝐴 ≠ ∅, which is false, thus𝑈 ∩ Cl𝐴 = ∅. ♮

In order to classify points as being interior, exterior or on the boundary of a set, we

may use the following important proposition.

Proposition 12.1.19 (Interior, exterior and boundary points). Classification of points:

(a) 𝑥 ∈ Int𝐴 if and only if there exists𝑈 ⊆ 𝐴 neighbourhood of 𝑥.
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(b) 𝑥 ∈ Ext𝐴 if and only if there exists𝑈 ⊆ 𝑋 ∖ 𝐴 neighbourhood of 𝑥.

(c) 𝑥 ∈ 𝜕𝐴 if and only if all neighbourhoods𝑈 ⊆ 𝑋 of 𝑥 are such that𝑈 ∩ 𝐴 ≠ ∅ and

𝑈 ∩ (𝑋 ∖ 𝐴) ≠ ∅.

Proof. (a) Let 𝑥 ∈ 𝐴 be any point. Suppose 𝑈 ⊆ 𝑋 is neighbourhood of 𝑥 such that

𝑈 ⊆ 𝐴, then from the fact that 𝑈 is open we conclude that 𝑈 ⊆ Int𝐴 from the

definition of the interior operator. Suppose 𝑥 ∈ Int𝐴 then from definition there is

a neighbourhood of 𝑥 contained in 𝐴.

(b) Suppose exists 𝑈 ⊆ 𝑋 ∖ 𝐴 neighbourhood of 𝑥. From Proposition 12.1.17 we find

𝑥 ∉ Cl𝐴 and therefore 𝑥 ∈ Ext𝐴. The other side of the implication is trivial.

(c) Since all neighbourhoods of 𝑥 contain a point of 𝑋 ∖ 𝐴, from the first item of

this proposition we find that 𝑥 cannot belong to the interior of 𝐴. Moreover,

every neighbourhood contains a point of 𝐴, then 𝑥 cannot be an element of Ext𝐴.

Therefore 𝑥 ∈ 𝜕𝐴.

♮

Proposition 12.1.20 (Decomposition of the closure). Cl𝐴 = 𝐴 ∪ 𝜕𝐴 = Int𝐴 ∪ 𝜕𝐴.

Proof. For the first equality we have

𝐴 ∪ 𝜕𝐴 = 𝐴 ∪ [𝑋 ∖ (Int𝐴 ∪ Ext𝐴)]
= 𝐴 ∪ [(𝑋 ∖ Int𝐴) ∩ (𝑋 ∖ Ext𝐴)]
= 𝐴 ∪ [(𝑋 ∖ Int𝐴) ∩ Cl𝐴]
= [𝐴 ∪ (𝑋 ∖ Int𝐴)] ∩ [𝐴 ∪ Cl𝐴]
= 𝑋 ∩ Cl𝐴 = Cl𝐴.

Analogously, for the second equality

Int𝐴 ∪ 𝜕𝐴 = Int𝐴 ∪ [(𝑋 ∖ Int𝐴) ∩ Cl𝐴]
= [Int𝐴 ∪ (𝑋 ∖ Int𝐴)] ∩ [Int𝐴 ∪ Cl𝐴]
= 𝑋 ∩ Cl𝐴 = Cl𝐴.

This proves the proposition. ♮

Proposition 12.1.21. Let𝑋 be a topological space and𝐴 ⊆ 𝑋. Then Cl(𝑋∖𝐴) = 𝑋∖Int𝐴

and also Int(𝑋 ∖ 𝐴) = 𝑋 ∖ Cl𝐴.

Proof. We prove the first equality. Let 𝒜 ≔ {𝑈 ⊆ 𝐴 : 𝑈 is open}, from definition

we have that Int𝐴 =
⋃
𝑈∈𝒜𝑈 , moreover, 𝑋 ∖ Int𝐴 = 𝑋 ∖

⋃
𝑈∈𝒜𝑈 =

⋂
𝑈∈𝒜 𝑋 ∖ 𝑈

from de Morgan’s Laws. Notice that obviously 𝑋 ∖ 𝑈 ⊆ 𝑋 and moreover since 𝑈 is

open, then the complement 𝑋 ∖𝑈 is closed. This makes 𝑋 ∖ Int(𝐴) = ⋂
𝑈∈𝒜 𝑋 ∖𝑈 =

Cl(𝑋 ∖ 𝐴). Now we show the second equality. Define 𝒜 ≔ {𝑈 ⊆ 𝐴 : 𝑈 is closed},
then Cl𝐴 =

⋂
𝑈∈𝒜𝑈 and hence 𝑋 ∖ Cl𝐴 = 𝑋 ∖

⋂
𝑈∈𝒜𝑈 =

⋃
𝑈∈𝒜 𝑋 ∖𝑈 . Notice that

𝑋 ∖𝑈 ⊆ 𝑋 ∖ 𝐴 and since𝑈 is closed, then 𝑋 ∖𝑈 is open. From this we conclude that

𝑋 ∖ Cl𝐴 =
⋃
𝑈∈𝒜 𝑋 ∖𝑈 = Int(𝑋 ∖ 𝐴). ♮
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Proposition 12.1.22. Let a finite collection of subsets {𝐴𝑖}𝑛𝑖=1
⊆ 2

𝑋
, where 𝑋 is a

topological space, then we have that

Cl

( 𝑛⋃
𝑖=0

𝐴𝑖

)
=

𝑛⋃
𝑖=0

Cl𝐴𝑖

Proof. It suffices to prove that for 𝐴, 𝐵 ⊆ 𝑋 we have Cl(𝐴 ∪ 𝐵) = Cl𝐴 ∪ Cl 𝐵. Notice

that Cl𝐴,Cl 𝐵 ⊆ Cl(𝐴 ∪ 𝐵), hence Cl𝐴 ∪ Cl 𝐵 ⊆ Cl(𝐴 ∪ 𝐵). Now, since 𝐴 ⊆ Cl𝐴 and

𝐵 ⊆ Cl 𝐵, we find𝐴∪𝐵 ⊆ Cl𝐴∪Cl 𝐵, then Cl(𝐴∪𝐵) ⊆ Cl(Cl𝐴∪Cl 𝐵) = Cl𝐴∪Cl 𝐵. ♮

Definition 12.1.23 (Locally finite family). A collection of subsets {𝐴𝑖}𝑖∈𝐼 ⊆ 2
𝑋

of a

topological space 𝑋 is said to be a locally finite family if for every point 𝑥 there exists

a neighbourhood𝑈 ⊆ 𝑋 for which the collection {𝑖 ∈ 𝐼 : 𝑈 ∩ 𝐴𝑖 ≠ ∅} is finite.

Definition 12.1.24 (Discrete family). A collection of subsets {𝐴𝑖}𝑖∈𝐼 ⊆ 2
𝑋

of a topolog-

ical space 𝑋 is said to be a discrete family if for all 𝑥 ∈ 𝑋 there exists a neighbourhood

𝑈 ⊆ 𝑋 such that there exists at most one 𝐴𝑖 in the family such that 𝑈 ∩ 𝐴 ≠ ∅. A

discrete family is also a locally finite family.

Proposition 12.1.25. Given a locally finite family of sets {𝐴𝑖}𝑖∈𝐼 ⊆ 2
𝑋

, where 𝑋 is a

topological space, we have that

Cl

(⋃
𝑖∈𝐼
𝐴𝑖

)
=

⋃
𝑖∈𝐼

Cl𝐴𝑖 .

Proof. Notice that clearly𝐴𝑖 ⊆ Cl

( ⋃
𝑖∈𝐼 𝐴𝑖

)
for all 𝑖 ∈ 𝐼, hence

⋃
𝑖∈𝐼 Cl𝐴𝑖 ⊆ Cl

( ⋃
𝑖∈𝐼 𝐴𝑖

)
.

Moreover, we have from hypothesis that {𝐴𝑖}𝑖∈𝐼 is a locally finite family, thus given

𝑥 ∈ Cl

( ⋃
𝑖∈𝐼 𝐴𝑖

)
we can find a neighbourhood of 𝑥, say 𝑈 ⊂ 𝑋, such that 𝐼0 ≔ {𝑖 ∈ 𝐼 :

𝑈 ∩ 𝐴𝑖 ≠ ∅} is finite. Notice that from Proposition 12.1.17 we have that 𝑥 cannot be a

limit point of any of the sets with index 𝑖 ∈ 𝐼 ∖ 𝐼0, hence 𝑥 ∉ Cl

( ⋃
𝑖∈𝐼∖𝐼0 𝐴𝑖

)
. On the

other hand, we have 𝑥 ∈ Cl

( ⋃
𝑖∈𝐼 𝐴𝑖

)
= Cl

( ⋃
𝑖∈𝐼0 𝐴𝑖

)
∪ Cl

( ⋃
𝑖∈𝐼∖𝐼0 𝐴𝑖

)
, which implies

that 𝑥 ∈ Cl

( ⋃
𝑖∈𝐼0 𝐴𝑖

)
=

⋃
𝑖∈𝐼0 Cl𝐴𝑖 ⊆

⋃
𝑖∈𝐼 Cl𝐴𝑖 (the equality comes from the fact that

𝐼0 is finite and hence Proposition 12.1.22 hold). ♮

Proposition 12.1.26. If {𝐴𝑖}𝑖∈𝐼 is a locally finite (resp. discrete) family, then the family

{Cl𝐴𝑖}𝑖∈𝐼 is locally finite (resp. discrete). Conversely, if {Cl𝐴𝑖}𝑖∈𝐼 is locally finite, then

{𝐴𝑖}𝑖∈𝐼 is locally finite.

Proof. Let the locally finite (resp. discrete) family {𝐴𝑖}𝑖∈𝐼 . Given any element 𝑥 ∈ 𝑋
and a neighbourhood 𝑈 of 𝑥 such that the indexing set 𝐼0 ≔ {𝑖 ∈ 𝐼 : 𝑈 ∩ 𝐴𝑖 ≠ ∅} is

finite (resp. is either empty or a singleton). Notice that since 𝑈 ∩ 𝐴𝑖 ⊆ 𝑈 ∩ Cl𝐴𝑖 , we

find that for all 𝑖 ∈ 𝐼0, 𝑈 ∩ Cl𝐴𝑖 ≠ ∅, so that 𝐼0 = 𝐼′
0
≔ {𝑖 ∈ 𝐼 : 𝑈 ∩ Cl𝐴𝑖 ≠ ∅}. Since

𝑈 is an open set, from Corollary 12.1.18 we find that 𝑈 ∩ Cl𝐴𝑖 = 𝑈 ∩ 𝐴𝑖 = ∅ for all

𝑖 ∈ 𝐼 ∖ 𝐼0. For the converse, if the collection of closures is locally finite, then clearly

{𝐴𝑖}𝑖∈𝐼 is locally finite. ♮
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Derived and Dense Sets
Definition 12.1.27 (Limit point and derived set). A point 𝑝 ∈ 𝐴 is called a limit point

of 𝐴 if every neighbourhood of 𝑝 has a point of 𝐴 ∖ {𝑝}. We define the set 𝐴′ as the

collection of all limit points of 𝐴, which we’ll call derived set.

Proposition 12.1.28. A point 𝑝 ∈ 𝐴 is a limit point if and only if 𝑝 ∈ Cl(𝐴 ∖ {𝑝}).

Proof. If 𝑝 is a limit point, then from Proposition 12.1.17 we see that 𝑝 ∈ Cl(𝐴 ∖ {𝑝}).
Moreover, if 𝑝 ∈ Cl(𝐴 ∖ {𝑝}), then again from Proposition 12.1.17 we see that there is

a basis ℬ𝑝 at 𝑝 such that for all 𝑈 ∈ ℬ𝑝 we have 𝑈 ∩ (𝐴 ∖ {𝑝}) ≠ ∅— thus 𝑝 is a limit

point of 𝐴. ♮

Definition 12.1.29 (Isolated points). If 𝑝 ∈ 𝐴 ∖ 𝐴′, we say that 𝑝 is an isolated point of

𝐴.

Proposition 12.1.30. A point 𝑝 ∈ 𝐴 is isolated if and only if there exists a neighbourhood

of 𝑝 for which the only point of intersection with 𝐴 is 𝑝, i.e. 𝑈 ⊆ 𝑋 neighbourhood of

𝑝 with𝑈 ∩ 𝐴 = {𝑝}.

Proof. If 𝑝 is isolated then there exists a neighbourhood𝑈 ⊆ 𝑋 of 𝑝 such that𝑈 ∩ (𝐴∖
{𝑝}) = ∅ but since 𝑝 ∈ 𝑈 , then it follows that 𝑈 ∩ 𝐴 = {𝑝}. Now, suppose there exists

such𝑈 , then in particular 𝑝 does not satisfy the condition to be a limit point of 𝐴, thus

𝑝 ∉ 𝐴, hence 𝑝 ∈ 𝐴 ∖ 𝐴′ and therefore 𝑝 is a limit point. ♮

Proposition 12.1.31. The closure of a set is the union of the set with its limit points, i.e.

Cl𝐴 = 𝐴 ∪ 𝐴′.

Proof. Let 𝑝 ∈ 𝐴′, then from definition any neighbourhood of 𝑝 intersects 𝐴 ∖ {𝑝}—

and, in particular, intersects 𝐴 — therefore, by means of Proposition 12.1.17 we see

that 𝑝 ∈ Cl𝐴, thus 𝐴′ ⊆ Cl𝐴. It’s obvious that 𝐴 ⊆ Cl𝐴, thus 𝐴 ∪ 𝐴′ ⊆ Cl𝐴. On the

other hand, if 𝑞 ∈ Cl𝐴, then we assume that 𝑞 ∉ 𝐴 — since, on the contrary, it’s clear

that 𝑞 ∈ 𝐴 ∪ 𝐴′. Again using Proposition 12.1.17 we get that every neighbourhood of

𝑞 intersects 𝐴, and since 𝑞 ∉ 𝐴, then the intersection contains a point other than 𝑞 —

that is, 𝑞 is a limit point of 𝐴. Hence Cl𝐴 ⊆ 𝐴 ∪ 𝐴′, which finishes the proof. ♮

Corollary 12.1.32. A set 𝐴 is closed if and only if 𝐴 contains all of its limit points, that

is, 𝐴 = 𝐴′.

Proof. If 𝐴 is closed, then 𝐴 = Cl𝐴 and hence 𝐴′ ⊆ 𝐴 from Proposition 12.1.31.

Otherwise, if 𝐴 contains all of its limit points, then 𝐴 ∪ 𝐴′ = 𝐴 = Cl𝐴 — that is, 𝐴 is

closed. ♮

Definition 12.1.33 (Dense set). A set 𝐴 ⊆ 𝑋 is said to be dense if Cl𝐴 = 𝑋.

Proposition 12.1.34. A set 𝐴 is dense in 𝑋 if and only if for all non-empty open subsets

of 𝑋 contains a point of 𝐴.
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Proof. Let 𝐴 be dense in 𝑋 and let 𝑈 ⊆ 𝑋 be any non-empty open subset of the space.

Suppose, for the sake of contradiction, that𝑈 ∩𝐴 = ∅. Since𝑈 is non-empty, take any

𝑥 ∈ 𝑈 , then from Proposition 12.1.17 we find that 𝑥 ∉ Cl𝐴 but since Cl𝐴 = 𝑋, then

𝑥 ∉ 𝑋, which is a contradiction — thus 𝑈 ∩ 𝐴 is non-empty. On the other hand, if we

suppose that every non-empty open set of the space intersects 𝐴, then given any 𝑥 ∈ 𝑋
we see that 𝑥 is a limit point of 𝐴, hence 𝑥 ∈ Cl𝐴, thus 𝑋 ⊆ Cl𝐴, which proves the

proposition since Cl𝐴 ⊆ 𝑋. ♮

12.2 Morphisms of Topological Spaces
Definition 12.2.1 (Continuous map). Let 𝑋 and 𝑌 be topological spaces and consider

the map 𝑓 :𝑋 → 𝑌. We say that 𝑓 is continuous if for all 𝑈 ⊆ 𝑌 open, the preimage

𝑓 −1(𝑈) is open in 𝑋.

Proposition 12.2.2. A map 𝑓 :𝑋 → 𝑌 is continuous if and only if the preimage of every

closed subset is closed.

Proof. Suppose that 𝑓 satisfies the latter, the given any 𝑈 ⊆ 𝑌 there exists a closed set

𝐶 ⊆ 𝑌 such that 𝑈 = 𝑌 ∖ 𝐶, thus 𝑓 −1(𝐶) is closed, then 𝑓 −1(𝑋 ∖ 𝐶) = 𝑓 −1(𝑈) is open.

For the contrary, the analogous argument is used. ♮

Proposition 12.2.3. Let 𝑋,𝑌, 𝑍 be topological spaces. The following properties of

continuous maps between topological spaces hold

(CM1) Every constant map 𝑓 :𝑋 → 𝑌 is continuous.

(CM2) The identity map is continuous.

(CM3) If 𝑓 :𝑋 → 𝑌 is continuous, then for all open set𝑈 ⊆ 𝑋 we have 𝑓 |𝑈 continuous.

(CM4) If 𝑓 :𝑋 → 𝑌 and 𝑔:𝑌 → 𝑍 are continuous maps, then 𝑔 𝑓 :𝑋 → 𝑍.

Proof. (1) Let any point 𝑎 ∈ 𝑌 and consider the constant map 𝑥
𝑓
↦−→ 𝑎 for all 𝑥 ∈ 𝑋.

Then, for all𝑈 ⊆ 𝑌∖{𝑎} open, we have that 𝑓 −1(𝑈) = ∅, thus have open preimage.

On the other hand, the fibre 𝑓 −1(𝑎) = 𝑋, hence also open, thus 𝑓 is continuous.

(2) Notice that if𝑈 ⊆ 𝑌 is any open set, then id
−1

𝑋 (𝑈) = 𝑈 and thus open.

(3) Let 𝑔:𝑋 → 𝑌 be a continuous map, and 𝑈 ⊆ 𝑋 be any open set, then we can take

any open 𝑉 ⊆ 𝑔(𝑈) and conclude that 𝑔−1(𝑉) is open (from the hypothesis that 𝑔

is continuous); let now an open 𝐻 ⊆ 𝑌 ∖ 𝑔(𝑈), then certainly 𝑔|−1

𝑈
(𝐻) = ∅, thus

open. Hence 𝑔|𝑈 :𝑈 → 𝑌 is indeed continuous.

(4) Let𝑈 ⊆ 𝑍 be open, then (𝑔 𝑓 )−1(𝑈) = 𝑓 −1(𝑔−1(𝑈)). Moreover, since from hypothesis

𝑔 is continuous, then 𝑔−1(𝑈) is open, now, from the continuity of 𝑓 we conclude

that 𝑓 −1(𝑔−1(𝑈)) is open, hence 𝑔 𝑓 is continuous.

♮
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Definition 12.2.4 (Category of topological spaces). We define the category of topolog-

ical spaces to be composed of objects named topological spaces and morphisms being

continuous maps between them — we’ll denote such category by Top.

Proposition 12.2.5 (Local criterion for continuity). Let 𝑓 :𝑋 → 𝑌 be a map between

topological spaces. Then 𝑓 is continuous if and only if for all points 𝑥 ∈ 𝑋 there exists

a neighbourhood𝑈𝑥 ⊆ 𝑋 of 𝑥 such that 𝑓 |𝑈𝑥 is continuous.

Proof. If 𝑓 is a morphism, then for any 𝑥 ∈ 𝑋 we can take the whole space 𝑋 as a

neighbourhood of 𝑥 and the proposition follows. On the other hand If 𝑓 is locally

continuous for every point of 𝑋, let 𝑉 ⊆ 𝑌 be any open set and consider, for every

𝑥 ∈ 𝑓 −1(𝑉) a neighbourhood 𝑈𝑥 such that 𝑓 |𝑈𝑥 is continuous — and hence 𝑓 |−1

𝑈𝑥
(𝑉) is

open for all 𝑥 ∈ 𝑓 −1(𝑉). Notice that 𝑓 −1(𝑉) ∩𝑈𝑥 = 𝑓 |−1

𝑈𝑥
(𝑉), which has to be open on

𝑋. Moreover, from construction 𝑓 −1(𝑉) = ⋃
𝑥∈ 𝑓 −1(𝑉) 𝑓

−1(𝑉) ∩𝑈𝑥 is the union of open

sets, thus 𝑓 −1(𝑉) is open — and therefore 𝑓 is continuous. ♮

Proposition 12.2.6 (Basis criterion for continuity). Let 𝑓 :𝑋 → 𝑌 be a map between

topological spaces, and ℬ be a basis for the topology of 𝑌. Then, 𝑓 is continuous

(hence a morphism) if and only if for all 𝐵 ∈ ℬ we have 𝑓 −1(𝐵) ⊆ 𝑋 open.

Proof. (⇒) If 𝑓 is continuous, then certainly 𝑓 −1(𝐵) is open. (⇐) On the other hand,

if 𝐴 ⊆ 𝑋 is any open set, then 𝐴 =
⋃
𝑝∈𝐴 𝐵𝑝 for 𝐵𝑝 ∈ ℬ neighbourhood of 𝑝. Hence

𝑓 −1(𝐴) = 𝑓 −1(⋃𝑝∈𝐴 𝐵𝑝) =
⋃
𝑝∈𝐴 𝑓

−1(𝐵𝑝) is the union of open sets, thus 𝑓 −1(𝐴) is open

and therefore 𝑓 is continuous. ♮

Proposition 12.2.7. Let 𝑓 :𝑋 → 𝑌 be a morphism of topological spaces andℬ be a basis

for the space 𝑋. Then 𝑓 (ℬ) = { 𝑓 (𝐵) : 𝐵 ∈ ℬ} is a basis for the space 𝑌 if and only if 𝑓

is surjective and open.

Proof. (⇒) Suppose 𝑓 (ℬ) is a basis for 𝑌, then for all 𝑉 ⊆ 𝑌 open, there exists an

indexing set 𝐼 such that 𝑉 =
⋃
𝑖∈𝐼𝑈𝑖 , where 𝑈𝑖 ∈ 𝑓 (ℬ). This implies in the existence

of 𝐵 ∈ ℬ such that 𝑈𝑖 = 𝑓 (𝐵) hence 𝑓 is open. Consider now any point 𝑦 ∈ 𝑌 and

any neighbourhood𝑉𝑦 of 𝑦. From the same argument as above we have𝑉𝑦 =
⋃
𝑖∈𝐼𝑦 𝑈𝑖 ,

where there exists some 𝑖 ∈ 𝐼𝑦 such that 𝑦 ∈ 𝑈𝑖 and hence 𝑦 ∈ 𝑈𝑖 = 𝑓 (𝐵) for some𝐵 ∈ ℬ.

(⇐) Suppose 𝑓 is surjective and open. Let𝑉 ⊆ 𝑌 be any open set. Since 𝑓 is continuous

and surjective, we have that𝑈 = 𝑓 −1(𝑉) is a non-empty open set. Sinceℬ is a basis, we

can write 𝑈 =
⋃
𝑖∈𝐼 𝐵𝑖 where 𝐵𝑖 ∈ 𝐵, and then 𝑓 (𝑈) = 𝑓 (⋃𝑖∈𝐼 𝐵𝑖) =

⋃
𝑖∈𝐼 𝑓 (𝐵𝑖), where

𝑓 (𝐵𝑖) ∈ 𝑓 (ℬ) and 𝑓 (𝑈) = 𝑉 from the fact that 𝑓 is surjective. Since 𝑓 is open, 𝑓 (𝐵) is

open for all 𝐵 ∈ ℬ. Hence 𝑓 (ℬ) is a basis for the space 𝑌. ♮

Definition 12.2.8 (Isomorphism). Let 𝑓 be a morphism of topological spaces. If 𝑓

is bĳective and has a continuous inverse, then we say that 𝑓 is an isomorphism of

topological spaces — which can also be called an homeomorphism.

Definition 12.2.9 (Open & Closed maps). Let 𝑓 :𝑋 → 𝑌 be any set-function between

topological spaces.
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• We say that 𝑓 is an open map if for all𝑈 ⊆ 𝑋 open the image 𝑓 (𝑈) ⊆ 𝑌 is open.

• We say that 𝑓 is a closed map if for all 𝐶 ⊆ 𝑋 closed, the image 𝑓 (𝐶) ⊆ 𝑌 is

closed.

Proposition 12.2.10. Let 𝑓 :𝑋 → 𝑌 be a map of topological spaces and consider that 𝑓

is an isomorphism, then 𝑓 is an open and a closed map.

Proof. Let 𝑈 ⊆ 𝑋 be an open (resp. closed) set and consider 𝑉 ≔ 𝑓 (𝑈) ⊆ 𝑌. Since 𝑓

is a bĳection, we find that 𝑓 (𝑈) = 𝑉 is open (resp. closed) by the continuity of 𝑓 −1
.

Hence 𝑓 is an open (resp. closed) map. ♮

Corollary 12.2.11. Let 𝑓 :𝑋 → 𝑌 be a bĳective set-function, where 𝑋 and 𝑌 are topo-

logical spaces. The following propositions are equivalent

(a) 𝑓 is an isomorphism of topological spaces.

(b) 𝑓 is open.

(c) 𝑓 is closed.

Proof. (a)⇒ (b): Suppose 𝑓 is an isomorphism, then since 𝑓 −1
is also an isomorphism,

it follows that, given any 𝑈 ⊆ 𝑋 the image 𝑓 (𝑈) is open — hence 𝑓 is open. (b) ⇒
(c): Let 𝑓 be open, then given any closed set 𝐶 ⊆ 𝑋, we have that 𝑓 (𝑋 ∖ 𝐶) ⊆ 𝑌

is open, moreover, since 𝑓 is injective, 𝑓 (𝑋 ∖ 𝐶) = 𝑓 (𝑋) ∖ 𝑓 (𝐶) and since 𝑓 (𝑋) = 𝑌

from the surjectivity of 𝑓 , we conclude that 𝑓 (𝐶) is closed. (c)⇒ (a) Let 𝑓 be closed,

then given any 𝑉 ⊆ 𝑌 open, we know that 𝑌 ∖ 𝑉 is closed and since 𝑓 is a bĳection,

𝑓 −1(𝑌∖𝑉) = 𝑓 −1(𝑌)∖ 𝑓 −1(𝑉) = 𝑋∖ 𝑓 −1(𝑉) ⊆ 𝑋 is closed, thus 𝑓 −1(𝑉) is open — which

implies in the continuity of 𝑓 . Moreover, since 𝑓 is a bĳection, 𝑓 −1
is also closed, and

therefore continuous by the same analogous proof, thus 𝑓 is an isomorphism. ♮

Proposition 12.2.12. Let𝑋 and𝑌 be topological spaces and 𝑓 :𝑋 → 𝑌 be a set-function.

We can classify the behaviour of 𝑓 by the following conditions

(a) 𝑓 is a morphism of topological spaces if and only if 𝑓 (Cl𝐴) ⊆ Cl( 𝑓 (𝐴)) for every

set 𝐴 ⊆ 𝑋.

(b) 𝑓 is a morphism of topological spaces if and only if 𝑓 −1(Int 𝐵) ⊆ Int 𝑓 −1(𝐵) for

every set 𝐵 ⊆ 𝑌.

(c) 𝑓 is closed if and only if 𝑓 (Cl𝐴) ⊇ Cl( 𝑓 (𝐴)) for every set 𝐴 ⊆ 𝑋.

(d) 𝑓 is open if and only if 𝑓 −1(Int 𝐵) ⊇ Int 𝑓 −1(𝐵) for every set 𝐵 ⊆ 𝑌.

Proof.
prove

♮

Definition 12.2.13 (Local isomorphism). Let 𝑓 :𝑋 → 𝑌 be a set-function between topo-

logical spaces 𝑋 and 𝑌. We say that 𝑓 is a local isomorphism of topological spaces if,

for all 𝑥 ∈ 𝑋, there exists a neighbourhood𝑈 ⊆ 𝑋 such that 𝑓 (𝑈) ⊆ 𝑌 is open and the

induced map 𝑓 :𝑈 ≃−→ 𝑓 (𝑈) is an isomorphism of topological spaces.
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Proposition 12.2.14. The following are properties pertaining to local isomorphisms

(a) Every isomorphism is a local isomorphism.

(b) Every local isomorphism is continuous and open.

(c) Every bĳective local isomorphism is an isomorphism.

Proof. (a) Let 𝑓 :𝑋 ≃−→ 𝑌 be an isomorphism, then for all 𝑥 ∈ 𝑋 we can choose the

neighbourhood 𝑋 and the restriction 𝑓 |𝑋 = 𝑓 :𝑋 ≃−→ 𝑓 (𝑋) = 𝑌 is an isomorphism.

(b) Let 𝑔:𝑋 → 𝑌 be a local isomorphism. Let 𝑥 ∈ 𝑋 be any element and consider𝑈 ⊆
𝑋 such that 𝑔|𝑈 :𝑈 ≃−→ 𝑔(𝑈) is an isomorphism, then in particular 𝑔|𝑈 is continuous

— by Proposition 12.2.5 we find that 𝑔 is continuous. Now let𝑈 ⊆ 𝑋 be any open

set, for each 𝑥 ∈ 𝑈 take 𝑈𝑥 ⊆ 𝑋 neighbourhood of 𝑥 such that 𝑔|𝑈𝑥 :𝑈𝑥 → 𝑔(𝑈𝑥)
is an isomorphism. Notice that the restriction 𝑔|𝑈∩𝑈𝑥 :𝑈 ∩ 𝑈𝑥

≃−→ 𝑓 (𝑈 ∩ 𝑈𝑥) is

also an isomorphism which implies in 𝑓 (𝑈 ∩ 𝑈𝑥) ⊆ 𝑌 being open — moreover,

𝑉 =
⋃
𝑥∈𝑈 𝑓 (𝑈 ∩𝑈𝑥) thus 𝑉 is open.

(c) Let 𝑓 :𝑋 → 𝑉 be a bĳective local isomorphism, then by the last item, 𝑓 is open.

Using Corollary 12.2.11 we see that 𝑓 is an isomorphism.

♮

Definition 12.2.15 (Embedding). Let 𝑓 :𝑋 ↣ 𝑌 be an injective morphism of topological

spaces. If the induced morphism 𝑓 :𝑋 → 𝑓 (𝑋) is an isomorphism, then we say that 𝑓

is a topological embedding of 𝑋 in 𝑌.

Topology Generated by Mappings
Proposition 12.2.16 (Topology generated by a collection of mappings). Let 𝑋 be a

topological space and {𝑌𝑖}𝑖∈𝐼 be a collection of topological spaces. Let { 𝑓𝑖 :𝑋 → 𝑌𝑖}𝑖∈𝐼
be the collection of mappings between such topological spaces. Then there exists a

initial topology on𝑋 such that 𝑓𝑖 is continuous, for all 𝑖 ∈ 𝐼. Such topology is generated

by the base

ℬ =


⋂
𝑗∈𝐽

𝑓 −1

𝑗 (𝑈 𝑗):𝑈𝑖 ⊆ 𝑌𝑖 is open, 𝐽 ⊆ 𝐼 is finite

 .
We call such topology as the topology generated by the collection of mappings { 𝑓𝑖}𝑖∈𝐼 .

Proof. First we show that ℬ is indeed a basis for 𝑋. Let 𝑥 ∈ 𝑋 be any point, then

clearly 𝑥 ∈ 𝑓 −1

𝑖
(𝑌𝑖) for all 𝑖 ∈ 𝐼, hence 𝑥 ∈ ⋂

𝑗∈𝐽 𝑓
−1

𝑗
(𝑌𝑗) ∈ ℬ for a finite indexing set

𝐽 ⊆ 𝐼. Let 𝐽 , 𝑆 ⊆ 𝐼 be finite indexing sets, then consider the sets 𝐴 ≔
⋂
𝑗∈𝐽 𝑓

−1

𝑗
(𝑈 𝑗), 𝐵 ≔⋂

𝑠∈𝑆 𝑓
−1

𝑠 (𝑉𝑠) ∈ ℬ and let any point 𝑥 ∈ 𝐴 ∩ 𝐵. Then in particular we can let an

non-empty indexing set 𝑇 = 𝐽 ∩ 𝑆 so that 𝑥 ∈ 𝑓 −1

𝑡 (𝑈𝑡) for all 𝑡 ∈ 𝑇 and therefore

𝐶 ≔
⋂
𝑡∈𝑇 𝑓

−1

𝑡 (𝑈𝑡) is such that 𝑥 ∈ 𝐶 ⊆ 𝐴 ∩ 𝐵. This shows that ℬ indeed satisfies the

basis properties.

Now we show the initial topology property. Let 𝜏 be the topology generated by ℬ
and consider 𝜏′ to be any other topology on𝑋 for which the functions 𝑓𝑖 are continuous
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for all 𝑖 ∈ 𝐼. Trivially we must have ℬ ⊆ 𝜏′ and therefore 𝜏 ⊆ 𝜏′. This says that 𝜏 is

coarser than 𝜏′, which proves the proposition. ♮

Proposition 12.2.17. Let 𝑋 and 𝑌 be topological spaces, and the topology of 𝑌 be

generated by the collection of maps { 𝑓𝑖 :𝑌 → 𝑌𝑖}𝑖∈𝐼 , where {𝑌𝑖}𝑖∈𝐼 is a collection of

topological spaces. Then a map 𝑓 :𝑋 → 𝑌 is continuous if and only if the composition

𝑓𝑖 𝑓 :𝑋 → 𝑌𝑖 is continuous for every 𝑖 ∈ 𝐼.

Proof. (⇐) Suppose 𝑓𝑖 𝑓 is continuous for all 𝑖 ∈ 𝐼, then since 𝑓𝑖 is continuous on the

topology of 𝑌 it follows that for any given open set 𝑈 ⊆ 𝑌𝑖 we have 𝑓 −1

𝑖
(𝑈) = 𝑉 ⊆ 𝑌

open. In particular, notice that ( 𝑓𝑖 𝑓 )−1(𝑈) = 𝑓 −1( 𝑓 −1

𝑖
(𝑈)) = 𝑓 −1(𝑉) ⊆ 𝑋 which must be

open from the hypothesis of the continuity of 𝑓𝑖 𝑓 . (⇒) Moreover, if 𝑓 is continuous,

then clearly the composition of continuous functions is continuous. ♮

12.3 Metric Spaces

Write on metric spaces

Definition 12.3.1. Let 𝑀 be a set. We say that a map 𝑑:𝑀 ×𝑀 → R⩾0 is a pre-metric if

for all points 𝑥, 𝑦, 𝑧 ∈ 𝑀 it satisfies

(a) Symmetry: 𝑑(𝑥, 𝑦) = 𝑑(𝑦, 𝑥).
(b) Triangle inequality: 𝑑(𝑥, 𝑧) ⩽ 𝑑(𝑥, 𝑦) + 𝑑(𝑦, 𝑧).

Moreover, if 𝑑 happens to satisfy the condition that

(c) 𝑑(𝑥, 𝑦) = 0 implies in 𝑥 = 𝑦.

then we say that 𝑑 establishes a metric in 𝑀.

The set 𝑀 together with the (pre)metric 𝑑 is called a (pre)metric space.

12.4 Hausdorff Spaces
Definition 12.4.1. Let 𝑋 be a topological space. We define

(1) 𝑋 is T0 (or Kolmogorov) if and only if for every pair of distinct points 𝑥, 𝑦 ∈ 𝑋
there exists an open set containing one, but not both, of them.

(2) 𝑋 is T1 (or Fréchet) if and only if for every pair of distinct points 𝑥, 𝑦 ∈ 𝑋 there

exists open sets𝑈,𝑉 ⊆ 𝑋 such that 𝑥 ∈ 𝑈 and 𝑦 ∈ 𝑉 , but 𝑥 ∉ 𝑉 and 𝑦 ∉ 𝑈

Proposition 12.4.2. A space𝑋 is T1 if and only if the constant sequence (𝑥)𝑖∈N converges

to 𝑥 and only to 𝑥.
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Proof. (⇒) Suppose 𝑋 is T1, then certainly 𝑥 → 𝑥. Let 𝑦 ∈ 𝑋 be distinct of 𝑥, then

by the T1 property, there exists a neighbourhood 𝑈 ∋ 𝑦 such that 𝑥 ∉ 𝑈 , hence (𝑥)𝑖∈N
does not converge to 𝑦. (⇐) Suppose 𝑋 is not T1, then choose 𝑦 ∈ 𝑋 for which every

neighbourhood𝑈 ∋ 𝑦 contains 𝑥, then 𝑥 → 𝑦. ♮

Definition 12.4.3 (Hausdorff space). We say that a topological space 𝑋 is Hausdorff

(or T2) if for all pair of distinct points 𝑥, 𝑦 ∈ 𝑋, there exists neighbourhoods 𝑈𝑥 and

𝑈𝑦 , subsets of 𝑋, such that𝑈𝑥 ∩𝑈𝑦 = ∅.

Corollary 12.4.4. Every open subset of a Hausdorff space is Hausdorff.

Proof. Let𝑋 be Hausdorff and𝑈 ⊆ 𝑋 be an open. Choose any distinct pair 𝑥, 𝑦 ∈ 𝑈 and

let𝑈𝑥 , 𝑈𝑦 ⊆ 𝑋 be neighbourhoods of 𝑥, 𝑦 such that𝑈𝑥∩𝑈𝑦 = ∅. Since𝑈𝑥∩𝑈,𝑈𝑦∩𝑈 ⊆
𝑈 are neighbourhoods of 𝑥 and 𝑦, respectively, then (𝑈𝑥 ∩𝑈) ∩ (𝑈𝑦 ∩𝑈) = ∅, hence

𝑈 is Hausdorff. ♮

Proposition 12.4.5 (Hausdorff properties). Let 𝑋 be a Hausdorff space. Then

(a) Every finite subset of 𝑋 is closed.

(b) If a sequence (𝑥𝑖) ⊆ 𝑋 converges to 𝑥 ∈ 𝑋, then the limit is unique.

Proof. (a) Let 𝑝0 ∈ 𝑋 be any point and 𝑝 ∈ 𝑋 be a distinct point. Since 𝑋 is Hausdorff,

choose 𝑈𝑝 , 𝑈𝑝0
⊆ 𝑋 such that 𝑈𝑝 ∩ 𝑈𝑝0

= ∅, hence 𝑈𝑝 ⊆ 𝑋 ∖ {𝑝0}. Since for all

𝑥 ∈ 𝑋 ∖ {𝑝0} there exists a neighbourhood 𝑈𝑥 ⊆ 𝑋 ∖ {𝑝}, hence {𝑝} must be a closed

set (every point of 𝑋 ∖ 𝐴 has a neighbourhood in 𝑋 ∖ 𝐴 is equivalent of saying that 𝐴

is closed).

(b) Suppose that 𝑥𝑖 → 𝑥 and 𝑥𝑖 → 𝑦 are two limits of the sequence. Since 𝑋 is

Hausdorff, if 𝑥 ≠ 𝑦 implies that there exists neighbourhoods 𝑈𝑥 , 𝑈𝑦 ⊆ 𝑋 for which

𝑈𝑥 ∩𝑈𝑦 = ∅. From the definition of convergence, there exists 𝑁 ∈ N such that for all

𝑖 ⩾ 𝑁, 𝑥𝑖 ∈ 𝑈𝑥 and exists 𝑀 ∈ N for which every 𝑖 ⩾ 𝑀, we have 𝑥𝑖 ∈ 𝑈𝑦 . Then, for

𝑖 ⩾ max(𝑁, 𝑀), 𝑥𝑖 ∈ 𝑈𝑥 ∩𝑈𝑦 , which cannot happen if 𝑥 ≠ 𝑦, hence 𝑥 = 𝑦. ♮

Proposition 12.4.6 (Neighbourhoods of limit points). Let 𝑋 be a Hausdorff space and

𝐴 ⊆ 𝑋. If 𝑝 ∈ 𝑋 is a limit point of 𝐴, then every neighbourhood of 𝑝 contains infinitely

many points of 𝐴.

Proof. Let 𝑝 be a limit point of 𝐴, then for any neighbourhood 𝑈𝑝 ⊆ 𝑋 we must have

(𝑈𝑝 ∖ {𝑝}) ∩ 𝐴 ≠ ∅. For the sake of contradiction, suppose that there exists a finite

number of points, 𝑛 > 1, in the set 𝑈𝑝 ∩ 𝐴 = {𝑥𝑖}𝑛𝑖=1
, which implies that 𝑈𝑝 ∩ 𝐴 is

closed. Consider now the non-empty closed set {𝑥𝑖}𝑛𝑖=1
∖ {𝑝}, then 𝑋 ∖ ({𝑥𝑖}𝑛𝑖=1

∖ {𝑝})
is open and contains 𝑝, thus is a neighbourhood of 𝑝. Notice that since the intersection

of finitely many open sets is open, then𝑈𝑝 ∩
(
𝑋 ∖

(
{𝑥𝑖}𝑛𝑖=1

∖ {𝑝}
))

is also open and is

a neighbourhood of 𝑝. However, notice that

𝐴 ∩𝑈𝑝 ∩ (𝑋 ∖ ({𝑥𝑖}𝑛𝑖=1
∖ {𝑝})) = {𝑥𝑖}𝑛𝑖=1

∩ ((𝑋 ∖ {𝑥𝑖}𝑛𝑖=1
) ∪ {𝑝}) = {𝑝}
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which is a contradiction to the fact that 𝑝 is a limit point of 𝐴 (because any neighbour-

hood of 𝑝 should also contain a point of 𝐴 other than 𝑝). Hence we conclude that

𝐴 ∩𝑈𝑝 must be infinite. ♮

Proposition 12.4.7. Let 𝑋 be a Hausdorff space and 𝐴 ⊆ 𝑋. Then the set of limit points

of 𝐴, denoted by 𝐴′, is closed in 𝑋.

Proof. Consider the complement set 𝑋∖𝐴′, we must show that it is open. Consider 𝑥 ∈
𝑋 ∖𝐴′, so that 𝑥 is not a limit point of 𝐴 and hence there exists𝑈 ⊆ 𝑋 neighbourhood

of 𝑥 such that (𝑈 ∖ {𝑥}) ∩ 𝐴 = ∅. We now show that 𝑈 ⊆ 𝑋 ∖ 𝐴′. Let 𝑝 ∈ 𝑈 be any

point, then the set 𝑈 ∖ {𝑥} is a neighbourhood of 𝑝 and is disjoint with 𝐴, hence 𝑝 is

not a limit point of 𝐴, that is, 𝑝 ∉ 𝐴′, which proves that 𝑈 ⊆ 𝑋 ∖ 𝐴′. Moreover, since

𝑋 is Hausdorff, the singleton {𝑥} is closed, hence𝑈 ∖ {𝑥} is open ♮

Proposition 12.4.8. Let 𝑓 , 𝑔:𝑋 → 𝑌 be morphisms of topological spaces, and 𝑌 be a

Hausdorff space. Then the set {𝑥 ∈ 𝑋 : 𝑓 (𝑥) = 𝑔(𝑥)} is closed in 𝑋.

Proof. Consider the complement set 𝐴 ≔ 𝑋 ∖ {𝑥 ∈ 𝑋 : 𝑓 (𝑥) = 𝑔(𝑥)}. Let any point

𝑥 ∈ 𝐴, since 𝑓 (𝑥) ≠ 𝑔(𝑥) and 𝑌 is Hausdorff, there exists neighbourhoods 𝑈1, 𝑈2 ⊆
𝑌 of 𝑓 (𝑥), 𝑔(𝑥), respectively, such that 𝑈1 ∩ 𝑈2 = ∅. Since 𝑈1, 𝑈2 are open, then

𝑓 −1(𝑈1), 𝑔−1(𝑈2) are both open, hence 𝑓 −1(𝑈1) ∩ 𝑔−1(𝑈2) is a neighbourhood of 𝑥 such

that 𝑓 −1(𝑈1) ∩ 𝑔−1(𝑈2) ⊆ 𝐴. From Proposition 12.1.19 we find that 𝐴 is open. ♮

Proposition 12.4.9. Every metric space is Hausdorff.

Proof. Let (𝑀, 𝑑) be a metric space and 𝑥, 𝑦 ∈ 𝑀 any distinct points. Let 𝑟 ≔ 𝑑(𝑥, 𝑦).
The open balls 𝐵𝑟/2(𝑥) and 𝐵𝑟/2(𝑦) are disjoint, thus 𝑀 is Hausdorff. ♮

Proposition 12.4.10. Every totally ordered set endowed with the order topology is a

Hausdorff space.

Proof. Let 𝑋 be a space endowed with the order topology. Let 𝑥, 𝑦 ∈ 𝑋 be distinct

points. Suppose that 𝑥 < 𝑦. If there exists a point 𝑧 ∈ 𝑋 such that 𝑥 < 𝑧 < 𝑦 then the

neighbourhoods of 𝑥 and 𝑦, respectively,𝑈 = {𝑢 ∈ 𝑋 : 𝑢 < 𝑧} and𝑉 = {𝑢 ∈ 𝑋 : 𝑢 > 𝑧}
are disjoint, that is 𝑈 ∩ 𝑉 = ∅. Suppose there is no such middle element, then

𝐺 = {𝑢 ∈ 𝑋 : 𝑢 < 𝑦} = {𝑢 ∈ 𝑋 : 𝑢 ⩽ 𝑥} and 𝐻 = {𝑢 ∈ 𝑋 : 𝑢 > 𝑥} = {𝑢 ∈ 𝑋 : 𝑢 ⩾ 𝑦} are

neighbourhoods of 𝑥 and 𝑦, respectively, and moreover 𝐺 ∩𝑉 = ∅. This shows that 𝑋

is Hausdorff. ♮

12.5 Countability
Definition 12.5.1 (First countable). Let 𝑋 be a topological space. We say that 𝑋 is

first countable if for all points 𝑝 ∈ 𝑋 there exists a countable basis of 𝑋 composed of

neighbourhoods of 𝑝. Equivalently 𝜒(𝑝, 𝑋) ⩽ ℵ0.
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Convergence on First Countable Spaces
Proposition 12.5.2 (Sufficient condition for Hausdorff). Let𝑋 be a first countable space.

Then, 𝑋 is Hausdorff if and only if every sequence has at most one limit

Proof. Let 𝑥, 𝑦 ∈ 𝑋 be distinct points, and ℬ be a neighbourhood basis at 𝑥 and𝒜 be

a neighbourhood basis at 𝑦. If 𝑋 is not Hausdorff, then for all 𝑛 ∈ N, choose a point

𝑥𝑛 ∈ 𝐵𝑛 ∩ 𝐴𝑛 , where 𝐵𝑛 ∈ ℬ and 𝐴𝑛 ∈ 𝒜 and consider the sequence {𝑥𝑛}𝑛∈N. Then

there exists sub-sequences {𝑥𝑘} and {𝑥 𝑗} for which 𝑥𝑘 → 𝑥 and 𝑥 𝑗 → 𝑦. ♮

Definition 12.5.3 (Nested neighbourhood basis). Let 𝑋 be a topological space and a

point 𝑝 ∈ 𝑋. The infinite sequence of neighbourhoods of 𝑝, namely (𝑈𝑖)𝑖∈N is said to be

a nested neighbourhood basis at 𝑝 if for all 𝑖 ∈ N, 𝑈𝑖+1 ⊆ 𝑈𝑖 and for all neighbourhood

𝑉 of 𝑝, there exists 𝑖 ∈ N for which𝑈𝑖 ⊆ 𝑉 .

Lemma 12.5.4. Let 𝑋 be a first countable topological space. Then, for all points 𝑝 ∈ 𝑋
there exists a nested neighbourhood basis at 𝑝.

Proof. Since 𝑋 is first countable, let 𝒱 be a countable basis for the topology of 𝑋 at 𝑝.

If |𝒱 | < ∞ then define 𝑈𝑖 ≔ 𝑉1 ∩ · · · ∩𝑉|𝒱 | for all 𝑖 ∈ N. If |𝒱 | is infinite, then define

for all 𝑖 ∈ N the set𝑈𝑖 ≔ 𝑉1 ∩ · · · ∩𝑉𝑖 . For both cases, the sequence (𝑈𝑖)𝑖∈N is a nested

neighbourhood basis. ♮

Definition 12.5.5 (Eventually in). Let𝑋 be a topological space, and a sequence (𝑥𝑖)𝑖∈N ⊆
𝑋, and a set 𝐴 ⊆ 𝑋. We say that (𝑥𝑖)𝑖∈N is eventually in 𝐴 if 𝑥𝑖 ∈ 𝐴 for all but finitely

many 𝑖 ∈ N.

Lemma 12.5.6 (Sequence lemma). Let 𝑋 be a first countable space, and a set 𝐴 ⊆ 𝑋,

and a point 𝑝 ∈ 𝑋. Then

(a) 𝑝 ∈ Cl𝐴 if and only if 𝑝 is a limit of points of 𝐴.

(b) 𝐴 is closed in 𝑋 if and only if 𝐴 contains every limit point of sequences in 𝐴.

(c) 𝑝 ∈ Int(𝐴) if and only if all sequences that converge to 𝑝 are eventually in 𝐴.

(d) 𝐴 is open in 𝑋 if and only if every sequence in 𝑋 converging to a point of 𝐴 is

eventually in 𝐴.

Proof. (a) (⇒) Let 𝑝 ∈ Cl𝐴, then for all neighbourhoods𝑉 ⊆ 𝐴 of 𝑝, the set𝑉∩(𝐴∖{𝑝})
is non-empty. Since 𝑋 is first countable, consider (𝑈𝑖)𝑖∈N a nested neighbourhood

basis at 𝑝 and construct the sequence 𝑥: N→ ⋃
𝑖∈N𝑈𝑖 ∩ (𝐴 ∖ {𝑝}) defined as 𝑖 ↦→ 𝑥𝑖 ∈

𝑈𝑖 ∩ (𝐴 ∖ {𝑝}). We’ll show that 𝑥𝑖 → 𝑝. Consider 𝑉 ⊆ 𝑋 any neighbourhood of 𝑝,

since (𝑈𝑖)𝑖∈N is a basis then there exists an indexing set 𝐼𝑉 ⊆ N for which𝑉 =
⋃
𝑖∈𝐼𝑉 𝑈𝑖 .

Consider the index 𝑛 ≔ min(𝐼𝑉), then, from the definition of the nested basis, we have

for all 𝑖 ⩾ 𝑛 the elements 𝑥𝑖 ∈ 𝑉 ∩ 𝐴, hence 𝑥𝑖 → 𝑝. (⇐) Suppose that (𝑥𝑖)𝑖∈N is

a sequence of points in 𝐴 such that 𝑥𝑖 → 𝑝. From definition, for all neighbourhood

𝑉 ⊆ 𝑋 of 𝑝, there exists 𝑛 ∈ N such that ∀𝑖 ⩾ 𝑁, 𝑥𝑖 ∈ 𝑉 , moreover, since 𝑥𝑖 ∈ 𝐴 then

𝑥𝑖 ∈ 𝑉 ∩ 𝐴 which implies that 𝑝 ∉ Ext(𝐴), hence 𝑝 ∈ Cl𝐴.
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(b) (⇒) Suppose that 𝐴 is closed, then 𝐴 = Cl𝐴. Consider any sequence (𝑥𝑖)𝑖∈N
of points in 𝐴 and let 𝑥𝑖 → 𝑝. From item (a) we have that 𝑝 ∈ 𝐴. (⇐) Suppose the

contrary, then given any 𝑝 ∈ Cl𝐴 we have 𝑝 ∈ 𝐴, which implies that 𝐴 is closed.

(c) (⇒) Suppose 𝑝 ∈ Int(𝐴). Let (𝑥𝑖)𝑖∈N ⊆ 𝑋 be a sequence such that 𝑥𝑖 → 𝑝.

Consider any neighbourhood 𝑉 ⊆ 𝐴 of 𝑝, then from the definition of convergence,

exists 𝑁 ∈ N such that ∀𝑖 ⩾ 𝑁, 𝑥𝑖 ∈ 𝑉𝑝 , then there exists at most 𝑁 − 1 points of (𝑥𝑖)𝑖∈N
outside𝐴, hence the sequence is eventually in𝐴. (⇐) Suppose (𝑥𝑖)𝑖∈N is not-eventually

in 𝐴 and 𝑥𝑖 → 𝑝. For the sake of contradiction, suppose that 𝑝 ∈ Int(𝐴), then given

a neighbourhood 𝑉 ⊆ 𝐴 of 𝑝, there must exist 𝑁 ∈ N such that ∀𝑖 ⩾ 𝑁, 𝑥𝑖 ∈ 𝑉 ⊆ 𝐴,

which is a contradiction to the fact that (𝑥𝑖)𝑖∈N is not-eventually in 𝐴, hence 𝑝 ∉ Int(𝐴).
(d) (⇒) Let 𝐴 be open, then 𝐴 = Int(𝐴). Given any 𝑝 ∈ 𝐴 we have from item (c)

that 𝑝 is the limit of all of its converging sequences are eventually in 𝐴. (⇐) Suppose

the contrary, and let 𝑝 ∈ 𝐴 be any point. From item (c) we see that 𝑝 ∈ Int(𝐴), which

implies that 𝐴 ⊆ Int(𝐴) and hence 𝐴 is open. ♮

Second Countable Spaces and Covers
Definition 12.5.7 (Second countable). A topological space 𝑋 is second countable if it

admits a countable basis for its topology. Equivalently 𝑤(𝑋) ⩽ ℵ0.

Definition 12.5.8 (Cover). Let 𝑋 be a topological space and𝒰 ⊆ 2
𝑋

. We say that𝒰 is

a cover of 𝑋 if for all points 𝑥 ∈ 𝑋 there exists𝑈 ∈ 𝒰 such that 𝑥 ∈ 𝑈 .

Definition 12.5.9 (Open and closed covers). Let 𝒰 be a cover of a space 𝑋. If all

elements 𝑈 ∈ 𝒰 are opens in 𝑋, then 𝒰 is said to be open. On the other hand, if all

𝑈 ∈ 𝒰 are closed in 𝑋, then𝒰 is said to be closed.

Definition 12.5.10 (Subcover). Let𝒰 be a cover of a space 𝑋. If𝒰 ′ ⊆ 𝒰 is a cover for

𝑋, then we call it a subcover of𝒰 .

Although formally we should always write down if the cover is either open or

closed, I’ll slip here and there and every time that I use the term “cover” and do

not specify its type, it should be understood that I’m talking about open covers —

otherwise I’ll specifically write “closed cover” in order to avoid any confusion.

Proposition 12.5.11 (Basis out of covers). Let 𝒰 be an open cover of the space 𝑋. For

all 𝑈 ∈ 𝒰 , define ℬ𝑈 as the basis for the subspace 𝑈 . Then union

⋃
𝑈∈𝒰 ℬ𝑈 is a basis

for 𝑋.

Proof. Define ℬ ≔
⋃
𝑈∈𝒰 ℬ𝑈 . Clearly

⋃
𝐵∈ℬ 𝐵 =

⋃
𝑈∈𝒰

⋃
𝐵∈ℬ𝑈 𝐵 = 𝑋 — since every

element of 𝑋 can be found in 𝒰 and ℬ𝑈 ⊆ 2
𝑈 ⊆ 2

𝑋
. Let 𝑥 ∈ 𝑋 be any point and

let 𝑈 ∈ 𝒰 be a neighbourhood of 𝑥. Notice that on 𝑈 the basis ℬ𝑈 satisfies the local

intersecting condition (see Item 2). Since 𝑥 ∈ 𝑋 is any point, then the condition is true

globally for ℬ, thus ℬ is a basis for 𝑋. ♮

Corollary 12.5.12 (Second countable out of a cover). Let𝒰 be a countable open cover

of the space 𝑋. If every𝑈 ∈ 𝒰 is second countable, then 𝑋 is second countable.
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Proof. We consider ℬ as in Proposition 12.5.11, the union of the basis ℬ𝑈 for the cover

elements 𝑈 ∈ 𝒰 — and since 𝑈 is second countable, we choose ℬ𝑈 to be a countable

cover. Since𝒰 is countable and so is every basis contained in the basisℬ, we conclude

that ℬ itself is countable and by Proposition 12.5.11 we find that ℬ is a basis for 𝑋. ♮

Definition 12.5.13 (Lindelöf space). A space𝑋 is said to be Lindelöf if every open cover

of 𝑋 has a countable subcover.

Definition 12.5.14 (Separable space). A space 𝑋 is said to be separable if it contains a

countable dense subset.

Proposition 12.5.15 (Properties of second countable spaces). The following properties

hold

(SC1) A second countable space is first countable.

(SC2) A second countable space is separable.

(SC3) A second countable space is Lindelöf.

Proof. Let ℬ be a countable basis for 𝑋. (SC1) Let a point 𝑝 ∈ 𝑋, then the set ℬ𝑝 ⊆ ℬ
of neighbourhoods of 𝑝 is a countable basis for 𝑋 at 𝑝.

(SC2) Let 𝑓 : 𝐼 → ⋃
𝐵∈ℬ 𝐵 with 𝑛 ↦→ 𝑥𝑛 , where |𝐼| = |𝐵| is an indexing set, and 𝑥 ∈ 𝑋

be any point, and any neighbourhood of𝑉𝑥 ⊆ 𝑋 of 𝑥. Since 𝐵 is a basis, there exists an

indexing set 𝐼𝑉𝑥 such that 𝑉𝑥 =
⋃
𝑖∈𝐼𝑉𝑥 𝐵𝑖 , hence 𝑉𝑥 ∩𝐴 is non-empty. Moreover, define

a sequence (𝑥𝑖)𝑖∈𝐼𝑉𝑥 such that 𝑥𝑖 ∈ 𝐵𝑖 . Notice that clearly 𝑥𝑖 → 𝑥, from the fact that 𝑉𝑥
is a neighbourhood of 𝑥, and 𝑥𝑖 ∈ 𝐴, from Lemma 12.5.6 we have that 𝑥 ∈ Cl(im( 𝑓 )).
Hence we conclude that 𝑋 = Cl(im( 𝑓 )) and thus im( 𝑓 ) is a countable dense subset of

𝑋.

(SC3) Let 𝒰 be a cover for 𝑋 and define ℬ′ ≔ {𝐵 ∈ ℬ : 𝐵 ⊆ 𝑈(𝑈 ∈ 𝒰)}, and

𝒰 ′ ≔ {𝑈 ∈ 𝒰 : 𝐵 ⊆ 𝑈(𝐵 ∈ ℬ′)}. We’ll show that 𝒰 ′ is a subcover of 𝒰 . Let 𝑥 ∈ 𝑋
be any point. since𝒰 covers 𝑋 then there exists 𝑈𝑥 ∈ 𝒰 such that 𝑥 ∈ 𝑈𝑥 . Moreover,

since ℬ is a basis for the topology of 𝑋, then there exists 𝐵𝑥 ∈ ℬ such that 𝐵𝑥 ⊆ 𝑈𝑥 , so

that 𝐵𝑥 ∈ ℬ′ and 𝑈𝑥 ∈ 𝒰 ′ from the construction of the collections. Hence 𝒰 ′ covers

𝑋. ♮

Proposition 12.5.16. Given a metric space 𝑀, the following properties are equivalent

(MS1) 𝑀 is second countable.

(MS2) 𝑀 is separable.

(MS3) 𝑀 is Lindelöf.

Proof. (Separable⇒ Lindelöf) Suppose 𝑀 is separable and let 𝐴 be a countable dense

set in 𝑀. Let 𝒰 be a cover of 𝑀 and define the collection 𝒰 ′ ≔ {𝑈 ∈ 𝒰 : 𝑈 ⊇
𝐵(𝑎, 𝑟), (𝑎, 𝑟) ∈ 𝐴 ×Q}, where 𝐵(𝑎, 𝑟) is the open ball of radius 𝑟 around 𝑎. We show

that 𝒰 ′ is a subcover of 𝑀. Let 𝑥 ∈ 𝑀 be any point. Since 𝒰 covers 𝑀 then there

exists 𝑈𝑥 ∈ 𝒰 such that 𝑥 ∈ 𝑈𝑥 . Since 𝑀 is a metric space, there exists an open ball
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𝐵(𝑥, ℓ ) ⊆ 𝑈𝑥 for some ℓ ∈ R. Since 𝐴 is dense in 𝑀, there exists a point 𝑎 ∈ 𝐴 such that

𝑎 ∈ 𝐵(𝑥, ℓ/2). Now, from the fact that Q is dense in R we conclude that there exists an

𝑟 ∈ Q such that 𝑑(𝑥, 𝑎) < 𝑟 < ℓ/2. Notice that 𝐵(𝑎, 𝑟) ⊆ 𝐵(𝑥, 𝑟) ⊆ 𝑈𝑥 , hence 𝑈𝑥 ∈ 𝒰 ′.
Therefore𝒰 ′ is a subcover of𝒰 , and since |𝒰 ′| = |𝐴×Q|, we find that𝒰 ′ is countable.

(Lindelöf ⇒ second countable) Suppose 𝑀 is Lindelöf, then given a cover 𝒰 ≔

{𝐵(𝑥, 1

𝑛 ) ⊆ 𝑀 : 𝑥 ∈ 𝑀, 𝑛 ∈ N} of 𝑀 there exists a countable subcover𝒰 ′. Let 𝑈 ⊆ 𝑀
be any open set and let 𝑥 ∈ 𝑈 be any point. Since 𝑀 is a metric space, there exists 𝑟 > 0

such that 𝐵(𝑥, 𝑟) ⊆ 𝑈 . Define now 𝑛 ∈ 𝑁 such that
1

𝑛 < 𝑟
2
. Since 𝒰 ′ is a cover of 𝑀,

there exists a 𝐵(𝑝, 1

𝑛 ) ∈ 𝒰 ′ such that 𝑥 ∈ 𝐵(𝑝, 1

𝑛 ). We now show that 𝐵(𝑝, 1

𝑛 ) ⊆ 𝐵(𝑥, 𝑟).
Let 𝑦 ∈ 𝐵(𝑝, 1

𝑛 ) be any point, then 𝑑(𝑝, 𝑦) < 1

𝑛 , moreover 𝑑(𝑥, 𝑝) < 1

𝑛 , hence we conclude

that 𝑑(𝑥, 𝑦) ⩽ 𝑑(𝑥, 𝑝) + 𝑑(𝑝, 𝑦) < 2

𝑛 < 𝑟. This implies in particular that 𝑦 ∈ 𝐵(𝑥, 𝑟) and

in general that 𝐵(𝑝, 1

𝑛 ) ⊆ 𝐵(𝑥, 𝑟) ⊆ 𝑈 . Hence we conclude that 𝑈 can be written as a

union of elements of𝒰 ′, which implies that𝒰 ′ is a countable basis for 𝑀.

By means of Proposition 12.5.15 we conclude the equivalence chain. ♮

Corollary 12.5.17. Euclidean spaces are countable.

Proof. Lets consider R𝑛
, notice that Q𝑛

is dense in R𝑛
and countable, thus R𝑛

is sepa-

rable, which by Proposition 12.5.16 implies that R𝑛
is second countable. ♮

Weights and Cardinality
Proposition 12.5.18. Let 𝑋 be a topological space and 𝑤(𝑋) ⩽ m. Then for every

collection {𝑈𝑖}𝑖∈𝐼 ⊆ 2
𝑋

of open sets, there exists 𝐼0 ⊆ 𝐼 such that |𝐼0| ⩽ m and

⋃
𝑖∈𝐼0 𝑈𝑖 =⋃

𝑖∈𝐼𝑈𝑖 .

Proof. Since 𝐼0 ⊆ 𝐼 then clearly

⋃
𝑖∈𝐼0 𝑈𝑖 ⊆

⋃
𝑖∈𝐼𝑈𝑖 . Let ℬ be a base for 𝑋 such that

|ℬ| ⩽ m and define the collection ℬ0 ≔ {𝑈 ∈ ℬ : 𝑈 ⊆ 𝑈𝑖(𝑖 ∈ 𝐼)}. Define a function

𝑓 :ℬ0 → 𝐼 such that for all 𝑈 ∈ ℬ0 we have 𝑈 ⊆ 𝑈 𝑓 (𝑈) ∈ {𝑈𝑖}𝑖∈𝐼 . Define the indexing

set 𝐼0 ≔ 𝑓 (ℬ0) ⊆ 𝐼. Notice that |𝐼0| ⩽ |ℬ| ⩽ m. For any point 𝑥 ∈ ⋃
𝑖∈𝐼𝑈𝑖 there exists

𝑖 ∈ 𝑆 such that 𝑥 ∈ 𝑈𝑖 , and hence exists 𝑈 ∈ ℬ such that 𝑥 ∈ 𝑈 ⊆ 𝑈𝑖 , from the fact

that ℬ is a basis. From the definition of ℬ0 it follows that𝑈 ∈ ℬ0 and hence 𝑓 (𝑈) ∈ 𝐼0.

Therefore, from the construction of 𝑓 it follows that 𝑥 ∈ 𝑈 ⊆ 𝑈 𝑓 (𝑈) ⊆
⋃
𝑖∈𝐼0 𝑈𝑖 . From

this we conclude that

⋃
𝑖∈𝐼𝑈𝑖 ⊆

⋃
𝑖∈𝐼0 𝑈𝑖 . ♮

Proposition 12.5.19. Let 𝑋 be a topological space. If 𝑤(𝑋) ⩽ m, then for every base ℬ
for the topology of 𝑋 there exists a base ℬ0 such that |ℬ0| ⩽ m and ℬ0 ⊆ ℬ.

Proof. Suppose m ⩾ ℵ0. Let ℬ ≔ {𝑈𝑖}𝑖∈𝐼 be any base for the space 𝑋. Define a base

ℬ1 ≔ {𝑊𝑡}𝑡∈𝑇 for 𝑋 such that |𝑇| ⩽ m.

For all 𝑡 ∈ 𝑇 define the set 𝐼(𝑡) ≔ {𝑖 ∈ 𝐼 : 𝑈𝑖 ⊆ 𝑊𝑡}. From the fact that 𝑊𝑡 is open

and ℬ is a base for 𝑋, we have that 𝑊𝑡 =
⋃
𝑖∈𝐼(𝑡)𝑈𝑖 . From Proposition 12.5.18 we find

that there exists 𝐼0(𝑡) ⊆ 𝐼(𝑡) for which |𝐼0(𝑡)| ⩽ m and

𝑊𝑡 =

⋃
𝑖∈𝐼(𝑡)

𝑈𝑖 =

⋃
𝑖∈𝐼0(𝑡)

𝑈𝑖 (12.1)
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Now, define the set ℬ0 ≔ {𝑈𝑖}𝑖∈𝐼(𝑡),𝑡∈𝑇 ⊆ ℬ. Since |𝑇|, |𝑆0(𝑡)| ⩽ m and the fact that

m2 = m, we find that |ℬ0| ⩽ m. We now show that ℬ0 is a base for the space 𝑋. Let

a any point 𝑥 ∈ 𝑋 and a neighbourhood 𝑈 ⊆ 𝑋 of 𝑥. From the hypothesis that ℬ1

is a basis, there exists 𝑡 ∈ 𝑇 such that 𝑊𝑡 ⊆ 𝑈 . On the other hand Eq. (12.1) ensures

the existence of an 𝑖 ∈ 𝐼0(𝑡) such that 𝑈𝑖 ⊆ 𝑊𝑡 ⊆ 𝑈 . Since 𝑈𝑖 ∈ ℬ0, we find that ℬ0 is

indeed a basis for 𝑋. ♮

12.6 Filters and Nets
Definition 12.6.1 (Filter on a set). A filter on a set 𝑋 is a collection ℱ ⊆ 2

𝑋
that satisfies

the following properties

(F1) (Downward directed) Given𝐴, 𝐵 ∈ ℱ , then there exists𝐶 ∈ ℱ such that𝐶 ⊆ 𝐴∩𝐵.

(F2) (Upward closed) If 𝐴 ∈ ℱ and 𝐴 ⊆ 𝐵 then 𝐵 ∈ ℱ .

(F3) ℱ is non-empty.

Definition 12.6.2 (Proper filter). If ℱ is a filter of 𝑋 such that there exists 𝐴 ⊆ 𝑋 for

which 𝐴 ∉ ℱ , then we say that ℱ is a proper filter. This is equivalent of saying that

∅ ∉ ℱ .

Proposition 12.6.3 (Eventuality filter). Let 𝑋 be a topological space and (𝑥𝑖)𝑖∈N be a

sequence of points of 𝑋. The collection of sets such that (𝑥𝑖) is eventually in, explicitly

ℰ(𝑥𝑖) = {𝑈 ⊆ 𝑋 : ∀𝑖 ⩾ 𝑁, 𝑥𝑖 ∈ 𝑈(𝑁 ∈ N)},

is a filter on 𝑋.

Definition 12.6.4 (Filter base). A non-empty downward directed set is called a filter

base.

Proposition 12.6.5. Given a filter base 𝒢 on 𝑋, we define the filter generated by 𝒢 as

the collection

𝒢↑ = {𝐴 ⊆ 𝑋 : 𝐺 ⊆ 𝐴(𝐺 ∈ 𝒢)}.

Proof. Since 𝒢 is non-empty, 𝒢↑ is non-empty. Let 𝐴, 𝐵 ∈ 𝒢↑, then there are 𝐺, 𝐻 ∈ 𝒢
such that 𝐺 ⊆ 𝐴 and𝐻 ⊆ 𝐵. Since 𝐺∩𝐻 ∈ 𝒢 , then 𝐺∩𝐻 ⊆ 𝐴∩𝐵 and thus 𝐴∩𝐵 ∈ 𝒢↑.
Suppose that 𝐴 ⊆ 𝐶 where 𝐶 ⊆ 𝑋, then since 𝐺 ⊆ 𝐴, it follows that 𝐺 ⊆ 𝐶 and hence

𝐶 ∈ 𝒢↑. Therefore 𝒢↑ satisfies all of the three requirements. ♮

Proposition 12.6.6. Let 𝑋 be a topological space. The base at a point 𝑝 ∈ 𝑋, namely

ℬ𝑝 , is a filter base.

Proof. Let𝑈,𝑉 ∈ ℬ𝑝 be neighbourhoods of 𝑝. Since 𝑝 ∈ 𝑈∩𝑉 and the finite intersection

of open sets is open, then𝑈 ∩𝑉 is a neighbourhood of 𝑝 and hence𝑈 ∩𝑉 ∈ ℬ𝑝 . ♮

Definition 12.6.7 (Convergence of filters). Letℱ be a filter on a topological space (𝑋, 𝜏).
We say that ℱ converges to 𝑥, ℱ → 𝑥, if and only if ℬ𝑥 ⊆ ℱ .
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Filters determine Hausdorff, closure and continuity
Proposition 12.6.8 (Hausdorff). A topological space is Hausdorff if and only if limits

of convergent proper filters are unique.

Proof. (⇒) Let 𝑋 be a Hausdorff space and ℱ be a proper filter on 𝑋. Suppose that for

distinct 𝑥, 𝑦 ∈ 𝑋 we have ℱ → 𝑥 and also ℱ → 𝑦. Since 𝑋 is Hausdorff, let 𝑈,𝑉 ⊆ 𝑋
neighbourhoods of 𝑥 and 𝑦, respectively, and such that 𝑈 ∩ 𝑉 is empty. Notice that

since 𝑈 is a neighbourhood of 𝑥 then 𝑈 ∈ ℱ , and analogously, 𝑉 ∈ ℱ , but from the

downward directness, it follows that 𝑈 ∩ 𝑉 = ∅ ∈ ℱ , which can’t be the case since

ℱ is supposed to be proper. Hence ℱ cannot converge to distinct points of 𝑋. (⇐)

Suppose that 𝑋 is not Hausdorff and choose distinct points 𝑥, 𝑦 that are not separable

by open sets. Consider the collection ℬ = ℬ𝑥 ∩ ℬ𝑦 , then given two sets 𝐴, 𝐵 ∈ ℬ we

have that 𝐴∩ 𝐵 ∈ ℬ and therefore ℬ is a filter base. Notice that the filter ℬ↑ converges

both to 𝑥 and 𝑦. ♮

Proposition 12.6.9 (Closed). Let 𝑋 be a topological space and 𝐴 ⊆ 𝑋. A point 𝑝 ∈ Cl𝐴

if and only if there exists a proper filter ℱ with 𝐴 ∈ ℱ such that ℱ → 𝑝.

Proof. (⇒) Let 𝑝 ∈ Cl𝐴, then for all neighbourhoods 𝑈 ∈ ℬ𝑝 the set 𝑈 ∩ (𝐴 ∖ {𝑝}) is

non-empty, in particular we have that ℬ ≔ {𝑈 ∩ 𝐴 : 𝑈 ∈ ℬ𝑝} does not contain the

empty set. Hence the proper filter ℬ↑converges to 𝑝. (⇐) Let ℱ be a proper filter with

ℱ → 𝑝 and 𝐴 ∈ ℱ , then in particular we have that the downward directness implies

ℬ ⊆ ℱ and thus ∅ ∉ ℬ, hence 𝑥 ∈ Cl𝐴. ♮

Definition 12.6.10 (Pushforward of filters). Let 𝑓 :𝑋 → 𝑌 be a map of sets. The

collection of images { 𝑓 (𝐴) : 𝐴 ∈ ℱ } form a filter base whose generated filter is defined

to the be the pushforward of ℱ with respect to 𝑓 , namely 𝑓∗(ℱ ). Hence

𝑓∗(ℱ ) = {𝐵 ⊆ 𝑌 : 𝑓 (𝐴) ⊆ 𝐵(𝐴 ∈ ℱ )}.

Proposition 12.6.11 (Continuity). A map 𝑓 :𝑋 → 𝑌 is continuous if and only if for

every given filter ℱ on 𝑋 such that ℱ → 𝑥, then 𝑓∗(ℱ ) → 𝑓 (𝑥), where 𝑥 ∈ 𝑋.

Proof. (⇒) Suppose 𝑓 is a continuous map and ℱ → 𝑥. From continuity of 𝑓 , for any

given neighbourhood of 𝑓 (𝑥), 𝐵 ∈ ℬ 𝑓 (𝑥), there exists a corresponding neighbourhood

of 𝑥, 𝑉 ∈ ℬ𝑥 , such that 𝑓 −1(𝐵) ⊆ 𝑉 . Since ℱ → 𝑥 if and only if ℬ𝑥 ⊆ ℱ (from

Definition 12.6.7), then in particular 𝑓 −1(𝐵) ∈ ℱ , since 𝑓 −1(𝐵) ∈ ℬ𝑥 , is a neighbourhood

of 𝑥. Hence, if 𝐵 ∈ ℬ 𝑓 (𝑥) is any element and 𝐴 = 𝑓 −1(𝐵), then 𝑓 (𝐴) ⊆ 𝐵, which implies

that ℬ 𝑓 (𝑥) ⊆ 𝑓∗(ℱ ) from the definition of the pushforward, therefore 𝑓∗(ℱ ) → 𝑓 (𝑥).
(⇐) Suppose now that for any filterℱ on𝑋 such thatℱ → 𝑥, implies 𝑓∗(ℱ ) → 𝑓 (𝑥).

Given any open set 𝑈 ⊆ 𝑌, if 𝑈 ∩ im( 𝑓 ) = ∅ then 𝑓 −1(𝑈) = ∅ and hence is open,

otherwise there exists 𝑥 ∈ 𝑋 for which 𝑓 (𝑥) ∈ 𝑈 . Given such a point 𝑥 ∈ 𝑋, take

ℱ = ℬ↑𝑥 so that from hypothesis 𝑓∗(ℱ ) → 𝑓 (𝑥) and hence ℬ 𝑓 (𝑥) ⊆ 𝑓∗(ℱ ). Since 𝑈 is

open, then 𝑈 ∈ ℬ 𝑓 (𝑥), which in turn implies that 𝑈 ∈ 𝑓∗(ℱ ) and from definition there

must exist a set𝑉 ∈ ℱ , which happens to be a neighbourhood of 𝑥, such that 𝑓 (𝑉) ⊆ 𝐵,

thus 𝑓 is continuous. ♮
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Write on nets later

12.7 Topological Manifolds

Locally Euclidean
Definition 12.7.1 (Locally euclidean). Let 𝑀 be a topological space. We say that 𝑀 is

locally euclidean of dimension 𝑛 if for all points 𝑥 ∈ 𝑋 there exists a neighbourhood

𝑈𝑥 ⊆ 𝑀 of 𝑥 such that exists an open set 𝑉 ⊆ R𝑛
for which 𝑈𝑥 ≃ 𝑉 , that is, 𝑈𝑥 is

isomorphic to 𝑉 .

Proposition 12.7.2. Let 𝐵𝑛 ⊆ R𝑛
be any open ball, then the morphism

𝜑: 𝐵𝑛 → R𝑛 , 𝑥 ↦−→ 𝑥

1 − |𝑥|

is an isomorphism 𝐵𝑛 ≃ R𝑛
.

Lemma 12.7.3. A topological space 𝑀 is locally euclidean of dimension 𝑛 if and only

if either of the following is true:

(a) Every point of 𝑀 has a neighbourhood in 𝑀 that is isomorphic to an open ball in

R𝑛
.

(b) Every point of 𝑀 has a neighbourhood in 𝑀 that is isomorphic to R𝑛
.

Proof. From Proposition 12.7.2, we find that the proof of one of the two statements

proves the other. Lets prove the first one of them. (⇐) Since 𝐵𝑛 ⊆ R𝑛
is an open of R𝑛

we conclude from the definition Definition 12.7.1 that 𝑀 is indeed locally euclidean.

(⇒) Suppose 𝑀 is a locally euclidean 𝑛-dimensional topological space, then let any

point 𝑝 ∈ 𝑀 and define 𝑈𝑝 ⊆ 𝑀 be a neighbourhood of 𝑝 such that exists 𝑉 ⊆ R𝑛
for

which we can define an isomorphism 𝜙:𝑈𝑝 → 𝑉 . From the fact that the collection of

open balls in R𝑛
form a basis for R𝑛

, we conclude that there exists an open ball 𝐵𝑛 ⊆ 𝑉
for which 𝑝 ∈ 𝐵𝑛 . Thus the open set 𝜓−1(𝐵) ⊆ 𝑀 is a neighbourhood of 𝑝. Since

𝜙 is an isomorphism, then the morphism 𝜓|−1

𝐵
: 𝐵 → 𝜙−1(𝐵) is an isomorphism, thus

𝐵 ≃ 𝜙−1(𝐵) as wanted. ♮

Proposition 12.7.4. Every locally euclidean space is first countable.

prove

Definition 12.7.5 (Miscellaneous). Let 𝑀 be a locally euclidean 𝑛-dimensional topo-

logical space. We define:

(C1) (Coordinate domain) An open set𝑈 ⊆ 𝑀 is called a coordinate domain of 𝑀 if it

is isomorphic to an open set of R𝑛
.
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(C2) (Coordinate map) An isomorphism 𝜙 from a coordinate domain to an open set

of R𝑛
is called a coordinate map.

(C3) (Coordinate chart) The pair (𝑈, 𝜙) of a coordinate domain and one of its coordi-

nate maps is called a coordinate chart for 𝑀. Given 𝑥 ∈ 𝑀, we say that (𝑈, 𝜙) is
a chart at 𝑥 if 𝑥 ∈ 𝑈 .

(C4) (Coordinate ball) A coordinate domain isomorphic to an open ball of R𝑛
is called

a coordinate ball.

(C5) (Coordinate neighbourhood or euclidean neighbourhood) Given a point 𝑝 ∈ 𝑀,

if 𝑈 ⊆ 𝑀 is a coordinate domain of 𝑀 such that 𝑝 ∈ 𝑈 , then we say that 𝑈 is a

coordinate neighbourhood of 𝑝.

Proposition 12.7.6. Every coordinate ball is second countable.

Proof. Let 𝑀 be a locally euclidean 𝑛-dimensional topological space and let𝑈 ⊆ 𝑀 be

a coordinate ball of 𝑀 and 𝜙:𝑈 ≃−→ 𝐵𝑛 be an isomorphism. From Corollary 12.5.17 we

find that there exists a countable basisℬ ⊆ 2
R𝑛

for 𝐵𝑛 . Since 𝜙 is an isomorphism, then

the collection of preimages {𝜙−1(𝐵) ⊆ 𝑈 : 𝐵 ∈ ℬ} is also a basis for 𝑈 and is clearly

countable — hence𝑈 is second countable. ♮

Proposition 12.7.7 (Locally euclidean from surjective morphism). Let 𝑋 be locally

euclidean of dimension 𝑛, and 𝑓 :𝑋 → 𝑌 be a surjective local isomorphism. Then 𝑌 is

locally euclidean of dimension 𝑛.

Proof. Let ℬ be a basis for 𝑋. Since 𝑓 is continuous, surjective and a open (see

Proposition 12.2.14), we can use Proposition 12.2.7 to conclude that 𝑓 (ℬ) is a basis for

𝑌. Since 𝑓 is a local isomorphism, given any point 𝑦 ∈ 𝑌, choose a neighbourhood

𝑉𝑦 ∈ 𝑓 (ℬ), so that there exists a 𝐵 ∈ ℬ such that 𝑓 (𝐵) = 𝑉𝑦 . Consider the isomorphism

𝑓 |𝐵: 𝐵 → 𝑉𝑦 . Since 𝑋 is locally euclidean of dimension 𝑛, there exists an open set

𝑊 ⊆ R𝑛
such that 𝐵 ≃ 𝑊 . Moreover, since 𝐵 ≃ 𝑉𝑦 , then 𝑉𝑦 ≃ 𝑊 . We conclude that 𝑌

is locally euclidean of dimension 𝑛. ♮

Topological Manifold
Definition 12.7.8 (Topological manifold). An 𝑛-dimensional topological manifold is a

second countable Hausdorff space that is locally euclidean 𝑛-dimensional.

Proposition 12.7.9. Every topological manifold admits a basis of coordinate balls.

Proof. Let 𝑀 be a 𝑛-dimensional topological manifold. From Lemma 12.7.3 we can

take, for every point 𝑝 ∈ 𝑀, a neighbourhood 𝑈 ⊆ 𝑀 such that 𝑈 ≃ 𝐵𝑛 (an open

ball of R𝑛
). Define 𝒰 to be the collection of all coordinate balls on 𝑀, from our last

argument it follows that 𝒰 covers 𝑀. Let 𝑈,𝑈 ′ ∈ 𝒰 be intersecting coordinate balls

and 𝜙 be a coordinate isomorphism of either𝑈 or𝑈 ′. Let 𝑝 ∈ 𝑈 ∩𝑈 ′ be any point and

define a ball 𝐵𝑛𝑝 ⊆ 𝜙(𝑈 ∩𝑈 ′) ⊆ R𝑛
that is a neighbourhood of 𝜙(𝑝) ∈ R𝑛

. Let 𝑉 ⊆ 𝑀
be defined as𝑉 ≔ 𝜙−1(𝐵𝑛) so that𝑉 ⊆ 𝑈 ∩𝑈 ′ and also 𝑝 ∈ 𝑉 . Notice that the induced
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map 𝜓:𝑉 → 𝐵𝑛 , defined by 𝜓(𝑥) ≔ 𝜙(𝑥), is an isomorphism — that is, 𝑉 ∈ 𝒰 and

hence𝒰 is a basis for 𝑀 (see Proposition 12.1.5). ♮

Proposition 12.7.10. Every open subset of an 𝑛-manifold is itself an 𝑛-manifold.

Proof. Consider 𝑈 ⊆ 𝑀 an open set and let 𝑝 ∈ 𝑈 . Then consider 𝑉 ⊆ 𝑀 to be a

coordinate neighbourhood of 𝑥 such that 𝑉 ≃ 𝐵 ⊆ R𝑛
, then the set 𝑈 ∩𝑉 is open and

isomorphic to a subset of 𝐵 and hence𝑉 is 𝑛-dimensional locally euclidean. Moreover,

since a subset of a Hausdorff space is Hausdorff and a subset of a second countable

space is second countable, then𝑈 is indeed a 𝑛-manifold. ♮

Definition 12.7.11. The empty topological space is an 𝑛-manifold for all 𝑛 > 0.

Theorem 12.7.12 (Dimension invariance). If𝑚 ≠ 𝑛, then a non-empty topological space

cannot be both 𝑛-manifold and 𝑚-manifold.

Proposition 12.7.13. A separable metric space that is locally euclidean of dimension 𝑛

is an 𝑛-manifold.

Proof. From Proposition 12.5.16, since 𝑀 is separable then it is also second countable.

Moreover, from Proposition 12.4.9 we find that 𝑀 is Hausdorff. Hence 𝑀 is an 𝑛-

manifold. ♮

Proposition 12.7.14. Every topological manifold is separable and metrizable.

Proof. Notice that since a manifold is second countable, then by Proposition 12.5.15 we

find that it is separable.

After proving Urysohn metrization theorem, prove the metrizability property

♮

Manifolds with Boundary
Definition 12.7.15 (Upper half-space). We define the closed 𝑛-dimensional upper half-

space H𝑛 ⊆ R𝑛
as

H𝑛 ≔ {𝑥 ∈ R𝑛
: 𝜋𝑛(𝑥) ⩾ 0}

where 𝜋𝑛 is the projection of the 𝑛-th coordinate. We define the boundary of H𝑛
as

𝜕H𝑛 ≔ {𝑥 : 𝜋𝑛(𝑥) = 0}, and the interior as Int(H𝑛) ≔ {𝑥 : 𝜋𝑛(𝑥) > 0}.

Definition 12.7.16 (Manifold with boundary). We define an 𝑛-dimensional topological

manifold with boundary to be a second countable Hausdorff space such that each point

has a neighbourhood isomorphic to an open set of R𝑛
or H𝑛

.

Definition 12.7.17 (Miscellaneous). Let𝑀 be an 𝑛-manifold with boundary. We define

(MB1) A coordinate chart for 𝑀 is a pair (𝑈, 𝜙), where 𝑈 ⊆ 𝑀 is an open set and

𝜙:𝑈 ≃−→ 𝑉 is an isomorphism, where 𝑉 ⊆ R𝑛
or 𝑉 ⊆ H𝑛

. We say that the chart

is an interior chart if𝑉 is an open subset of R𝑛
. A chart is said to be a boundary

chart if 𝑉 is an open subset of H𝑛
with im(𝜙) ∩ 𝜕H𝑛 ≠ ∅.
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(MB2) A point 𝑝 ∈ 𝑀 is called an interior point of 𝑀 if it is contained in the domain of

an interior chart. The collection of such points is called the interior of 𝑀, and

is denoted Int(𝑀).

(MB3) A point 𝑝 ∈ 𝑀 is called a boundary point of 𝑀 if it is in the domain of a

boundary chart that maps 𝑝 to a point of H𝑛
. The boundary of 𝑀, is defined

as the collection of such points and is denoted by 𝜕𝑀.

Proposition 12.7.18. If 𝑀 is an 𝑛-dimensional manifold with boundary, then Int(𝑀) is
an open subset of 𝑀, which is itself an 𝑛-dimensional manifold (without boundary).

Proof. Let 𝑝 ∈ Int(𝑀) be any point, then by definition we have that 𝑝 ∈ 𝑈 where (𝑈, 𝜙)
is an interior chart for𝑀 and therefore𝑈 ≃ 𝑉 where𝑉 is some open subset of R𝑛

, hence

locally euclidean, which makes Int(𝑀) an 𝑛-dimensional manifold (since a subset of a

Hausdorff space is Hausdorff and a subset of a second countable space is again second

countable). To prove that Int(𝑀) is open, we can use the fact that 𝑀 is first countable

and lemma Lemma 12.5.6. First, suppose the converse, so that (𝑥𝑖)𝑖∈N is a sequence of

points in 𝑀 that is not-eventually in Int(𝑀) and, for the sake of contradiction, 𝑥𝑖 → 𝑝.

Consider the open neighbourhood 𝑈 of 𝑝 (which happens to be the chart domain), if

𝑥𝑖 → 𝑝 then there exists 𝑁 ∈ N such that 𝑥𝑖 ∈ 𝑈 for all 𝑖 ⩾ 𝑁 , but notice that every

point of 𝑈 is an interior point of 𝑀, therefore 𝑥𝑖 ∈ Int(𝑀), which is a contradiction to

the hypothesis that the sequence is not-eventually in Int(𝑀). Hence such sequences

cannot converge to 𝑝, and Int(𝑀) is open. ♮

Theorem 12.7.19 (Boundary invariance). Let 𝑀 be a manifold with boundary, then

𝜕𝑀 ∩ Int(𝑀) = ∅

Proof.
Proof to come far ahead

♮

Corollary 12.7.20. If 𝑀 is a non-empty 𝑛-manifold with boundary, then the collection

𝜕𝑀 is closed in 𝑀, and 𝑀 is an 𝑛-manifold if and only if 𝜕𝑀 = ∅.

Proof. Since 𝜕𝑀 = 𝑀∖ Int(𝑀) from theorem Theorem 12.7.19 and Int(𝑀) is open from

Proposition 12.7.18, then it follows that 𝜕𝑀 is closed. (⇒) Moreover, suppose that 𝑀

is a manifold, then given any point 𝑝 ∈ 𝑀 there exists an interior chart (𝑈, 𝜙) such

that 𝑝 ∈ 𝑈 ⊆ Int(𝑀), hence Int(𝑀) = 𝑀, and from Theorem 12.7.19 we conclude that

𝜕𝑀 = ∅. (⇐) Suppose that 𝜕𝑀 = ∅, then from Theorem 12.7.19 we conclude that

𝑀 = Int(𝑀), which is a manifold by Proposition 12.7.18. ♮
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Chapter 13

Top — Universal Properties

13.1 Prelude
Before diving into the construction of new spaces from old using the classical cate-

gorical notions of limits over diagrams, lets first stablish the definition of initial and

final topologies, that will classify the kind of topology each of these new constructions

receive.

Definition 13.1.1 (Initial & final topology). Let 𝑆 and 𝐽 be sets, and consider a collection

of topological spaces (𝑋𝑗)𝑗∈𝐽 . We define the following notions:

(a) Given a collection of set-functions ( 𝑓𝑗 : 𝑆→ 𝑋𝑗)𝑗∈𝐽 , we define the initial topology 𝜏
initial

on 𝑆 — induced by ( 𝑓𝑗)𝑗∈𝐽 — to be the minimum collection of open sets such that

𝑓𝑗 : (𝑆, 𝜏initial
) → 𝑋𝑗 are continuous maps.

(b) Given a collection of set-functions (𝑔𝑗 :𝑋𝑗 → 𝑆)𝑗∈𝐽 , we define the final topology 𝜏
final

on 𝑆 — induced by (𝑔𝑗)𝑗∈𝐽 — to be the maximum collection of open sets such that

𝑔𝑗 :𝑋𝑗 → (𝑆, 𝜏final
) are continuous maps.

13.2 Subspace

Construction
Definition 13.2.1 (Subspace topology). Given a topological space (𝑋, 𝜏) and a subset

𝑆 ⊆ 𝑋, we define the space (𝑆, 𝜏𝑆) as a subspace of 𝑋 if

𝜏𝑆 = {𝑈 ⊆ 𝑆 : 𝑈 = 𝑆 ∩𝑉, 𝑉 ∈ 𝜏}.

If so, we call 𝜏𝑆 the relative topology or subspace topology.

Proposition 13.2.2. Let 𝑋 be a topological space and 𝑆 be a subspace of 𝑋. A set 𝐴 ⊆ 𝑆
is closed in 𝑆 if and only if 𝐴 = 𝑆 ∩ 𝐹 for some closed set 𝐹 ⊆ 𝑋 with respect to 𝑋. The

closure of 𝐴 with respect to 𝑆, denoted 𝐴, is such that 𝐴 = 𝑆 ∩ Cl𝐴.
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Proof. (⇒) Suppose 𝐴 is a closed set in 𝑆, then 𝑆 ∖ 𝑆 = 𝑆 ∩𝑈 is open and hence 𝑈 is

some open set of 𝑋. Then

𝐴 = 𝑆 ∖ (𝑆 ∖ 𝐴) = 𝑆 ∖ (𝑆 ∩𝑈) = 𝑆 ∩ (𝑋 ∖𝑈)

where 𝑋 ∖𝑈 is closed, hence 𝐴 equals to the intersection of 𝑆 with a closed set of 𝑋.

(⇐) Suppose that 𝐴 = 𝑆 ∩ 𝐹 for a closed set 𝐹 in 𝑋. Then we have

𝑆 ∖ 𝐴 = 𝑆 ∖ (𝑆 ∩ 𝐹) = 𝑆 ∩ (𝑋 ∖ 𝐹)

Since 𝑋 ∖ 𝐹 is open, then 𝑆 ∖ 𝐴 is open. We conclude that 𝐴 is closed in 𝑆.

For the last proposition, notice that 𝐴 =
⋂{𝐹 ⊆ 𝑆 : 𝐹 ⊇ 𝐴, 𝐹 is closed in 𝑆}, that

is, the intersection of sets 𝑆 ∩ 𝐶 such that 𝐶 is closed in 𝑋 and 𝐶 ⊇ 𝐴, so that

𝐴 = 𝑆 ∩ Cl𝐴. ♮

Proposition 13.2.3. Let 𝑋 be a topological space and 𝑆 be a subspace. Then

(a) If𝑈 ⊆ 𝑆 is open (resp. closed) and 𝑆 is an open (resp. closed) subset of 𝑋, then 𝑈

is open (resp. closed) in 𝑋.

(b) If𝑈 ⊆ 𝑆 and𝑈 is open (resp. closed) in 𝑋, then it is open (resp. closed) in 𝑆.

Proof. (a) Suppose that 𝑈 is open in 𝑆 and 𝑆 is open in 𝑋. From the definition of the

relative topology, there exists an open 𝑉 ⊆ 𝑋 in 𝑋 such that 𝑈 = 𝑆 ∩ 𝑉 . Since 𝑆 and

𝑉 are both open in 𝑋, then 𝑈 is open in 𝑋. From Proposition 13.2.2 we find that if 𝑈

is closed in 𝑆 then 𝐵 = 𝑆 ∩ 𝐹 for some closed set 𝐹 ⊆ 𝑋. Moreover, if 𝑆 is closed in 𝑋,

then clearly 𝐵 is closed in 𝑋.

(b) If 𝐵 ⊆ 𝑆 then clearly 𝐵 ∩ 𝑆 = 𝐵, hence if 𝐵 is open in 𝑋, so it is in 𝑆. Moreover, if

𝐵 is closed in 𝑋, from Proposition 13.2.2 𝐵 is closed in 𝑆. ♮

Definition 13.2.4 (Second definition of the subspace topology). Let 𝑋 be a topological

space and 𝑆 ⊆ 𝑋 be any set. The subspace topology on 𝑆 is the initial topology on the

set such that the inclusion 𝜄𝑆: 𝑆→ 𝑋 is continuous.

Corollary 13.2.5. Definitions 13.2.1 and 13.2.4 are equivalent.

Proof. Suppose 𝜏𝜄𝑆 is the initial topology such that 𝜄𝑆 is continuous and 𝜏𝑆 be the

subspace topology. Our goal is to show that they are, in fact, equal. Given any

𝑈 = 𝑆 ∩ 𝑉 ∈ 𝜏𝑆 we have 𝜄−1

𝑆
(𝑉) = 𝑆 ∩ 𝑉 = 𝑈 , since 𝑉 is open, we find that 𝑈 is open

in 𝜏𝜄𝑆 . This implies in 𝜏𝑆 ⊆ 𝜏𝜄𝑆 . Moreover, let 𝑂 ∈ 𝜏𝜄𝑆 , then there must exist some

𝐴 ⊆ 𝑋 open set for which 𝜄−1

𝑆
(𝐴) = 𝐴∩𝑆 = 𝑂 (this comes directly from the fact that 𝜏𝜄𝑆

was solely constructed for the purpose of making 𝜄𝑆 continuous), since 𝐴 is open, then

𝑂 = 𝐴 ∩ 𝑆 ∈ 𝜏𝑆. This implies that 𝜏𝜄𝑆 ⊆ 𝜏𝑆. We conclude finally that both definitions

are indeed equivalent. ♮

Theorem 13.2.6 (Universal property of the subspace topology). Let 𝑋 be a topological

space and𝑆 be a subspace. Given any topological space𝑌, a map 𝑓 :𝑌 → 𝑆 is continuous
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if and only if 𝜄𝑆 𝑓 :𝑌 → 𝑋 is continuous, where 𝜄𝑆: 𝑆 ↩→ 𝑋 is the inclusion map. Hence

the following diagram commutes

𝑌 𝑆

𝑋

𝑓

𝜄𝑆 𝑓
𝜄𝑆

Moreover, on the converse, if 𝑆 ⊆ 𝑋 is a topological space such that the above property

holds, then it is equipped with the subspace topology.

Proof. First we show that if (𝑆, 𝜏𝑆) is a subspace of (𝑋, 𝜏) then it satisfies the universal

property. Suppose then that 𝑆 a subspace of 𝑋. (⇒) Let 𝑓 be continuous. If 𝑉 ⊆ 𝑋 is

any open subset, we have that

(𝜄𝑆 𝑓 )−1(𝑉) = 𝑓 −1(𝜄−1(𝑉)) = 𝑓 −1(𝑆 ∩𝑉)

since 𝑉 is said to be open, then 𝑆 ∩ 𝑉 is open in 𝑆, which implies that 𝑓 −1(𝑆 ∩ 𝑉) =
(𝜄𝑆 𝑓 )−1(𝑉) is open. This shows that the map 𝜄𝑆 𝑓 is open. (⇐) Let 𝜄𝑆 𝑓 be continuous.

Consider𝑈 = 𝑆 ∩𝑉 = 𝜄−1

𝑆
(𝑉) to be any open set of the subspace 𝑆 (that is𝑉 is an open

of the space 𝑋). Then we have

𝑓 −1(𝑈) = 𝑓 −1(𝜄−1

𝑆 (𝑉)) = (𝜄𝑆 𝑓 )−1(𝑉)

since 𝜄𝑆 𝑓 is continuous, then 𝑓 −1(𝑈) is open, therefore 𝑓 is continuous.

We now show that if an object satisfies such the property, then it is the subspace.

Let (𝑆, 𝜏′) be a space satisfying the universal property. In particular we can take the

subspace (𝑆, 𝜏𝑆) of (𝑋, 𝜏) and the identity map id𝑆: (𝑆, 𝜏𝑆) → (𝑆, 𝜏′). Since (𝑆, 𝜏′)
satisfies the universal property, we have that id𝑆 is continuous if and only if 𝜄𝑆 id𝑆 = 𝜄𝑆
is continuous. That is

(𝑆, 𝜏𝑆) (𝑆, 𝜏′)

(𝑋, 𝜏)

id𝑆

𝜄𝑆 id𝑆=𝜄𝑆
𝜄𝑆

We know from Definition 13.2.4 that 𝜄𝑆 id𝑆 = 𝜄𝑆 is continuous for the subspace topology

𝜏𝑆, hence the universal property implies that id𝑆 is continuous. In particular, this says

that 𝜏′ ⊆ 𝜏𝑆. In order to show the other side of the equality, consider now the space

(𝑆, 𝜏′) and the identity map id
′
𝑆: (𝑆, 𝜏′) → (𝑆, 𝜏′) so that from the universal property of

(𝑆, 𝜏′) the map id
′
𝑆 is continuous if and only if 𝜄𝑆 id

′
𝑆 = 𝜄𝑆 is continuous. That is, the

following diagram commutes

(𝑆, 𝜏′) (𝑆, 𝜏′)

(𝑋, 𝜏)

id
′
𝑆

𝜄𝑆 id
′
𝑆=𝜄𝑆

𝜄𝑆
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Notice that since id
′
𝑆 is continuous (see Proposition 12.2.3) then from the universal

property the map 𝜄𝑆 is continuous on 𝜏′. Since 𝜏𝑆 is the initial topology such that 𝜄𝑆
is continuous (see Definition 13.2.4), then clearly 𝜏𝑆 ⊆ 𝜏′. This finishes the proof that

𝜏′ = 𝜏𝑆 and hence the space (𝑆, 𝜏′) = (𝑆, 𝜏𝑆) is the subspace of (𝑋, 𝜏). ♮

Corollary 13.2.7. Let 𝑋,𝑌 be topological spaces and 𝑓 :𝑋 → 𝑌 be a continuous map.

Then the following hold

(a) (Domain restriction) Let 𝑆 be a subspace of 𝑋. Then 𝑓 |𝑆 is continuous.

(b) (Codomain restriction) Let𝑇 be a subspace of𝑌 such that 𝑓 (𝑋) ⊆ 𝑇. Then 𝑓 :𝑋 → 𝑇

is continuous.

(c) (Codomain expansion) Let 𝑌 be a subspace of 𝑍. Then the map 𝑓 :𝑋 → 𝑍 is

continuous.

Proof. (a) Notice that 𝑓 |𝑆 = 𝑓 𝜄𝑆. Applying the universal property, we find that since

𝑓 is continuous, so is 𝑓 |𝑆. (b) From the universal property we have that 𝜄𝑇 𝑓 = 𝑓

is continuous, so is 𝑓 :𝑋 → 𝑇. (c) Notice that from the universal property we have

𝜄𝑌 𝑓 :𝑋 → 𝑍 continuous, since 𝑓 is continuous. The following are the universal property

diagrams for items (b) and (c):

𝑋 𝑇

𝑌

𝑓

𝜄𝑇 𝑓= 𝑓
𝜄𝑇

𝑋 𝑌

𝑍

𝑓

𝜄𝑌 𝑓
𝜄𝑌

♮

Proposition 13.2.8 (Subspace properties). Let (𝑋, 𝜏) be a topological space and (𝑆, 𝜏𝑆)
be a subspace of 𝑋. The following are properties concerning the subspace topology

(SP1) Let 𝑇 be a subspace of 𝑆. Then 𝑇 is a subspace of 𝑋.

(SP2) Let ℬ be a basis for 𝑋. Then the collection ℬ𝑆 = {𝐵 ∩ 𝑆 : 𝐵 ∈ ℬ} is a basis for 𝑆.

(SP3) Let (𝑝𝑖)𝑖∈N ⊆ 𝑆 be a sequence and 𝑝 ∈ 𝑆. Then 𝑝𝑖 → 𝑝 in 𝑆 if and only if 𝑝𝑖 → 𝑝

in 𝑋.

(SP4) A subspace of a Hausdorff space is Hausdorff.

(SP5) A subspace of a first countable space is first countable.

(SP6) A subspace of a second countable space is second countable.

Proof. (SP1) Let 𝑍 be some topological space, we can choose maps 𝑓 :𝑍 → 𝑇 and

𝑔 = 𝜄𝑇 𝑓 :𝑍→ 𝑆 and apply the universal property on both 𝑇 and 𝑆 in order to get

𝑍 𝑇

𝑆

𝑋

𝑓

𝑔

𝜄𝑆𝑔=𝜄′𝑇 𝑓

𝜄𝑇

𝜄𝑆 𝜄𝑇≔𝜄′
𝑇

𝜄𝑆

⇔
𝑍 𝑇

𝑋
𝜄′
𝑇
𝑓

𝑓

𝜄′
𝑇
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Moreover, if 𝑓 is continuous, from the universal property of 𝑇 we find that 𝑔 is

continuous, but using the universal property of 𝑆 that tells us that 𝜄𝑆𝑔 = 𝜄′
𝑇
𝑓 is

continuous. The converse is true by using the same argumentation. Hence 𝑇 satisfies

the universal property and therefore is a subspace of 𝑋.

(SP2) First notice that since 𝐵 ∈ ℬ is open in 𝑋, then ℬ𝑆 ⊆ 𝜏𝑆. Let 𝑠 ∈ 𝑆 be any

element, then in particular we have 𝑠 ∈ 𝐵𝑠 ∈ ℬ for some element of the basis. Then

𝑠 ∈ 𝑆 ∩ 𝐵𝑠 ∈ ℬ𝑆. Let 𝐴 = 𝑆 ∩ 𝐵1, 𝐵 = 𝑆 ∩ 𝐵2 ∈ ℬ𝑆 and 𝑥 ∈ 𝐴 ∩ 𝐵. Then in particular

𝑥 ∈ 𝐵1 ∩ 𝐵2. Since ℬ is a basis for 𝑋, then exists 𝐵3 ∈ ℬ such that 𝑥 ∈ 𝐵3 ⊆ 𝐵1 ∩ 𝐵2.

Hence the corresponding set 𝐶 = 𝑆 ∩ 𝐵3 ∈ ℬ𝑆 is such that 𝑥 ∈ 𝐶 ⊆ 𝐴 ∩ 𝐵. This proves

that ℬ𝑆 is a basis.

(SP3) (⇒) Suppose 𝑝𝑖 → 𝑝 in 𝑆, that is, for all 𝑈𝑝 = 𝑆 ∩𝑉𝑝 ∈ 𝜏𝑆, where 𝑉𝑝 ∈ 𝜏, we

have some 𝑁 ∈ N such that for all 𝑛 ⩾ 𝑁 we have 𝑝𝑛 ∈ 𝑈𝑝 . In particular, this implies

that for each 𝑛 ⩾ 𝑁 we get 𝑝𝑛 ∈ 𝑉𝑝 , hence 𝑝𝑖 → 𝑝 in 𝑋. (⇐) Suppose that 𝑝𝑖 → 𝑝 in

𝑋. Let 𝑉𝑝 ⊆ 𝑋 be a neighbourhood of 𝑝, then since 𝑝 ∈ 𝑆 we have that 𝑉𝑝 ∩ 𝑆 ≠ ∅ is

an element of 𝜏𝑆. Let𝑈𝑝 ∈ 𝜏𝑆 be any neighbourhood of 𝑝, then there exists 𝑉 ∈ 𝜏 such

that𝑈𝑝 = 𝑆 ∩𝑉 (from the definition of the subspace topology) and also 𝑝 ∈ 𝑉 , so that

𝑉 is a neighbourhood of 𝑝. Therefore there exists 𝑀 ∈ N such that, for all 𝑛 ⩾ 𝑀 we

have 𝑝𝑛 ∈ 𝑆 ∩𝑉 = 𝑈𝑝 ⊆ 𝑉 . This implies that 𝑝𝑖 → 𝑝 in 𝑆.

(SP4) Let 𝑋 be Hausdorff. Let 𝑥, 𝑦 ∈ 𝑆 be distinct points. In particular, there exits

𝐴, 𝐵 ∈ 𝑋 neighbourhoods of 𝑥 and 𝑦, respectively, such that 𝐴 ∩ 𝐵 = ∅. Hence the

sets 𝑈 = 𝑆 ∩ 𝐴,𝑉 = 𝑆 ∩ 𝐵 ∈ 𝜏𝑆 are neighbourhoods of 𝑥 and 𝑦 respectively and since

𝑈 ⊆ 𝐴 and 𝑉 ⊆ 𝐵 we find that𝑈 ∩𝑉 = ∅. Hence 𝑆 is Hausdorff.

(SP5) Let 𝑋 be a first countable space. Let 𝑝 ∈ 𝑆 be any point. Define a countable

base ℬ𝑝 of neighbourhoods of 𝑝 for 𝑋. Define the, clearly countable, collection ℬ′𝑝 =

{𝑆 ∩ 𝐵𝑝 : 𝐵𝑝 ∈ ℬ𝑝} ⊆ 2
𝑆
. From Item 2 we have that ℬ′𝑝 is a basis for 𝑆. Moreover, every

element of ℬ′𝑝 is clearly a neighbourhood of 𝑝. This proves the property.

(SP6) Let 𝑋 be second countable and ℬ be a countable basis for the topology of 𝑋.

Define the, clearly countable, collection ℬ′ ≔ {𝑆 ∩ 𝐵 : 𝐵 ∈ ℬ}. Since ℬ is a basis for 𝑋,

we use Item 2 to conclude that ℬ′ is a basis for 𝑆. ♮

Proposition 13.2.9. Let 𝑋 be a topological space and 𝐴, 𝐵 ⊆ 𝑋 be subspaces such that

• Either 𝐴 and 𝐵 are both open subsets of 𝑋 or are both closed.

• They cover 𝑋, that is, 𝑋 = 𝐴 ∪ 𝐵.

Then the following commutative diagram is a pushout in Top

𝐴 ∩ 𝐵 𝐴

𝐵 𝑋

(13.1)

In other words, if 𝑓 :𝑋 → 𝑌 is any set-function between topological spaces, then 𝑓 is

continuous if the restrictions 𝑓 |𝐴 and 𝑓 |𝐵 are continuous.

Proof. Since diagram Eq. (13.1) is a pushout in Set, one just has to prove that 𝑋 has the

final topology induced by the natural inclusions 𝜄𝐴:𝐴 ↩→ 𝑋 and 𝜄𝐵: 𝐵 ↩→ 𝑋 — that is,
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𝑈 ⊆ 𝑋 is open if and only if 𝜄−1

𝐴
(𝑈) = 𝑈 ∩𝐴 is open in 𝐴 and 𝜄−1

𝐵
(𝐵) = 𝑈 ∩ 𝐵 is open in

𝐵.

Indeed, if 𝑈 is an open set of 𝑋, then by definition of the subspace topology we

conclude that 𝜄−1

𝐴
(𝑈) is open in 𝐴 and 𝜄−1

𝐵
(𝑈) is open in 𝐵.

On the other hand, assume that 𝑈 ∩ 𝐴 is open in 𝐴, while 𝑈 ∩ 𝐵 is open in 𝐵. We

separate the proof in two cases:

• Suppose that 𝐴 and 𝐵 are open subspaces of 𝑋. Since 𝐴 ∩𝑈 is open, there must

exist an open set 𝑉𝐴 ⊆ 𝑋 such that 𝜄−1

𝐴
(𝑉𝐴) = 𝑉𝐴 ∩ 𝐴 = 𝑈 ∩ 𝐴 — furthermore,

since 𝐴 and 𝑉𝐴 are open in 𝑋, it follows that 𝑈 ∩ 𝐴 is open in 𝑋. The same

argument can be made for the subspace 𝐵, concluding that𝑈 ∩ 𝐵 is also open in

𝑋. Finally, one notices that

𝑈 = 𝑈 ∩ 𝑋 = 𝑈 ∩ (𝐴 ∪ 𝐵) = (𝑈 ∩ 𝐴) ∪ (𝑈 ∩ 𝐵),
which implies that𝑈 is open in 𝑋 — since it is a union of open sets.

• Suppose that 𝐴 and 𝐵 are closed subspaces of 𝑋. Since 𝐴 and 𝐵 are subspaces,

just as in the open subspace case, there exists open sets 𝑉𝐴 , 𝑉𝐵 ⊆ 𝑋 such that

𝑈 ∩ 𝐴 = 𝑉𝐴 ∩ 𝐴 and 𝑈 ∩ 𝐵 = 𝑉𝐵 ∩ 𝐵. Notice that since 𝐴 and 𝐵 are closed in

𝑋, then both 𝐴 ∖ 𝑈 and 𝐵 ∖ 𝑈 are closed in 𝑋 — therefore by definition both

𝑋 ∖ (𝐴 ∖𝑈) and 𝑋 ∖ (𝐵 ∖𝑈) are open in 𝑋. Furthermore, one can write

𝑈 = 𝑋 ∖ (𝑋 ∖𝑈)
= 𝑋 ∖ ((𝐴 ∪ 𝐵) ∖𝑈)
= 𝑋 ∖ ((𝐴 ∖𝑈) ∪ (𝐵 ∖𝑈))
= (𝑋 ∖ (𝐴 ∖𝑈)) ∩ (𝑋 ∖ (𝐵 ∖𝑈))

that is,𝑈 is the intersection of open sets, thus𝑈 is an open set of 𝑋.

♮

Topological Embeddings
Definition 13.2.10 (Embedding). Let 𝑓 :𝑌 ↣ 𝑋 be a continuous injective map of topo-

logical spaces. We call 𝑓 an embedding when 𝑓 ′:𝑌 ≃−→ 𝑓 (𝑌), for 𝑓 ′(𝑦) ≔ 𝑓 (𝑦) for all

𝑦 ∈ 𝑌, is an isomorphism.

Example 13.2.11. Let 𝑋 be a topological space and 𝑆 be a subspace of 𝑋. We show that

𝜄𝑆: 𝑆 ↩→ 𝑋 is an embedding. Notice that 𝜄𝑆(𝑆) = 𝑆 and hence 𝜄′
𝑆
: 𝑆 ≃−→ 𝜄(𝑆) = 𝑆 is equal

to the identity map id𝑆, which clearly establishes an isomorphism.

Proposition 13.2.12. Let 𝑓 be a continuous injective map between topological spaces.

If 𝑓 is either open or closed, then 𝑓 is an embedding.

Proof. Let 𝑓 :𝑋 → 𝑌. Since 𝑓 is injective, the codomain restricted map 𝑓 ′:𝑋
𝑓
−→ 𝑓 (𝑋) is

a bĳection and continuous by Corollary 13.2.7. Suppose 𝑓 is open (resp. closed) and

consider any open (resp. closed) set 𝑈 ⊆ 𝑋, then 𝑓 (𝑈) ⊆ 𝑓 (𝑋) is open (resp. closed)

in 𝑓 (𝑋) this shows that 𝑓 ′ is an isomorphism. ♮
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Proposition 13.2.13. A surjective embedding is an isomorphism.

Proof. Let 𝑓 :𝑋 → 𝑌 be a surjective embedding. Notice that in a surjective map we

have 𝑓 (𝑋) = 𝑌, hence 𝑓 ′ = 𝑓 :𝑋 ≃−→ 𝑓 (𝑋) = 𝑌. ♮

Example 13.2.14 (2-torus surface). Consider first a circle (𝑥 − 𝑑)2 + 𝑧2 = 𝑟2
, with centre

at (𝑑, 0). Let 𝜙 be the angle going up from the 𝑥 to the 𝑧 axis, then we can parametrize

such circle as 𝑥 = 𝑟 cos(𝜙) + 𝑑, 𝑧 = 𝑟 sin(𝜙). Lets now consider the revolution of such

circle around the 𝑧 axis. If 𝜃 is the angle going up from the 𝑥 axis to the 𝑦 axis, we find

the new equation (
√
𝑥2 + 𝑦2 − 𝑑)2 + 𝑧2 = 𝑟2

has a parametrization given by

(𝑥, 𝑦, 𝑧) = ((𝑟 cos(𝜙) + 𝑑) cos(𝜃), (𝑟 cos(𝜙) + 𝑑) sin(𝜃), 𝑟 sin(𝜙)).

This mapping is clearly continuous. Although not injective, we can choose any point

𝑝 = (𝑥, 𝑦) and find a neighbourhood of 𝑝 such that the mapping is injective.

Lemma 13.2.15 (Gluing). Let𝑋 and𝑌 be topological spaces and consider𝒰 = {𝑈𝑖}𝑖 an

open cover (or finite closed cover) of 𝑋. Let { 𝑓𝑖 :𝑈𝑖 → 𝑌}𝑖 be a collection of continuous

maps such that 𝑓𝑖|𝑈𝑖∩𝑈𝑗 = 𝑓𝑗|𝑈𝑖∩𝑈𝑗 for all indices 𝑖 and 𝑗. Then there exists a unique

continuous map 𝑓 :𝑋 → 𝑌 such that 𝑓 |𝑈𝑖 = 𝑓𝑖 for all 𝑖.

Proof. Let 𝒰 be open, then given any point 𝑝 ∈ 𝑋, 𝑓 |𝑈𝑝 = 𝑓𝑝 is continuous for some

neighbourhood 𝑈𝑝 ∈ 𝒰 of 𝑝, which implies that 𝑓 is continuous. On the other hand,

if 𝒰 is a finite closed cover of 𝑋, then consider 𝐶 ⊆ 𝑌 to be any closed set, then we

have 𝑓 −1

𝑖
(𝐶) = 𝑓 −1(𝑉) ∩𝑈𝑖 is closed in𝑈𝑖 (since 𝑓𝑖 is continuous). Since𝑈𝑖 is closed in

𝑋, we find that 𝑓 −1

𝑖
(𝐶) is closed in 𝑋 (see Proposition 13.2.3). Notice that, if |𝒰 | = 𝑛,

then 𝑓 −1(𝐶) = ⋃𝑛
𝑖=1

𝑓 −1

𝑖
(𝐶) is the finite union of closed sets in 𝑋, which implies that

𝑓 −1(𝐶) itself is closed. This shows us that the inverse of 𝑓 maps closed sets to closed

sets, which implies that 𝑓 is continuous. Since 𝒰 is a cover of 𝑋, it is clear that 𝑓 is

unique. ♮

13.3 Product Space
Definition 13.3.1 (Product topology). Let {𝑋𝑖}𝑖∈𝐼 be a collection of sets. The product

topology on the set

∏
𝑖∈𝐼 𝑋𝑖 is defined to be the initial topology such that for all 𝑖 ∈ 𝐼

the projection 𝜋𝑖 :
∏

𝑖∈𝐼 𝑋𝑖 ↠ 𝑋𝑖 is continuous.

Definition 13.3.2 (Second definition of the product topology). Let {𝑋𝑖}𝑖∈𝐼 be a collection

of topological spaces. We define the product topology on the set

∏
𝑖∈𝐼 𝑋𝑖 to be the

topology generated by the bases

ℬ =

{∏
𝑖∈𝐼

𝑈𝑖 : 𝑈𝑖 ⊆ 𝑋𝑖 is open, and only finitely many𝑈𝑖 ≠ 𝑋𝑖

}
.

Corollary 13.3.3. The definitions 13.3.1 and 13.3.2 are equivalent.
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Proof. To prove the equivalence, we first show that if

∏
𝑖∈𝐼 𝑋𝑖 is endowed with the

product topology, then the collection ℬ is a basis for

∏
𝑖∈𝐼 𝑋𝑖 . (⇒) Let

∏
𝑖∈𝐼𝑈𝑖 ∈ ℬ,

then for all 𝑖 𝑗 ∈ 𝐼 we have

𝜋−1

𝑖 𝑗
(𝑈 𝑗) =

∏
𝑖∈𝐼

𝑉𝑖 , where 𝑉𝑖 =

{
𝑋𝑖 , 𝑖 ≠ 𝑖 𝑗

𝑈 𝑗 , otherwise

where 𝜋−1

𝑖 𝑗
(𝑈 𝑗) is open from the hypothesis that

∏
𝑖∈𝐼 𝑋𝑖 is endowed with the product

topology. Moreover, we also have

∏
𝑖∈𝐼𝑊𝑖 ∩

∏
𝑖∈𝐼𝑊

′
𝑖
=

∏
𝑖∈𝐼𝑊𝑖 ∩𝑊 ′𝑖 . Notice that

clearly

ℬ =


⋂
𝑗∈𝐽

𝜋−1

𝑗 (𝑈 𝑗) : 𝑈 𝑗 ⊆ 𝑋𝑗 is open, and 𝐽 ⊆ 𝐼 is finite


and from Proposition 12.2.16 this shows thatℬ is a basis for the product topology. (⇐)

The converse is clear. ♮

Theorem 13.3.4 (Product topology universal product). Let {𝑋𝑖}𝑖∈𝐼 be a collection of

topological spaces and𝜋𝑖 :
∏

𝑖∈𝐼 𝑋𝑖 ↠ 𝑋𝑖 be the projection map. For all given topological

space 𝑍 and a map 𝑓 :𝑍 →∏
𝑖∈𝐼 𝑋𝑖 . If

∏
𝑖∈𝐼 𝑋𝑖 is endowed with the product topology,

then the map 𝑓 is continuous if and only if for every 𝑖 ∈ 𝐼 the map 𝜋𝑖 𝑓 :𝑍 →
∏

𝑖∈𝐼 𝑋𝑖 .
That is, the following diagram commutes in Top

𝑍

∏
𝑖∈𝐼 𝑋𝑖 𝑋𝑖

𝑓

𝜋𝑖 𝑓

𝜋𝑖

Moreover, if the space

∏
𝑖∈𝐼 𝑋𝑖 satisfies such universal property, then its topology is the

product topology.

Proof. Let

∏
𝑖∈𝐼 𝑋𝑖 be endowed with the product topology. (⇒) Let 𝑓 be a continuous

map and𝑈 ⊆ 𝑍 be any open set. Since𝜋𝑖 is continuous for all 𝑖 ∈ 𝐼 from hypothesis then

𝜋−1

𝑖
(𝑈) = 𝑉 ⊆ ∏

𝑖∈𝐼 𝑋𝑖 is open, we conclude that (𝜋𝑖 𝑓 )−1(𝑈) = 𝑓 −1(𝜋−1

𝑖
(𝑈)) = 𝑓 −1(𝑉) is

open, hence 𝜋𝑖 𝑓 is continuous. (⇐) Suppose 𝜋𝑖 𝑓 is continuous, then for all given open

set 𝑈 ⊆ ∏
𝑖∈𝐼 𝑋𝑖 we have 𝑓 −1(𝜋−1

𝑖
(𝑈)) ⊆ 𝑍 open. Notice that since 𝜋−1

𝑖
(𝑈) is open in

the product topology of

∏
𝑖∈𝐼 𝑋𝑖 for all 𝑖 ∈ 𝐼, then 𝑓 −1(𝑉) ⊆ 𝑍 is open for all open set

𝑉 ⊆ ∏
𝑖∈𝐼 𝑋𝑖 .

For the second part of the theorem, suppose that (∏𝑖∈𝐼 𝑋𝑖 , 𝜏
′) be a space satisfying

the property. In particular, consider a space 𝑍 = (∏𝑖∈𝐼 𝑋𝑖 , 𝜏
′) and a map 𝑓 = id. Then

the following diagram commutes

(∏𝑖∈𝐼 𝑋𝑖 , 𝜏
′)

(∏𝑖∈𝐼 𝑋𝑖 , 𝜏
′) 𝑋𝑖

id

𝜋𝑖 id=𝜋𝑖

𝜋𝑖
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We can now assert that id is continuous since both domain and codomain have the

same topology 𝜏′, hence 𝜋𝑖 is continuous for all 𝑖 ∈ 𝐼. Since 𝜋𝑖 is continuous for all

𝑖 ∈ 𝐼 for the topology 𝜏′ then we can use the Definition 13.3.1 to conclude that 𝜏′ ⊆ 𝜏,

where 𝜏 is the product topology. For the second inclusion, consider the commutative

diagram

(∏𝑖∈𝐼 𝑋𝑖 , 𝜏
′)

(∏𝑖∈𝐼 𝑋𝑖 , 𝜏) 𝑋𝑖

id
′

𝜋𝑖 id
′
=𝜋′

𝑖

𝜋𝑖

where 𝜋′
𝑖
: (∏𝑖∈𝐼 𝑋𝑖 , 𝜏

′) ↠ 𝑋𝑖 . We know from the previous discussion that since

(∏𝑖∈𝐼 𝑋𝑖 , 𝜏
′) satisfies the universal property, then 𝜋′

𝑖
is continuous and hence id

′

is continuous. In particular, this implies that if 𝑈 ⊆ (∏𝑖∈𝐼 𝑋𝑖 , 𝜏) is open, then

id
′−1(𝑈) = 𝑈 ⊆ (∏𝑖∈𝐼 𝑋𝑖 , 𝜏

′) is open. This implies in 𝜏 ⊆ 𝜏′. Hence we conclude

that if an object satisfies the product topology universal property, then it is endowed

with the product topology. ♮

Lemma 13.3.5 (Projections are open maps under the product topology). Let {𝑋𝑖}𝑖∈𝐼 be

a collection of topological spaces. Then the projections

𝜋 𝑗 :
∏
𝑖∈𝐼

𝑋𝑖 ↠ 𝑋𝑗

are open maps (see Definition 12.2.9) under the product topology. Moreover, such

projections are not in general closed maps.

Proof. Consider the basis ℬ from Definition 13.3.2, then let 𝑈𝑖 ⊆ 𝑋𝑖 be an open set.

Then notice that (see the proof of Corollary 13.3.3)

𝜋 𝑗(𝜋−1

𝑖 (𝑈𝑖)) =
{
𝑈𝑖 , 𝑖 = 𝑗

𝑋𝑗 , 𝑖 ≠ 𝑗

which are both open sets. Moreover, we have that

𝜋 𝑗
(
𝜋−1

𝑖1
(𝑈𝑖1) ∩ · · · ∩ 𝜋−1

𝑖𝑘
(𝑈𝑖𝑘 )

)
=

{
𝑋𝑗 , 𝑗 ≠ 𝑖

𝑈𝑖ℓ , 𝑗 = 𝑖ℓ for some 1 ⩽ ℓ ⩽ 𝑘

is open. In particular, this implies in

𝜋 𝑗

( ⋃
𝑖1 ,...,𝑖𝑘∈𝐼

𝜋−1(𝑈𝑖1) ∩ · · · ∩ 𝜋−1

𝑖𝑘
(𝑈𝑖𝑘 )

)
=

⋃
𝑖1 ,...,𝑖𝑘∈𝐼

𝜋 𝑗
(
𝜋−1(𝑈𝑖1) ∩ · · · ∩ 𝜋−1

𝑖𝑘
(𝑈𝑖𝑘 )

)
which from the last assertion is the union of open sets, hence open. This implies that

𝜋 𝑗 is open (from the fact that ℬ is a basis for

∏
𝑖∈𝐼 𝑋𝑖).

On the other hand, we can build a counterexample to show why the projections are

not necessarily closed. Consider the product R2
and let the closed set 𝐶 ≔ {(𝑥, 𝑦) ∈

R2
: 𝑥𝑦 = 1}, which is the hyperbola on the plane. Notice that the first projection

(𝑥, 𝑦) 𝜋1↦−→ 𝑥 is not closed since 𝜋1(𝐶) = {𝑥 ∈ R : 𝑥 ≠ 0}. ♮
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Definition 13.3.6 (Box topology). We define yet another natural topology on the set∏
𝑖∈𝐼 𝑋𝑖 : the box topology, which is generated by the basis

ℬ
box

=

{∏
𝑖∈𝐼

𝑈𝑖 : 𝑈𝑖 ⊆ 𝑋𝑖 is open

}
.

For the case where 𝐼 is an infinite indexing set, we find that 𝜏
box

⊋ 𝜏
prod

and from

this we find that certainly the projections are still continuous on 𝜏
box

, although the box

topology fails to satisfy the universal product Theorem 13.3.4.

Proposition 13.3.7 (Product of morphisms). Let 𝜙:𝑋 → 𝑍 and 𝜓:𝑌 → 𝑊 be mor-

phisms in Top. Then the product morphism 𝜙 ×𝜓:𝑋 ×𝑌 → 𝑍 ×𝑊 is continuous with

respect to the product topology.

Proof. Consider the morphisms 𝜙𝜋𝑋 :𝑋 × 𝑌 → 𝑍 and 𝜓 × 𝜋𝑌 :𝑋 × 𝑌 →𝑊 , so that

𝑋 × 𝑌

𝑍 ×𝑊

𝑍 𝑊

𝜙×𝜓
𝜙𝜋𝑋 𝜓𝜋𝑌

𝜋𝑊𝜋𝑍

commutes. Therefore by the universal property of the product topology we conclude

that 𝜙 × 𝜓 is continuous. ♮

13.4 Coproduct Space
Definition 13.4.1 (First definition). Let {𝑋𝑖}𝑖∈𝐼 be any collection of topological spaces

and consider the disjoint union

∐
𝑖∈𝐼 𝑋𝑖 =

⋃
𝑖∈𝐼 𝑋𝑖 × {𝑖}. We define the coproduct

topology on

∐
𝑖∈𝐼 𝑋𝑖 via the following property. A set 𝑈 ⊆ ∐

𝑖∈𝐼 𝑋𝑖 is open if and only

if it is of the form𝑈 =
∐

𝑖∈𝐼𝑈𝑖 , where each𝑈𝑖 ⊆ 𝑋𝑖 is open.

Definition 13.4.2 (Coproduct topology). Let {𝑋𝑖}𝑖∈𝐼 be a collection of topological

spaces. The coproduct topology on the set

∐
𝑖∈𝐼 𝑋𝑖 is defined to be the final topol-

ogy such that for all 𝑗 ∈ 𝐼 we have that the inclusions 𝜄 𝑗 :𝑋𝑗 ↣
∐

𝑖∈𝐼 𝑋𝑖 are continuous.

Theorem 13.4.3 (Coproduct topology universal property). Let {𝑋𝑖}𝑖∈𝐼 be a collection

of topological spaces and let 𝜄 𝑗 :𝑋𝑗 →
∐

𝑖∈𝐼 𝑋𝑖 be the 𝑗th inclusion. The coproduct

topology on

∐
𝑖∈𝐼 𝑋𝑖 satisfies the following property. Let 𝑍 be a topological space

and a collection of continuous maps { 𝑓𝑖 :𝑋𝑖 → 𝑍}𝑖∈𝐼 . Then there exists a unique map

𝑓 :
∐

𝑖∈𝐼 𝑋𝑖 → 𝑍 such that the following diagram commutes in the category Top for all
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𝑗 ∈ 𝐼:

𝑋𝑗
∐

𝑖∈𝐼 𝑋𝑖

𝑍

𝜄 𝑗

𝑓𝑗

𝑓

On the other hand, if (∐𝑖∈𝐼 𝑋𝑖 , 𝜏
′) satisfies such property, then 𝜏′ is the coproduct

topology.

Proof. (Uniqueness) Suppose that 𝑓 𝜄 𝑗 = 𝑓𝑗 , then from definition 𝑓𝑗(𝑥) = 𝑓 (𝜄(𝑥)) = 𝑓 (𝑥, 𝑗)
for each 𝑗 ∈ 𝐼, which is clearly unique. (Existence) Suppose now that 𝑓𝑗 is continuous

for all 𝑗 ∈ 𝐼. Let 𝑈 ⊆ 𝑍 be any open set. Notice that since 𝑓 −1

𝑗
= 𝜄−1

𝑗
𝑓 −1

then

𝑓 −1

𝑗
(𝑈) = 𝜄−1

𝑗
( 𝑓 −1(𝑈)). Now, if 𝑓 −1(𝑈) ⊆ ∐

𝑖∈𝐼 𝑋𝑖 is closed then its preimage under 𝜄 𝑗

would be closed (from the continuity of 𝜄 𝑗), hence 𝑓 −1(𝑈) is open, which implies in 𝑓

continuous.

Suppose that (∐𝑖∈𝐼 𝑋𝑖 , 𝜏
′) satisfies the universal property and denote by 𝜏 the

coproduct topology. Then in particular we have

𝑋𝑗 (∐𝑖∈𝐼 𝑋𝑖 , 𝜏
′)

(∐𝑖∈𝐼 𝑋𝑖 , 𝜏)

𝜄 𝑗

𝜄 𝑗

𝑔

𝑋𝑗 (∐𝑖∈𝐼 𝑋𝑖 , 𝜏)

(∐𝑖∈𝐼 𝑋𝑖 , 𝜏
′)

𝜄 𝑗

𝜄 𝑗

𝑓

and hence 𝑓 and 𝑔 are both identities on End(∐𝑖∈𝐼 𝑋𝑖). If𝑈 ⊆ (∐𝑖∈𝐼 𝑋𝑖 , 𝜏) is open, then

𝑔−1(𝑈) = 𝑈 ⊆ (∐𝑖∈𝐼 𝑋𝑖 , 𝜏
′) is also open. On the other hand, from the second diagram,

if 𝑉 ⊆ (∐𝑖∈𝐼 𝑋𝑖 , 𝜏
′) is open, then 𝑓 −1(𝑉) = 𝑉 ⊆ (∐𝑖∈𝐼 𝑋𝑖 , 𝜏) is open. This concludes

that 𝜏′ = 𝜏 and hence the coproduct topology is unique. ♮

Proposition 13.4.4. Let {𝑋𝑖}𝑖∈𝐼 be a collection of topological spaces. The following are

properties of the coproduct space.

(a) A subset 𝐶 ⊆ ∐
𝑖∈𝐼 𝑋𝑖 is closed if and only if for all 𝑋𝑖 , we have that 𝐶∩𝑋𝑖 is closed.

(b) The canonical injection 𝜄 𝑗 :𝑋𝑗 →
∐

𝑖∈𝐼 𝑋𝑖 is a topological embedding and an open

and closed map.

(c) If 𝑋𝑖 is Hausdorff for all 𝑖 ∈ 𝐼, then

∐
𝑖∈𝐼 𝑋𝑖 is Hausdorff.

(d) If 𝑋𝑖 is first countable for all 𝑖 ∈ 𝐼, then

∐
𝑖∈𝐼 𝑋𝑖 is first countable.

(e) If 𝑋𝑖 is second countable for all 𝑖 ∈ 𝐼 and 𝐼 is a countable indexing set, then

∐
𝑖∈𝐼 𝑋𝑖

is second countable.

Properties for the coproduct top
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13.5 Quotient Space

Quotient Topology
The motivation for the construction of the quotient topology is the study of surjective

set-functions 𝜋:𝑋 ↠ 𝑆 between topological spaces 𝑋 and sets 𝑆, which induce an

equivalence relation on the initial topological space by means of arranging the points

of 𝑋 in classes where 𝑥 ∼ 𝑦 for 𝑥, 𝑦 ∈ 𝑋 if and only if 𝜋(𝑥) = 𝜋(𝑦), that is, 𝑥 and 𝑦 are

common points of a fibre 𝜋−1(𝑠) for some 𝑠 ∈ 𝑆.

The geometrically appealing version of such construction would be the idea of

gluing every element 𝑥 ∈ 𝜋−1(𝑠) into a unique point — this way we loose some initial

information about the topological space 𝑋. However, we would like to make this

gluing process compatible with the theory of topology so far constructed. To achieve

that, one may make the point that we should make 𝑆 into a topological space for which

its topology makes 𝜋 a continuous map. The first idea that may come to mind is that

we can simply force the continuity of 𝜋 by defining a topology 𝜏 on 𝑆 so that 𝑈 ⊆ 𝑆
is an open set if and only if 𝜋−1(𝑈) is open — which is exactly the definition of a

continuous map. Lets give this a formal definition.

Definition 13.5.1. Let 𝑋 be a topological space and 𝑆 be any set. Let also 𝜋:𝑋 ↠ 𝑆 be

a set-function. The quotient topology on 𝑆 induced by the map 𝜋 is the final topology

such that 𝜋 is a continuous map.

Proposition 13.5.2. The quotient topology is a topology.

Proof. Let𝑋/∼be a space with the topology induced by the map𝜋:𝑋 ↠ 𝑋/∼. Consider

an arbitrary collection {𝑈 𝑗}𝑗 of open sets of 𝑋/∼. Notice that since 𝜋−1(⋃𝑗𝑈 𝑗) =⋃
𝑗 𝜋
−1(𝑈 𝑗) then since 𝜋−1(𝑈 𝑗) is open for all index 𝑗, we conclude that

⋃
𝑗 𝜋
−1(𝑈 𝑗) ⊆ 𝑋

is open, hence the set

⋃
𝑗𝑈 𝑗 ⊆ 𝑋/∼ is necessarily open — since 𝜋 is continuous. Let

now 𝐴, 𝐵 ⊆ 𝑋/∼ be any open sets, then 𝜋−1(𝐴 ∩ 𝐵) = 𝜋−1(𝐴) ∩ 𝜋−1(𝐵) ⊆ 𝑋, which

is open and therefore 𝐴 ∩ 𝐵 is open in 𝑋/∼. We conclude that the quotient topology

indeed satisfies the properties of a topology. ♮

In other terms, let 𝑇𝑆 be the collection of all topologies on 𝑆 such that 𝜋 is a

continuous map. The above definition simply says that the quotient topology 𝜏 on the

set 𝑆 is the intersection 𝜏 =
⋂
𝑇∈𝑇𝑆 𝑇. Even better than that definition is the fact that we

can determine the quotient topology by the following universal property.

Theorem 13.5.3 (Universal property of the quotient topology). Let 𝑋 be a topological

space and 𝑆 be any set, together with a surjective set-function 𝜋:𝑋 ↠ 𝑆. The quotient

topology 𝜏 on 𝑆 induced by 𝜋 is such that, for all topological spaces 𝑍 and every

morphism 𝑔:𝑋 → 𝑍 for which all 𝑥, 𝑦 ∈ 𝑋 such that 𝜋(𝑥) = 𝜋(𝑦) then 𝑔(𝑥) = 𝑔(𝑦)—
i.e. 𝑔 is constant on the fibres of 𝜋 — there exists a unique morphism 𝑓 : (𝑆, 𝜏) → 𝑍
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such that the diagram

𝑋 𝑍

𝑆

𝑔

𝜋

𝑓

commutes in Top. Moreover, if 𝜏′ is a topology on 𝑆 such that the diagram commutes,

then necessarily 𝜏′ = 𝜏.

Proof. Since𝜋 is surjective, we can completely define a map 𝑓 : 𝑆→ 𝑍 sending 𝑠 ↦→ 𝑔(𝑥)
such that 𝑥 ∈ 𝜋−1(𝑠), which is well defined because, for all 𝑥, 𝑦 ∈ 𝜋−1(𝑠), we have

𝑔(𝑥) = 𝑔(𝑦), so that the image of each 𝑠 ∈ 𝑆 under the map 𝑓 is uniquely defined. We

now show that 𝑓 is, in fact, continuous — and hence a morphism. Let 𝑈 ⊆ 𝑍 be any

open set of 𝑍, then, since 𝑔−1(𝑈) is open and ( 𝑓𝜋)−1(𝑈) = 𝜋−1 𝑓 −1(𝑈) = 𝑔−1(𝑈), 𝑓 −1(𝑈)
cannot be a closed set — in fact, it needs to be an open set, because 𝜋−1( 𝑓 −1(𝑈)) ⊆ 𝑋
must be open, since 𝜋 is continuous. It follows that 𝑓 is continuous and thus the said

morphism indeed exists.

For the uniqueness, let 𝑓 and 𝑓 ′ be two morphisms such that 𝑓𝜋 = 𝑔 and 𝑓 ′𝜋 = 𝑔.

Let 𝑠 ∈ 𝑆 be any point. Since 𝜋 is surjective, there exists 𝑥 ∈ 𝑋 for which 𝑥 ∈ 𝜋−1(𝑠),
therefore, 𝑓𝜋(𝑥) = 𝑓 (𝑠) = 𝑓 ′𝜋(𝑥) = 𝑓 ′(𝑠) for every element of their domain — hence

𝑓 = 𝑓 ′.
Suppose now that both (𝑆, 𝜏) and (𝑆, 𝜏′) satisfy the universal property, that is, the

following diagrams commutes for unique morphisms 𝑓 and ℎ

𝑍

(𝑆, 𝜏) 𝑋 (𝑆, 𝜏′)

𝑓

𝜋 𝜋

𝑔

𝑓 ′

Since the diagram commutes for all 𝑍, let 𝑍 = (𝑆, 𝜏), and consider the map 𝑓 ′ =
id
′
: (𝑆, 𝜏′) → (𝑆, 𝜏). Then, given any 𝑈 ∈ 𝜏 we find that since id

′
is continuous that

id
′−1(𝑈) = 𝑈 ⊆ (𝑆, 𝜏′) is open, hence 𝜏 ⊆ 𝜏′. Analogously, let 𝑍 = (𝑆, 𝜏′) and consider

𝑓 = id: (𝑆, 𝜏) → (𝑆, 𝜏′). Let 𝑈 ′ ∈ 𝜏′ then from the continuity of id we find that

id
−1(𝑈 ′) = 𝑈 ′ ⊆ (𝑆, 𝜏) is open, therefore 𝜏′ ⊆ 𝜏. Thus indeed 𝜏 = 𝜏′ as wanted. ♮

Proposition 13.5.4 (Quotient topology as a coequalizer). Let 𝑋 be a topological space

and 𝑓 :𝑋 ↠ 𝑆 be a surjective map, where 𝑆 is some set. Define the equivalence relation

set

𝑅 ≔ {(𝑥, 𝑦) ∈ 𝑋 × 𝑋 : 𝑓 (𝑥) = 𝑓 (𝑦)},
together with two maps 𝑟1, 𝑟2:𝑅 ⇒ 𝑋 given by the following commutative diagram

𝑅 𝑋 × 𝑋 𝑋

𝑟1

𝑟2

𝜋1

𝜋2
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The quotient topology is exactly the topology that makes 𝑆 into the coequalizer of 𝑟1

and 𝑟2.

Proof. Let 𝑌 be any space and ℎ:𝑋 → 𝑌 be a continuous map such that ℎ𝑟1 = ℎ𝑟2. Let

𝑥, 𝑥′ ∈ 𝑋 be any two points such that 𝑓 (𝑥) = 𝑓 (𝑦), then from construction 𝑥, 𝑥′ ∈ 𝑅.

Then ℎ(𝑥) = ℎ𝑟1(𝑥, 𝑥′) = ℎ𝑟2(𝑥, 𝑥′) = ℎ(𝑥′). Now by means of the universal property

Theorem 13.5.3, if 𝜏 is the quotient topology on 𝑆 induced by 𝑓 , we conclude that

there exists a unique continuous map 𝑔: (𝑆, 𝜏) → 𝑌 such that the following diagram

commutes

𝑌

(𝑆, 𝜏) 𝑋 𝑅

𝑔

𝑓

ℎ

𝑟1

𝑟2

Therefore (𝑆, 𝜏) = coeq(𝑟1, 𝑟2), with associated morphism 𝑓 . ♮

To ease the way in which we refer to quotients and surjective morphisms that induce

quotients between topological spaces, we define the following terminology.

Definition 13.5.5 (Quotient morphism). A surjective morphism 𝜋:𝑋 → 𝑌 of topolog-

ical spaces 𝑋 and 𝑌 is said to be a quotient morphism (or quotient map) if 𝜋 induces the

universal property of quotients — in other words, open sets of 𝑌 are exactly those that

have open preimage on 𝜋, that is, 𝑉 ⊆ 𝑌 is open if and only if 𝜋−1(𝑉) ⊆ 𝑋 is open.

Theorem 13.5.6 (Quotient descent). Let 𝑞:𝑋 → 𝑌 be a quotient map between topolog-

ical spaces. For any space 𝑍 together with a morphism 𝑓 :𝑋 → 𝑍 that is constant on

the fibres of 𝑞 — that is, 𝑞(𝑥1) = 𝑞(𝑥2) implies 𝑓 (𝑥1) = 𝑓 (𝑥2) — there exists a unique
morphism 𝑓∗:𝑌 → 𝑍 such that the following diagram commutes

𝑋

𝑌 𝑍

𝑞

𝑓

𝑓∗

Proof. Since 𝑞 is surjective, for every 𝑦 ∈ 𝑌 there exists 𝑥 ∈ 𝑋 such that 𝑞(𝑥) = 𝑦, hence

we define 𝑓∗(𝑦) ≔ 𝑓∗(𝑥) for every 𝑥 ∈ 𝑞−1(𝑦). For the uniqueness, since 𝑓 is constant on

the fibres of 𝑞 then 𝑓∗ is fully defined by 𝑓 — thus unique. From the universal property

we obtain that 𝑓∗ is continuous. ♮

Some Examples And Applications
Many important spaces can be obtained with the inclusion of the quotient topology to

our toolkit, I’ll now briefly discuss some of those, which will most probably come up

further into this text.

Example 13.5.7 (Projective space). Let ∼ be the equivalence relation for which 𝑥 ∼ 𝑦
if and only if 𝑥 = 𝛾𝑦, where 𝑥, 𝑦 ∈ R𝑛+1 {0} and 𝛾 ∈ R. We define the 𝑛-dimensional

real projective space as the quotient (R𝑛+1 ∖ {0})/∼, which is denoted by RP𝑛 .
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Definition 13.5.8 (Cone). Let𝑋 be any topological space and 𝐼 be the standard interval.

The topological space 𝑋× 𝐼 is known as the cylinder on 𝑋. Via a quotient operation, we

can collapse regions of this cylinder. For instance, we can create a cone by collapsing

one of the sides of the cylinder, such as (𝑋 × 𝐼)/(𝑋 × {1}). Such object is denoted

Cone𝑋, the cone on 𝑋.

Definition 13.5.9 (Suspension). The suspension of a topological space is an endofunctor

S: Top→ Topmapping each space 𝑋 to the quotient space

S𝑋 ≔ (𝑋 × 𝐼)/(𝑋 × {0, 1})

and for each morphism 𝑓 :𝑋 → 𝑌 we have the naturally induced morphism

S 𝑓 : S𝑋 → S𝑌 mapping [𝑥, 𝑡] ↦→ [ 𝑓 (𝑥), 𝑡].

Example 13.5.10. Let 𝐽 be an indexing set and {𝑋𝑗}𝑗∈𝐽 be a collection of non-empty

topological spaces. For each 𝑗 ∈ 𝐽, choose any 𝑝 𝑗 ∈ 𝑋𝑗 as a base point. We define

the wedge sum of the collection {𝑋𝑗}𝑗∈𝐽 with respect to the base points {𝑝 𝑗}𝑗∈𝐽 as the

topological space ∨
𝑗∈𝐽
𝑋𝑗 =

∐
𝑗∈𝐽

𝑋𝑗/{𝑝 𝑗}𝑗∈𝐽

An interesting fact about wedge sums of topological spaces preserve the Hausdorff

property if every component is Hausdorff.

Proposition 13.5.11. Let {𝑋𝑗}𝑗∈𝐽 be an indexed collection of Hausdorff topological

spaces. Then the wedge sum

∨
𝑗∈𝐽 𝑋𝑗 with respect to any choice of base points is

Hausdorff.

Proof. Let {𝑝 𝑗 ∈ 𝑋𝑗}𝑗∈𝐽 be any choice of base points for the given collection. Let

𝑥, 𝑦 ∈ ∨
𝑗∈𝐽 𝑋𝑗 be any distinct points in the wedge sum space. If 𝑥, 𝑦 ∈ 𝑋𝑗 for some

𝑗 ∈ 𝐽, then it is clear that there exists non-intersecting neighbourhoods of 𝑥 and 𝑦 on

𝑋𝑗 — of which we can take their intersection with the disjoint union

∐
𝑗∈𝐽 𝑋𝑗 and the

proposition will hold for

∨
𝑗∈𝐽 𝑋𝑗 . On the other hand, if 𝑖 , 𝑗 ∈ 𝐽 are distinct indices

and 𝑥 ∈ 𝑋𝑖 while 𝑦 ∈ 𝑋𝑗 , then there exists 𝑈𝑥 ⊆ 𝑋𝑖 and 𝑈𝑦 ⊆ 𝑋𝑗 neighbours of 𝑥

and 𝑦, respectively, such that 𝑈𝑥 ∩ 𝑋𝑗 = ∅ and 𝑈𝑦 ∩ 𝑋𝑖 = ∅, which in particular

imply in 𝑈𝑥 ∩ 𝑈𝑦 = ∅. For our end, we just need to consider the neighbourhoods

𝑈 ′𝑥 = 𝑈𝑥 ∩
∐

𝑗∈𝐽 𝑋𝑗 and𝑈 ′𝑦 = 𝑈𝑦 ∩
∐

𝑗∈𝐽 𝑋𝑗 so that𝑈 ′𝑥 = 𝑈
′
𝑦 . ♮

Proposition 13.5.12. Let 𝑋 be a second countable space and 𝑀 = 𝑋/∼ be a quotient.

If 𝑀 is locally Euclidean, then 𝑀 is second countable.

Proof. Let 𝜋:𝑋 ↠ 𝑀 be the quotient map that induces the equivalence relation ∼ in

𝑋. If we assume that 𝑀 is locally euclidean, we can let 𝒞 be a cover of 𝑀 composed

of coordinate balls. Since 𝜋 is surjective, ℋ ≔ {𝜋−1(𝑈) : 𝑈 ∈ 𝒞} is a cover for the

space 𝑋. Moreover, since 𝑋 is second countable, any cover of 𝑋 contains a countable

subcover — in particular, let𝒰 ⊆ ℋ be a countable subcover. Define the countable set
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𝒞 ′ = {𝑈 ∈ 𝒞 : 𝜋−1(𝑈) ∈ 𝒰}. Since𝒰 covers𝑋 and𝜋 is surjective, it follows that𝒞 ′ ⊆ 𝒞
is a countable subcover of 𝑀 composed of coordinate balls — that is, 𝑀 is Lindelöf.

Better than that, since coordinate balls are second countable (see Proposition 12.7.6)

we can apply Corollary 12.5.12 to see that 𝑀 is second countable. ♮

Corollary 13.5.13 (Manifold from a quotient). In the context of the preceding proposi-

tion, if 𝑀 is both locally Euclidean and Hausdorff, then 𝑀 is a topological manifold.

Hausdorffness & Quotient Spaces
Remark 13.5.14. The quotient topology doesn’t preserve Hausdorffness.

As an example, take the space R × {−1, 1} with the usual topology and define

the equivalence relation (𝑥, 1) ∼ (𝑥,−1) if and only if 𝑥 ≠ 0. The resulting space

(R × {−1, 1})/∼ is not Hausdorff: consider the sequence (1/𝑛, 1)𝑛∈Z>0
, we have that

1/𝑛 → 0 but since 1/𝑛 does never assume the value of zero, for all 𝑛 ∈ Z>0 we have

(1/𝑛, 1) ∼ (1/𝑛,−1)— thus the has two distinct limits (0, 1) from one side and (0,−1)
from the other, thus (R × {−1, 1})/∼ isn’t Hausdorff.

Proposition 13.5.15 (Hausdorff from open quotients). Let 𝜋:𝑋 ↠ 𝑌 be a surjective

morphism of topological spaces 𝑋 and 𝑌. Then 𝑌 is Hausdorff if and only if the

collection of pairs of points with common fibre, 𝐶 B {(𝑝, 𝑞) ∈ 𝑋 × 𝑋 : 𝜋(𝑝) = 𝜋(𝑞)}, is

closed in 𝑋 × 𝑋.

Proof. Let 𝑌 be Hausdorff, then, given any (𝑝, 𝑞) ∈ 𝑋 ∖ 𝐶, there are neighbourhoods

𝑉𝑝 , 𝑉𝑞 ⊆ 𝑌 of 𝜋(𝑝) and 𝜋(𝑞), respectively, such that𝑉𝑝∩𝑉𝑞 = ∅. Since these neighbour-

hoods are disjoint, then in particular the collection fibres𝜋−1(𝑉𝑝)×𝜋−1(𝑉𝑞) is contained

in 𝑋 × 𝑋 ∖ 𝐶, that is, 𝑋 × 𝑋 ∖ 𝐶 is open — hence 𝐶 is closed.

Let 𝐶 be closed, then given any distinct points 𝑎, 𝑏 ∈ 𝑌, the surjectivity of 𝜋
implies that there exists 𝑝, 𝑞 ∈ 𝑋 such that 𝜋(𝑝) = 𝑎 and 𝜋(𝑞) = 𝑏 — in particular

(𝑝, 𝑞) ∈ 𝑋 ×𝑋 ∖𝐶 and since 𝐶 is closed, there exists a neighbourhood𝑈𝑝 ×𝑈𝑞 ⊆ 𝑋 ×𝑋
of (𝑝, 𝑞) such that𝑈𝑝 ×𝑈𝑞 ⊆ 𝑋 × 𝑋 ∖ 𝐶, that is, 𝜋(𝑈𝑝),𝜋(𝑈𝑞) ⊆ 𝑌 are non intersecting

open sets (from the fact that𝜋 is open) that are neighbourhoods of 𝑎 and 𝑏, respectively

— thus 𝑌 is Hausdorff. ♮

Proposition 13.5.16. Every topological space is the quotient of a Hausdorff space.

Proof. Let 𝑋 be any topological space. Consider the product of real lines 𝑃 ≔
∏

𝑥∈𝑋 R
under the product topology and let𝑌 be the subspace of 𝑃 given by all points with one,

and only one, rational coordinate — such space𝑌 is therefore Hausdorff. Furthermore,

define a collection {𝑌𝑥}𝑥∈𝑋 to consist of subsets𝑌𝑥 ⊆ 𝑌 given by the set of points whose

rational coordinate has index 𝑥 — hence 𝑌𝑥 is dense in 𝑌. It should be noted that

the above construction is not necessarily unique, so the reader may try to construct a

different Hausdorff space 𝑌 and a collection of dense sets {𝑌𝑥}𝑥∈𝑋 in 𝑌.

Define now the subspace of 𝑋 ×𝑌 given by 𝑍 ≔
⋃
𝑥∈𝑋 𝑥 ×𝑌𝑥 — endowed with the

subspace topology. Let ∼ be the equivalence relation on 𝑍 given by (𝑥1, 𝑦1) ∼ (𝑥2, 𝑦2)
if and only if 𝑥1 = 𝑥2 = 𝑥 for some 𝑥 ∈ 𝑋 and 𝑦1, 𝑦2 ∈ 𝑌𝑥 . Define a map 𝜙:𝑍/∼ → 𝑋
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sending 𝑥 × 𝑌𝑥 ↦→ 𝑥 — which is clearly both surjective and injective. We now show

that 𝜙 is a topological isomorphism.

Let 𝑉 ⊆ 𝑋 be any open set, then 𝜙−1(𝑉) = {𝑥 × 𝑌𝑥 : 𝑥 ∈ 𝑉} — which in turn is

open in 𝑍/∼. On the other hand, let 𝑈 ≔ {𝑥 × 𝑌𝑥 : 𝑥 ∈ 𝑈 ′} be any open set in 𝑍/∼
given by some indexing set of points 𝑈 ′ ⊆ 𝑋 — our goal will be to prove that 𝑈 ′ is

open, so that the inverse of 𝜙 is continuous. Consider 𝑥0 ∈ 𝑈 ′ to be any point and

likewise (𝑥0, 𝑦0) ∈ 𝑥0 × 𝑌𝑥0
. By the fact that

⋃
𝑥∈𝑈 ′ 𝑥 × 𝑌𝑥 ⊆ 𝑍 is open, we are able to

find neighbourhoods 𝑂𝑋(𝑥0) ⊆ 𝑋 and 𝑂𝑌(𝑦0) ⊆ 𝑌 — of 𝑥0 and 𝑦0, respectively — such

that 𝑁 ≔ 𝑍∩(𝑂𝑋(𝑥0)×𝑂𝑌(𝑦0)) is a neighbourhood of (𝑥0, 𝑦0) in 𝑍/∼. If 𝑥′ ∈ 𝑂𝑋(𝑥0) is
any point, then by the fact that 𝑌𝑥′ is dense in 𝑌, by Proposition 12.1.34, the sets 𝑥′×𝑌𝑥′
and 𝑁 have a non-empty intersection and thus 𝑥′ × 𝑌𝑥′ also intersects

⋃
𝑥∈𝑈 ′ 𝑥 × 𝑌𝑥 .

Therefore 𝑥′ × 𝑌𝑥′ ∈ 𝑈 and hence 𝑥′ ∈ 𝑈 ′ — which implies that𝑈 ′ is open. ♮

Quotient Morphisms In More Depth
So far we’ve been studying the construction of quotients out of surjective set-functions,

but what about being able to classifying a surjective morphisms between given topo-

logical spaces as inducing the universal property of the quotient space? This will be

our goal with this subsection — identifying quotient morphisms. For that end, we

shall profit from the main idea behind quotients: fibres. For that, we define a set given

by fibres of 𝑓 as being saturated.

Definition 13.5.17 (Saturated set). Let 𝑓 :𝑋 → 𝑌 be a set-function. We say that a set

𝑈 ⊆ 𝑋 is saturated with respect to 𝑓 if there exists 𝑉 ⊆ 𝑌 such that𝑈 = 𝑓 −1(𝑉).

Proposition 13.5.18 (Equivalences for saturated sets). Let 𝑓 :𝑋 → 𝑌 be a set-function

and𝑈 ⊆ 𝑋 be any subset. The following propositions are equivalent

(a) The set𝑈 is saturated with respect to 𝑓 .

(b) 𝑈 = 𝑓 −1( 𝑓 (𝑈)).
(c) Let 𝑝 ∈ 𝑈 be any point, 𝑈 contains every element 𝑥 ∈ 𝑋 with common fibre to 𝑝

— that is, 𝑓 (𝑥) = 𝑓 (𝑝) implies 𝑥 ∈ 𝑈 .

Proof. (c)⇒ (b): Suppose 𝑈 satisfies proposition (c), it is clear that 𝑈 ⊆ 𝑓 −1( 𝑓 (𝑈)), on

the other hand, given 𝑥 ∈ 𝑓 −1( 𝑓 (𝑈)), it follows that 𝑥 has a common fibre with some

point of 𝑈 , which implies that 𝑥 ∈ 𝑈 . (b)⇒ (a): Trivial from the definition. (a)⇒ (c):

Let𝑉 ⊆ 𝑌 be such that𝑈 = 𝑓 −1(𝑉), then, given any 𝑝 ∈ 𝑓 −1(𝑉), it is clear that 𝑓 (𝑝) ∈ 𝑉 ,

hence every point 𝑥 ∈ 𝑋 such that 𝑓 (𝑥) = 𝑓 (𝑝) ∈ 𝑉 then 𝑥 ∈ 𝑈 , which finishes the

equivalence chain. ♮

Proposition 13.5.19 (Classification of surjective morphisms). Let 𝜋:𝑋 ↠ 𝑌 be a sur-

jective morphism of topological spaces. The map 𝜋 is a quotient morphism — that

is, induces the universal property of quotients for 𝑋 and 𝑌 — if and only if every

saturated open (or closed) set of 𝑋 has an open (or closed) image in 𝑌.
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Proof. Let 𝜋 be any surjective morphism taking saturated open sets to open images.

Let 𝑉 ⊆ 𝑌 be an open set. Since 𝜋 is surjective and continuous, then 𝜋−1(𝑉) ⊆ 𝑋 is

open. On the other hand, let 𝑉 ⊆ 𝑌 be any set of 𝑌 (not necessarily open), such that

𝜋−1(𝑉) ≔ 𝑈 ⊆ 𝑋 is open. This implies directly that 𝑈 is saturated with respect to 𝜋
and from our initial hypothesis, 𝜋(𝑈) = 𝑉 ⊆ 𝑌 is open. Thus𝜋 is a quotient morphism.

For the contrary, let 𝜋 be a quotient morphism. Then, given any 𝑈 ⊆ 𝑋 open set,

saturated with respect to 𝜋, define 𝑉 ⊆ 𝑌 such that 𝑈 = 𝜋−1(𝑉). Since 𝜋 is a quotient

morphism, it follows that 𝑉 is necessarily open in 𝑌, thus 𝜋(𝑈) = 𝑉 is open.

The proof for the closed set case is completely analogous. ♮

Proposition 13.5.20 (Properties of quotient morphisms). The following properties per-

tain to quotient morphisms between topological spaces.

(a) The composition of quotient morphisms is a quotient morphism.

(b) Injective quotient morphisms are isomorphisms.

(c) Let 𝜋:𝑋 ↠ 𝑌 be a quotient morphism. Then, 𝐶 ⊆ 𝑌 is closed if and only if

𝜋−1(𝐶) ⊆ 𝑋 is closed.

(d) Let 𝜋:𝑋 ↠ 𝑌 be a quotient morphism and 𝑈 ⊆ 𝑋 be any saturated set (open or

closed) with respect to 𝜋. Then, the restriction 𝜋|𝑈 :𝑈 ↠ 𝜋(𝑈) is a quotient map.

(e) Let 𝐽 be an indexing set and {𝜋 𝑗 :𝑋𝑗 ↠ 𝑌𝑗}𝑗∈𝐽 be an indexed collection of quotient

morphisms. The map 𝜋:

∐
𝑗∈𝐽 𝑋𝑗 ↠

∐
𝑗∈𝐽 𝑌𝑗 defined by the restrictions 𝜋(𝑥 𝑗) =

𝜋 𝑗(𝑥 𝑗) for every 𝑥 𝑗 ∈ 𝑋𝑗 ∩
∐

𝑗∈𝐽 𝑋𝑗 is a quotient map.

Proof. (a) Let 𝜋:𝑋 ↠ 𝑌 and 𝜋′:𝑌 ↠ 𝑍 be quotient morphisms, and consider the

map 𝜋′𝜋:𝑋 ↠ 𝑍, which is clearly surjective. From hypothesis a subset 𝑈 ⊆ 𝑍 is

open if and only if 𝜋′−1(𝑈) is open, moreover, 𝜋′−1(𝑈) ⊆ 𝑌 is open if and only if

𝜋−1(𝜋′−1(𝑈)) ⊆ 𝑋 is open — the proposition follows.

(b) If the quotient morphism 𝜋:𝑋 ↠ 𝑌 is injective, then 𝜋 is a bĳection. Let 𝑈 ⊆ 𝑋

be any open set, since 𝜋 is bĳective, there exists a set 𝑉 ⊆ 𝑌 such that 𝜋−1(𝑉) = 𝑈
— moreover, such set must be open on 𝑌 from the quotient topology. This shows

that 𝜋(𝑈) = 𝑉 is open and hence 𝜋 is a topological isomorphism.

(c) Let 𝐶 ⊆ 𝑌 be any set, notice that 𝑌 ∖ 𝐶 is open if and only if 𝜋−1(𝑌 ∖ 𝐶) =
𝜋−1(𝑌) ∖ 𝜋−1(𝐶) ⊆ 𝑋 is open — thus the proposition follows.

(d) Let 𝑉 ⊆ 𝜋(𝑈) be any set. Since 𝜋 is a quotient morphism, 𝑉 is open if and only

if 𝜋−1(𝑉) ⊆ 𝑈 ⊆ 𝑋 — moreover, since 𝑈 is saturated, the whole set can have its

subsets classified by 𝜋|𝑈 into open or closed sets, thus 𝜋|𝑈 is a quotient map.

(e) Let𝑈 ⊆ ∐
𝑗∈𝐽 𝑌𝑗 be any set and let 𝑗0 ∈ 𝐽 be such that𝑈 ⊆ 𝑌𝑗0 . From the mappings,

𝑈 is open if and only if 𝜋−1

𝑗0
(𝑈) ⊆ 𝑋𝑗0 is open — but since 𝜋−1(𝑈) = 𝜋−1

𝑗0
(𝑈), the

proposition follows.

♮

Example 13.5.21 (Cones). An application of the last proposition takes us back to

Definition 13.5.8, where we defined the cone Cone𝑋 of a topological space 𝑋 as
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(𝑋 × 𝐼)/(𝑋 × {1})— the collapse the top of the cylinder. Notice that, given any point

(𝑥, 𝑡) ∈ (𝑋× 𝐼)∖ (𝑋×{1}), there exists a neighbourhood𝑈 ⊆ (𝑋× 𝐼)∖ (𝑋×{1}) of (𝑥, 𝑡),
therefore 𝑋 × {1} is closed in 𝑋 × 𝐼. If we consider the quotient morphism of the cone

𝜋:𝑋 × 𝐼 ↠ Cone𝑋, the restriction 𝜋|𝑋×{0}:𝑋 ×{0}↠ 𝜋(𝑋 ×{0}) is also a quotient map

— moreover, such quotient map is injective, thus 𝜋|𝑋×{0} is an isomorphism. Therefore

we have a sequence of isomorphisms

𝑋 ≃−→ 𝑋 × {0} ≃−→ 𝜋(𝑋 × {0}) ⊆ Cone𝑋,

thus we can identify 𝑋 as a subspace of Cone𝑋.

The following is a sufficient, but not necessary condition for a quotient morphism.

Proposition 13.5.22. Let 𝜋:𝑋 ↠ 𝑌 be a surjective topological morphism. If 𝜋 is either

open or closed, then 𝜋 is a quotient morphism.

Proof. If 𝜋 is open (respectively, closed), in particular we have that saturated sets open

(respectively, closed) of 𝑋 are mapped to open (respectively, closed) sets of 𝑌, hence 𝜋
is a quotient morphism. ♮

Proposition 13.5.23. Let 𝑓 :𝑋 → 𝑌 be a topological morphism that is either open or

closed. The following are properties hold:

(a) If 𝑓 is injective, it is a topological embedding.

(b) If 𝑓 is surjective, it is a quotient map.

(c) If 𝑓 is bĳective, it is an isomorphism.

Proof. We work out the proof for the case where 𝑓 is open, the closed case is equivalent:

1. Consider the restriction of the codomain 𝑓 ′:𝑋 → 𝑓 (𝑋) — which is certainly

surjective, thus bĳective. Let 𝑔: 𝑓 (𝑋) → 𝑋 denote the inverse of 𝑓 . Notice that

since 𝑓 is open then any 𝑈 ⊆ 𝑋 open implies in 𝑓 (𝑈) ⊆ 𝑌 also open, therefore

𝑔(𝑈) = 𝑓 (𝑈) is open and hence 𝑔 is continuous.

2. Let𝑈 ⊆ 𝑌 be any set. Since 𝑓 is surjective, there exists𝑉 ⊆ 𝑋 such that 𝑓 (𝑉) = 𝑈 .

Moreover, since 𝑓 is open,𝑈 can only be open in 𝑌 if its preimage 𝑓 −1(𝑈) = 𝑉 is

open in 𝑋 — which implies that 𝑓 is a quotient map.

3. If 𝑓 is bĳective, then by the fist item 𝑓 is an embedding, that is, it yields an

isomorphism 𝑋 ≃ 𝑓 (𝑋). Moreover since 𝑓 is also surjective then 𝑓 (𝑋) = 𝑌 and

thus 𝑓 is an isomorphism 𝑋 ≃−→ 𝑌.

♮
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13.6 Attaching Space
Definition 13.6.1 (Attaching space). Let 𝑋 and 𝑌 be topological spaces, and consider

a subspace 𝐴 ⊆ 𝑋 together with a continuous map 𝑓 :𝐴→ 𝑋. The attaching space of 𝑋
and 𝑌 along 𝑓 is defined to be the pushout of the canonical inclusion 𝜄:𝐴 ↩→ 𝑋 and 𝑓 ,

that is

𝐴 𝑋

𝑌 𝑋 ∪ 𝑓 𝑌

𝜄

𝑓
⌜

Corollary 13.6.2. In the notation of Definition 13.6.1, the attaching space of 𝑋 and 𝑌

along 𝑓 is given by the quotient space

𝑋 ∪ 𝑓 𝑌 ≃ (𝑋 ⨿ 𝑌)/∼,

where ∼ is the smallest equivalence relation on 𝑋 ⨿𝑌 such that 𝑥 ∼ 𝑓 (𝑥) for all 𝑥 ∈ 𝐴.

Proof. Let 𝑍 be any space together with two continuous maps 𝑝:𝑋 → 𝑍 and 𝑞:𝑌 → 𝑍

such that 𝑝𝜄 = 𝑞 𝑓 — that is, for every 𝑥 ∈ 𝐴 we have 𝑝(𝑥) = 𝑞( 𝑓 (𝑥)). We define a

map 𝜙: (𝑋 ⨿ 𝑌)/∼ → 𝑍 by [(𝑥, 𝑋)] ↦→ 𝑝(𝑥) and [(𝑦, 𝑌)] ↦→ 𝑞(𝑦). Indeed, the image

of a class point under 𝜙 does not depend on the representative since, for any 𝑥 ∈ 𝐴,

we have [(𝑥, 𝑋)] ∼ [( 𝑓 (𝑥), 𝑌)], but 𝑝(𝑥) = 𝑞( 𝑓 (𝑥)). Also, since [𝑋] ≔ {[(𝑥, 𝑋)]}𝑥∈𝑋
and [𝑌] ≔ {[(𝑦, 𝑌)]}𝑦∈𝑌 are open subspaces covering (𝑋 ⨿ 𝑌)/∼, since 𝜙|[𝑋] = 𝑝 and

𝜙|[𝑌] = 𝑞 are continuous maps, by Proposition 13.2.9 we conclude that 𝜙 is continuous.

If we consider the inclusions 𝜄𝑋 :𝑋 ↩→ (𝑋 ⨿ 𝑌)/∼ and 𝜄𝑌 :𝑌 ↩→ (𝑋 ⨿ 𝑌)/∼, one has

that 𝜙𝜄𝑋 = 𝑝 and 𝜙𝜄𝑌 = 𝑞. On the other hand, since these inclusions are monomor-

phisms in Top, we conclude that 𝜙 is the only continuous map making the following

diagram commutative in Top

𝐴 𝑋

𝑌 (𝑋 ⨿ 𝑌)/∼

𝑍

𝜄

𝑓 𝑝𝜄𝑋

𝜄𝑌

𝑞

𝜙

We conclude that (𝑋 ⨿ 𝑌)/∼ is the pushout of 𝑓 with 𝜄 and since pushouts are unique

up to isomorphism, then (𝑋 ⨿ 𝑌)/∼ ≃ 𝑋 ∪ 𝑓 𝑌. ♮

Proposition 13.6.3 (Attaching space properties). Let𝐴 ⊆ 𝑌 be a closed subspace, 𝑓 :𝐴→
𝑋 be a continuous map, and 𝜋:𝑋 ⨿ 𝑌 ↠ 𝑋 ∪ 𝑓 𝑌 be the canonical projection to the

attaching space along 𝑓 . The following properties hold:

(a) The restriction 𝜋|𝑋 is a topological embedding, and its image 𝜋(𝑋) is a closed subspace
of 𝑋 ∪ 𝑓 𝑌.
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(b) The restriction 𝜋|𝑌∖𝐴 is a topological embedding, and its image 𝜋(𝑌 ∖ 𝐴) is an open
subspace of 𝑋 ∪ 𝑓 𝑌.

(c) The attaching space 𝑋 ∪ 𝑓 𝑌 is isomorphic to the disjoint union 𝜋(𝑋) ⨿ 𝜋(𝑌 ∖ 𝐴).

Proof. (a)

Prove attaching space properties and continue on attaching manifolds along

the boundary.

♮
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Chapter 14

Connectivity and Compactness

14.1 Connected Spaces

Connectedness
Definition 14.1.1 (Connected space). Let 𝑋 be a topological space. We say that 𝑋 is

connected if and only if one of the following conditions hold:

(a) The space 𝑋 cannot be expressed as the union of two disjoint non-empty open sets.

(b) Every morphism 𝑓 :𝑋 → {0, 1} is constant—where {0, 1} is a space endowed with

the discrete topology.

Corollary 14.1.2. The two conditions in Definition 14.1.1 are equivalent.

Proof. Assume 𝑋 satisfies the condition (a), and let 𝑥 ∈ 𝑋 be any point. Suppose

𝑓 (𝑥) = 0 (or 𝑓 (𝑥) = 1, we do not loose generality by choosing a point of the domain),

and consider 𝑓 −1(0) ⊆ 𝑋, which must be open from the continuity of 𝑓 , thus 𝑓 −1(0) is a

neighbourhood of 𝑥 in 𝑋. If we suppose, for the sake of contradiction, that there exists

𝑦 ∈ 𝑋 such that 𝑓 (𝑦) = 1, then 𝑓 −1(1) is also open and is a neighbourhood of 𝑦—notice

however that 𝑓 −1(0) ∩ 𝑓 −1(1) = ∅, thus we arrive at a contradiction, there must be no

point 𝑦 with image different than zero.

We prove the counter positive: not (b) implies not (a). Suppose 𝑓 :𝑋 → {0, 1} is not

constant, so that there exists two points 𝑥, 𝑦 ∈ 𝑋 such that 𝑓 (𝑥) = 0 and 𝑓 (𝑦) = 1 (and

therefore 𝑓 is surjective), notice however that, since 𝑓 is continuous, ♮

Definition 14.1.3 (Connected components). Let 𝑋 be a topological space. Define an

equivalence relation ∼ by, given 𝑥, 𝑦 ∈ 𝑋, we have 𝑥 ∼ 𝑦 if and only if there exists a

connected subspace of𝑋 containing both 𝑥 and 𝑦. The collection of equivalence classes

𝑋/∼ is called connected components of 𝑋.

Definition 14.1.4 (Totally disconnected). A space is said to be totally disconnected if

the only connected subsets are singletons.

Example 14.1.5. The set of rational numbers Q is totally disconnected.

373



Path Connectedness
Notation 14.1.6 (Standard interval). From now on, when talking about paths and ho-
motopies, we shall reserve the symbol 𝐼 to denote the standard topological interval, which

is defined by

𝐼 ≔ [0, 1] ↩→ R.

Definition 14.1.7 (Paths & loops). A path in a topological space 𝑋 is any continuous

map 𝛾: 𝐼 → 𝑋. A loop in 𝑋 is a continuous map ℓ : 𝐼 → 𝑋 such that ℓ (0) = ℓ (1).

Definition 14.1.8 (Path connected space). A topological space 𝑋 is said to be path
connected if and only if for all 𝑥, 𝑦 ∈ 𝑋 there exists a path connecting 𝑥 and 𝑦.

Proposition 14.1.9 (Path connected equivalence relation). There exists an equivalence

relation ∼ on the topological 𝑋 defined by: given 𝑥, 𝑦 ∈ 𝑋, we have 𝑥 ∼ 𝑦 if and only

if there exists a path in 𝑋 connecting 𝑥 and 𝑦.

Proof. The constant path 𝑥: 𝐼 → 𝑋 given by 𝑡 ↦→ 𝑥 is a path on 𝑋, thus 𝑥 ∼ 𝑥. Let 𝑥 ∼ 𝑦
and 𝛾 be a path from 𝛾(0) = 𝑥 to 𝛾(1) = 𝑦, then we can define a map𝜆: [0, 1] → 𝑋 given

by 𝜆(𝑡) ≔ 𝛾(1 − 𝑡), so that 𝜆 is both continuous, and 𝜆(0) = 𝑦 while 𝜆(1) = 𝑥—thus 𝜆
is a path between 𝑦 and 𝑥, therefore 𝑦 ∼ 𝑥. Suppose now 𝑦 ∼ 𝑧 and let 𝜂 be a path

connecting 𝑦 to 𝑧. We define a map 𝜙: 𝐼 → 𝑋 given by

𝜙(𝑡) ≔
{
𝜆(2𝑡), for 𝑡 ∈ [0, 1/2]
𝜂(2𝑡 − 1), for 𝑡 ∈ [1/2, 1]

which is surely continuous and connects both 𝑥 and 𝑧—thus 𝑥 ∼ 𝑧. ♮

Definition 14.1.10 (Path connected components). Let𝑋 be a path connected topological

space, and∼ be the equivalence relation described in Proposition 14.1.9. The collection

𝑋/∼ is called the path connected components of the space 𝑋. We denote the collection of

all path components of 𝑋 by 𝜋0(𝑋)—the collection of homotopy classes between maps

∗ → 𝑋.

Definition 14.1.11 (𝜋0 functor). The concept of connected components of a space in-

duce a covariant functor 𝜋0: Top → Set defined by mapping objects 𝑋 ↦→ 𝜋0𝑋, and

morphisms 𝑓 :𝑋 → 𝑌 to 𝜋0 𝑓 :𝜋0𝑋 → 𝜋0𝑌—which is a well defined map since, given

a path component 𝑃 of 𝑋, the set 𝑓 (𝑋) ⊆ 𝑌 is connected and therefore contained in a

unique path component of 𝑌.

Properties of Connectivity
Theorem 14.1.12 (Morphisms preserve connectivity). Let 𝑋 be a (path) connected

space and 𝑓 :𝑋 → 𝑌 be a topological morphism. Then 𝑓 (𝑋) ⊆ 𝑌 is (path) connected.

Proof. Suppose that 𝑓 (𝑋) is not connected, and let 𝑔: 𝑓 (𝑋) → {0, 1} be a non-constant

morphism—in particular, this is equivalent to the condition of 𝑔 𝑓 :𝑋 → {0, 1} being a

non-constant morphism, thus implying in the non-connectedness of 𝑋.
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On the other hand, assume now that 𝑋 is path connected and let 𝑢, 𝑣 ∈ 𝑓 (𝑋)—
define 𝑥, 𝑦 ∈ 𝑋 so that 𝑓 (𝑥) = 𝑢 and 𝑓 (𝑦) = 𝑣. Let 𝛾: 𝐼 → 𝑋 be a path connecting 𝑥 and

𝑦—then 𝑓 𝛾: 𝐼 → 𝑓 (𝑋) is a path connecting 𝑢 and 𝑣, which proves the proposition. ♮

Corollary 14.1.13. Connectedness and path connectedness are both topological prop-

erties.

Corollary 14.1.14. The quotient of a (path) connected topological space is (path) con-

nected.

Proposition 14.1.15. Let 𝑓 :𝑋 ↠ 𝑌 be a morphism of topological spaces 𝑋 and 𝑌. If 𝑌

is connected and, for all 𝑦 ∈ 𝑌, the fibre 𝑓 −1(𝑦) is connected, then 𝑋 is connected.

Proof. Let 𝑔:𝑋 → {0, 1} be a morphism. From the connectedness condition on the

fibres of 𝑓 , it follows that 𝑔 must be constant throughout the fibres of 𝑓—this implies

in the existence of a morphism 𝑔∗:𝑌 → {0, 1} such that 𝑔 = 𝑔∗ 𝑓 . Since 𝑌 is connected,

𝑔∗ must be constant, therefore the composition 𝑔∗ 𝑓 is constant and so is 𝑔—that is, 𝑋

is connected. ♮

Proposition 14.1.16. Let 𝑋 be a topological space. The following are properties con-

cerning connectivity:

(a) Let𝑈 and 𝑉 be disjoint open subsets of 𝑋. If 𝐴 ⊆ 𝑋 is connected and is contained

in𝑈 ∪𝑉 , then either 𝐴 ⊆ 𝑈 or 𝐴 ⊆ 𝑉 .

(b) If 𝑋 contains a dense connected set, then 𝑋 is connected.

(c) Let 𝐴 ⊆ 𝑋 be a connected set. Then Cl(𝐴) is connected and any subset 𝐵 ⊆ 𝑋 with

𝐴 ⊆ 𝐵 ⊆ Cl(𝐴) is connected.

Proof. (a) Suppose𝐴has points in both sets, then𝐴∩𝑈 and𝐴∩𝑉 would be two disjoint

non-empty sets whose union is 𝐴—which would imply that 𝐴 is not connected.

(b) Let 𝐷 ⊆ 𝑋 be a dense connected set and suppose there exists non-empty disjoint

open sets 𝑈 and 𝑉 whose union is 𝑋. Therefore 𝐷 ⊆ 𝑈 ∪ 𝑉 and by item (a) we

have 𝐷 ⊆ 𝑈 or 𝐷 ⊆ 𝑉 . If 𝐷 ⊆ 𝑈 , then 𝑋 = Cl(𝐷) ⊆ Cl(𝑈) but since Cl(𝑈) ⊆ 𝑋 it

follows that 𝑉 = ∅.

(c) Notice that since 𝐴 ⊆ 𝐵 ⊆ Cl(𝐴) then Cl(𝐴) = 𝐵 and from item (b) we conclude

that 𝐵 is connected.

♮

Proposition 14.1.17. Let 𝐽 be a set, and consider a collection (𝑋𝑗)𝑗∈𝐽 of (path) connected

topological spaces. Define the space 𝑋 ≔
⋃
𝑗∈𝐽 𝑋𝑗 . If the intersection

⋂
𝑗∈𝐽 𝑋𝑗 is non-

empty, then 𝑋 is (path) connected.

Proof. Suppose the intersection is non empty and let 𝑥 ∈ ⋃
𝑗∈𝐽 𝑋𝑗 be any point. We split

the proposition into the two given cases.

Suppose 𝑋𝑗 is connected for all 𝑗 ∈ 𝐽. Let 𝑓 :𝑋 → {0, 1} be a morphism—we want

to show that it has to be constant. Since 𝑋𝑗 is connected, it follows that the restriction
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𝑓 |𝑋𝑗 has to be constant, and, since 𝑥 ∈ 𝑋𝑗 , then 𝑓 (𝑥) = 𝑓 (𝑦) for all 𝑦 ∈ 𝑋𝑗 . The fact that

this must be true for all 𝑋𝑗 shows that 𝑓 must be constant throughout the whole set 𝑋.

Suppose 𝑋𝑗 is path connected for all 𝑗 ∈ 𝐽—that is, from hypothesis, 𝑋𝑗 is a path

connected component of 𝑋. We now prove that the intersection is connected to each of

the path connected components. For each 𝑗 ∈ 𝐽, choose any point 𝑦 ∈ 𝑋𝑗 . Since 𝑥 ∈ 𝑋𝑗 ,
then 𝑥 ∼ 𝑦 and therefore every point of 𝑋 is connected by a path. ♮

Theorem 14.1.18. In the real space R, the only connected sets are intervals and single-

tons.

Proof. If 𝐴 is not an interval, there must exist a pair 𝑥, 𝑦 ∈ 𝐴 for which there is 𝑧 ∉ 𝐴

with 𝑥 < 𝑧 < 𝑦. This way, we can write 𝐴 as the union of two disjoint non-empty sets:

𝐴 = [𝐴 ∩ (−∞, 𝑧)] ∪ [𝐴 ∩ (𝑧,∞)]—that is, 𝐴 is disconnected.

We now show that intervals are connected. For the sake of contradiction, assume

there exists an interval 𝐼 such that there are disjoint and non-empty sets 𝐴 and 𝐵 for

which 𝐼 = 𝐴∪𝐵—that is, we assume 𝐼 is disconnected. Let 𝑥, 𝑦 ∈ 𝐼 be any two elements

with 𝑥 < 𝑦 and 𝑥 ∈ 𝐴, while 𝑦 ∈ 𝐵. By the archimedean principle, valid in R, since the

set 𝐶 ≔ [𝑥, 𝑦) ∩𝐴 is both non-empty and bounded above, thus 𝐶 has a supremum, let

𝑠 ≔ sup𝐶—where 𝑥 < 𝑠 ⩽ 𝑦. Notice that 𝑠 ∉ 𝐴, since if so then 𝑠 would not be the

supremum of 𝐶, therefore 𝑠 ∈ 𝐵—which also cannot be the case, since 𝑠 would not,

again, be the supremum of 𝐶. We conclude that the sets 𝐴 and 𝐵 cannot be constructed

at all, hence there is no disconnected interval in R. ♮

Proposition 14.1.19 (Partition by components). The (path) connected components of

any topological space form a partition of the space.

Proof. Let 𝑋 be a topological space. Let𝑈 and𝑉 be (path) connected components of 𝑋

and suppose that𝑈∩𝑉 is non-empty. Since the union of (path) connected sets is (path)

connected, it follows that 𝑈 ∪ 𝑉 is (path) connected from Proposition 14.1.17. Since

(path) connected components are maximal, it follows that 𝑈 ∪𝑉 = 𝑈 = 𝑉 . Therefore

the intersection of (path) connected components is always empty.

Let 𝑝 ∈ 𝑋 be any point. Considering the (path) connected set {𝑝}, one finds a

maximal (path) connected component 𝑈 containing {𝑝}. Therefore the collection of

(path) connected components covers 𝑋. ♮

Corollary 14.1.20. Let 𝑋 be a non-empty topological space. The following are proper-

ties concerning the components of 𝑋:

(a) Any non-empty (path) connected subset of 𝑋 is contained in a single connected com-
ponent.

(b) Any non-empty path connected subset of 𝑋 is contained in a single path connected
component.

(c) Each connected component of 𝑋 is the disjoint union of path components.

Proof. For the proof of (a), let 𝐴 ⊆ 𝑋 be a non-empty (path) connected set. Let 𝑝 ∈ 𝐴 be

any point. Since connected components cover 𝑋, there exists a connected component
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𝐶 ⊆ 𝑋 such that 𝑝 ∈ 𝐶. Since the union of connected sets is connected, then 𝐴 ∪ 𝐶 is

connected (if 𝐴 is path connected, then it’s also connected). Since 𝐴 ∪ 𝐶 contains 𝐶,

by the maximality of the components it must be the case that 𝐴 ∪ 𝐶 = 𝐶. Therefore

𝐴 ⊆ 𝐶. For item (b) we have a completely analogous proof.

For the proof of item (c), let 𝐶 be a connected component of 𝑋. For any point 𝑝 ∈ 𝐶,

since path components cover 𝑋, let 𝑃 be a path component containing 𝑝. Since path

components are connected sets, the union 𝑃 ∪ 𝐶 is connected and contains 𝐶. Again,

by the maximality of 𝐶 this implies in 𝑃 ⊆ 𝐶. Since path components are also maximal

and any point of 𝐶 can be found in a path component contained in 𝐶, it follows that 𝐶

is the disjoint union of path components. ♮

Lemma 14.1.21. The connected components of a non-empty topological space are

closed.

Proof. Let 𝐶 be a connected component of a topological space 𝑋. Since 𝐶 is dense

in Cl(𝐶) it follows that Cl(𝐶) is connected (see Proposition 14.1.16 item (b)). Since

connected components are maximal, it follows that Cl(𝐶) = 𝐶, thus 𝐶 is closed. ♮

Proposition 14.1.22. Any path connected space is connected.

Proof. Let 𝑋 be a path connected space and 𝑓 :𝑋 → {0, 1} be any continuous map. Let

𝑥, 𝑦 ∈ 𝑋 be any two points. Since 𝑋 is path connected, there exists a path 𝛾: 𝐼 → 𝑋

between 𝑥 and 𝑦. From the hypothesis that 𝑓 is continuous, 𝑓 must be continuous on

𝛾(𝐼), therefore constant. Notice that, since this is true for all points of 𝑋 we find that

𝑓 (𝑥) = 𝑓 (𝑦) for all 𝑥, 𝑦 ∈ 𝑋. ♮

Proposition 14.1.23. Connectedness and path connectedness are homotopy invariants.

Proof. Let 𝑓 :𝑋 ≃−→ 𝑌 be a homotopy equivalence, and 𝑔:𝑌 ≃−→ 𝑋 be its homotopy

inverse—furthermore, consider a homotopy ℎ: 𝑓 𝑔 → id𝑌 .

Suppose𝑋 is connected, we shall prove that𝑌 is connected. Let 𝑘:𝑌 → {0, 1} be any

continuous map and 𝑦, 𝑦′ ∈ 𝑌 be any two points. Since𝑋 is connected, in particular the

map 𝑘 𝑓 :𝑋 → {0, 1} is constant—therefore, 𝑘 𝑓 𝑔(𝑦) = 𝑘 𝑓 𝑔(𝑦′). Since ℎ is a homotopy,

then the induced maps ℎ(𝑦,−), ℎ(𝑦′,−): 𝐼 ⇒ 𝑌 are such that ℎ(𝑦, 0) = 𝑓 𝑔(𝑦) and

ℎ(𝑦, 1) = 𝑦, while ℎ(𝑦′, 0) = 𝑓 𝑔(𝑦′) and ℎ(𝑦′, 1) = 𝑦′. We conclude that ℎ(𝑦,−) is a path

from 𝑓 𝑔(𝑦) to 𝑦 and ℎ(𝑦′,−) is a path from 𝑓 𝑔(𝑦′) to 𝑦′. Since 𝑘 is continuous, it follows

that 𝑘 𝑓 𝑔(𝑦) = 𝑘(𝑦) and 𝑘 𝑓 𝑔(𝑦′) = 𝑘(𝑦′). Finally we obtain 𝑘(𝑦) = 𝑘(𝑦′), showing that 𝑘

is constant.

Suppose 𝑋 is path connected. Then 𝑓 (𝑋) is path connected and therefore 𝑘 must

be constant in every point of 𝑓 (𝑋). Now, if 𝑦 ∈ 𝑌 ∖ 𝑓 (𝑋), we consider the induced

map ℎ(𝑦,−): 𝐼 ⇒ 𝑌—which is a path from 𝑓 𝑔(𝑦) ∈ 𝑓 (𝑋) to 𝑦. Therefore, every point

of 𝑌 ∖ 𝑓 (𝑋) can be connected by a path to a point of 𝑓 (𝑋), proving that 𝑌 itself is path

connected. ♮

Proposition 14.1.24 (Products preserve connectedness). Let (𝑋𝑗)𝑗∈𝐽 be a collection of

(path) connected topological spaces. Then

∏
𝑗∈𝐽 𝑋𝑗 is (path) connected.
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Proof. Lets define the notation 𝑋 ≔
∏

𝑗∈𝐽 𝑋𝑗 .
Suppose (𝑋𝑗)𝑗∈𝐽 is composed of connected spaces. Let 𝑘:𝑋 → {0, 1} be any contin-

uous map. For every 𝑗0 ∈ 𝐽, let 𝑝 ∈∏
𝑗∈𝐽∖𝑗0 𝑋𝑗 be any point—which, from construction,

excludes the 𝑗0-th coordinate from the original product space 𝑋. Consider the contin-

uous map 𝜄 𝑗0 :𝑋𝑗0 → 𝑋 for which 𝜋 𝑗 𝜄 𝑗0(𝑥) ≔ 𝜋 𝑗(𝑝) for 𝑗 ≠ 𝑗0 and 𝜋 𝑗0 𝜄 𝑗0(𝑥) ≔ 𝑥—that is,

𝜄 𝑗0 embeds 𝑋𝑗0 in 𝑋 where every coordinate, but 𝑗0, is fixed using the pre-chosen point

𝑝. Since 𝑘 is continuous and 𝑋𝑗 is connected, the continuous map 𝑘𝜄 𝑗0 :𝑋𝑗 → {0, 1} has

to be constant. Now, if we take any pair of points 𝑥, 𝑦 ∈ 𝑋, one sees that 𝑘(𝑥) = 𝑘(𝑦)
from the fact that 𝑘𝜄 𝑗 has to be constant for all 𝑗 ∈ 𝐽—for the suitable choice of initial

fixed point.

Suppose (𝑋𝑗)𝑗∈𝐽 is a collection of path connected spaces. Let 𝑥, 𝑥′ ∈ 𝑋 be any

two elements. For each 𝑗 ∈ 𝐽, let 𝛾𝑗 : 𝐼 → 𝑋 be a path connecting 𝛾𝑗(𝑥) to 𝛾𝑗(𝑥′). By

the universal property of the product topology, there exists a unique continuous map

𝛾: 𝐼 → 𝑋 such that 𝜋 𝑗𝛾 = 𝛾𝑗 for every 𝑗 ∈ 𝐽. Since the product of the paths, 𝛾, is a path

from 𝑥 to 𝑥′, we conclude that 𝑋 is path connected. ♮

Theorem 14.1.25. A space𝑋 is connected if and only if the covariant functor MorTop(𝑋,−)
preserves coproducts.

Prove connectedness iff preserves coproducts.

Local Connectedness
Definition 14.1.26 (Locally (path) connected space). A space𝑋 is said to be locally (path)
connected if it admits a basis of (path) connected open subsets. Equivalently, for every

𝑝 ∈ 𝑋 and neighbourhood𝑈 ⊆ 𝑋 of 𝑝, there exists a (path) connected neighbourhood

𝑉 ⊆ 𝑈 of 𝑝.

Proposition 14.1.27 (Properties for locally (path) connected spaces). Let 𝑋 be a locally

(path) connected space. Then the following properties hold:

(a) Every open subset of 𝑋 is locally (path) connected.

(b) Every (path) connected component of 𝑋 is open.

Proof. Since any open subset 𝐴 can be written as the union of elements of the basis,

then the elements of the basis of 𝑋 contained in 𝐴 form a basis of (path) connected sets

for 𝐴. Therefore 𝐴 is locally (path) connected.

Let 𝐶 be a (path) connected component of 𝑋, and 𝑝 ∈ 𝐶 be any point. Since 𝑋 is

locally (path) connected, there exists a (path) connected neighbourhood 𝑈 ⊆ 𝑋 of 𝑝.

Therefore by Corollary 14.1.20 we find that𝑈 ⊆ 𝐶. Therefore 𝐶 is open. ♮

Proposition 14.1.28 (Properties of locally path connected spaces). Let 𝑋 be a locally

path connected space. Then the following properties hold:

(a) 𝑋 is locally connected.

(b) The path components of 𝑋 are equal to its connected components.

378



(c) 𝑋 is connected if and only if it is path connected.

Proof. (a) From Proposition 14.1.22 we find that the path connected basis of 𝑋 is also

a connected basis, therefore 𝑋 is locally connected.

(b) Let 𝑝 ∈ 𝑋 be any point and consider𝑃 and𝐶 to be, respectively, the path component

and the connected component containing 𝑝. Since 𝑃 contains a point of 𝐶, then

𝑃 ⊆ 𝐶—since 𝑃 ∪ 𝐶 is connected and contains 𝐶. Moreover, by Corollary 14.1.20

we know that 𝐶 can be written as the disjoint union of path components.

Moreover, it needs to be the case that 𝑃 is the only path component in 𝐶. On the

contrary, then 𝑃 and 𝐶 ∖ 𝑃 would be non-empty disjoint open sets whose union is

𝐶—making 𝐶 disconnected. Therefore 𝐶 = 𝑃.

(c) 𝑋 is connected if and only if it has a unique connected component. Since path

components equal connected components, it follows that uniqueness of connected

components is equivalent to uniqueness of path components. Since 𝑋 is path

connected if and only if it has a unique path component, the proposition follows.

♮

Proposition 14.1.29 (Connectivity of manifolds). Let 𝑀 be an 𝑛-manifold with or

without boundary. The following properties hold:

(a) 𝑀 is locally path connected.

(b) 𝑀 has countably many connected components, each being an open subset of 𝑀

and a connected topological space.

Proof. (a) Since 𝑀 has a basis of coordinate balls and those are isomorphic to an open

subset of R𝑛
, which are path connected, it follows that the coordinate balls are path

connected.

(b) By item (a) and Proposition 14.1.27, the collection of connected components of 𝑀

forms an open cover of 𝑀. Since 𝑀 is second countable, there exists a countable

subcover. Since connected components are disjoint, the subcover must be the cover

itself, showing that the collection of connected components of 𝑀 is countable.

Since connected components are open, together with the initial topology generated

by the canonical inclusion—that is, the subspace topology—we find that connected

components are topological manifolds.

♮

Corollary 14.1.30. A connected manifold is path connected.

Proof. Follows directly from Propositions 14.1.28 and 14.1.29. ♮

14.2 Compact Spaces
Definition 14.2.1 (Compact space). A topological space 𝑋 is said to be compact if for

every open cover there exists a finite subcover.
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Proposition 14.2.2 (Image of compact space). If 𝑓 :𝑋 → 𝑌 is a topological morphism

and 𝑋 is compact, then 𝑓 (𝑋) is compact in 𝑌.

Proof. Let 𝒞 be an open cover of 𝑓 (𝑋). Consider the preimage collection 𝒰 ≔

{ 𝑓 −1(𝑉)}𝑉∈𝒞 , which by construction covers 𝑋. Since 𝑋 is compact, let 𝒰 ′ be the

finite subcover given by𝒰 . If we now consider the image collection 𝒞 ′ ≔ { 𝑓 (𝑈)}𝑈∈𝒞 ′,
we find that 𝒞 ′ covers 𝑓 (𝑋) and is contained in 𝒞 , therefore a finite subcover. ♮

Corollary 14.2.3. Compactness is an invariant property of topological spaces.

Corollary 14.2.4. The quotient of a compact space is compact.

Proof. Since any quotient space is the image of a continuous projection, the proposition

follows from Proposition 14.2.2. ♮

Proposition 14.2.5 (Closed subset is compact). In a compact space any closed subset is

compact.

Proof. Let 𝑋 be a space and 𝐴 ⊆ 𝑋 any closed subset. If𝒰 is an open cover of 𝐴, then

𝒰 ∪{𝑋∖𝐴} is a cover of 𝑋. Moreover, since 𝑋 is compact, there exists a finite subcover

𝒰 ′ ⊆ 𝒰 ∪ {𝑋 ∖ 𝐴}. In particular, since𝒰 ′ covers 𝑋, it also covers 𝐴. ♮

Checking if a Space is Compact
Definition 14.2.6 (Finite intersection property). A collection of sets𝒜 is said to satisfy

the finite intersection property if and only if for every finite collection {𝐴1, . . . , 𝐴𝑛} ⊆ 𝒜,

we have

⋂𝑛
𝑗=1
𝐴 𝑗 ≠ ∅, that is, the intersection is non-empty

Proposition 14.2.7. A space is compact if and only if every collection of closed subsets

satisfying the finite intersection property has non-empty intersection.

Proof. Let𝑋 be a compact space and 𝒞 be any collection of closed subsets satisfying the

finite intersection property. Suppose, for the sake of contradiction, that𝒞 has an empty

intersection—thus the complement of the intersection covers𝑋. Hence there must exist

a finite collection {𝐴1, . . . , 𝐴𝑛} ⊆ 𝒞 whose corresponding complement covers 𝑋 and

therefore

⋃𝑛
𝑗=1
(𝑋 ∖𝐴 𝑗) = 𝑋 ∖

( ⋂𝑛
𝑗=1
𝐴 𝑗

)
= 𝑋—then

⋂𝑛
𝑗=1
𝐴 𝑗 = ∅, which contradicts the

hypothesis that 𝒞 satisfies the finite intersection property.

Suppose that the latter condition is true. Suppose there exists an open cover 𝒰
of 𝑋 that has no finite subcover. In particular, the collection 𝒰 ′ ≔ {𝑋 ∖ 𝑈 :𝑈 ∈
𝒰} is composed of closed sets and satisfies the finite intersection property—thus⋃
𝑈∈𝒰 (𝑋 ∖𝑈) = 𝑋 ∖

( ⋂
𝑈∈𝒰 𝑈

)
= 𝑋, which immediately implies that the intersection

of𝒰 is empty, yielding a contradiction. Hence𝒰 must have a finite subcover. ♮

Lemma 14.2.8 (Non-empty countable intersection). Let 𝑋 be a compact space and

{𝐶 𝑗}𝑗∈N be a countable collection of non-empty subsets of 𝑋 for which 𝐶 𝑗+1 ⊆ 𝐶 𝑗 for

every 𝑗 ∈ N—that is, the sets are nested. Then the countable intersection

⋂
𝑗∈N 𝐶 𝑗 is

non-empty.
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Proof.
Prove, this is an exercise

♮

Definition 14.2.9 (Proper map). A continuous map 𝑓 :𝑋 → 𝑌 is said to be proper if for

all compact sets 𝐶 ⊆ 𝑌 the preimage 𝑓 −1(𝐶) ⊆ 𝑋 is compact.

Theorem 14.2.10. Let 𝑋 be a Hausdorff space and 𝑥 ∈ 𝑋 any point. For every compact

set 𝐾 ⊆ 𝑋 ∖{𝑥} there exists two disjoint open sets𝑈 and𝑉 such that 𝑥 ∈ 𝑈 and 𝐾 ⊆ 𝑉 .

Proof. Since 𝑋 is Hausdorff and 𝑥 ∉ 𝐾, for any 𝑘 ∈ 𝐾 there exists disjoint neigh-

bourhoods 𝑈𝑥 and 𝑉𝑘 of 𝑥 and 𝑘, respectively. Let {𝑉𝑘}𝑘∈𝐾 be a collection of such

neighbourhoods—which is also an open cover of 𝐾. Since 𝐾 is compact, there ex-

ists a finite collection of points such that {𝑉𝑘1
, . . . , 𝑉𝑘𝑛} is a finite subcover. Defining

𝑉 ≔
⋃𝑛
𝑗=1
𝑉𝑘 𝑗 and𝑈 ≔

⋃𝑛
𝑗=1
𝑈𝑘 𝑗 , we find that 𝐾 ⊆ 𝑉 and 𝑥 ∈ 𝑈 . ♮

Corollary 14.2.11 (Hausdorff compact subsets). Any compact subset of a Hausdorff

space is closed.

Proof. If 𝑋 is Hausdorff and 𝐶 ⊆ 𝑋 is a compact set, let 𝑥 ∈ 𝑋 ∖ 𝐶 be any point. From

Theorem 14.2.10 we know the existence of a neighbourhood𝑈 of 𝑥 that is disjoint from

𝐾—thus𝑈 ⊆ 𝑋 ∖ 𝐶 and hence 𝐶 is closed. ♮

Corollary 14.2.12 (Maps from compact to Hausdorff spaces). Let 𝑋 be compact and

𝑌 Hausdorff. Every continuous map 𝑓 :𝑋 → 𝑌 is closed and proper. Moreover, the

following are consequential properties:

(a) If 𝑓 is injective, then it is an embedding.

(b) If 𝑓 is surjective, then it is a quotient map.

(c) If 𝑓 is bĳective, then it is an isomorphism.

Proof. We first prove that 𝑓 is closed. Let 𝐶 ⊆ 𝑋 be any closed set of 𝑋, which is

therefore compact. From Proposition 14.2.2 we find that 𝑓 (𝐶) is compact and from

Corollary 14.2.11 we have that 𝑓 (𝐶) is closed.

Now we prove that 𝑓 is proper. Let 𝐾 ⊆ 𝑌 be any compact set and consider the

preimage 𝑓 −1(𝐾). Since 𝑌 is Hausdorff, as pointed before, 𝐾 is closed. Now since 𝑓

is continuous, the preimage of closed sets is closed—hence 𝑓 −1(𝐾) is closed. From

the fact that 𝑋 is compact, we conclude that 𝑓 −1(𝐾) is compact. For the last three

consequences, they come from Proposition 13.5.23. ♮

Lemma 14.2.13 (Tube lemma). Let 𝑋 be any space and 𝑌 be compact. For every 𝑥 ∈ 𝑋
and open set 𝑈 ⊆ 𝑋 × 𝑌 containing {𝑥} × 𝑌, there exists a neighbourhood 𝑉 ⊆ 𝑋 of 𝑥

such that 𝑉 × 𝑌 ⊆ 𝑈 .

Proof. Since the product of open sets form a basis for the product topology, for every

𝑦 ∈ 𝑌 there exists a neighbourhood 𝑉 ×𝑊 ⊆ 𝑈 of (𝑥, 𝑦). Since {𝑥} × 𝑌 ≃ 𝑌 and 𝑌 is

compact, then {𝑥}×𝑌 is compact and therefore must exist a finite collection {𝑉𝑗×𝑊𝑗}𝑛𝑗=1

of open sets of 𝑋 ×𝑌 covering {𝑥}×𝑌. Then if𝑉 ≔
⋂𝑛
𝑗=1
𝑉𝑗 we find that𝑉 ×𝑌 ⊆ 𝑈 . ♮
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Theorem 14.2.14 (Closed projection). Given topological spaces 𝑋 and 𝑌, the space 𝑋

is compact if and only if the canonical projection 𝜋:𝑋 × 𝑌 ↠ 𝑌 is closed.

Proof. Suppose 𝑋 is compact, then if 𝐶 ⊆ 𝑋 × 𝑌 is any closed set, let 𝑦 ∈ 𝑌 ∖ 𝜋(𝐶)
be any point—we shall show that there exists a neighbourhood of 𝑦 outside of 𝜋(𝐶).
Consider the open set 𝑈 ≔ 𝑋 × (𝑌 ∖ 𝜋(𝐶)), which certainly contains 𝑋 × {𝑦}. From

Lemma 14.2.13, we find a neighbourhood 𝑉 ⊆ 𝑌 of 𝑦 such that 𝑋 × 𝑉 ⊆ 𝑈 , that is,

𝑉 ⊆ 𝑌 ∖ 𝜋(𝐶), which settles that 𝜋(𝐶) ⊆ 𝑌 is closed.

Suppose now that 𝑋 is a space such that 𝜋:𝑋 × 𝑌 ↠ 𝑌 is closed for any space

𝑌. Let 𝒞 be any collection of closed subsets of 𝑋 satisfying the finite intersection

property—we’ll show that

⋂
𝐶∈𝒞 𝐶 is non-empty. Define𝑌 to be the space to consisting

of the underlying set 𝑋 ∪ {∗} for some point ∗ and the topology given by 2
𝑋

and

{𝐶 ∪ {∗} : 𝐶 ∈ 𝒞}. Let 𝐾 ⊆ 𝑋 × 𝑌 be the closure of the diagonal of 𝑋—that is,

𝐾 ≔ ClΔ𝑋 . From hypothesis, 𝜋(𝐾) ⊆ 𝑌 is closed and from construction 𝑋 ⊆ 𝜋(𝐾).
We now show that ∗ ∈ 𝜋(𝐾). Suppose on the contrary that ∗ ∉ 𝜋(𝐾). Since 𝜋(𝐾) is

closed, we can find a neighbourhood 𝑉 ⊆ 𝑌 ∖ 𝜋(𝐾) of ∗—and therefore 𝑉 ∩ 𝑋 = ∅.

From the construction of the topology of 𝑌, one could only hope to write 𝑉 as the

intersection of finitely many sets of the form 𝐶 ∪ {∗} for 𝐶 ∈ 𝒞—on the other hand,

since 𝒞 satisfies the finite intersection property, for any finite collection of sets of 𝒞
one can find 𝑥 ∈ 𝑋 such that 𝑥 ∈ 𝐶1 ∩ · · · ∩ 𝐶𝑛 , therefore (𝐶1 ∪ {∗}) ∩ · · · ∩ (𝐶𝑛 ∪ {∗})
still contains a point of 𝑋. This shows that it is impossible to build 𝑉 out of such

sets—hence we obtain a contradiction and thus ∗ ∈ 𝜋(𝐾) and there exists (𝑥0, ∗) ∈ 𝐾 for

some 𝑥0 ∈ 𝑋.

For every 𝐶 ∈ 𝒞 , any neighbourhood 𝑈 × (𝐶 ∪ {∗}) of (𝑥0, ∗) has a non-empty

intersection with the diagonal Δ𝑋—thus 𝐶 ∩𝑈 is non-empty. Moreover, 𝑥0 ∈ 𝐶 for all

𝐶 ∈ 𝒞 , otherwise, since 𝐶 is closed, one can find a neighbourhood 𝑈 ⊆ 𝑋 ∖ 𝐶 of 𝑥0,

which should not be possible. Therefore 𝑥0 ∈
⋂
𝐶∈𝒞 𝐶 and by Proposition 14.2.7 we

conclude that 𝑋 is compact. ♮

Tychonoff Theorem
Lemma 14.2.15. Let 𝐽 be a set, and (𝑋𝑗)𝑗∈𝐽 be a collection of topological spaces. For any

point 𝑥 ∈ ∏
𝑗∈𝐽 𝑋𝑗 and subset 𝐴 ⊆ ∏

𝑗∈𝐽 𝑋 of the product space, we have 𝑥 ∈ Cl𝐴 if,

for every finite 𝐹 ⊆ 𝐽, we have 𝜋𝐹(𝑥) ∈ Cl(𝜋𝐹(𝐴))—where 𝜋𝐹:

∏
𝑗∈𝐽 𝑋𝑗 ↠

∏
𝑗∈𝐹 𝑋𝑗 is the

canonical projection map.

Proof. Suppose, on the contrary, that 𝑥 ∉ Cl𝐴—then there exists a neighbourhood

𝑈 ⊆ ∏
𝑗∈𝐽 𝑋𝑗 of 𝑥 which is disjoint from𝐴. From the definition of the product topology,

the collection of preimages𝜋 𝑗(𝑈 𝑗) for open sets𝑈 𝑗 ⊆ 𝑋𝑗 form a sub-basis of the product

space. In particular, from the basis properties, this allows for the existence of an open

set 𝑉 ≔ 𝑈 𝑗1 × · · · × 𝑈 𝑗𝑛 such that, denoting 𝐹 ≔ { 𝑗1, . . . , 𝑗𝑛} ⊆ 𝐽, the basis element

𝜋−1

𝐹
(𝑉) of the product space is a neighbourhood of 𝑥 and 𝜋−1

𝐹
(𝑉) ⊆ 𝑈 . Therefore 𝜋−1

𝐹

and 𝐴 are disjoint, which is equivalent to

𝐴 ⊆
(∏
𝑗∈𝐽

𝑋𝑗

)
∖ 𝜋−1

𝐹 (𝑉) = 𝜋−1

𝐹

(∏
𝑗∈𝐹

𝑋𝑗 ∖𝑉
)
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that is, 𝜋𝐹(𝐴) ⊆
(∏

𝑗∈𝐹 𝑋𝑗
)
∖𝑉 . Since 𝑉 is a neighbourhood of 𝜋𝐹(𝑥) which is disjoint

from𝜋𝐹(𝐴)we conclude, by Proposition 12.1.17, that𝜋𝐹(𝑥) ∉ Cl(𝜋𝐹(𝐴))—which proves

the lemma. ♮

Theorem 14.2.16 (Tychonoff). The Cartesian product of a set of compact topological

spaces, endowed with the product topology, is compact.

Proof. Denote by {𝑋𝛼}𝛼<𝜅 a collection of compact spaces indexed by an ordinal 𝜅.

We now show via induction on 𝜅 that, for any space 𝑌, the canonical projection

𝑌 ×∏
𝛼<𝜅 𝑋𝛼 ↠ 𝑌 is closed.

For the ease of notation we define 𝑋𝛾 ≔ 𝑌 ×∏
𝛼<𝛾 𝑋𝛼 for all 𝛾 ⩽ 𝜅—moreover

for 𝜆 ⩽ 𝛾 we denote by 𝜋
𝛾
𝜆:𝑋𝛾 ↠ 𝑋𝜆

the canonical projection between such spaces.

We also define that if 𝐶 ⊆ 𝑋𝜅
is a closed set, then 𝐶𝜆 ≔ Cl(𝜋𝜅

𝜆(𝐶))—thus our goal is

equivalent of showing that 𝜋𝜅
0
(𝐶) = 𝐶0.

Assume as inductive hypothesis that for all 𝑥0 ∈ 𝐶0 there exists 𝑥𝜆 ∈ 𝐶𝜆 for every

𝜆 < 𝜅 such that, if 𝜆 < 𝛾 < 𝜅, then

𝜋
𝛾
𝜆(𝑥𝛾) = 𝑥𝜆 ,

and in particular𝜋𝜆
0
(𝑥𝜆) = 𝑥0. Again, equivalent to our goal is to show that𝜋𝜅

0
(𝑥𝜅) = 𝑥0.

If 𝜅 = 𝜆 + 1 is a successor ordinal, then the projection 𝜋𝜅
𝜆:𝑋𝜆 × 𝑋𝜆 ↠ 𝑋𝜆

is closed

from the fact that 𝑋𝜆 is compact, by Theorem 14.2.14. In particular, 𝜋𝜅
𝜆(𝐶) ⊆ 𝑋𝜆

is

closed and, by the inductive hypothesis, 𝜋𝜅
𝜆(𝐶) = 𝐶𝜆—thus there exists 𝑥𝜅 ∈ 𝐾 for

which 𝜋𝜅
𝜆(𝑥𝜅) = 𝑥𝜆, hence

𝜋𝜅
0
(𝑥𝜅) = 𝜋𝜆

0
𝜋𝜅
𝜆(𝑥𝑘) = 𝜋𝜆

0
(𝑥𝜆) = 𝑥0,

which was out goal.

Now, if 𝜅 is a limit ordinal, then 𝑋𝜅 = lim𝜆<𝜅 𝑋
𝜆

together with transitions maps 𝜋
𝛾
𝜆.

The limit of the tuple (𝑥𝜆)𝜆<𝜅 defines a point 𝑥𝜅 ∈ 𝑋𝜅
, we wish to show that 𝑥𝜅 ∈ 𝐶.

For every finite set of ordinals 𝐹 below 𝜅 there exists 𝜆 < 𝜅 above all ordinals of 𝐹,

therefore

𝜋𝐹(𝑥𝜅) = 𝜋𝜆
𝐹𝜋

𝜅
𝜆(𝑥𝜅) = 𝜋𝜆

𝐹(𝑥𝜆).

Moreover 𝜋𝜆
𝐹
(𝑥𝜆) ∈ 𝜋𝜆

𝐹
(𝐶𝜆), where from definition 𝐶𝜆 = Cl(𝜋𝜅

𝜆(𝐶)). Since 𝜋𝜆
𝐹

is a

continuous map,

𝜋𝜆
𝐹(𝐶𝜆) = 𝜋𝜆

𝐹(Cl(𝜋𝜅
𝜆(𝐶))) ⊆ Cl(𝜋𝜆

𝐹𝜋
𝜅
𝜆(𝐶)) = Cl(𝜋𝐹(𝐶)).

This shows that 𝜋𝐹(𝑥𝜅) ∈ Cl(𝜋𝐹(𝐶)), which by Lemma 14.2.15 shows that 𝜋(𝐶) is

closed. ♮

Applications to Real & Metric spaces

Lemma 14.2.17 (Closed intervals are compact). Every closed and bounded interval in

R is compact.
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Proof. Consider a closed interval [𝑎, 𝑏] in R and let𝒰 be a cover for [𝑎, 𝑏]. Define 𝑆 to

be the set of all points 𝑥 ∈ [𝑎, 𝑏] for which the interval [𝑎, 𝑥] is covered by finitely many

sets of 𝒰—since there must exist a set 𝑈 ∈ 𝒰 for which 𝑎 ∈ 𝑈 , then 𝑎 ∈ 𝑆. Since 𝑆 is

non-empty, by the least upper bound property one can define a point 𝑥0 ≔ sup 𝑆.

Let𝑈0 ∈ 𝒰 be a set containing 𝑥0 and let 𝜀 > 0 be such that (𝑥0−𝜀, 𝑥0] ⊆ 𝑈0. Since 𝑥0

is the supremum of 𝑆, there must also exist 𝑥 ∈ 𝑆 such that 𝑥 ∈ (𝑥0− 𝜀, 𝑥0]—that is, the

interval [𝑎, 𝑥0] can be covered by finitely many sets of𝒰 , say [𝑎, 𝑥0] ⊆ 𝑈0∪𝑈1∪· · ·∪𝑈𝑛 ,

therefore 𝑥0 ∈ 𝑆. If, for the sake of contradiction, 𝑥0 < 𝑏, then by the fact that 𝑈0 is an

open set, there must exist 𝑥 ∈ 𝑈0 with 𝑥 > 𝑥0 and yet 𝑥 ∈ [𝑎, 𝑏]—which implies that

[𝑎, 𝑥] ⊆ ⋃𝑛
𝑗=0
𝑈 𝑗 and therefore 𝑥0 isn’t the supremum of 𝑆, leading to a contradiction.

Thus 𝑥0 = 𝑏 and hence [𝑎, 𝑏] ⊆ ⋃𝑛
𝑗=0
𝑈 𝑗—which proves the proposition. ♮

Corollary 14.2.18 (Heine-Borel). A subset of R𝑛
is compact if and only if it is both

closed and bounded.

Proof. Let 𝐾 ⊆ R𝑛
be a compact set. If we let𝒰 be the cover of R𝑛

by open balls centred

at the origin—with any real radius—in particular𝒰 will be a cover for 𝐾 and since 𝐾

is compact, there exists a finite subcover 𝒰 covering 𝐾. From this we conclude that

there are only finitely many balls of real radius that cover 𝐾—hence 𝐾 is necessarily

bounded. From the Hausdorffness of R𝑛
, we obtain from Corollary 14.2.11 that 𝐾 is

closed.

On the other hand, let 𝐶 ⊆ R𝑛
be a closed and bounded set. Since 𝐶 is a bounded

set, its projection into each coordinate must also be bounded, therefore one can obtain

a collection of intervals ([𝑎 𝑗 , 𝑏 𝑗])𝑛𝑗=1
in R for which

𝐶 ⊆
𝑛∏
𝑗=1

[𝑎 𝑗 , 𝑏 𝑗].

From Lemma 14.2.17 we know that each [𝑎 𝑗 , 𝑏 𝑗] is compact—thus by Theorem 14.2.16

we conclude that

∏𝑛
𝑗=1
[𝑎 𝑗 , 𝑏 𝑗] is compact, but since 𝐶 is a closed subset of a compact

set, by Proposition 14.2.5 we find that 𝐶 is compact. ♮

Corollary 14.2.19 (Extreme values on compact sets). Let 𝑋 be a compact space and

𝑓 :𝑋 → R be a continuous map. Then 𝑓 is bounded and attains its maximum and

minimum values on 𝑋.

Proof. Since 𝑓 (𝑋) ⊆ R is compact, then by Corollary 14.2.18 we obtain that 𝑓 (𝑋) is both

closed and bounded—thus in particular 𝑓 (𝑋) contains its supremum and infimum. ♮

We can even extend Corollary 14.2.18 to a more general context, encompassing all

metric spaces—this is what the following proposition does.

Proposition 14.2.20. In any metric space 𝑋, if 𝐴 ⊆ 𝑋 is compact then 𝐴 is both bounded
and closed in 𝑋.
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Proof. Since every metric space is Hausdorff, 𝐴 is closed by Corollary 14.2.11. More-

over, if 𝑥 ∈ 𝐴 is any point, we find that the collection of open balls ℬ𝑥 ≔ {𝐵𝑥(𝑛)}𝑛∈N
forms an open cover of 𝐴 and, since 𝐴 is compact, there exists a finite subcover of ℬ𝑥 .
Therefore there exists a maximal 𝑚 ∈ N for which 𝐴 ⊆ 𝐵𝑥(𝑚)—thus 𝐴 is bounded. ♮

Remark 14.2.21. Notice that a bounded and closed set in a metric space does not need

to be compact, for instance, consider the space ℓ2(N) (see Example 26.1.15) and the

subset 𝐴 ≔ { 𝑓𝑛}𝑛∈N composed of sequences 𝑓𝑛 ∈ ℓ2(N) such that 𝑓𝑛(𝑗) ≔ 𝛿𝑛𝑗—that

is, sequences where the only non-zero term is the 𝑛-th one, which equals 1. Clearly

𝐴 is bounded since ∥ 𝑓𝑛∥2 = 1, moreover, 𝐴 is closed because it has no limit points.

However, since no subset of 𝐴 contains a limit point of 𝐴, we find that 𝐴 is not limit

point compact—thus not compact (see Theorem 14.3.8).

Tychonoff & The Axiom of Choice

Theorem 14.2.22 (Tychonoff & Choice). Tychonoff’s theorem is equivalent to the axiom

of choice.

Prove

Examples of Explicit Isomorphisms
Example 14.2.23 (Torus 𝑇2

). The 2-torus 𝑇2
is defined as the quotient 𝑇2 ≔ (𝐼 × 𝐼)/∼

where ∼ is the smallest equivalence relation on 𝐼 × 𝐼 for which (0, 𝑡) ∼ (1, 𝑡) and

(𝑠, 0) ∼ (𝑠, 1) for all 𝑡 , 𝑠 ∈ 𝐼. Let’s prove that there exists a topological isomorphism

𝑇2 ≃ 𝑆1 × 𝑆1.

First, lets consider the interval 𝐼 and the equivalence relation 0 ∼1 1 so that 𝐼/∼1

is just the interval with its ends glued to a common point. Consider the morphism

𝑓 : 𝐼 ↠ 𝑆1
given by 𝑡 ↦→ (cos(2𝜋𝑡), sin(2𝜋𝑡)) and notice that 𝑓 (1) = 𝑓 (0) = 1—that is, 𝑓 is

constant on the fibres of the canonical projection 𝜋: 𝐼 ↠ 𝐼/∼1—moreover, 𝑓 is certainly

surjective since cosine and sine are both maps of period 2𝜋. By Theorem 13.5.3 we find

a unique morphism 𝑔: 𝐼/∼1 → 𝑆1
such that the following diagram commutes

𝐼

𝐼/∼1 𝑆1

𝑓

≃
𝑔

Notice that besides 𝑔 being surjective, given [𝑡], [𝑠] ∈ 𝐼/∼1 such that 𝑔([𝑡]) = 𝑔([𝑠])
then 𝑡− 𝑠 ∈ Z since cosine and sine have a period of 2𝜋—but since 𝑠, 𝑡 ∈ 𝐼, this can only

be the case if 𝑡 = 𝑠, thus 𝑔 is injective. We therefore conclude that 𝑔 is a bĳective map.

Since 𝐼 is compact, by Corollary 14.2.4 we know that 𝐼/∼1 is compact. Moreover, the

inclusion map 𝑆1 ↩→ R2
is continuous and induces the subspace topology on 𝑆1

—since

R2
is Hausdorff, then 𝑆1

is Hausdorff. Therefore 𝑔 is a bĳective map from a compact

space 𝐼/∼1 to a Hausdorff space 𝑆1
, which by Corollary 14.2.12 is an isomorphism.
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Therefore, we find a unique isomorphism 𝑔×𝑔:𝑇2 ≃−→ 𝑆1×𝑆1
such that the following

diagram commutes

𝐼 × 𝐼

𝑇2 𝑆1 × 𝑆1

𝑓× 𝑓

≃
𝑔×𝑔

which proves the isomorphism.

Let R2 × Z2 → R2
be a group action of Z2

on R2
given by

((𝑥, 𝑦), (𝑛, 𝑚)) ↦→ (𝑥 + 𝑛, 𝑦 + 𝑚),

then the quotient of R2
by such group action, which we’ll denote by R2/Z2

is such that

there exists a topological isomorphism

𝑇2 ≃ R2/Z2.

Indeed, one sees right away that R2/Z ≃ (𝐼 × 𝐼)/∼, where we map (𝑥, 𝑦) + Z2 ↦→
(𝑥 − ⌊𝑥⌋, 𝑦 − ⌊𝑦⌋) is the explicit isomorphism. For free we then obtain an isomorphism

𝑆1 × 𝑆1 ≃ R2/Z2.

Example 14.2.24 (Projective space RP2
). Let ∼1 and ∼2 be the smallest equivalence

relations on, respectively, 𝑆2
and 𝐷2

such that 𝑝 ∼1 −𝑝 for all 𝑝 ∈ 𝑆2
, and 𝑣 ∼2 𝑢 if

𝑣 = 𝜆𝑢 for some 𝜆 ∈ R, for all 𝑢, 𝑣 ∈ 𝐷2
. We’ll show that there exists topological

isomorphisms

RP2 ≃ 𝑆2/∼1 ≃ 𝐷2/∼2.

For the first isomorphism, consider the continuous mapping 𝑓1: RP2 → 𝑆2/∼1

given by Rℓ ↦→
[
ℓ
∥ℓ∥

]
—which collapses the line Rℓ to the class of the unitary vector

ℓ
∥ℓ∥ generating the line, which ensures that 𝑓1 is surjective. Notice that 𝑓1 is necessarily

injective since, if 𝑓1(Rℓ ) = 𝑓1(Rℓ ′), then the lines Rℓ and Rℓ ′ intersect both at 0 and at

the common point of the sphere—this implies in Rℓ = Rℓ ′. Notice that the inclusion

𝑖1: 𝑆2/∼1 ↩→ RP2
is continuous and is the inverse of 𝑓1, sending each unitary vector

𝑣 ∈ 𝑆2/∼1 of the sphere quotient to the respective line generated by 𝑣, namely R𝑣 ∈ RP2
.

For the second isomorphism we make an analogous construction, take the map

𝑓2:𝐷2/∼2 → 𝑆2/∼1 given by the identification [𝑣]∼2
↦→

[
𝑣
∥𝑣∥

]
∼1

, which is both contin-

uous and bĳective. Moreover, the inclusion 𝑖2: 𝑆2/∼1 ↩→ 𝐷2/∼2 is a continuous map

which is inverse to 𝑓2, thus 𝑓2 establishes the required isomorphism.

14.3 Sequential & Limit Point Compactness
Definition 14.3.1 (Limit point compactness). A space 𝑋 is said to be limit point compact
if every infinite subset of 𝑋 has a limit point in 𝑋.

The following important theorem establishes that every compact space is limit point

compact.
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Theorem 14.3.2 (Bolzano-Weierstraß). Let 𝑋 be a compact space. Any infinite subset
𝑆 ⊆ 𝑋 has a limit point.

Proof. Suppose, for the sake of contradiction, that there exists 𝑆 ⊆ 𝑋, infinite, with no

limit points—from this hypothesis, any point 𝑥 ∈ 𝑋 is not a limit point of 𝑆 and is

either in or out of 𝑆. In the former case 𝑥 ∈ 𝑆 there exists a neighbourhood of 𝑥, say𝑈𝑥 ,

for which 𝑈𝑥 ∩ 𝑆 = {𝑥}. In the latter case 𝑥 ∉ 𝑆, there must exist a neighbourhood 𝑈𝑥

of 𝑥 such that 𝑆 and 𝑈𝑥 are disjoint. From the law of excluded middle, the collection

𝒰 ≔ {𝑈𝑥}𝑥∈𝑋 is an open cover of 𝑋—on the other hand, there exists no finite subcover

of𝒰 since each one must only intersect 𝑆 at a unique point, but 𝑆 is infinite, hence the

contradiction. The infinite set 𝑆 must therefore contain at least one limit point. ♮

Remark 14.3.3. One should beware that the converse of Theorem 14.3.2 does not hold

at all. A simple counterexample goes as follows: endow R with the topology given

by {∅,R} and the open intervals {(𝑥,∞) : 𝑥 ∈ R}—in such a space any set has a limit

point, although the space itself is not compact.

Definition 14.3.4 (Sequential compactness). A space 𝑋 is said to be sequentially compact
if every sequence of points (𝑥 𝑗)𝑗 in 𝑋, there exists a subsequence (𝑥′

𝑗
)𝑗 ⊆ (𝑥 𝑗)𝑗 that

converges in 𝑋.

Lemma 14.3.5 (In first countable Hausdorff spaces). Let 𝑋 be a first countable Haus-

dorff space. If 𝑋 is limit point compact, then 𝑋 is sequentially compact.

Proof. Suppose 𝑋 is indeed limit point compact and let (𝑥 𝑗)𝑗∈N be any sequence of

points in 𝑋 and let 𝑆 ≔ {𝑥 𝑗}𝑗∈N be the set of values that the sequence attains. If

𝑆 is finite, then the sequence contains a constant subsequence—which is therefore

convergent in 𝑋.

On the other hand, if 𝑆 is infinite, then by the limit point compactness property of

𝑋 we find that there exists a limit point 𝑥 ∈ 𝑋 of 𝑆. If it is the case that 𝑥 𝑗 = 𝑥 for

infinitely many 𝑗 ∈ N, then the collection of such points form a constant sequence—

which converges to 𝑥. If the former is not the case, then at most a finite amount of

points 𝑥 𝑗 are equal to 𝑥—therefore, one can discard these points from the sequence and

only consider the subsequence (𝑥′
𝑗
)𝑗 ⊆ (𝑥 𝑗)𝑗∈N such that 𝑥′

𝑗
≠ 𝑥 for all indices 𝑗. Since 𝑋

is assumed to be first countable, there must exist a neighbourhood basis (𝐵 𝑗)𝑗∈N at 𝑥.

We’ll now construct a sequence (𝑥 𝑗𝑖 )𝑖∈N ⊆ (𝑥′𝑗)𝑗 such that 𝑥 𝑗𝑖 ∈ 𝐵𝑖 and thus 𝑥 𝑗𝑖 → 𝑥.

Since 𝑥 is a limit point, one can choose 𝑥 𝑗0 ∈ 𝐵0. For the hypothesis of induction,

suppose we have chosen 𝑗0 < 𝑗1 < · · · < 𝑗𝑛 indices so that 𝑥 𝑗𝑖 ∈ 𝐵𝑖 . By Proposition 12.4.6

we find that, since 𝐵𝑛+1 is a neighbourhood of 𝑥, then 𝐵𝑥+1 has infinitely many points

of 𝑆—therefore, one can certainly choose 𝑗𝑛+1 > 𝑗𝑛 for which 𝑥 𝑗𝑛+1
∈ 𝐵𝑛+1. Thus the

sequence (𝑥 𝑗𝑖 )𝑖∈N was successfully constructed so that it converges to 𝑥. ♮

Lemma 14.3.6. Every sequentially compact metric space is second countable.

Proof. Evoking Proposition 12.5.16 it’s sufficient to show that a sequentially compact

metric space 𝑀 is separable. We first show that, for every 𝜀 > 0, the open cover
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composed of 𝜀-balls has a finite subcover. For the sake of contradiction, assume there

exists some 𝜀0 > 0 such that the statement is false.

We now construct a sequence (𝑥 𝑗)𝑗∈N: choose any 𝑥0 ∈ 𝑀, now since𝐵𝜀0
(𝑥0)does not

cover 𝑀, one can choose 𝑥1 ∈ 𝑀 ∖ 𝐵𝜀0
(𝑥0)—since no finite collection of 𝜀0-balls covers

𝑀, we may proceed indefinitely for each 𝑗 ∈ N, always choosing 𝑥 𝑗 ∈ 𝑀 ∖
⋃
𝑖< 𝑗 𝐵𝜀0

(𝑥𝑖).
Since𝑀 is sequentially compact, there must exist a convergent subsequence (𝑥 𝑗𝑛 )𝑛∈N

of (𝑥 𝑗)𝑗∈N—with 𝑥 𝑗𝑛 → 𝑥 for some 𝑥 ∈ 𝑀. Since convergent sequences are Cauchy

in metric spaces, for large enough 𝑗 ∈ N, we have 𝑑(𝑥 𝑗+1, 𝑥 𝑗) < 𝜀0—which implies in

𝑥 𝑗+1 ∈ 𝐵𝜀0
(𝑥 𝑗), a contradiction by the construction of the sequence. Therefore there

must indeed exist a finite collection of 𝜀0-balls that cover 𝑀.

For the separability of 𝑀, for each 𝑛 ∈ N, define 𝐹𝑛 to be a finite set of points of 𝑀

for which the 1/𝑛-balls centred at each point of 𝐹𝑛 covers 𝑀. Since each 𝐹𝑛 is finite,

the union 𝐹 ≔
⋃
𝑛∈N 𝐹𝑛 is countable. Now, if 𝑈 ⊆ 𝑋 is a non-empty open subset of

𝑋 and 𝑝 ∈ 𝑈 is any point and let 𝐵𝜀(𝑝) ⊆ 𝑈 be any neighbourhood of 𝑝. Since R is

archimedean, there must exist 𝑛 ∈ N for which 1/𝑛 < 𝜀—hence there exists 𝑞 ∈ 𝐹𝑛
for which 𝑝 ∈ 𝐵

1/𝑛(𝑞) and 𝑞 ∈ 𝐵𝜀(𝑝). We conclude that 𝐹 is dense in 𝑀—thus 𝑀 is

separable. ♮

Proposition 14.3.7 (Metric & second countable spaces). For second countable spaces

and metric spaces, sequential compactness implies compactness.

Proof. Let𝑋 be a second countable and sequentially compact space. Let𝒰 be any open

cover of 𝑋. Since every second countable space is Lindelöf (see Proposition 12.5.15),

there exists a countable subcover 𝒰 ′ ≔ {𝑈 𝑗}𝑗∈N ⊆ 𝒰 . For the sake of contradiction,

suppose that there is no finite subcover of 𝒰 ′—that is, for every 𝑗 ∈ N, there exists

𝑥 𝑗 ∈ 𝑋 such that 𝑥 𝑗 ∉
⋃𝑛
𝑗=0
𝑈 𝑗 . If (𝑥 𝑗)𝑗∈N is a sequence formed by points with such a

property, since 𝑋 is sequentially compact, there must exist a convergent subsequence

(𝑥 𝑗𝑛 )𝑛∈N with 𝑥 𝑗𝑛 → 𝑥 for some point 𝑥 ∈ 𝑋. Let 𝑚 ∈ N be such that 𝑥 ∈ 𝑈𝑚—from the

definition of limit point, there must exist only finitely many 𝑥 𝑗𝑛 not contained in 𝑈𝑚 .

However, that cannot be the case since, for all 𝑗𝑛 ⩾ 𝑚, we must have 𝑥 𝑗𝑛 ∉
⋃𝑚
𝑛=0

𝑈𝑛

thus in particular 𝑥 𝑗𝑛 ∉ 𝑈𝑚—this implies that (𝑥 𝑗𝑛 )𝑛∈N does not converge to 𝑥, which is

a contradiction.

By Lemma 14.3.6 if𝑀 is sequentially compact then it’s second countable—therefore,

by what was shown above we conclude that 𝑀 is compact. ♮

Theorem 14.3.8. For metric spaces and second countable Hausdorff spaces, limit point

compactness, sequential compactness and compactness are equivalent properties.

Proof. This is the result of Theorem 14.3.2, Lemma 14.3.5 and Proposition 14.3.7. ♮

Corollary 14.3.9 (Metric space completeness). Every compact metric space is complete.

Proof. Let 𝑀 be compact and (𝑥 𝑗)𝑗∈N be any Cauchy sequence. Since 𝑀 is compact,

then it’s also sequentially compact, which implies in the existence of a convergent

subsequence (𝑥′
𝑗
)𝑗 ⊆ (𝑥 𝑗)𝑗∈N for which 𝑥′

𝑗
→ 𝑥 for some 𝑥 ∈ 𝑀. We’ll show that, in

fact, 𝑥 𝑗 → 𝑥. Let 𝐵𝜀(𝑥) be any open ball centred at 𝑥. Since the sequence is Cauchy,
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there exists 𝑁 ∈ N such that 𝑑(𝑥𝑚 , 𝑥𝑛) < 𝜀/2 for every 𝑚, 𝑛 > 𝑁 . On the other

hand, there exists 𝑀 ∈ N such that 𝑑(𝑥′
ℓ
, 𝑥) < 𝜀/2 for every ℓ > 𝑀—therefore, for all

𝑛, ℓ > max(𝑁, 𝑀) we have 𝑑(𝑥𝑛 , 𝑥) < 𝑑(𝑥𝑛 , 𝑥′ℓ ) + 𝑑(𝑥′ℓ , 𝑥) < 𝜀, thus 𝑥𝑛 ∈ 𝐵𝜀(𝑥) for all

𝑛 > max(𝑁, 𝑀). We conclude that all but finitely many points of (𝑥 𝑗)𝑗∈N are contained

in 𝐵𝜀(𝑥) for an arbitrary 𝜀 > 0—therefore 𝑥 𝑗 → 𝑥. ♮

14.4 Local Compactness
Definition 14.4.1 (Locally compact spaces). A space𝑋 is said to be locally compact if and

only if, for every point 𝑥 ∈ 𝑋, there exists a compact set 𝐾 ⊆ 𝑋 and a neighbourhood

𝑈 ⊆ 𝑋 of 𝑥 for which𝑈 ⊆ 𝐾.

Definition 14.4.2 (Relatively compact). Given a space 𝑋, a subset 𝐴 ⊆ 𝑋 is said to be

relatively compact in 𝑋 if its closure Cl𝐴 is compact.

Proposition 14.4.3 (Local & relative compactness in Hausdorff spaces). Let 𝑋 be a

Hausdorff space. The following are equivalent properties:

(a) 𝑋 is locally compact.

(b) Every point of 𝑋 has a relatively compact neighbourhood in 𝑋.

(c) 𝑋 has a basis of relatively compact open sets.

Proof. From the definition of local and relative compactness, it is clear that (c) implies

(b) and that (b) implies (a). We therefore only prove that (a) implies (c). Let 𝑋 be

a locally compact Hausdorff space. Take 𝑥0 ∈ 𝑋 to be any point and let 𝐾 ⊆ 𝑋 be a

compact set containing a neighbourhood𝑈 ⊆ 𝑋 of 𝑥0. If we letℬ be the collection of all

neighbourhoods of 𝑥0 which are contained in 𝑈 , then ℬ forms a neighbourhood basis

at 𝑥0. Moreover, since 𝑋 is Hausdorff, 𝐾 is closed and every 𝑉 ∈ ℬ is also contained

in 𝐾—therefore Cl𝑉 ⊆ 𝐾 and since a closed subset of a compact set is compact then

Cl𝑉 is compact. We conclude that 𝑉 is relatively compact in 𝑋 and thus ℬ is a basis

composed of relatively compact open sets. ♮

Lemma 14.4.4. Let 𝑋 be a locally compact Hausdorff space. For every point 𝑥 ∈ 𝑋 and

neighbourhood 𝑈 ⊆ 𝑋 of 𝑥, there exists a relatively compact neighbourhood 𝑉 of 𝑥

for which Cl𝑉 ⊆ 𝑈 .

Proof. Since 𝑋 is locally compact Hausdorff space, by Proposition 14.4.3 there exists a

relatively compact neighbourhood𝑊 of 𝑥. Since Cl(𝑊)∖𝑈 is closed in Cl𝑊 , it follows

that it’s compact. Evoking Theorem 14.2.10 one can find disjoint open sets 𝑇 and 𝑄

such that 𝑥 ∈ 𝑇 and Cl(𝑊)∖𝑈 ⊆ 𝑄. Define a set𝑉 ≔ 𝑇∩𝑊 , then Cl𝑉 ⊆ Cl𝑊 implies

in Cl𝑉 compact—thus 𝑉 is a relatively compact neighbourhood of 𝑥, we just need to

show that Cl𝑉 ⊆ 𝑈 .

Since 𝑇 and 𝑄 are disjoint, then 𝑇 ⊆ 𝑋 ∖𝑄 and therefore 𝑉 ⊆ 𝑋 ∖𝑄—since 𝑋 ∖𝑄
is closed, this implies in Cl𝑉 ⊆ 𝑋 ∖ 𝑄. Therefore, since Cl𝑉 ⊆ Cl𝑊 , we find that

Cl𝑉 ⊆ Cl(𝑊) ∖ 𝑄. From construction, we have Cl(𝑊) ∖ 𝑈 ⊆ 𝑄, which implies in

Cl(𝑊) ∖𝑄 ⊆ 𝑈—hence in particular Cl𝑉 ⊆ 𝑈 . ♮
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Proposition 14.4.5. Any open or closed subset of a locally compact Hausdorff space is

itself locally compact Hausdorff space.

Proof. Let 𝑋 be a locally compact Hausdorff space. If 𝑈 ⊆ 𝑋 is an open set, then by

Proposition 14.4.3, since𝑈 is also Hausdorff, any point 𝑥 ∈ 𝑈 has a relatively compact

neighbourhood of 𝑥 contained in𝑈—thus𝑈 is locally compact Hausdorff space.

Let 𝐶 ⊆ 𝑋 be a closed set and let 𝑥 ∈ 𝐶 be any point. Since 𝐶 is also Hausdorff, we

argue analogously that 𝑥 has a relatively compact neighbourhood𝐾 of 𝑥 contained in𝐶.

Since Cl𝐾 is compact, the closed subset Cl(𝐾∩𝐶) ⊆ Cl𝐾 is compact. Moreover, since 𝐶

is closed, Cl(𝐾 ∩𝐶) ⊆ Cl𝐶 = 𝐶, therefore𝐾 ∩𝐶 is a relatively compact neighbourhood

of 𝑥 in 𝐶—hence 𝐶 is a locally compact Hausdorff space. ♮

Lemma 14.4.6 (Product of locally compact spaces). Any finite product of locally com-

pact spaces is locally compact.

Proof. Let {𝑋1, . . . , 𝑋𝑛} be a finite collection of locally compact spaces and consider

the product space 𝑋 ≔
∏𝑛

𝑗=1
𝑋𝑗 . Let 𝑥 ∈ 𝑋 be any point and consider, for every index

1 ⩽ 𝑗 ⩽ 𝑛, the projection 𝜋 𝑗(𝑥) ∈ 𝑋𝑗 . Since 𝑋𝑗 is locally compact, there exists a compact

set 𝐾 𝑗 ⊆ 𝑋𝑗 containing a neighbourhood 𝑈 𝑗 ⊆ 𝑋𝑗 of 𝜋 𝑗(𝑥). From this we consider the

product sets 𝐾 ≔
∏𝑛

𝑗=1
𝐾 𝑗 and 𝑈 ≔

∏𝑛
𝑗=1

. By Theorem 14.2.16 we know that 𝐾 is

compact and by the product topology the set𝑈 is open and also a neighbourhood of 𝑥.

Since 𝑈 𝑗 ⊆ 𝐾 𝑗 for all 1 ⩽ 𝑗 ⩽ 𝑛, it follows that 𝑈 ⊆ 𝐾—which proves that 𝑋 is locally

compact. ♮

Theorem 14.4.7 (Baire category theorem). In every locally compact Hausdorff space

or complete metric space, each countable collection of dense open subsets has a dense
intersection.

Proof. Let 𝑋 be either a locally compact Hausdorff space or a complete metric space

and {𝐷𝑛}𝑛∈N be a countable collection of dense open subsets of 𝑋. Evoking Proposi-

tion 12.1.34, it suffices to prove that every non-empty subset𝑈 ⊆ 𝑋 contains a point of

𝐷 ≔
⋂
𝑛∈N 𝐷𝑛 . We split the cases in two:

1. If 𝑋 is a locally compact Hausdorff space, we construct a nested sequence of

compact sets inductively as follows. From hypothesis, 𝐷0 is dense, thus in

particular𝑈 ∩ 𝐷0 contains a point of 𝑋, therefore evoking Proposition 14.4.3 we

can find a non-empty relatively compact open set 𝐶0 ⊆ 𝑋 for which Cl(𝐶0) ⊆
𝑈 ∩ 𝐷0. We proceed analogously, finding a relatively compact set 𝐶1 ⊆ 𝑋 such

that Cl(𝐶1) ⊆ 𝐶0∩𝐷1 ⊆ 𝑈∩𝐷0∩𝐷1. By induction we find a sequence of compact

open sets (Cl(𝐶𝑛))𝑛∈N such that Cl(𝐶𝑛+1) ⊆ Cl(𝐶𝑛) and Cl(𝐶𝑛) ⊆ 𝑈 ∩
⋂𝑛
𝑗=1
𝐷𝑗 for

every 𝑛 ∈ N. By Lemma 14.2.8, there exists a point 𝑥 ∈ ⋂
𝑛∈N Cl(𝐶𝑛) ⊆ 𝑈 and

from construction 𝑥 ∈ ⋂
𝑛∈N 𝐷𝑛 .

2. If 𝑋 is a complete metric space, we use the inductive argument made above to

construct a Cauchy sequence. For every 𝑛 ∈ N, we have a non-empty open

set 𝐶𝑛−1 ∩𝐷𝑛—hence we may choose a point 𝑥𝑛 and a neighbourhood 𝐵𝜀𝑛 (𝑥𝑛) ⊆
𝐶𝑛−1∩𝐷𝑛 for some 𝜀𝑛 > 0. By choosing for each 𝑛 ∈ N a radius 𝑟𝑛 < min(𝜀𝑛 , 1/𝑛),
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we construct a sequence of closed balls (Cl(𝐵𝑟𝑛 (𝑥𝑛)))𝑛∈N for which Cl(𝐵𝑟𝑛 (𝑥𝑛)) ⊆
𝑈 ∩⋂𝑛

𝑗=1
𝐷𝑗 . In the limit 𝑛 →∞ the radius 𝑟𝑛 of the closed balls goes to zero and

(𝑥𝑛)𝑛∈N form a Cauchy sequence. Since 𝑋 is complete, such sequence converges

to a point of𝑈 ∩⋂
𝑛∈N 𝐷𝑛 .

♮

Manifolds
Definition 14.4.8 (Regular coordinate ball). Let 𝑀 be an 𝑛-manifold. We say that a

coordinate ball 𝐵 ⊆ 𝑀 is regular if there exists a neighbourhood 𝑈 of Cl(𝐵) and a

topological isomorphism 𝜙:𝑈 ≃−→ 𝐵𝑟′(𝑥)—for some 𝑟′ > 0 and 𝑥 ∈ R𝑛
—such that

𝜙(𝐵) = 𝐵𝑟(𝑥) and 𝜙(Cl 𝐵) = Cl(𝐵𝑟(𝑥)) for some 0 < 𝑟 < 𝑟′.

Corollary 14.4.9. Regular coordinate balls are relatively compact.

Proof. Given a regular coordinate ball 𝐵, let 𝑈 ⊇ 𝐵 be an open set such that there

exists an isomorphism 𝜙:𝑈 → 𝐵𝑟′(𝑥). Let 0 < 𝑟 < 𝑟′ be such that 𝜙(𝐵) = 𝐵𝑟(𝑥) and

𝜙(Cl 𝐵) = Cl(𝐵𝑟(𝑥)). In particular, the restriction 𝜙|Cl 𝐵 is a topological isomorphism,

and since Cl(𝐵𝑟(𝑥)) is a compact set, so is Cl 𝐵. ♮

Lemma 14.4.10. Let 𝑀 be an 𝑛-manifold and 𝐵 ⊆ 𝑀 be a coordinate ball. If 𝜙: 𝐵 ≃−→
𝐵𝑟′(𝑥) is a topological isomorphism—for some 𝑟′ > 0 and 𝑥 ∈ R𝑛

—then𝜙−1(𝐵𝑟(𝑥)) ⊆ 𝑀
is a regular coordinate ball for all 0 < 𝑟 < 𝑟′.

Proof. Let 𝜙: 𝐵 → 𝐵𝑟′(𝑥) be an isomorphism, and define 𝑈 ≔ 𝜙−1(𝐵𝑟(𝑥)) for any

0 < 𝑟 < 𝑟′. The induced restriction 𝜙:𝑈 → 𝐵𝑟(𝑥) is clearly an isomorphism.

Consider the restriction 𝜙−1
: Cl(𝐵𝑟(𝑥)) → 𝑀. From Corollary 14.2.12 we obtain that

𝜙−1
is a closed map. From Proposition 12.2.12 we find that

𝜙−1(Cl(𝐵𝑟(𝑥))) = Cl(𝜙−1(𝐵𝑟(𝑥))) = Cl(𝑈).

Therefore 𝜙(Cl𝑈) = Cl(𝐵𝑟(𝑥)), proving that𝑈 is a regular coordinate ball. ♮

Proposition 14.4.11. Every manifold without boundary has a countable basis of regular
coordinate balls.

Proof. Let𝑀 be any 𝑛-manifold. Since𝑀 is second countable, let {𝑈 𝑗}𝑗∈N be a countable

open cover of𝑀 consisting of coordinate neighbourhoods. For each 𝑗 ∈ N, let 𝜙 𝑗 :𝑈 𝑗
≃−→

𝑉𝑗 be a topological isomorphism, where 𝑉𝑗 ⊆ R𝑛
is open. For every 𝑥 ∈ 𝑉𝑗 , let 𝑟(𝑥) > 0

be such that 𝐵𝑟(𝑥)(𝑥) ⊆ 𝑉𝑗 .
Defineℬ as the collection of all𝜙−1

𝑗
(𝐵𝑟(𝑥)) ⊆ 𝑀 such that 𝑥 ∈ R𝑛

is a point consisting

of rational coordinates, and 0 < 𝑟 < 𝑟(𝑥) is also rational. From Lemma 14.4.10 we find

that 𝜙−1

𝑗
(𝐵𝑟(𝑥)) is a regular coordinate ball of 𝑀. Since the rationals are countable, for

each 𝑗 ∈ N, the collection of regular coordinate balls of the form 𝜙−1

𝑗
(𝐵𝑟(𝑥)) described

above is countable. Therefore we conclude that ℬ is a countable set.
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Since each 𝜙 𝑗 is an isomorphism, for every 𝑝 ∈ 𝑈 𝑗 , if 𝜙(𝑝) = 𝑥, then 𝜙−1

𝑗
(𝐵𝑟(𝑥))

is a neighbourhood of 𝑝. Therefore 𝑀 =
⋃
𝐵∈ℬ 𝐵. Moreover, if 𝐵, 𝐵′ ∈ ℬ are any

intersecting sets, let 𝑝 ∈ 𝐵 ∩ 𝐵′ be a point. Take 𝑈 𝑗 neighbourhood of 𝑝 and consider

the point 𝑦 ≔ 𝜙 𝑗(𝑝). Let𝑈 ⊆ (𝐵∩𝐵′)∩𝑈 𝑗 be any neighbourhood of 𝑝. Let 0 < 𝑟 < 𝑟(𝑦)
be any rational number such that 𝜙 𝑗(𝑈) ⊆ 𝐵𝑟(𝑦), then 𝜙−1

𝑗
(𝐵𝑟(𝑦)) ⊆ 𝑈 ⊆ 𝐵 ∩ 𝐵′ and

𝜙−1

𝑗
(𝐵𝑟(𝑦)) ∈ ℬ—which proves that ℬ is a basis of 𝑀. ♮

Definition 14.4.12 (Regular coordinate half-ball). Let 𝑀 be an 𝑛-manifold with bound-

ary. A subset 𝐵 ⊆ 𝑀 is a regular coordinate half-ball if there exists an open set𝑈 ⊇ Cl(𝐵)
and a topological isomorphism 𝜙:𝑈 → 𝐵𝑟′(0) ∩ H𝑛

, for some 𝑟′ > 0, such that

𝜙(𝐵) ⊆ 𝐵𝑟(0) ∩H𝑛
and 𝜙(Cl 𝐵) ⊆ Cl(𝐵𝑟(0)) ∩H𝑛

for some 0 < 𝑟 < 𝑟′.

Corollary 14.4.13. Regular coordinate half-balls are relatively compact.

Proof. Follows from the same reasoning of the proof of Corollary 14.4.9. ♮

Proposition 14.4.14. Every manifold with boundary has a countable basis composed

of regular coordinate balls and regular coordinate half-balls.

Proof. The proof is analogous to Proposition 14.4.11, one just needs to beware that 𝑉𝑗
may be either an open subset of R𝑛

or an open subset of H𝑛
. ♮

Proposition 14.4.15. Every manifold with or without boundary is locally compact.

Proof. From Corollary 14.4.9 and Proposition 14.4.11 we find that manifolds without

boundary are indeed locally compact.

For manifolds with boundary we analogously use Corollary 14.4.9 and Proposi-

tion 14.4.14. ♮

14.5 Paracompactness
Definition 14.5.1 (Cover refinement). Let 𝑋 be a topological space and 𝒰 be a cover

of 𝑋. We say that a cover 𝒜 of 𝑋 is a refinement of 𝒰 if for each 𝐴 ∈ 𝒜 there exists

𝑈 ∈ 𝒰 such that 𝐴 ⊆ 𝑈—moreover,𝒜 is said to be an open refinement if each 𝐴 ∈ 𝒜
is open in 𝑋.

Corollary 14.5.2. Let 𝒰 be an open cover of 𝑋. If each element of 𝒰 intersects only

finitely many others, then𝒰 is locally finite.

Proof. Let 𝑝 ∈ 𝑋 be any element. Since 𝒰 covers 𝑋, let 𝑈 ∈ 𝒰 be a neighbourhood

of 𝑝. From hypothesis, 𝑈 intersects only finitely many elements of 𝒰 , therefore 𝒰 is

locally finite. ♮

Definition 14.5.3 (Paracompactness). A space 𝑋 is said to be paracompact if for every
open cover of 𝑋 there exists al locally finite open refinement.

Corollary 14.5.4. Every compact space is paracompact.
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Proof. Let 𝑋 be compact and𝒰 be an open cover. If 𝒞 ⊆ 𝒰 is a finite subcover, then in

particular 𝒞 is a locally finite open refinement of𝒰 . ♮

Definition 14.5.5 (Compact exhaustion). Let 𝑋 be a space. We define a sequence

(𝐾 𝑗)𝑗∈N to be a exhaustion of 𝑋 by compact sets if 𝑋 =
⋃
𝑗∈N 𝐾 𝑗 and, for all 𝑗 ∈ N, each set

𝐾 𝑗 is compact in 𝑋, and the sequence satisfies 𝐾 𝑗 ⊆ Int𝐾 𝑗+1.

Lemma 14.5.6. Every second countable, locally compact Hausdorff topological space

admits an exhaustion by compact sets.

Proof. Let 𝑋 be a second countable, locally compact Hausdorff space. Since 𝑋 is locally

compact Hausdorff, there exists a basis consisting of relatively compact open subsets

of𝑋. Since𝑋 is second countable, one can consider a countable cover of𝑋 by relatively

compact sets 𝒞 ≔ {𝐶 𝑗}𝑗∈N. We proceed by induction for the construction of each 𝐾 𝑗 .

Define 𝐾0 ≔ 𝑈0, and assume, for the inductive hypothesis, that we’ve constructed a

sequence (𝐾0, . . . , 𝐾𝑛−1) of compact sets satisfying 𝐾 𝑗 ⊆ Int𝐾 𝑗+1 for 𝑗 < 𝑛 − 1. Since

𝐾𝑛−1 is compact and 𝒞 covers 𝐾𝑛−1, it follows that there exist a finite 𝑘𝑛−1 ∈ N such

that 𝐾𝑛−1 ⊆
⋃𝑘𝑛−1

𝑗=0
𝐶 𝑗—in particular, choose 𝑘𝑛−1 so that 𝑘𝑛−1 > 𝑛. We thus define

𝐾𝑛 ≔
⋃𝑘𝑛−1

𝑗=0
Cl(𝐶 𝑗) so that 𝐾𝑛 ⊆ Int𝐾𝑛−1. Moreover, since 𝑘𝑛−1 > 𝑛 then 𝑈𝑛 ⊆ 𝐾𝑛 .

Therefore the sequence (𝐾 𝑗)𝑗∈N is an exhaustion of 𝑋 by compact sets. ♮

Theorem 14.5.7. Every second countable, locally compact Hausdorff space is paracom-

pact.

Proof. Let 𝑋 satisfy the above-mentioned hypothesis, and𝒰 be an open cover of 𝑋. By

Lemma 14.5.6, let (𝐾 𝑗)𝑗∈N be an exhaustion of 𝑋 by compact sets. Define the following

collections:

• For all 𝑗 ∈ N, let 𝐴 𝑗 ≔ 𝐾 𝑗+1 ∖ Int(𝐾 𝑗)—which is a closed compact set.

• Define 𝑊0 ≔ Int𝐾2 and, for each 𝑗 > 0, let 𝑊𝑗 ≔ Int(𝐾 𝑗+2) ∖ 𝐾 𝑗−1—forming a

collection of open sets.

Notice that 𝐴 𝑗 ⊆ 𝑊𝑗 for all 𝑗 ∈ N.

For each point 𝑝 ∈ 𝐴 𝑗 , let 𝑈𝑝 ∈ 𝒰 be a neighbourhood of 𝑝, and define 𝑉𝑝 ≔

𝑈𝑝 ∩𝑊𝑗—which is again a neighbourhood of 𝑝. The collection {𝑉𝑝}𝑝∈𝐴𝑗 forms an open

cover for the compact set 𝐴 𝑗 , and from compactness there exists a finite subcover, say

𝒱𝑗 . The union 𝒱 ≔
⋃
𝑗∈N𝒱𝑗 is an open refinement of𝒰 .

Consider the open set 𝑊𝑗 for each 𝑗 ∈ N, notice that since 𝑊𝑗+3 = Int(𝐾 𝑗+5) ∖ 𝐾 𝑗+2,

then𝑊𝑘 for 𝑘 > 𝑗 + 3 does not intersect𝑊𝑗 . On the other hand𝑊𝑗−3 = Int(𝐾 𝑗−1) ∖ 𝐾 𝑗−4

also does not intersect 𝑊𝑗 and neither do 𝑊𝑘 for 𝑘 < 𝑗 − 3. Therefore 𝑊𝑗 intersects

𝑊𝑘 only for 𝑗 − 2 ⩽ 𝑘 ⩽ 𝑗 + 2—therefore every 𝑉 ∈ 𝒱 intersects only finitely many

members, showing that 𝒱 is locally finite. ♮

Corollary 14.5.8. Every manifold with or without boundary is paracompact.
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14.6 Normal Spaces
Definition 14.6.1 (Normal space). A topological space 𝑋 is said to be normal if it is

Hausdorff, and for every pair of disjoint closed sets 𝐶, 𝐹 ⊆ 𝑋 there exists a pair of disjoint
open sets𝑈,𝑉 ⊆ 𝑋 such that 𝐶 ⊆ 𝑈 and 𝐹 ⊆ 𝑉 .

Proposition 14.6.2. Every compact Hausdorff space is normal.

Proof. Since 𝑋 is Hausdorff, for each 𝑐 ∈ 𝐶 and 𝑓 ∈ 𝐹 let 𝐶 𝑓 , 𝐹 𝑓 ⊆ 𝑋 be disjoint
neighbourhoods of, respectively, 𝑐 and 𝑓 . Now consider the collections (𝐶 𝑓 ) 𝑓 ∈𝐹 and

(𝐹 𝑓 ) 𝑓 ∈𝐹, where the latter forms an open cover of 𝐹. Since 𝐹 is closed, thus compact,

let ℱ𝑐 ≔ (𝐹 𝑓𝑗 )𝑛𝑗=1
⊆ (𝐹 𝑓 ) 𝑓 ∈𝐹 be a finite subcover of 𝐹—and consider the finite intersection

𝐶𝑐 ≔
⋂𝑛
𝑗=1
𝐶 𝑓𝑗 , which is a neighbourhood of 𝑐 and is disjoint from every member of ℱ𝑐 .

By the compactness of 𝐶, let 𝒞 ≔ (𝐶𝑐 𝑗 )𝑚𝑗=1
be a finite subcover of the open cover

(𝐶𝑐)𝑐∈𝐶 of the set 𝐶. If we consider the corresponding family of finite covers (ℱ𝑐 𝑗 )𝑛𝑗=1
of

the set 𝐹, we can define ℱ ≔
⋂𝑚
𝑗=1
ℱ𝑐 𝑗—which is again a finite open cover of 𝐹, since

each ℱ𝑐 𝑗 is finite. Now, defining the open sets 𝑈 ≔
⋃𝒞 and 𝑉 ≔

⋃ℱ , we find that

𝐶 ⊆ 𝑈 and 𝐹 ⊆ 𝑉—moreover, from the construction of the open covers, the sets𝑈 and

𝑉 are also disjoint. ♮

Corollary 14.6.3. Every closed subspace of a normal space is normal.

Definition 14.6.4 (Regular space). A topological space 𝑋 is said to be regular if it is

Hausdorff and for every closed set 𝐶 ⊆ 𝑋 and point 𝑎 ∈ 𝑋 ∖𝐶, there exists a pair of open
sets𝑈,𝑉 ⊆ 𝑋 for which 𝑎 ∈ 𝑈 and 𝐶 ⊆ 𝑉 .

Lemma 14.6.5. Let 𝑋 be a Hausdorff space. Then 𝑋 is normal if and only if, for any

closed subset 𝐶 ⊆ 𝑋 and open set 𝑈 ⊆ 𝑋 containing 𝐶, there exists a neighbourhood

𝑉 of 𝐶 such that Cl(𝑉) ⊆ 𝑈 .

Proof. If 𝑋 is normal, we can consider a closed set 𝐶 ⊆ 𝑋 and, given an open set𝑈 ⊆ 𝑋
containing 𝐶, the closed set 𝐹 ≔ 𝑋 ∖ 𝑈 . From definition, there must exist disjoint

open sets 𝑉,𝑈 ′ ⊆ 𝑋 for which 𝐶 ⊆ 𝑉 and 𝐹 ⊆ 𝑈 ′. Then in particular Cl(𝑉) and 𝐹 are

disjoint—otherwise, if 𝑦 ∈ 𝐹 ∩Cl(𝑉) then 𝑦 ∈ 𝑈 ′, but𝑈 ′ and 𝑉 are disjoint, yielding a

contradiction.

For the converse, let 𝐴 and 𝐵 be disjoint closed subsets of 𝑋 and assume the latter

hypothesis. Define the open set 𝑈 ′ ≔ 𝑋 ∖ 𝐵 containing 𝐴. Then one can choose a

neighbourhood 𝑉 of 𝐴 such that Cl(𝑉) ⊆ 𝑈 ′, therefore 𝐵 ⊆ 𝑈 ≔ 𝑋 ∖ Cl(𝑉). Therefore

𝑈 and 𝑉 form the desired pair of disjoint open sets for normality. ♮

Theorem 14.6.6. Every paracompact Hausdorff space is normal.

Proof. Let 𝑋 be a paracompact Hausdorff space, and consider a closed subset 𝐴 ⊆ 𝑋
and a point 𝑥 ∈ 𝑋 ∖ 𝐴—we shall prove that 𝑋 is regular first. Since 𝑋 is Hausdorff,

for each 𝑝 ∈ 𝐴, let 𝑈𝑝 and 𝑉𝑝 be disjoint neighbourhoods of 𝑝 and 𝑥, respectively.

Therefore (𝑈𝑝)𝑝∈𝐴 forms an open cover of 𝐴—thus 𝒞 ′ ≔ (𝑈𝑝)𝑝∈𝑃 ∪ {𝑋 ∖ 𝐴} is an open

cover of 𝑋. Since 𝑋 is paracompact, let 𝒞 be a locally finite refinement of 𝒞 ′, and
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consider the subset 𝒰 ⊆ 𝒞 of members 𝑈 ⊆ 𝒞 such that 𝑈 ⊆ 𝑈𝑝 for some 𝑝 ∈ 𝐴.

The collection 𝒰 forms a locally finite open cover of 𝐴. Also, given any 𝑈 ∈ 𝒰 , if

𝑈 ⊆ 𝑈𝑝 , then 𝑉𝑝 is a neighbourhood of 𝑥 that is disjoint from 𝑈—therefore Cl(𝑈)
cannot contain the point 𝑥.

Define 𝐿 ≔
⋃
𝑈∈𝒰 𝑈 and 𝑊 ≔ 𝑋 ∖ Cl(𝐿). From the fact that 𝒰 is locally finite,

we know that Cl(𝐿) = ⋃
𝑈∈𝒰 𝑈 . This shows that 𝑥 is not contained in 𝐿, while 𝑊

is a neighbourhood of 𝑥. Since 𝐿 and 𝑊 are disjoint open sets such that 𝐴 ⊆ 𝐿 and

𝑥 ∈ 𝑊 , this shows that 𝑋 is regular. For the proof that 𝑋 is normal, one simply needs

to interchange the Hausdorff condition used to build the initial sets by the regularity

of 𝑋. ♮

Corollary 14.6.7. Every topological manifold is normal.

Theorem 14.6.8 (Urysohn). Let 𝑋 be a normal topological space, and 𝐶, 𝐹 ⊆ 𝑋 be a pair

of disjoint closed subsets. Then there exists a continuous map 𝑓 :𝑋 → [0, 1] such that

𝑓 |𝐶 = 0 and 𝑓 |𝐹 = 1.
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Chapter 15

Topological Homotopies & The
Fundamental Group

15.1 Homotopy
Definition 15.1.1 (Left homotopy in Top). Let 𝑓 , 𝑔:𝑋 ⇒ 𝑌 be parallel topological

morphisms. We define a left homotopy 𝜂: 𝑓 ⇒ 𝑔 between 𝑓 and 𝑔 to be a morphism

𝜂:𝑋 × 𝐼 → 𝑌 such that the following diagram commutes

𝑋 𝑋 × 𝐼 𝑋

𝑌
𝑓

𝑖0

𝜂

𝑖1

𝑔

where 𝑖0, 𝑖1:𝑋 ⇒ 𝑋 × 𝐼 are parallel morphisms with 𝑥
𝑖0↦−→ (𝑥, 0) and 𝑥

𝑖1↦−→ (𝑥, 1).
If topological spaces are viewed as categories whose objects are its points and

morphisms are the identities, then topological morphisms 𝑓 , 𝑔:𝑋 ⇒ 𝑌 are functors

between the categories 𝑋 and 𝑌 and a homotopy 𝜂: 𝑓 ⇒ 𝑔 is a natural transformation

between 𝑓 and 𝑔, where the following diagram commutes in the category 𝑌 for any

two points 𝑥, 𝑥′ ∈ 𝑋:

𝑓 (𝑥) 𝑔(𝑥)

𝑓 (𝑥′) 𝑔(𝑥′)

𝜂(𝑥,−)

𝑓 𝑔

𝜂(𝑥′,−)

To put concretely, left homotopy between 𝑓 and 𝑔 is a continuous map 𝜂 such that

𝜂(−, 0) = 𝑓 and 𝜂(−, 1) = 𝑔—which can be visually thought of as a deformation of the

morphism 𝑓 to 𝑔. If 𝑓 and 𝑔 are indeed homotopic, we denote this by 𝑓 ∼
h
𝑔.

Corollary 15.1.2 (Equivalence relation). Left homotopy induces an equivalence relation
∼

h
on the collection of topological morphisms. Moreover, homotopy respects compo-

sition of morphisms.
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Proof. First we prove that ∼
h

is an equivalence relation:

• (Reflexive) Given a continuous map 𝑓 :𝑋 → 𝑌, we explicitly define a homotopy

𝑓 ⇒ 𝑓 by mapping (𝑥, 𝑡) ↦→ 𝑥 for all (𝑥, 𝑡) ∈ 𝑋 × 𝐼.
• (Symmetric) Let 𝑔:𝑋 → 𝑌 be another continuous map and suppose that there

exists a homotopy 𝜂: 𝑓 ⇒ 𝑔. We can define a homotopy 𝜂′: 𝑔 ⇒ 𝑓 by mapping

(𝑥, 𝑡) ↦→ 𝜂(𝑥, 1 − 𝑡)—so that 𝜂′(−, 0) = 𝜂(−, 1) = 𝑔 and 𝜂′(−, 1) = 𝜂(−, 0) = 𝑓 .

• (Transitive) Consider yet another morphism ℎ:𝑋 → 𝑌 and suppose that there

exists a homotopy 𝜎: 𝑔 ⇒ ℎ. In order to construct a homotopy 𝛿: 𝑓 ⇒ ℎ, we

define a 𝑋-parametrized path by concatenating 𝜂 and 𝜎 appropriately

𝛿(𝑥, 𝑡) ≔
{
𝜂(𝑥, 2𝑡), 𝑡 ∈ [0, 1/2],
𝜎(𝑥, 2𝑡 − 1), 𝑡 ∈ [1/2, 1].

Indeed, 𝛿(−, 0) = 𝜂(−, 0) = 𝑓 while 𝛿(−, 1) = 𝜎(−, 1) = ℎ. It remains to prove

that 𝛿 is continuous. Notice that the sets 𝐴 ≔ 𝑋 × [0, 1/2] and 𝐵 ≔ 𝑋 × [1/2, 1]
are both closed in the product topology and cover the whole space 𝑋 × 𝐼. By

Proposition 13.2.9, since 𝛿 is continuous on both 𝐴 and 𝐵 then 𝛿 is continuous on

𝐴 ∪ 𝐵 = 𝑋 × 𝐼. We say that 𝛿 is the product of the homotopies 𝜂 and 𝜎.

To prove that homotopy preserves composition, consider the following commutative

diagram in Top

𝑋 𝑌 𝑍 𝑊
𝑓 𝑔

𝑔′

ℎ

If there exists a homotopy 𝜂: 𝑔 ⇒ 𝑔′, we want to show that ℎ𝑔 𝑓 is homotopy equivalent

to ℎ𝑔′ 𝑓 . To do that, consider the following commutative diagram

𝑋 𝑋 × 𝐼 𝑋

𝑌 𝑌 × 𝐼 𝑌

𝑍

𝑊

𝑖0

𝑓 𝑓×id𝐼

𝑖1

𝑓

𝑖0

𝑔
𝜂

𝑖1

𝑔′

ℎ

From the diagram we see that a natural choice of homotopy 𝜎: ℎ𝑔 𝑓 ⇒ ℎ𝑔′ 𝑓 is given

by 𝜎 = ℎ𝜂( 𝑓 × id𝐼) thus indeed ℎ𝑔 𝑓 ∼
h
ℎ𝑔′ 𝑓 . ♮

Given any two topological spaces 𝑋 and 𝑌, we denote the collection of continuous

maps 𝑋 → 𝑌 up to homotopy equivalence by

[𝑋,𝑌] ≔ MorTop(𝑋,𝑌)/∼h
.
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We call a morphism [ 𝑓 ] ∈ [𝑋,𝑌] a homotopy class. Moreover, for any three spaces

𝑋,𝑌, 𝑍 ∈ Top, there exists a unique compositional map

[𝑋,𝑌] × [𝑌, 𝑍] −→ [𝑋, 𝑍]
such that the following diagram commutes

MorTop(𝑋,𝑌) ×MorTop(𝑌, 𝑍) MorTop(𝑋, 𝑍)

[𝑋,𝑌] × [𝑌, 𝑍] [𝑋, 𝑍]

That is, given morphisms 𝑋
𝑓
−→ 𝑌

𝑔
−→ 𝑍, we have a composition of [ 𝑓 ]with [𝑔] uniquely

defined as

[𝑔] ◦ [ 𝑓 ] ≔ [𝑔 𝑓 ].

Definition 15.1.3 (Homotopy category). We therefore define a category Ho(Top) com-

posed of topological spaces—which, viewed as an object of Ho(Top), is called a homotopy
type—and classes of continuous morphisms between them up to homotopy.

This quotient operation on the category of topological spaces induces a canonically

defined projective functor

𝜅: Top −→ Ho(Top).

Definition 15.1.4 (Homotopy equivalence). Let 𝑋 and 𝑌 be topological spaces. We say

that a continuous map 𝑓 :𝑋 → 𝑌 is a homotopy equivalence of 𝑋 and 𝑌 if there exists a

continuous map 𝑔:𝑌 → 𝑋 and homotopies 𝑓 𝑔 ⇒ id𝑌 and 𝑔 𝑓 ⇒ id𝑋 .

If there exists such homotopy equivalence, we write that 𝑋 ≃
h
𝑌—it is to be noted

that homotopy equivalences are exactly the isomorphisms in the homotopy category

Ho(Top).

Corollary 15.1.5. Every topological isomorphism is a homotopy equivalence.

Proof. Let 𝑓 :𝑋 ≃−→ 𝑌 be a topological isomorphism. We consider its image under the

functor Top → Ho(Top), which we’ll name [ 𝑓 ]:𝑋 → 𝑌. Then since 𝑓 −1
:𝑌 ≃−→ 𝑋 is

also a continuous morphism, we can consider its class [ 𝑓 −1] and notice that [ 𝑓 ][ 𝑓 −1] =
[ 𝑓 𝑓 −1] = [id𝑌] and [ 𝑓 −1][ 𝑓 ] = [ 𝑓 −1 𝑓 ] = [id𝑋]. Therefore, there exists two homotopies

𝑓 𝑓 −1 ⇒ id𝑌 and 𝑓 −1 𝑓 ⇒ id𝑋 . ♮

Corollary 15.1.6. Homotopy equivalence is an equivalence relation on the class of

topological spaces.

Definition 15.1.7 (Relative homotopy). Let 𝑋 be a space and 𝐴 ⊆ 𝑋 be a subspace. If

𝑓 , 𝑔:𝑋 ⇒ 𝑌 are parallel continuous maps such that 𝑓 |𝐴 = 𝑔|𝐴, a homotopy between 𝑓

and 𝑔 relative to 𝐴—if existent—is a homotopy 𝜂: 𝑓 ⇒
rel 𝐴 𝑔 such that

𝜂(𝑎, 𝑡) = 𝑓 (𝑎) = 𝑔(𝑎) for all 𝑎 ∈ 𝐴 and 𝑡 ∈ 𝐼.
If 𝑓 and 𝑔 are homotopic relative to 𝐴, we shall also denote this by 𝑓 ∼

rel 𝐴 𝑔.
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Contractibility
Definition 15.1.8 (Null-homotopy). A morphism of topological spaces𝑋 → 𝑌 is said to

be null-homotopic if it is homotopic to a constant map. A homotopy between a morphism

and a constant morphism is called a null-homotopy. In particular, a null-homotopy of

the identity map id:𝑋 → 𝑋 is a contraction of 𝑋.

Proposition 15.1.9. Let 𝑓 :𝑋 → 𝑌 and 𝑔:𝑌 → 𝑍 be continuous maps. If either 𝑓 or 𝑔

is null-homotopic, then 𝑔 𝑓 :𝑋 → 𝑍 is null-homotopic.

Proof. Let 𝑓 be null-homotopic and 𝜂: 𝑓 ⇒ 𝑐𝑝 be a homotopy between 𝑓 and the

constant map 𝑐𝑝 :𝑋 → 𝑌 on 𝑝 ∈ 𝑌. The composition 𝑔𝜂:𝑋 × 𝐼 → 𝑍 is a continuous

map such that 𝑔𝜂(−, 0) = 𝑔 𝑓 and 𝑔𝜂(−, 1) = 𝑔𝑐𝑝 , where 𝑔𝑐𝑝 = 𝑐𝑔(𝑝) is the constant map

on 𝑔(𝑝) ∈ 𝑍. Therefore 𝑔𝜂 is a null-homotopy of 𝑔 𝑓 .

If 𝑔 is null-homotopic with a homotopy 𝜀: 𝑔 ⇒ 𝑐𝑧 for some constant map 𝑐𝑧 :𝑌 → 𝑍

on 𝑧 ∈ 𝑍. Notice that the map 𝜀 ◦ ( 𝑓 × id𝐼):𝑋 × 𝐼 → 𝑍 is continuous and for all 𝑥 ∈ 𝑋
we have

𝜀 ◦ ( 𝑓 × id𝐼)(𝑥, 0) = 𝜀( 𝑓 (𝑥), 0) = 𝑔 𝑓 (𝑥),
𝜀 ◦ ( 𝑓 × id𝐼)(𝑥, 1) = 𝜀( 𝑓 (𝑥), 1) = 𝑐𝑧 𝑓 (𝑥) = 𝑧.

Therefore establishing a null-homotopy 𝑔 𝑓 ∼
h
𝑐𝑧—where 𝑐𝑧 :𝑋 → 𝑍 is constant on

𝑧. ♮

Proposition 15.1.10. A continuous map 𝑓 : 𝑆𝑛 → 𝑌 is null-homotopic if and only if

there exists a continuous map 𝐹:𝐷𝑛+1 → 𝑌 such that 𝐹|𝑆𝑛 = 𝑓 .

Proof. First we prove that Cone(𝑆𝑛) ≃ 𝐷𝑛+1
. Let 𝜙: Cone(𝑆𝑛) → 𝐷𝑛+1

to be the map

given by [𝑥, 𝑡] ↦→ 𝑡𝑥, then ∥𝑡𝑥∥ = 𝑡∥𝑥∥ ⩽ 1 and im 𝜙 ⊆ 𝐷𝑛+1
. Moreover, the map is

well defined, since 𝜙[𝑥, 0] = 0—which is the only uncertain region of the cone. Since

the quotient of a compact space is compact, the space Cone(𝑆𝑛) is compact—moreover,

𝐷𝑛+1
is Hausdorff. Notice that 𝜙 establishes a bĳection between a compact space and

a Hausdorff space, thus 𝜙 is an isomorphism.

Suppose 𝑓 is null-homotopic to a continuous map 𝑐𝑝 : 𝑆𝑛 → 𝑌, for some point

𝑝 ∈ 𝑌. Let 𝜂: 𝑐𝑝 ⇒ 𝑓 be an inverse null-homotopy for 𝑓 . Define 𝐹 via the isomorphism

Cone(𝑆𝑛) ≃ 𝐷𝑛+1
as 𝐹(𝑡𝑥) ≔ 𝜂(𝑥, 𝑡), where 𝑥 ∈ 𝑆𝑛 and 𝑡 ∈ 𝐼. From this, for every

𝑠 ∈ 𝑆𝑛 we get 𝐹(𝑠) = 𝜂(𝑠, 1) = 𝑓 (𝑠), and 𝐹(0) = 𝑝.

For the converse, let 𝐹:𝐷𝑛+1 → 𝑌 be an extension of 𝑓 . Define a map 𝜂:𝑋 × 𝐼 →
𝑌 given by a collection of maps (𝜂𝑡 : 𝑆𝑛 → 𝑌)𝑡∈𝐼 , where 𝜂𝑡(𝑥) ≔ 𝐹(𝑡𝑥)—which is a

continuous map—so that the following diagram commutes in Top for all 𝑡 ∈ 𝐼:

𝑆𝑛 Cone(𝑆𝑛) 𝐷𝑛+1

𝑌

𝜋𝑡

𝜂𝑡

≃

𝐹
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where 𝜋𝑡 is the continuous map 𝑥 ↦→ [𝑥, 𝑡]. From this we find that 𝜂0(𝑥) = 𝐹(0) is

constant and 𝜂1(𝑥) = 𝐹(𝑥) = 𝑓 (𝑥) since 𝑥 ∈ 𝑆𝑛 .

It just remains to be shown that 𝜂 is continuous. If 𝑈 ⊆ 𝑌 is any open set, let

(𝑥0, 𝑡0) ∈ 𝜂−1(𝑈) be any pair. Since 𝐹 is continuous, then there exists 𝑉 ⊆ 𝐹−1(𝑈)
neighbourhood of the point 𝑡0𝑥0 ∈ 𝐷𝑛+1

. Since 𝜙 is an isomorphism, there exists

an open set 𝑃′ × 𝑇 ⊆ Cone(𝑆𝑛) that is a neighbourhood of the class [𝑥0, 𝑡0], and

𝑃′ × 𝑇 ⊆ 𝜙−1(𝑉). In particular, we know that 𝜂𝑡0 is continuous, therefore there exists a

neighbourhood 𝑃 ⊆ 𝜂−1

𝑡0
(𝑃′ × 𝑇) of 𝑥0 in 𝑆𝑛 .

If (𝑥, 𝑡) ∈ 𝑃 × 𝑇 is any point, then from construction we have 𝐹(𝑡𝑥) ∈ 𝑈—thus

𝜂(𝑥, 𝑡) ∈ 𝑈 , which shows that 𝑃 × 𝑇 ⊆ 𝜂−1(𝑈) is a neighbourhood of (𝑥0, 𝑡0), hence

𝜂−1(𝑈) is open. ♮

Definition 15.1.11 (Contractible space). A space𝑋 is said to be contractible if the unique

continuous map 𝑋 → ∗ is a homotopy equivalence. From its construction, contractible

spaces are the terminal objects of Ho(Top). A null-homotopy of id𝑋 is said to be a

contraction of 𝑋.

Example 15.1.12 (A ball is contractible). Consider the open (or closed) ball 𝐵𝑛 ⊆ R𝑛
.

Let 𝑓 : 𝐵𝑛 → ∗ be the unique continuous map from the ball to the point space, and

𝜄: ∗ → 𝐵𝑛 be the map ∗ ↦→ 0. We define a homotopy 𝜂: 𝜄 𝑓 ⇒ id𝐵𝑛 given by (𝑝, 𝑡) ↦→ 𝑡𝑝,

and a homotopy 𝜎: 𝑓 𝜄 ⇒ id∗ mapping (∗, 𝑡) ↦→ ∗, since 𝑓 𝜄 = id∗. Therefore 𝐵𝑛 is

contractible.

Furthermore, since 𝐵𝑛 ≃ R𝑛
in Top, it follows that R𝑛 ≃

h
𝐵𝑛 and thus R𝑛 ≃

h
∗—the

euclidean space is contractible.

Proposition 15.1.13. A space 𝑋 is contractible if and only if id𝑋 is null-homotopic.

Proof. Suppose 𝑋 is contractible, then 𝑓 :𝑋 → ∗ is a homotopy equivalence. Let

𝑔: ∗ → 𝑋 be a homotopy inverse of 𝑓 , and let 𝑥0 ∈ 𝑋 be the image of 𝑔—that is

𝑔(∗) = 𝑥0 and hence 𝑔 𝑓 :𝑋 → 𝑋 is a constant map 𝑔 𝑓 (𝑥) = 𝑥0. Therefore id𝑋 is

homotopic to the constant map 𝑔 𝑓—and the choice of 𝑥0 was arbitrary.

For the converse, let 𝑥0 ∈ 𝑋 be any point and let 𝜂: id𝑋 ⇒ 𝑐𝑥0
be a homotopy—

where 𝑐𝑥0
:𝑋 → 𝑋 is the constant map 𝑥 ↦→ 𝑥0. Consider the unique continuous map

𝑓 :𝑋 → ∗ and let 𝑔: ∗ → 𝑋 be given by 𝑔(∗) = 𝑥0, then 𝑔 𝑓 = 𝑐𝑥0
∼

h
id𝑋 via 𝜂 and

𝑓 𝑔 = ∗ = id∗. Therefore 𝑓 is a homotopy equivalence. ♮

Proposition 15.1.14. If 𝑋 is contractible, then it is path connected.

Proof. Let 𝑥, 𝑦 ∈ 𝑋 be any two points. Since 𝑋 is contractible, then id𝑋 is null-

homotopic—hence there exists a constant map 𝑐𝑝 :𝑋 → 𝑋 and a homotopy 𝜂: id𝑋 ⇒ 𝑐𝑝 .

Notice that by definition 𝜂(𝑥, 0) = 𝑥 and 𝜂(𝑥, 1) = 𝑝, therefore 𝜂(𝑥,−): 𝐼 → 𝑋 is a path

from 𝑥 to 𝑝—and analogously, 𝜂(𝑦,−): 𝐼 → 𝑋 is a path from 𝑦 to 𝑝. To construct a path

from 𝑥 to 𝑦 we can simply concatenate the path 𝜂(𝑥,−)with the inverse path 𝜂−1(𝑦,−),
which is given by 𝜂−1(𝑦, 𝑡) = 𝜂(𝑦, 1 − 𝑡). Concretely, let 𝛾: 𝐼 → 𝑋 be defined by

𝛾(𝑡) ≔
{
𝜂(𝑥, 2𝑡), if 𝑡 ∈ [0, 1/2]
𝜂(𝑦, 2 − 2𝑡), if 𝑡 ∈ [1/2, 1]
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which is continuous by Proposition 13.2.9. Then 𝛾 is a path from 𝑥 to 𝑦. ♮

Remark 15.1.15. The converse of Proposition 15.1.14 is not true in general, for instance,

the sphere 𝑆2
is path connected, but not contractible.

Corollary 15.1.16. If 𝑋 is contractible and 𝑌 is path connected, then every pair of

parallel morphisms 𝑋 ⇒ 𝑌 is homotopic, in short, [𝑋,𝑌] has a single point.

Proof. Let 𝑓 , 𝑔:𝑋 ⇒ 𝑌 be topological morphisms. Since 𝑋 is contractible, let 𝜂: id𝑋 ⇒
𝑐𝑝 be a homotopy from the identity to the constant function 𝑐𝑝 :𝑋 → 𝑋 at the point 𝑝 ∈
𝑋. Notice that 𝑓 𝜂(−, 0) = 𝑓 id𝑋 = 𝑓 and 𝑓 𝜂(−, 1) = 𝑓 𝑐𝑝 = 𝑐 𝑓 (𝑝), where 𝑐 𝑓 (𝑝):𝑋 → 𝑌 is

the map constant on 𝑓 (𝑝). Given any point 𝑦 ∈ 𝑌, the collection of paths Path𝑌( 𝑓 (𝑝), 𝑦)
is non-empty, thus one can define a collection (𝛾𝑥)𝑥∈𝑋 of paths 𝛾𝑥 ∈ Path𝑌( 𝑓 (𝑝), 𝑔(𝑥)).
Define a map 𝜀:𝑋 × 𝐼 → 𝑌 given by

𝜀(𝑥, 𝑡) ≔
{
𝑓 𝜂(𝑥, 𝑡), if 𝑡 ∈ [0, 1/2]
𝛾𝑥(2𝑡 − 1), if 𝑡 ∈ [1/2, 1]

then 𝜀 is continuous by Proposition 13.2.9 and defines a homotopy 𝜀: 𝑓 ⇒ 𝑔. ♮

Corollary 15.1.17. Let 𝑌 be a contractible space. Then for every topological space 𝑋

any pair of parallel morphisms 𝑋 ⇒ 𝑌 are homotopic, that is, [𝑋,𝑌] has a single point.

Proof. Let 𝑓 , 𝑔:𝑋 ⇒ 𝑌 be any two parallel morphisms. Since 𝑌 is contractible, there

exists 𝑝 ∈ 𝑌 such that 𝜂: id𝑌 ⇒ 𝑐𝑝 , where 𝑐𝑝 :𝑌 → 𝑌 is the constant map on 𝑝. Notice

that the composition 𝜂 ◦ ( 𝑓 × id𝐼) is a continuous map such that, for all 𝑥 ∈ 𝑋 we have

𝜂 ◦ ( 𝑓 × id𝐼)(𝑥, 0) = 𝜂( 𝑓 (𝑥), 0) = id𝑌( 𝑓 (𝑥)) = 𝑓 (𝑥),
𝜂 ◦ ( 𝑓 × id𝐼)(𝑥, 1) = 𝜂( 𝑓 (𝑥), 1) = 𝑐𝑝( 𝑓 (𝑥)) = 𝑝.

Therefore 𝜂 ◦ ( 𝑓 × id𝐼):𝑋 × 𝐼 → 𝑌 defines a homotopy 𝑓 ∼
h
𝑐𝑝 𝑓 where 𝑐𝑝 𝑓 :𝑋 → 𝑌 is

merely the constant map 𝑥 ↦→ 𝑝, which we’ll call 𝑐𝑝 :𝑋 → 𝑌. Now, taking the inverse

homotopy (𝜂)−1(𝑦, 𝑡) = 𝜂(𝑦, 1 − 𝑡) we obtain a homotopy 𝑐𝑝 ∼h
id𝑌 . We can then

consider the continuous map 𝜂−1 ◦ (𝑔 × id𝐼):𝑋 × 𝐼 → 𝑌

𝜂−1 ◦ (𝑔 × id𝐼)(𝑥, 0) = 𝜂−1(𝑔(𝑥), 0) = 𝑐𝑝(𝑔(𝑥)) = 𝑝,

𝜂−1 ◦ (𝑔 × id𝐼)(𝑥, 1) = 𝜂−1(𝑔(𝑥), 1) = id𝑌(𝑔(𝑥)) = 𝑔(𝑥).

therefore 𝜂−1 ◦ (𝑔 × id𝐼) is a homotopy 𝑐𝑝𝑔 = 𝑐𝑝 ∼h
id𝑌 . Therefore the concatenation of

homotopies 𝜀:𝑋 × 𝐼 → 𝑌 given by

𝜀(𝑥, 𝑡) ≔
{
𝜂 ◦ ( 𝑓 × id𝐼)(𝑥, 2𝑡), if 𝑡 ∈ [0, 1/2]
𝜂−1 ◦ (𝑔 × id𝐼)(𝑥, 2𝑡 − 1), if 𝑡 ∈ [1/2, 1]

defines a homotopy 𝑓 ∼
h
𝑐𝑝 ∼h

𝑔 as wanted. ♮
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15.2 Mapping Spaces

Compact-Open Topology
Definition 15.2.1 (Evaluation map). Let 𝑋 and 𝑌 be topological spaces. We define the

evaluation map on 𝑋 and 𝑌 to be the set-function:

eval: MorTop(𝑋,𝑌) × 𝑋 −→ 𝑌 mapping ( 𝑓 , 𝑥) ↦−→ 𝑓 (𝑥).

Definition 15.2.2 (Admissible topology). A topology on the set of continuous maps

MorTop(𝑋,𝑌) is said to be admissible if the evaluation map eval: MorTop(𝑋,𝑌) × 𝑋 → 𝑌

is continuous.

Definition 15.2.3 (Compact-open topology). Let 𝑋 and 𝑌 be topological spaces. A

pair (𝐾,𝑈)—composed of a compact set 𝐾 ⊆ 𝑋 and an open set 𝑈 ⊆ 𝑌—defines a a

collection of continuous maps

co(𝐾,𝑈) ≔ { 𝑓 ∈ MorTop(𝑋,𝑌) : 𝑓 (𝐾) ⊆ 𝑈}

on the space MorTop(𝑋,𝑌). We define the compact-open topology on MorTop(𝑋,𝑌) to be

the topology whose subbasis is the collection of sets co(𝐾,𝑈) for each 𝐾 ⊆ 𝑋 compact

and𝑈 ⊆ 𝑌 open. We’ll denote the compact-open topology of MorTop(𝑋,𝑌) by co(𝑋,𝑌).

Proposition 15.2.4. The compact-open topology in MorTop(𝑋,𝑌) is the coarsest between

the admissible topologies in the mapping space.

Proof. Suppose 𝜏 is an admissible topology for MorTop(𝑋,𝑌). We show that for any

co(𝐾,𝑈) ∈ co(𝑋,𝑌), we have co(𝐾,𝑈) ∈ 𝜏. Let 𝑘 ∈ 𝐾 be any point and 𝑓 ∈ co(𝐾,𝑈)
be any map with 𝑓 (𝐾) ⊆ 𝑈 . From definition eval( 𝑓 , 𝑘) = 𝑓 (𝑘) ∈ 𝑈—moreover, since

eval is continuous, then eval
−1(𝑈) ⊆ MorTop(𝑋,𝑌) × 𝑋 is open—there must exist a

neighbourhood 𝑉𝑘 ⊆ (MorTop(𝑋,𝑌), 𝜏) of 𝑓 and a neighbourhood 𝑊𝑘 ⊆ 𝐾 of 𝑘 such

that

eval(𝑉𝑘 ×𝑊𝑘) ⊆ 𝑈.
The collection (𝑊𝑘)𝑘∈𝐾 is a cover for 𝐾—and since 𝐾 is compact, let {𝑊𝑘1

, . . . ,𝑊𝑘𝑛} be a

finite subcover. Therefore, for all 1 ⩽ 𝑗 ⩽ 𝑛we have eval(𝑉𝑘 𝑗×𝑊𝑘 𝑗 ) ⊆ 𝑈 . Since open sets

are closed under finite intersections, consider the neighbourhood𝑉 ≔ 𝑉𝑘1
∩· · ·∩𝑉𝑘𝑛 of

𝑓 . Let 𝑘 ∈ 𝐾 be any point, then there must exist 1 ⩽ 𝑗 ⩽ 𝑛 such that 𝑘 ∈𝑊𝑘 𝑗 . Therefore

if 𝑔 ∈ 𝑉 is any map, we have

𝑔(𝑘) = eval(𝑔, 𝑘) ∈ eval(𝑉 ×𝑊𝑘 𝑗 ) ⊆ eval(𝑉𝑘 𝑗 ×𝑊𝑘 𝑗 ) ⊆ 𝑈,

hence 𝑔(𝐾) ⊆ 𝑈—thus we conclude that 𝑔 ∈ co(𝐾,𝑈) and 𝑉 ⊆ co(𝐾,𝑈) is an open

subset containing 𝑓 . This shows that co(𝐾,𝑈) is open in (MorTop(𝑋,𝑌), 𝜏), therefore

co(𝐾,𝑈) ∈ 𝜏, which proves the proposition. ♮

Proposition 15.2.5. If 𝑋 is a locally compact Hausdorff space, then the compact-open

topology on MorTop(𝑋,𝑌) is admissible.
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Proof. Let 𝑈 ⊆ 𝑌 be any open set, if eval
−1(𝑈) is non-empty, let ( 𝑓 , 𝑥) ∈ eval

−1(𝑈) be

any pair. Since 𝑓 is continuous, then 𝑓 −1(𝑈) is an open set and there must exist a

neighbourhood𝑊 ⊆ 𝑋 of 𝑥 such that𝑊 ⊆ 𝑓 −1(𝑈)—thus 𝑓 (𝑊) ⊆ 𝑈 . Since 𝑋 is locally

compact Hausdorff, then𝑊 is also locally compact Hausdorff and therefore there must

exist a relatively compact 𝑉 ⊆ 𝑋 neighbourhood of 𝑥 such that 𝑉 ⊆ Cl(𝑉) ⊆ 𝑊—so

that 𝐿 ≔ co(Cl(𝑉), 𝑈) × 𝑉 is a neighbourhood of the pair ( 𝑓 , 𝑥). In fact, if (𝑔, 𝑦) ∈ 𝐿
is any pair, then 𝑔(𝑦) ∈ 𝑈 , therefore (𝑔, 𝑦) ∈ eval

−1(𝑈). This implies in 𝐿 ⊆ eval
−1(𝑈)

and proves that eval
−1(𝑈) is open in MorTop(𝑋,𝑌) × 𝑋. ♮

Corollary 15.2.6. When 𝑋 is locally compact Hausdorff, the compact-open topology is

the coarsest admissible topology on MorTop(𝑋,𝑌).

Exponential Objects
Definition 15.2.7 (Adjoint map). Let 𝑓 :𝑋 × 𝑌 → 𝑍 be a topological morphism. We

define the adjoint map of 𝑓 to be the continuous map 𝑓 ∧:𝑋 → MorTop(𝑌, 𝑍) given by

𝑓 ∧(𝑥)(𝑦) ≔ 𝑓 (𝑥, 𝑦)—this adjoint map is the currying of 𝑓 .

Proposition 15.2.8. Given a continuous map 𝑓 :𝑋 × 𝑌 → 𝑍, the adjoint map 𝑓 ∧:𝑋 →
MorTop(𝑌, 𝑍) is continuous and, for every 𝑥 ∈ 𝑋, the map 𝑓 ∧(𝑥):𝑌 → 𝑍 is continuous.

Proof. Let co(𝐾,𝑈) ⊆ MorTop(𝑌, 𝑍) be an open set in the compact-open topology. Let

𝑓 ∧(𝑥) ∈ co(𝐾,𝑈) for some 𝑥 ∈ 𝑋—hence 𝑓 ({𝑥} × 𝐾) ⊆ 𝑈 . From tube lemma (see

Lemma 14.2.13) there exists 𝑉 ⊆ 𝑋 neighbourhood of 𝑥 such that 𝑉 × 𝐾 ⊆ 𝑓 −1(𝑈).
Therefore 𝑓 ∧(𝑉) ⊆ co(𝐾,𝑈), which shows that 𝑓 ∧(co(𝐾,𝑈)) ⊆ 𝑋 is an open set. Since

this is the case for any element of the subbasis of MorTop(𝑌, 𝑍), it follows that 𝑓 ∧ is

continuous.

The last assertion is trivial since 𝑓 ∧(𝑥) = 𝑓 𝜄𝑥 , where 𝜄𝑥 :𝑌 ↩→ 𝑋 × 𝑌 is the injective

map 𝑦 ↦→ (𝑥, 𝑦), which is continuous—therefore 𝑓 ∧(𝑥) is a continuous map. ♮

The notion of an adjoint map associated with the space MorTop(𝑋 ×𝑌, 𝑍) gives rise

to a set-function

curry: MorTop(𝑋 × 𝑌, 𝑍) −−−−−−−−−−→MorTop(𝑋,MorTop(𝑌, 𝑍))
𝑓 ↦−−−−−−−−−−→ 𝑓 ∧.

Dual to currying is the notion of uncurrying, which is a set-function

uncurry: MorTop(𝑋,MorTop(𝑌, 𝑍)) −−−−−−−−−−→MorTop(𝑋 × 𝑌, 𝑍)
𝜙 ↦−−−−−−−−−−→ 𝜙∨ ≔ eval𝑌,𝑍 ◦(𝜙 × id𝑌),

that is, 𝜙∨(𝑥, 𝑦) ≔ 𝜙(𝑥)(𝑦).

Proposition 15.2.9. Let 𝑋, and 𝑍 be any two spaces and 𝑌 be a locally compact

Hausdorff space. Given a continuous map 𝑔:𝑋 → MorTop(𝑌, 𝑍), the uncurried map

𝑔∨:𝑋 × 𝑌 → 𝑍 is continuous.
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Proof. Let 𝑈 ⊆ 𝑍 be an open set, and let (𝑥, 𝑦) ∈ (𝑔∨)−1(𝑈) be any point. Since

𝑔(𝑥) ∈ MorTop(𝑌, 𝑍) and 𝑦 ∈ (𝑔(𝑥))−1(𝑈), there must exist a neighbourhood 𝑊 ⊆ 𝑌
of 𝑦 such that 𝑊 ⊆ (𝑔(𝑥))−1(𝑈). Since 𝑌 is locally compact Hausdorff, the open set

𝑊 is also locally compact Hausdorff and therefore there exists a relatively compact

neighbourhood 𝑉 ⊆ 𝑊 of 𝑦 with 𝑉 ⊆ Cl(𝑉) ⊆ 𝑊 . Thus 𝑔(𝑥)(Cl(𝑉)) ⊆ 𝑈 , therefore

𝑔(𝑥) ∈ co(Cl(𝑉), 𝑈)—that is 𝑔(𝑥) is open in MorTop(𝑌, 𝑍).
Notice that since 𝑔 is continuous, there exists a neighbourhood 𝑄 ⊆ 𝑋 of 𝑥 such

that 𝑔(𝑄) ⊆ co(Cl(𝑉), 𝑈). Moreover the neighbourhood 𝑇 × 𝑉 ⊆ 𝑋 × 𝑌 of (𝑥, 𝑦) is

contained in (𝑔∨)−1(𝑈), since for any (𝑎, 𝑏) ∈ 𝑇 × 𝑉 we have 𝑔∨(𝑎, 𝑏) = 𝑔(𝑎)(𝑏) ∈ 𝑈 .

Therefore we’ve shown that (𝑔∨)−1(𝑈) ⊆ 𝑋 ×𝑌 is an open set, which proves that 𝑔∨ is

continuous. ♮

Using Proposition 15.2.8 and Proposition 15.2.9, we have proven the following

corollary.

Corollary 15.2.10. Let 𝑋,𝑌 and 𝑍 be topological spaces. If𝑌 is a locally compact Haus-

dorff space, then currying is a set bĳection MorTop(𝑋×𝑌, 𝑍) ≃MorTop(𝑋,MorTop(𝑌, 𝑍)).

Theorem 15.2.11. Let 𝑋, 𝑌 and 𝑍 be topological spaces. If both 𝑋 and 𝑌 are Hausdorff

and 𝑌 is also locally compact, then

MorTop(𝑋 × 𝑌, 𝑍)
≃−−−−−→

curry

MorTop(𝑋,MorTop(𝑌, 𝑍)).

is a topological isomorphism.

Proof. By Corollary 15.2.10 it is sufficient to prove that curry and uncurry are con-

tinuous maps. Under the compact-open topology we know that an open set of the

subbasis of MorTop(𝑋,MorTop(𝑌, 𝑍)) is of the form co(𝐾,𝑉), for 𝐾 ⊆ 𝑋 compact and

𝑉 ⊆ MorTop(𝑌, 𝑍) open—that is, there exists an open set 𝑈 ⊆ 𝑍 and compact subset

𝐿 ⊆ 𝑌 such that 𝑉 = co(𝐿,𝑈). Therefore co(𝐾,𝑉) = co(𝐾, co(𝐿,𝑈)).
Consider any such open set𝑊 ≔ co(𝐾, co(𝐿,𝑈)) ⊆ MorTop(𝑋,MorTop(𝑌, 𝑍)). Since

𝐾 and 𝐿 are compact, then 𝐾 × 𝐿 ⊆ 𝑋 × 𝑌 is a compact set. If 𝑓 ∈ curry
−1(𝑊),

then 𝑓 (𝐾 × 𝐿) = 𝑓 ∧(𝐾)(𝐿) ⊆ 𝑈 . This implies that co(𝐾 × 𝐿,𝑈) ⊆ curry
−1(𝑊) is a

neighbourhood of 𝑓—therefore curry
−1(𝑊) is open in MorTop(𝑋 ×𝑌, 𝑍). From this we

conclude that curry is a continuous map.

Consider now any open set co(𝑄,𝑈) of the subbasis of MorTop(𝑋 × 𝑌, 𝑍). Define

𝐾 ≔ 𝜋𝑋(𝑄) and 𝐿 ≔ 𝜋𝑌(𝑄), with 𝑄 ⊆ 𝐾 × 𝐿—which are compact sets since the image

of a compact set under a continuous map is compact. Let 𝑔 ∈ uncurry
−1(co(𝑄,𝑈))

be a curried map. If (𝑥, 𝑦) ∈ 𝑄, then 𝑔(𝑥)(𝑦) = 𝑔∨(𝑥, 𝑦) ∈ 𝑈—which implies that

co(𝐾, co(𝐿,𝑈)) ⊆ uncurry
−1(co(𝑄,𝑈)) is a neighbourhood of 𝑔. ♮

Proposition 15.2.12. Let 𝑍 be a locally compact topological space, and 𝑝:𝑋 → 𝑌 be a

quotient map. Then the product morphism

𝑝 × id𝑍:𝑋 × 𝑍→ 𝑌 × 𝑍

is a quotient map.
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Proof. Let ℎ:𝑌 ×𝑍→𝑊 be a set-function—where𝑊 is a topological space—such that

the composition ℎ ◦ (𝑝 × id𝑍) is a continuous map. From Proposition 15.2.8 we find

that the adjoint (ℎ ◦ (𝑝 × id𝑍))∧ = ℎ∧𝑝 is continuous. Since 𝑝 is a quotient map, then

from the universal property ℎ∧ is continuous. Now, since 𝑍 is locally compact, the

uncurried ℎ is continuous by Proposition 15.2.9. ♮

Linear Homotopy
Definition 15.2.13 (Star-shaped spaces). A subspace 𝐴 ⊆ R𝑛

is said to be star-shaped
with respect to a point 𝑥 ∈ 𝐴 if, for all 𝑦 ∈ 𝐴, the line path (1 − 𝑡)𝑥 + 𝑡𝑦 is contained in

𝐴 for all 𝑡 ∈ [0, 1]. A set 𝐶 ⊆ R𝑛
is said to be convex if and only if it is star-shaped with

respect to each of its points.

Proposition 15.2.14. Let 𝑝:𝑋 → 𝑌 be a quotient morphism of topological spaces. If

𝜂:𝑌×𝐼 → 𝑍 is a set-function between topological spaces such that the map 𝜀:𝑋×𝐼 → 𝑍

given by (𝑥, 𝑡) ↦→ 𝜂(𝑝(𝑥), 𝑡) is a homotopy, then 𝜂 is a homotopy.

Proof. Since 𝑝 is a quotient map and 𝐼 is compact (hence locally compact), we know

from Proposition 15.2.12 that 𝑝 × id𝐼 :𝑋 × 𝐼 → 𝑌 × 𝐼 is a quotient map. Therefore, since

𝜂 ◦ (𝑝 × id) is continuous—since 𝜀 is a homotopy— we find that 𝜂 is a continuous map,

thus a homotopy. ♮

Definition 15.2.15. Let 𝑋 be a space and 𝑌 be a star-shaped space. We say that a

homotopy ℓ :𝑋 × 𝐼 → 𝑌 is linear if there exists continuous maps 𝑓 , 𝑔:𝑋 ⇒ 𝑌 such that

ℓ (𝑥, 𝑡) = (1 − 𝑡) 𝑓 (𝑥) + 𝑡 𝑔(𝑥).

15.3 Retractions & Deformations

Retractions & Cofibrations
Definition 15.3.1 (Retract). Let 𝑋 be a topological space. A subspace 𝐴 ⊆ 𝑋 is said to

be a retract of 𝑋 if the inclusion map 𝜄:𝐴 ↩→ 𝑋 is a split monomorphism in Top—that

is, there exists a continuous map 𝑟:𝑋 → 𝐴 such that 𝑟𝜄 = id𝐴. We call 𝑟 a retraction of
𝑋 to 𝐴.

A subspace 𝐵 ⊆ 𝑋 is said to be a weak retract of 𝑋 if 𝜄: 𝐵 ↩→ 𝑋 is a split monomor-

phism in Ho(Top)—that is, there exists a continuous map 𝑟:𝑋 → 𝐴 such that 𝑟𝜄 ∼
h

id𝐴.

Definition 15.3.2 (Homotopy extension property). Let 𝑋 and 𝑌 be topological spaces,

and 𝐴 ⊆ 𝑋 be a subspace. The pair (𝑋, 𝐴) is said to have the homotopy extension
property with respect to 𝑌 if, given continuous maps 𝑔:𝑋 → 𝑌 and 𝜀:𝐴 × 𝐼 → 𝑌—such

that 𝑔(𝑎) = 𝜀(𝑎, 0) for all 𝑎 ∈ 𝐴—there exists a continuous map 𝜂:𝑋 × 𝐼 → 𝑌 such that

𝜂(𝑥, 0) = 𝑔(𝑥) for all 𝑥 ∈ 𝑋, and 𝜂|𝐴×𝐼 = 𝜀—that is, 𝜂 is an extension of 𝜀. This can all

408



be summarized by the following commutative diagram in Top:

𝐴 × 0 𝐴 × 𝐼

𝑌

𝑋 × 0 𝑋 × 𝐼

𝜀

𝑔 𝜂

Corollary 15.3.3 (Extending morphisms). Let (𝑋, 𝐴) have the homotopy extension

property with respect to 𝑌, and consider parallel morphisms 𝑓 , 𝑓 ′:𝐴 ⇒ 𝑌. If 𝑓 is

homotopic to 𝑓 ′, and 𝑓 has an extension to 𝑋, then 𝑓 ′ also admits an extension to 𝑋.

Proof. Let 𝑔:𝑋 → 𝑌 be an extension of 𝑓—that is, 𝑔|𝐴 = 𝑓— and 𝜀: 𝑓 ⇒ 𝑓 ′ be a

homotopy then, from the homotopy extension property of the pair (𝑋, 𝐴), there exists

a continuous map 𝜂:𝑋 × 𝐼 → 𝑌 which is an extension of 𝜀. From this we conclude that

𝜂(−, 1):𝑋 → 𝑌 is an extension of 𝑓 ′. ♮

Definition 15.3.4 (Cofibration). Let 𝑓 :𝑍 → 𝑋 be a morphism between topological

spaces. We say that 𝑓 is a cofibration if, for any topological space 𝑌, and continuous

maps 𝑔:𝑋 → 𝑌 and 𝜀:𝑍 × 𝐼 → 𝑌 such that 𝑔( 𝑓 (𝑧)) = 𝜀(𝑧, 0), for all 𝑧 ∈ 𝑍, there

exists a continuous map 𝜂:𝑋 × 𝐼 → 𝑌 such that 𝜂(𝑥, 0) = 𝑔(𝑥) for all 𝑥 ∈ 𝑋, and

𝜂( 𝑓 (𝑧), 𝑡) = 𝜀(𝑧, 𝑡) for all 𝑧 ∈ 𝑍 and 𝑡 ∈ 𝐼. This is summarized by the following

commutative diagram in Top:

𝑍 × 0 𝑍 × 𝐼

𝑌

𝑋 × 0 𝑋 × 𝐼

𝑓×id0 𝑓×id𝐼

𝜀

𝑔 𝜂

Example 15.3.5. The inclusion map𝐴 ↩→ 𝑋 is a cofibration if and only if the pair (𝑋, 𝐴)
has the homotopy extension property every space.

Theorem 15.3.6 (Weakness of retracts). Let 𝑋 be a topological space and 𝐴 ⊆ 𝑋 be a

subspace. If the pair (𝑋, 𝐴) has the homotopy extension property with respect to 𝐴, then 𝐴

is a weak retract of 𝑋 if and only if 𝐴 is a retract of 𝑋.

Proof. We know that if 𝐴 is a retract of 𝑋 then in particular 𝐴 is a weak retract. We

now prove the converse. Let 𝑟:𝑋 → 𝐴 be a weak retraction of 𝑋 to 𝐴. Since 𝑟𝜄 ∼
h

id𝐴,

let 𝜀: 𝑟𝜄⇒ id𝐴 be a homotopy. Since (𝑋, 𝐴) has the homotopy extension property with

respect to 𝐴, it follows that there exists a map 𝜂:𝑋 × 𝐼 → 𝐴 extending 𝜀—that is, since

𝜀(𝑎, 0) = 𝑟(𝑎) for all 𝑎 ∈ 𝐴, then 𝜂(𝑥, 0) = 𝑟(𝑥) for all 𝑥 ∈ 𝑋. If we define 𝑟′:𝑋 → 𝐴

to be the map 𝑟′ ≔ 𝜂(−, 1), then 𝑟′ is a retraction of 𝑋 to 𝐴—since 𝑟′|𝐴 = id𝐴— and 𝜂
establishes a homotopy 𝑟 ∼

h
𝑟′. ♮
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Deformations
Definition 15.3.7 (Deformation). Let 𝑋 be a space and 𝐴 ⊆ 𝑋 be a subspace. We define

a deformation of 𝐴 in 𝑋 to be a homotopy

𝛿:𝐴 × 𝐼 −→ 𝑋 such that 𝛿(−, 0) = id𝐴 .

If 𝛿(𝐴× 1) ⊆ 𝐵, for some subspace 𝐵 of 𝑋, then 𝛿 is said to be a deformation of 𝐴 into
𝐵—and 𝐴 is said to be deformable in 𝑋 into 𝐵.

In particular, the space 𝑋 is called deformable if there exists a subspace 𝐴 ⊆ 𝑋 such

that 𝑋 is deformable in itself into 𝐴—hence, contractibility of 𝑋 is equivalent to 𝑋

being deformable into a point.

Lemma 15.3.8. A space 𝑋 is deformable into a subspace 𝐴 if and only if the inclusion

map 𝐴 ↩→ 𝑋 admits a right homotopy inverse.

Proof. Suppose that 𝜄:𝐴 ↩→ 𝑋 has a right homotopy inverse 𝑓 :𝑋 → 𝐴. Let 𝜂: id𝑋 ⇒
𝜄 𝑓 be a homotopy, then 𝜂(−, 0) = id𝑋 and 𝜂(𝑋, 1) = 𝜄 𝑓 (𝑋) ⊆ 𝐴—therefore 𝜂 is a

deformation of 𝑋 into 𝐴.

For the converse, suppose 𝑋 is deformable into 𝐴, and let 𝛿:𝑋 × 𝐼 → 𝑋 be such a

deformation. Define a map 𝑓 :𝑋 → 𝐴 to be such that 𝜄 𝑓 = 𝛿(−, 1), then 𝑓 is continuous

and 𝛿 establishes a homotopy id𝑋 ∼h
𝜄 𝑓—thus 𝑓 is a right homotopy inverse of 𝜄. ♮

Definition 15.3.9 (Deformation retract). Let 𝑋 be a space, and 𝐴 ⊆ 𝑋 a subspace. We

define the following concepts:

(a) The subspace 𝐴 is said to be a weak deformation retract of 𝑋 if the canonical inclusion

𝐴 ↩→ 𝑋 is a homotopy equivalence.
(b) The subspace 𝐴 is said to be a deformation retract of 𝑋 if there exists a retraction

𝑟:𝑋 → 𝐴 of 𝜄—that is, 𝑟𝜄 = id𝑋—such that there exists a homotopy 𝜄𝑟 ∼
h

id𝑋 . A

homotopy 𝜂: id𝑋 ⇒ 𝜄𝑟 is called a deformation retraction of 𝑋 to 𝐴.

(c) The subspace 𝐴 is said to be a strong deformation retract of 𝑋 if there is a retraction

𝑟:𝑋 → 𝐴 of 𝜄—that is, 𝑟𝜄 = id𝑋—such that there exists a relative homotopy 𝜄𝑟 ∼
rel 𝐴

id𝑋 . A homotopy 𝜂: id𝑋 ⇒rel 𝐴 𝜄𝑟 is called a strong deformation retraction of 𝑋 to 𝐴.

Lemma 15.3.10. Let 𝐴 ⊆ 𝑋 be a subspace of a topological space 𝑋. Then 𝐴 is a weak
deformation retract of 𝑋 if and only if 𝐴 is a weak retract of 𝑋 and 𝑋 is deformable into 𝐴.

Proof. From Lemma 15.3.8, there exists a left homotopy inverse of the inclusion 𝜄:𝐴 ↩→
𝑋 if and only if 𝑋 is deformable into 𝐴. On the other hand, 𝐴 is a weak retract of 𝑋 if

and only if 𝜄 admits a right homotopy inverse. Therefore the proposition follows. ♮

Example 15.3.11. The 𝑛-th sphere𝑆𝑛 is a strong deformation retraction of the punctured

euclidean space R𝑛+1 ∖ 0. This is realized by the linear homotopy 𝛿: (R𝑛+1 ∖ 0) × 𝐼 →
R𝑛+1 ∖ 0 given by

𝛿(𝑥, 𝑡) ≔ (1 − 𝑡)𝑥 + 𝑡 𝑥

∥𝑥∥ .
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Lemma 15.3.12. Let 𝑋 be a space, and 𝐴 ⊆ 𝑋 be a retract of 𝑋. If 𝑋 is deformable into

the retract 𝐴, then 𝐴 is a deformation retract of 𝑋.

Proof. Since𝐴 is a retract, there exists a left homotopy inverse 𝑟:𝑋 → 𝐴 of the inclusion

𝜄:𝐴 ↩→ 𝑋. From hypothesis, 𝑋 is deformable into𝐴, then there exists a right homotopy

inverse 𝑓 :𝑋 → 𝐴 of 𝜄 (by Lemma 15.3.8), notice however that

𝑓 = id𝐴 𝑓 = (𝑟𝜄) 𝑓 = 𝑟(𝜄 𝑓 ) = 𝑟 id𝑋 = 𝑟.

Therefore we have id𝑋 ∼h
𝜄𝑟—thus 𝐴 is a deformation retract of 𝑋. ♮

Corollary 15.3.13 (Removing weaknesses via homotopy extensions). If the pair (𝑋, 𝐴)
has the homotopy extension property with respect to the subspace 𝐴, then 𝐴 is a weak
deformation retract of 𝑋 if and only if 𝐴 is a deformation retract of 𝑋.

Proof. If𝐴 is a weak deformation retract of𝑋, then by Lemma 15.3.10 we know that𝐴 is

a weak retract of 𝑋 and 𝑋 is deformable into 𝐴. From Theorem 15.3.6, since (𝑋, 𝐴) has

the homotopy extension property, then 𝐴 is a weak retract if and only if it is a retract.

Therefore, since 𝐴 is a retract of 𝑋 and 𝑋 is deformable into 𝐴, by Lemma 15.3.12

we conclude that 𝐴 is a deformation retract of 𝑋. The converse is clearly true since a

deformation retract is always a weak deformation retract. ♮

Theorem 15.3.14 (Strengthening deformation retracts). Let 𝑋 be a space and 𝐴 ⊆ 𝑋 be

a subspace. Define a subspace

𝑌 ≔ (𝑋 × 0) ∪ (𝐴 × 𝐼) ∪ (𝑋 × 1)

of the cylinder 𝑋 × 𝐼. Then, if (𝑋 × 𝐼 , 𝑌) has the homotopy extension property with respect
to 𝑋 and 𝐴 is closed in 𝑋, then 𝐴 is a deformation retract of 𝑋 if and only if 𝐴 is a strong
deformation retract of 𝑋.

Proof. Since strong deformation retracts are always deformation retracts, we prove the

other side of the equivalence. Assume the hypothesis, and let 𝐴 be a deformation

retract of 𝑋. Let 𝛿: id𝑋 ⇒ 𝜄𝑟 be a deformation retraction of 𝑋 to 𝐴—where, as usual,

𝜄:𝐴 ↩→ 𝑋 is the inclusion and 𝑟:𝑋 → 𝐴 is the retraction. Define a map 𝜀:𝑌 × 𝐼 → 𝑋

as follows

𝜀((𝑥, 𝑡), 𝑠) ≔

𝑥, if 𝑥 ∈ 𝑋 and 𝑡 = 0,

𝛿(𝑥, (1 − 𝑠)𝑡), if 𝑥 ∈ 𝐴 and 𝑡 ∈ 𝐼 ,
𝛿(𝑟(𝑥), 1 − 𝑠), if 𝑥 ∈ 𝑋 and 𝑡 = 1.

The map is indeed well defined since, given any point 𝑎 ∈ 𝐴, one has 𝜀((𝑎, 0), 𝑠) = 𝑎 =

𝛿(𝑎, 0)—since 𝛿 is a deformation retraction. Moreover, the compatibility of the last two

equalities is met because

𝜀((𝑎, 1), 1 − 𝑠) = 𝛿(𝑎, 1 − 𝑠) = 𝛿(𝑟(𝑎), 1 − 𝑠),

since 𝑟𝜄 = id𝐴. For the continuity of 𝜀, we use the fact that the sets (𝑋 ×0)× 𝐼, (𝐴× 𝐼)× 𝐼
and (𝑋 × 1) × 𝐼 form a closed cover of 𝑌 × 𝐼—moreover, since 𝜀 is continuous in each of

the sets of such closed cover—by Proposition 13.2.9 we conclude that 𝜀 is continuous.
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If (𝑥, 𝑡) ∈ 𝑌 is any pair, since 𝛿(𝑥, 0) = 𝑥 and

𝛿(𝑟(𝑥), 1) = 𝜄𝑟(𝑟(𝑥)) = 𝑟(𝑥) = 𝛿(𝑥, 1),

then in general 𝜀((𝑥, 𝑡), 0) = 𝛿(𝑥, 𝑡). Using the homotopy extension property of the

pair (𝑋 × 𝐼 , 𝑌)with respect to 𝑋, there exists an extension

𝜒: (𝑋 × 𝐼) × 𝐼 → 𝑋

for which 𝜒((𝑥, 𝑡), 0) = 𝛿(𝑥, 𝑡) for all (𝑥, 𝑡) ∈ 𝑋 × 𝐼, and 𝜒|𝑌×𝐼 = 𝜀. Now define a map

𝜂:𝑋 × 𝐼 → 𝑋 given by 𝜂(𝑥, 𝑡) ≔ 𝜒((𝑥, 𝑡), 1), then we obtain

𝜂(𝑥, 𝑡) =


𝜀((𝑥, 0), 1) = 𝑥, if 𝑥 ∈ 𝑋 and 𝑡 = 0,

𝜀((𝑥, 𝑡), 1) = 𝛿(𝑥, 0) = 𝑥, if 𝑥 ∈ 𝐴 and 𝑡 ∈ 𝐼 ,
𝜒((𝑥, 𝑡), 1), if 𝑥 ∈ 𝑋 and 𝑡 ∈ 𝐼 ,
𝜀((𝑥, 1), 1) = 𝛿(𝑟(𝑥), 0) = 𝜄𝑟(𝑥), if 𝑥 ∈ 𝑋 and 𝑡 = 1,

therefore 𝜂(−, 0) = id𝑋 and 𝜂(−, 1) = 𝜄𝑟, while 𝜂(𝑎, 𝑡) = 𝑎 for all (𝑎, 𝑡) ∈ 𝐴× 𝐼. Therefore

𝜂 establishes a homotopy id𝑋 ∼rel 𝐴 𝜄𝑟, which shows that 𝐴 is a strong deformation

retract of 𝑋. ♮

Mapping Cylinder & Cofibrations
Definition 15.3.15 (Mapping cylinder). Let 𝑓 :𝑋 → 𝑌 be a topological morphism. We

define the mapping cylinder of 𝑓 to be the pushout

𝑋 𝑌

𝑋 × 𝐼 Cyl( 𝑓 )

𝑓

𝑖0
⌜

in Top, where 𝑖0:𝑋 → 𝑋 × 𝐼 is the morphism 𝑥 ↦→ (𝑥, 0)—the definition can be

“isomorphically” given by replacing 𝑖0 by 𝑖1:𝑋 → 𝑋 × 𝐼 mapping 𝑥 ↦→ (𝑥, 1), the

resulting pushouts are isomorphic topological spaces.

Put more concretely, the cylinder of 𝑓 is the topological space

Cyl( 𝑓 ) = 𝑌 ∪ 𝑓 (𝑋 × 𝐼),

where one identifies (𝑥, 0) ∼ 𝑓 (𝑥) for all 𝑥 ∈ 𝑋.

Together with the mapping cylinder, we have two distinguished embedding mor-

phisms 𝜄𝑋 :𝑋 ↩→ Cyl( 𝑓 ) with 𝑥 ↦→ [𝑥, 0], and 𝜄𝑌 :𝑌 ↩→ Cyl( 𝑓 ) mapping 𝑦 ↦→ [𝑦].
Moreover, one has a retraction 𝑟: Cyl( 𝑓 ) → 𝑌 given by [𝑥, 𝑡] ↦→ 𝑓 (𝑥) for (𝑥, 𝑡) ∈ 𝑋 × 𝐼,
while [𝑦] ↦→ 𝑦 for 𝑦 ∈ 𝑌.

Theorem 15.3.16. Given a topological morphism 𝑓 :𝑋 → 𝑌, there exists morphisms

𝜄𝑋 :𝑋 → Cyl( 𝑓 ) and 𝑟: Cyl( 𝑓 ) → 𝑌 such that the following holds:
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(a) The diagram

𝑋 Cyl( 𝑓 )

𝑌

𝜄𝑋

𝑓 𝑟

commutes in Top. That is, every continuous map can be factored through an em-

bedding and a retraction of its mapping cylinder.

(b) There exists a relative homotopy

id
Cyl( 𝑓 ) ∼rel 𝑌 𝜄𝑌𝑟.

Thus 𝜄𝑌 and 𝑟 are homotopy equivalences.

(c) The embedding 𝜄𝑋 of 𝑋 into the cylinder of 𝑓 is a cofibration.

Proof. Item (a) follows directly from definition: 𝑟𝜄𝑋(𝑥) = 𝑟[𝑥, 0] = 𝑓 (𝑥) for any 𝑥 ∈ 𝑋.

For item (b), consider the map 𝜂: Cyl( 𝑓 ) × 𝐼 → Cyl( 𝑓 ) given by

𝜂(𝑝, 𝑠) ≔
{
[𝑥, (1 − 𝑠)𝑡], if 𝑝 = [𝑥, 𝑡] for (𝑥, 𝑡) ∈ 𝑋 × 𝐼 ,
[𝑦], if 𝑝 = [𝑦] for 𝑦 ∈ 𝑌.

Then 𝜂 is continuous in both (𝑋 × 𝐼) × 𝐼 and 𝑌 × 𝐼, which forms a cover of Cyl( 𝑓 ) × 𝐼—
therefore 𝜂 is continuous. Moreover, for any 𝑦 ∈ 𝑌 we have 𝜂([𝑦],−) = [𝑦], hence

𝜂 is a homotopy relative to 𝑌. Since 𝜂([𝑥, 𝑡], 0) = [𝑥, 𝑡] and 𝜂([𝑦], 0) = [𝑦] then

𝜂(−, 0) = id
Cyl( 𝑓 ). On the other hand, 𝜂([𝑥, 𝑡], 1) = [𝑥, 0] = [ 𝑓 (𝑥)] and 𝜂([𝑦], 1) = [𝑦],

that is, 𝜂(−, 0) = 𝜄𝑌𝑟. Therefore we can conclude that 𝜂 establishes a relative homotopy

id
Cyl( 𝑓 ) ∼rel 𝑌 𝜄𝑌𝑟.

In order to prove item (c), let 𝑊 be any topological space and consider continuous

maps 𝑔: Cyl( 𝑓 ) →𝑊 and 𝜀:𝑋 × 𝐼 →𝑊 such that 𝑔𝜄𝑋(𝑥) = 𝜀(𝑥, 0) for all 𝑥 ∈ 𝑋. Define

a map 𝛿: Cyl( 𝑓 ) × 𝐼 →𝑊 given by

𝛿([𝑦], 𝑠) ≔ 𝑔[𝑦],

𝛿([𝑥, 𝑡], 𝑠) ≔
{
𝑔
[
𝑥, 2𝑡−𝑠

2−𝑠
]
, if 𝑠 ⩽ 2𝑡 ,

𝜀
(
𝑥, 𝑠−2𝑡

1−𝑡
)
, if 2𝑡 ⩽ 𝑠,

where 𝑦 ∈ 𝑌 and 𝑥 ∈ 𝑋. Therefore, one has 𝛿([𝑥, 𝑡], 0) = 𝑔[𝑥, 𝑡] while 𝛿([𝑦], 0) = 𝑔[𝑦].
Moreover, 𝛿 is an extension of 𝜀 since 𝛿|𝑋×𝐼 = 𝜀. This shows that 𝜄𝑋 is a cofibration. ♮

Lemma 15.3.17. A continuous map 𝑓 :𝑋 → 𝑌 is a homotopy equivalence if and only if 𝑋

is a weak deformation retract of the mapping cylinder Cyl( 𝑓 ).

Proof. From the factorization of Theorem 15.3.16 we have 𝑓 = 𝑟𝜄𝑋 . Since 𝜄𝑌𝑟 ∼h
id

Cyl( 𝑓 ),
then 𝜄𝑋 ∼h

𝜄𝑌 𝑓 . If 𝑓 is a homotopy equivalence, then let 𝑔:𝑌 → 𝑋 be its homotopy

inverse. It follows that the map 𝑔𝑟: Cyl( 𝑓 ) → 𝑋 is a homotopy inverse of 𝜄𝑋 . Therefore

𝑋 is a weak deformation retract of Cyl( 𝑓 )
Conversely, if 𝑋 is a weak deformation retract of Cyl( 𝑓 ), let 𝑘: Cyl( 𝑓 ) → 𝑋 be an

homotopy inverse of 𝜄𝑋 . Then the map 𝑘𝜄𝑌 :𝑌 → 𝑋 is a homotopy inverse of 𝑓 . ♮
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Theorem 15.3.18. Two topological spaces 𝑋 and 𝑌 have the same homotopy type if and

only if both can be embedded as a weak deformation retract of a common space 𝑍.

Proof. If 𝑓 :𝑋 → 𝑌 is a homotopy equivalence, then by Lemma 15.3.17 we find that 𝑋

is a weak deformation retract of Cyl( 𝑓 ). Since 𝑌 is also a weak deformation retract

of Cyl( 𝑓 ), the statement follows. For the converse, if 𝑖𝑋 :𝑋 → 𝑍 and 𝑖𝑌 :𝑌 → 𝑍 are

embeddings, that are homotopy equivalences, then let 𝑟:𝑍 → 𝑌 be the retract of 𝑖𝑌
and define 𝑓 ≔ 𝑟𝑖𝑋 :𝑋 → 𝑌, then 𝑓 is a homotopy equivalence 𝑋 ≃

h
𝑌. ♮

15.4 Fundamental Groupoid & The Fundamental Group

Paths
Notation 15.4.1 (Family of paths). Let 𝑋 be a space and 𝑥, 𝑦 ∈ 𝑋 be any two points.

We’ll denote by Path𝑋(𝑥, 𝑦) the family of paths 𝛾: 𝐼 → 𝑋 with 𝛾(0) = 𝑥 and 𝛾(1) = 𝑦.

Definition 15.4.2 (Operations on paths). Let 𝑋 be a topological space. We define the

following operations on the space of paths of 𝑋:

• Given a path 𝛾: 𝐼 → 𝑋 we define the reverse path of 𝛾 to be a path 𝛾−1
: 𝐼 → 𝑋

given by 𝛾−1(𝑡) ≔ 𝛾(1 − 𝑡).
• If 𝑝 ∈ Path𝑋(𝑥, 𝑦) and 𝑞 ∈ Path𝑋(𝑦, 𝑧) are paths in 𝑋, we define the concatenation

of 𝑝 with 𝑞 to be a path 𝑞 · 𝑝: 𝐼 → 𝑋 given by

(𝑞 · 𝑝)(𝑡) ≔
{
𝑝(2𝑡), 𝑡 ∈ [0, 1/2],
𝑞(2𝑡 − 1), 𝑡 ∈ [1/2, 1].

Yielding a path 𝑞 · 𝑝 ∈ Path𝑋(𝑥, 𝑧).
• Moreover, we define cons𝑥 : 𝐼 → 𝑋 to be the unique constant path on 𝑥—that is,

cons𝑥(𝑡) = 𝑥 for all 𝑡 ∈ 𝐼.

Proposition 15.4.3. If 𝑋 is a path connected topological space, then any two paths on

𝑋 are homotopic.

Proof. Let 𝑓 , 𝑔: 𝐼 ⇒ 𝑋 be any two paths. Define, for each 𝑡 ∈ 𝐼, a path 𝛾𝑡 ∈
Path𝑋( 𝑓 (𝑡), 𝑔(𝑡))—which exists since 𝑋 is path connected. Define a map 𝜂: 𝐼 × 𝐼 → 𝑋

given by 𝜂(𝑡 , 𝑠) ≔ 𝛾𝑡(𝑠), then it is clear that 𝜂 is a homotopy between 𝑓 and 𝑔. ♮

Definition 15.4.4 (Homotopy relative boundary). Let 𝑋 be a space, and 𝛾, 𝛾′: 𝐼 ⇒ 𝑋

be paths with common endpoints:

𝛾(0) = 𝛾′(0) C 𝑝0 and 𝛾(1) = 𝛾′(1) C 𝑝1.

We define a homotopy relative boundary between 𝛾 and 𝛾′ to be a homotopy 𝜂: 𝛾 ⇒ 𝛾′

such that 𝜂 is constant on the endpoints 𝑝0 and 𝑝1—that is,

𝜂(0,−) = cons𝑝0
and 𝜂(1,−) = cons𝑝1

.
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Proposition 15.4.5. Homotopy relative boundary is an equivalence relation on the

family of paths of a topological space.

Proof. Let 𝑋 be a topological space and 𝑥, 𝑦 ∈ 𝑋 be any two points—we’ll consider

the family Path𝑋(𝑥, 𝑦). The constant homotopy 𝛾 ⇒ 𝛾 is clearly a homotopy relative

boundary, thus the relation is reflexive.

If 𝛿 ∈ Path𝑋(𝑥, 𝑦) is another path, and 𝜂: 𝛾 ⇒ 𝛿 is a homotopy relative boundary,

then we can construct the a reverse homotopy 𝜎: 𝛿⇒ 𝛾 as 𝜎(−, 𝑡) ≔ 𝜂(−, 1− 𝑡). Notice

that 𝜎(0, 𝑡) = 𝜂(0, 1 − 𝑡) = cons𝑥(1 − 𝑡) is constant on 𝑥, while 𝜎(1, 𝑡) = 𝜂(1, 1 − 𝑡) =
cons𝑦(1 − 𝑡) is constant on 𝑦. Therefore the relation is symmetric.

Consider yet another path 𝑝 ∈ Path𝑋(𝑥, 𝑦) and a homotopy relative boundary

𝜂: 𝛿⇒ 𝑝. We define a map 𝜀: 𝐼 × 𝐼 → 𝑋 given by

𝜀(−, 𝑡) ≔
{
𝜎(−, 2𝑡), 𝑡 ∈ [0, 1/2],
𝜂(−, 2𝑡 − 1), 𝑡 ∈ [1/2, 1].

This map is continuous by the same argument used in Corollary 15.1.2 and thus

establishes a homotopy relative boundary 𝜀: 𝛾⇒ 𝑝. ♮

The Fundamental Groupoid
Definition 15.4.6 (Fundamental groupoid). Given a topological space 𝑋, we define

the fundamental groupoid of 𝑋 to be the category Π1(𝑋) whose objects are the points

of 𝑋, and whose morphisms are paths between those points up to homotopy relative

boundary. That is, given 𝑥, 𝑦 ∈ 𝑋 we have

MorΠ1(𝑋)(𝑥, 𝑦) = Path𝑋(𝑥, 𝑦)/∼hrb
,

where∼
hrb

is the equivalence relation on the family of paths 𝑥 → 𝑦 given by homotopy

relative boundary.

Composition of morphisms in Π1(𝑋) is naturally defined by the concatenation of

paths—in other words, given points 𝑥, 𝑦, 𝑧 ∈ 𝑋 we have

Path𝑋(𝑥, 𝑦) × Path𝑋(𝑦, 𝑧) Path𝑋(𝑥, 𝑧)

MorΠ1(𝑋)(𝑥, 𝑦) ×MorΠ1(𝑋)(𝑦, 𝑧) MorΠ1(𝑋)(𝑥, 𝑧)

where, for any paths 𝛾 ∈ Path𝑋(𝑥, 𝑦) and 𝛿 ∈ Path𝑋(𝑦, 𝑧), the concatenation of paths

(𝛾, 𝛿) ↦→ 𝛿 · 𝛾 induces a concatenation operation on the respective class paths

([𝛾], [𝛿]) ↦−→ [𝛿] · [𝛾] ≔ [𝛿 · 𝛾].

Corollary 15.4.7. Π1(𝑋) is a groupoid.

Proof. We show that Π1(𝑋) is a category whose morphisms are isomorphisms.
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• Given any point 𝑥 ∈ 𝑋 one has an identity map [cons𝑥] ∈ MorΠ1(𝑋)(𝑥, 𝑥).
• Concatenation of class paths is unital with respect to constant paths: given any

path class [𝛾] ∈ MorΠ1(𝑋)(𝑥, 𝑦), we have

[cons𝑦] · [𝛾] = [cons𝑦 ·𝛾] = [𝛾] = [𝛾 · cons𝑥] = [𝛾] · [cons𝑥].

• Concatenation is associative. Let 𝑥, 𝑦, 𝑧, 𝑤 ∈ 𝑋 be any four points and consider

class paths [𝛼]: 𝑥 → 𝑦, [𝛽]: 𝑦 → 𝑧, and [𝛾]: 𝑧 → 𝑤.

First we have to show that 𝛾 · (𝛽 ·𝛼) and (𝛾 ·𝛽) ·𝛼 are relative boundary homotopic.

To that end, define a continuous map 𝜏: 𝐼 → 𝐼 by

𝜏(𝑡) ≔


2𝑡 , 𝑡 ∈ [0, 1/4],
𝑡 + 1

4
, 𝑡 ∈ [1/4, 1/2],

𝑡
2
+ 1

2
, 𝑡 ∈ [1/2, 1].

Then, one sees right away that

(𝛾 · (𝛽 · 𝛼))(𝜏(𝑡)) = ((𝛾 · 𝛽) · 𝛼)(𝑡)

for all 𝑡 ∈ 𝐼—hence 𝛾 · (𝛽 · 𝛼) ∼
hrb
(𝛾 · 𝛽) · 𝛼. From this, we finally obtain the

associativity of the path classes,

[𝛾] · ([𝛽] · [𝛼]) = [𝛾 · (𝛽 · 𝛼)] = [(𝛾 · 𝛽) · 𝛼] = ([𝛾] · [𝛽]) · [𝛼].

• Every path class [𝛾] ∈ MorΠ1(𝑋)(𝑥, 𝑦) is an isomorphism, since it has an inverse

[𝛾−1] ∈ MorΠ1(𝑋)(𝑦, 𝑥). Indeed, one has

[𝛾] · [𝛾−1] = [𝛾 · 𝛾−1] = [cons𝑦] and [𝛾−1] · [𝛾] = [𝛾−1 · 𝛾] = [cons𝑥].

♮

Definition 15.4.8 (The category Top∗/). A pointed topological space is a pair (𝑋, 𝑥) con-

sisting of a topological space 𝑋 together with a base-point 𝑥 ∈ 𝑋. We define a

category Top∗/ whose objects are pointed topological spaces, and whose morphisms

𝑓 : (𝑋, 𝑥) → (𝑌, 𝑦), for any (𝑋, 𝑥), (𝑌, 𝑦) ∈ Top∗/, are continuous maps 𝑓 :𝑋 → 𝑌 such

that 𝑓 (𝑥) = 𝑦. We say that the morphisms of Top∗/ preserve base-points.

In Top∗/, we define a pointed homotopy 𝜂: 𝑓 ⇒ 𝑔 between parallel morphisms

𝑓 , 𝑔: (𝑋, 𝑥)⇒ (𝑌, 𝑦) to be a homotopy preserving base-points, that is,

𝜂(𝑥,−) = cons𝑦 .

Analogously to homotopies in Top, pointed homotopies define an equivalence relation

∼
ph

in Top∗/. We define the homotopy category of Top∗/ to be the category Ho(Top∗/)
composed of pointed topological spaces and morphisms

MorHo(Top∗/)((𝑋, 𝑥), (𝑌, 𝑦)) ≔ MorTop∗/((𝑋, 𝑥), (𝑌, 𝑦))/∼ph
.

This quotient induces a natural projective functor

𝜅∗/: Top∗/ −→ Ho(Top∗/).
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The Fundamental Group
Definition 15.4.9 (Fundamental group). Let 𝑋 be a topological space and 𝑥 ∈ 𝑋 be any

point. We define the fundamental group of 𝑋 at the base-point 𝑥 as the family of loops

𝜋1(𝑋, 𝑥) ≔ AutΠ1(𝑋)(𝑥),

endowed with the operation of concatenation of paths. Therefore, we see that the

fundamental group is a functor

𝜋1: Top∗/ −→ Grp.

Proposition 15.4.10. Let 𝑋 be a path connected space. For every point 𝑥 ∈ 𝑋 the

inclusion functor 𝜋1(𝑋, 𝑥) → Π1𝑋 is an equivalence of categories.

Proof. Indeed, notice that 𝜋1(𝑋, 𝑥) = AutΠ1𝑋(𝑥) and since 𝑋 is a connected space, Π1𝑋

is a connected groupoid—that is, for every pair of points 𝑥, 𝑦 ∈ Π1𝑋, there exists an

isomorphism 𝑥 ≃ 𝑦 in Π1𝑋. It follows that AutΠ1𝑋(𝑥) = sk(Π1𝑋), and therefore the

inclusion functor is an equivalence of categories (see Example 1.4.13). ♮

Definition 15.4.11 (Pushforwards in 𝜋1). Let 𝑓 : (𝑋, 𝑥) → (𝑌, 𝑦) be a morphism of

pointed topological spaces. There exists an induced pushforward

𝑓∗:𝜋1(𝑋, 𝑥) −→ 𝜋1(𝑌, 𝑦)

mapping [𝛾] ↦→ [ 𝑓 𝛾], which establishes a group morphism between the fundamental

groups of the initial pointed topological spaces.

Proposition 15.4.12. Let 𝑓 , 𝑔: (𝑋, 𝑥) ⇒ (𝑌, 𝑦) be morphisms in Top∗/. If there exists a

pointed homotopy 𝜂: 𝑓 ⇒ 𝑔, then 𝑓∗ = 𝑔∗.

Proof. Let 𝛾 be a loop at 𝑥 representing some class of 𝜋1(𝑋, 𝑥). The pointed homotopy

𝜂 naturally induces a homotopy 𝑓 𝛾 ⇒ 𝑔𝛾—thus [ 𝑓 𝛾] = [𝑔𝛾] in 𝜋1(𝑌, 𝑦)—therefore

𝑓∗ = 𝑔∗. ♮

By Proposition 15.4.12 we obtain a factorization of the fundamental group functor

through the homotopy category of pointed topological spaces. To put briefly, the

following diagram is quasi-commutative

Top∗/ Grp

Ho(Top∗/)

𝜋1

𝜅∗/

Corollary 15.4.13 (Preserving isomorphisms). If 𝑓 : (𝑋, 𝑥) ≃−→ (𝑌, 𝑦) is a homotopy equiv-
alence in Top∗/, then 𝑓∗:𝜋1(𝑋, 𝑥) ≃−→ 𝜋1(𝑌, 𝑦) is an isomorphism in Grp.

Proof. If 𝑔 is the homotopy inverse of 𝑓 , then for any [𝛾] ∈ 𝜋1(𝑋, 𝑥) we have 𝑔∗ 𝑓∗[𝛾] =
𝑔∗[ 𝑓 𝛾] = [𝑔 𝑓 𝛾] = [𝛾], therefore 𝑔∗ 𝑓∗ = id𝜋1(𝑋,𝑥). Analogously we have 𝑓∗𝑔∗ = id𝜋1(𝑌,𝑦).
Therefore 𝑓∗ is an isomorphism of groups. ♮
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Simply Connected Spaces
Definition 15.4.14 (Simply connected space). A topological space 𝑋 is said to be simply
connected if it is path connected and its fundamental group is trivial, 𝜋1(𝑋, 𝑥) ≃ 1 for

any base-point 𝑥 ∈ 𝑋.

Continue on semi-locally simply connected spaces

Examples of Fundamental Groups
Example 15.4.15 (𝜋1 of the euclidean space). Let 𝑥 ∈ R𝑛

be any point. Given any

loop ℓ : 𝑥 → 𝑥, one can define a homotopy relative boundary 𝜂: ℓ ⇒ cons𝑥 given by

𝜂(𝑠, 𝑡) ≔ (1 − 𝑡)ℓ (𝑠) + 𝑡𝑥. Therefore the fundamental group of the 𝑛-dimensional

euclidean space is trivial,

𝜋1(𝑋, 𝑥) = ∗.

Proposition 15.4.16. The fundamental group of a topological manifold is countable.

Proof. Let ℬ be a countable open cover of 𝑀 consisting of coordinate balls. Since 𝑀

has countably many connected components (see Proposition 14.1.29), those connected

components are also path components. This implies that any two 𝐵, 𝐵′ ∈ ℬ are such

that the intersection 𝐵∩ 𝐵′ are composed of at most countably many path components

(since 𝑀 is locally path connected). Let 𝒳 be a collection containing a single point

from each 𝐵 ∩ 𝐵′ for any pair (𝐵, 𝐵′) ∈ ℬ × ℬ. For every 𝐵 ∈ ℬ and points 𝑥, 𝑦 ∈ 𝒳
with 𝑥, 𝑦 ∈ 𝐵, fix a path 𝛾𝐵(𝑥,𝑦) ∈ Path𝐵(𝑥, 𝑦).

Clearly, the fundamental groups of a path connected component of 𝑀 based at any

two points are always isomorphic. Since 𝒳 contains at least one point of each path

component of 𝑀, we may choose a base-point 𝑝 ∈ 𝒳 . Let Γ𝑝 denote the collection of

loops based at 𝑝 that are equal to a finite concatenation of paths of the form 𝛾𝐵(𝑥,𝑦), for

some 𝐵 ∈ ℬ. Since ℬ is countable, so is Γ𝑝 . We’ll settle to prove that every element of

𝜋1(𝑀, 𝑝) can be represented by a loop in Γ𝑝 .

Let 𝑓 be any loop based at 𝑝. Consider the collection ( 𝑓 −1(𝐵))𝐵∈ℬ , which is an open

cover of 𝐼. Since 𝐼 is compact, there exists a finite subcover out of such collection. The

finite subcover gives rise to a finite collection of numbers

0 C 𝑎0 < 𝑎1 < · · · < 𝑎𝑘 ≔ 1

for which the closed interval [𝑎 𝑗−1, 𝑎 𝑗] is contained in some 𝑓 −1(𝐵).
For each 0 < 𝑗 ⩽ 𝑘, define 𝑓𝑗 : 𝐼 → 𝑀 to be the path given by

𝑓𝑗(𝑡) ≔ 𝑓 ((1 − 𝑡)𝑎 𝑗−1 + 𝑡𝑎 𝑗),

that is, 𝑓𝑗 is a path 𝑓 (𝑎 𝑗−1) → 𝑓 (𝑎 𝑗)—and let 𝐵 𝑗 ∈ ℬ be such that im 𝑓𝑗 ⊆ 𝐵 𝑗 . From

construction we have that 𝑓 (𝑎 𝑗) ∈ 𝐵 𝑗 ∩ 𝐵 𝑗+1 for each 0 ⩽ 𝑗 < 𝑘.
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For each 0 ⩽ 𝑗 < 𝑘 let 𝑔𝑗 ∈ Path𝐵𝑗∩𝐵𝑗+1
(𝑥 𝑗 , 𝑓 (𝑎 𝑗)), where 𝑥 𝑗 ∈ 𝒳 as in the first

paragraph—and 𝑥0, 𝑥𝑘 ≔ 𝑝, with constant paths 𝑔0, 𝑔𝑘 ≔ cons𝑝 . Notice that

𝑓 ∼
h
𝑓𝑘 · · · 𝑓1

∼
h
𝑔−1

𝑘
𝑓𝑘(𝑔𝑘−1𝑔

−1

𝑘−1
) · · · (𝑔2𝑔

−1

2
) 𝑓2(𝑔1𝑔

−1

1
) 𝑓1𝑔0

∼
h
(𝑔−1

𝑘
𝑓𝑘 𝑔
−1

𝑘−1
) · · · (𝑔−1

1
𝑓1𝑔0),

where 𝑔−1

𝑗
𝑓𝑗𝑔𝑗−1 ∈ Path𝐵𝑗 (𝑥 𝑗−1, 𝑥 𝑗) for all 0 < 𝑗 ⩽ 𝑘. Since each 𝐵 𝑗 is simply connected,

then 𝑔−1

𝑗
𝑓𝑗𝑔𝑗−1 is relative boundary homotopic to chosen path 𝛾𝐵(𝑥 𝑗−1 ,𝑥 𝑗). This shows that

𝑓 is homotopic to a path in Γ𝑝—therefore 𝜋1(𝑀, 𝑝) is countable. ♮

15.5 Mappings 𝑆1 −→ 𝑆1

We shall study the circle via the inclusion 𝑆1 ↩→ C mapping (cos(2𝜋𝑡), sin(2𝜋𝑡)) ↦→ 𝑒2𝜋i𝑡

and the identification 𝑞: 𝐼 → 𝑆1
given by 𝑡 ↦→ 𝑒2𝜋i𝑡

. In general, we shall also make use

of the map R→ 𝑆1
given by 𝑥 ↦→ 𝑒2𝜋i𝑥

.

Each path 𝜙: (𝐼 , 0) → (R, 0) between pointed spaces, can be lifted to a unique path

𝜙: (𝑆1, 1) → (𝑆1, 1) such that the diagram

𝐼 R

𝑆1 𝑆1

𝜙𝑛

𝜙𝑛

commutes in Top. Explicitly, we have

𝜙𝑛(𝑒2𝜋i𝑡) = 𝑒2𝜋i𝜙𝑛(𝑡).

Proposition 15.5.1 (Unwinding pointed maps). Let 𝑓 : (𝑆1, 1) → (𝑆1, 1) be a pointed
continuous map. Then there exists a unique pointed morphism 𝜙: (𝐼 , 0) → (R, 0) such

that 𝑓 = 𝜙.

Proof. Define ℎ: 𝐼 → 𝑆1
to be the morphism ℎ ≔ 𝑓 𝑞—which is uniformly continuous

since 𝐼 is a compact space. From the latter properties, one can find a finite partition

0 C 𝑡0 < 𝑡1 < · · · < 𝑡𝑘 ≔ 1

of 𝐼, such that |ℎ(𝑡) − ℎ(𝑡 𝑗)| < 2 for all 𝑡 ∈ [𝑡 𝑗 , 𝑡 𝑗+1], for each 0 ⩽ 𝑗 < 𝑘. This is done

in order to ensure that ℎ(𝑡) ≠ −ℎ(𝑡 𝑗)—so that the complex logarithm
1

of the quotient

1
If 𝑧 = 𝑟𝑒 i𝜃 ∈ C is a complex number, in polar form, satisfying 𝑟 > 0 and 𝜃 ∈ (−𝜋,𝜋), then the

complex logarithm of 𝑧 is Log(𝑧) = log(𝑟) + i𝜃.
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ℎ(𝑡)/ℎ(𝑡 𝑗) is well defined. With these conditions being satisfied, we can define a map

𝜙: 𝐼 → R given by

𝜙(𝑡) ≔ 1

2𝜋i

(
Log

( ℎ(𝑡1)
ℎ(𝑡0)

)
+ · · · + Log

( ℎ(𝑡𝑘)
ℎ(𝑡𝑘−1)

)
+ Log

( ℎ(𝑡)
ℎ(𝑡 𝑗)

))
for all 𝑡 ∈ [𝑡 𝑗 , 𝑡 𝑗+1]. Therefore one has

𝑞𝜙(𝑡) = 𝑒2𝜋i𝜙(𝑡)

= 𝑒
Log

(
ℎ(𝑡

1
)

ℎ(𝑡
0
)

)
+···+Log

( ℎ(𝑡𝑗 )
ℎ(𝑡𝑗−1

)

)
+Log

(
ℎ(𝑡)
ℎ(𝑡𝑗 )

)
= 𝑒

Log

(
ℎ(𝑡

1
)

ℎ(𝑡
0
)

)
· · · 𝑒Log

( ℎ(𝑡𝑗 )
ℎ(𝑡𝑗−1

)

)
𝑒

Log

(
ℎ(𝑡)
ℎ(𝑡𝑘 )

)
=
ℎ(𝑡1)
ℎ(𝑡0)

· · ·
ℎ(𝑡 𝑗)
ℎ(𝑡 𝑗−1)

· ℎ(𝑡)
ℎ(𝑡 𝑗)

=
ℎ(𝑡)
ℎ(𝑡0)

.

Now, from construction we know that ℎ(𝑡0) = ℎ(0) = 1, thus 𝑞𝜙(𝑡) = ℎ(𝑡). Moreover

𝜙(0) = 0, which implies that 𝜙 is a continuous pointed map of the form (𝐼 , 0) → (R, 0)
such that

𝜙(𝑡) = 𝑓 (𝑒2𝜋i𝑡).
For the uniqueness of 𝜙, suppose that 𝜓: (𝐼 , 0) → (R, 0) is another pointed mor-

phism such that 𝑓 = 𝜓. Then in particular 𝜙 = 𝜓, which implies in 𝑒2𝜋i𝜙(𝑡) = 𝑒2𝜋i𝜓(𝑡)

for each 𝑡 ∈ 𝐼. This can only be the case if 𝜙(𝑡) − 𝜓(𝑡) ∈ Z. Therefore, since the map

𝜙 − 𝜓 is a continuous map of the form (𝐼 , 0) → (Z, 0), it follows that 𝜙 = 𝜓—since 𝐼 is

connected and Z is discrete. ♮

Theorem 15.5.2 (Unwinding maps). Let 𝑓 : 𝑆1 → 𝑆1
be any morphism, then there exists

a unique pointed morphism 𝜙: (𝐼 , 0) → (R, 0) such that 𝑓 = 𝑓 (1)𝜙.

Proof. From 𝑓 we can define a pointed morphism 𝑔: (𝑆1, 1) → (𝑆1, 1) by 𝑔 ≔ 𝑓 (1)−1 𝑓 , so

that indeed 𝑔(1) = 1. From Proposition 15.5.1 there exists a unique pointed morphism

𝜙: (𝐼 , 0) → (R, 0) such that 𝑔 = 𝜙. Therefore, from the definition of 𝑔 we find that

𝑓 = 𝑓 (1)𝜙. ♮

Lemma 15.5.3. Let 𝑛 ∈ Z and 𝜙 ∈ PathR(0, 𝑛). If we consider the linear path 𝜙𝑛 : 𝐼 → R
given by 𝜙𝑛(𝑡) ≔ 𝑡𝑛, then there exists a relative homotopy 𝜙 ∼

rel 1
𝜙𝑛 between the

lifted paths in the circle.

Proof. There exists a relative linear homotopy ℓ : 𝜙⇒
rel 𝜕 𝐼 𝜙𝑛 given by

ℓ (𝑠, 𝑡) ≔ (1 − 𝑡)𝜙(𝑠) + 𝑡𝜙𝑛(𝑠).

Notice that this homotopy can be lifted to ℓ̂ : 𝑆1 × 𝐼 → 𝑆1
mapping

ℓ̂ (𝑒2𝜋i𝑠 , 𝑡) = 𝑒2𝜋i

(
(1−𝑡)𝜙(𝑠)+𝑡𝜙𝑛(𝑠)

)
= 𝑒2𝜋i(1−𝑡)𝜙(𝑠)𝑒2𝜋i𝑡𝜙𝑛(𝑠)
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which is a continuous map such that ℓ̂ (𝑒2𝜋i𝑠 , 0) = 𝑒2𝜋i𝜙(𝑠) = 𝜙(𝑒2𝜋i𝑠) while on the

other end ℓ̂ (𝑒2𝜋i𝑠 , 1) = 𝑒2𝜋i𝜙𝑛(𝑠) = 𝜙𝑛(𝑒2𝜋i𝑠). That is, ℓ̂ establishes a relative homotopy

𝜙 ∼
rel 1

𝜙𝑛 as we desired. ♮

Proposition 15.5.4. Let 𝑓 : 𝑆1 → 𝑆1
be a morphism. Then there exists a unique integer

𝑛 ∈ Z for which 𝑓 ∼
h
𝜙𝑛 , where 𝜙𝑛 : 𝐼 → R is the linear path 𝜙𝑛(𝑡) ≔ 𝑡𝑛.

Proof. From Theorem 15.5.2 we find that 𝑓 = 𝑓 (1)𝜙 for a unique pointed map𝜙: (𝐼 , 0) →
(R, 0). Since 𝜙: (𝑆1, 1) → (𝑆1, 1) is a pointed continuous map, it follows that

𝜙(1) = 𝜙(𝑒2𝜋i) = 𝑒2𝜋i𝜙(1) = 1,

which implies in 𝜙(1) ≔ 𝑛 ∈ Z. From Lemma 15.5.3 we get 𝜙 ∼
rel 1

𝜙𝑛 .

Notice that if 𝜁0 ≔ 𝑒2𝜋i𝑠0 ∈ 𝑆1
is any fixed point, the multiplication map mul: 𝑆1 →

𝑆1
given by mul(𝜁) ≔ 𝜁0𝜁 is a rotation of the point 𝜁 on the circle—we’ll show

that mul ∼
h

id𝑆1 . Let 𝛿: 𝑆1 × 𝐼 → 𝑆1
be the map 𝛿(𝑒2𝜋i𝑠 , 𝑡) ≔ 𝑒2𝜋i((1−𝑡)𝑠0+𝑠)

, so that

𝛿(−, 0) = mul and 𝛿(−, 1) = id𝑆1 .

From the last paragraph we find that

𝑓 = 𝑓 (1) · 𝜙 ∼
h

id𝑆1
𝜙 = 𝜙 ∼

h
𝜙𝑛 ,

therefore 𝑓 ∼
h
𝜙𝑛 as wanted. ♮

Definition 15.5.5 (Degree). Given an endomorphism 𝑓 : 𝑆1 → 𝑆1
, let 𝜙: 𝐼 → R be the

unique path such that 𝑓 = 𝑓 (1)𝜙—then we define the degree of 𝑓 to be deg 𝑓 ≔ 𝜙(1) ∈ Z.

Lemma 15.5.6. Let 𝑓 , 𝑔: 𝑆1 ⇒ 𝑆1
be endomorphisms of the circle. Then 𝑓 ∼

h
𝑔 if and

only if deg 𝑓 = deg 𝑔.

Proof. (⇒) Let 𝜂: 𝑓 ⇒ 𝑔 be a homotopy. For each 𝑠 ∈ 𝐼 there exists an endomorphism

𝜂𝑠 ≔ 𝜂(−, 𝑠): 𝑆1 → 𝑆1
and, from Theorem 15.5.2, there is a unique pointed continuous

map 𝜙𝑠 : (𝐼 , 0) → (R, 0)with 𝜙𝑠(1) ∈ Z for which

𝜂𝑠 = 𝜂𝑠(1)𝜙𝑠 . (15.1)

We shall construct an explicit equation for 𝜙𝑠 and prove that the mapping Φ: 𝐼 × 𝐼 → R
given by Φ(𝑡 , 𝑠) ≔ 𝜙𝑠(𝑡) is a homotopy.

We proceed as in the proof of Proposition 15.5.1: define a map 𝜀: 𝐼 × 𝐼 → 𝑆1
by

𝜀(𝑡 , 𝑠) ≔ 𝜂𝑠(𝑒2𝜋i𝑡) = 𝜂𝑠𝑞(𝑡).

Since 𝐼 × 𝐼 is compact, 𝜀 is uniformly continuous—therefore one can choose a partition

0 C 𝑡0 < 𝑡1 < · · · < 𝑡𝑘 ≔ 1

of 𝐼 such that |𝜀(𝑡 , 𝑠) − 𝜀(𝑡 𝑗 , 𝑠)| < 2 for all 𝑠 ∈ 𝐼 and 𝑡 ∈ [𝑡 𝑗 , 𝑡 𝑗+1]—this ensures that the

complex logarithm of 𝜀(𝑡 , 𝑠)/𝜀(𝑡 𝑗 , 𝑠) ≠ −1 is well defined. For each 𝑠 ∈ 𝐼, we construct

a map 𝜓𝑠 : 𝐼 → 𝑆1
by

𝜓𝑠(𝑡) ≔
1

2𝜋i

(
Log

( 𝜀(𝑡1, 𝑠)
𝜀(𝑡0, 𝑠)

)
+ · · · + Log

( 𝜀(𝑡 𝑗 , 𝑠)
𝜀(𝑡 𝑗−1, 𝑠)

)
+ Log

( 𝜀(𝑡 , 𝑠)
𝜀(𝑡 𝑗 , 𝑠)

))
(15.2)
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for all 𝑡 ∈ [𝑡 𝑗 , 𝑡 𝑗+1]. Then for every 𝑠 ∈ 𝐼 one has

𝑞𝜓𝑠(𝑡) = 𝑒2𝜋i𝜓𝑠(𝑡)

= 𝑒
Log

(
𝜀(𝑡

1
,𝑠)

𝜀(𝑡
0
,𝑠)

)
+···+Log

( 𝜀(𝑡𝑗 ,𝑠)
𝜀(𝑡𝑗−1

,𝑠)

)
+Log

(
𝜀(𝑡 ,𝑠)
𝜀(𝑡𝑗 ,𝑠)

)
= 𝑒

Log

(
𝜀(𝑡

1
,𝑠)

𝜀(𝑡
0
,𝑠)

)
. . . 𝑒

Log

( 𝜀(𝑡𝑗 ,𝑠)
𝜀(𝑡𝑗−1

,𝑠)

)
𝑒

Log

(
𝜀(𝑡 ,𝑠)
𝜀(𝑡𝑗 ,𝑠)

)
=

𝜀(𝑡1, 𝑠)
𝜀(𝑡0, 𝑠)

· · ·
𝜀(𝑡 𝑗 , 𝑠)
𝜀(𝑡 𝑗−1, 𝑠)

· 𝜀(𝑡 , 𝑠)
𝜀(𝑡 𝑗 , 𝑠)

=
𝜀(𝑡 , 𝑠)
𝜀(𝑡0, 𝑠)

=
𝜂𝑠(𝑒2𝜋i𝑡)
𝜂𝑠(1)

.

Therefore 𝜂𝑠 = 𝜂𝑠(1)𝜓𝑠 , which shows that 𝜓𝑠 = 𝜙𝑠 (from Eq. (15.1)). Looking at

Eq. (15.2) we see that the mapping Φ above-mentioned is continuous, hence a homo-

topy.

Considering the continuous map Φ(1,−): 𝐼 → R given by 𝑠 ↦→ 𝜙𝑠(1), we know that

𝜙𝑠(1) ∈ Z from earlier considerations—therefore using the fact that 𝐼 is connected and

Z is discrete, it must bae the case that the induced map Φ(1,−): 𝐼 → Z is constant. In

particular, we shall have 𝜙0(1) = 𝜙1(1)—but from definition we have 𝑓 = 𝑓 (1)𝜙0 and

𝑔 = 𝑔(1)𝜙1, so that deg 𝑓 = 𝜙0(1) and deg 𝑔 = 𝜙1(1). From these considerations we

can finally conclude that deg 𝑓 = deg 𝑔.

(⇐) For the converse, suppose that deg 𝑓 = deg 𝑔 ≔ 𝑛. Therefore there exists two

unique pointed morphisms 𝜙,𝜓 ∈ PathR(0, 𝑛) such that 𝑓 = 𝑓 (1)𝜙 and 𝑔 = 𝑔(1)𝜓.

Recall that since 𝑓 (1), 𝑔(1) ∈ 𝑆1
are unitary complex numbers, multiplying a circle

point by them amounts to a rotation of the initial point through the circle—which

was already shown to be homotopic to the identity map of the circle. Therefore we

conclude that 𝜙 ∼
h
𝜙𝑛𝜓, where 𝜙𝑛 ∈ PathR(0, 𝑛) is the linear path 𝜙𝑛(𝑡) ≔ 𝑡𝑛. Thus

𝑓 ∼
h
𝜙 ∼

h
𝜙𝑛 ∼h

𝜓 ∼
h
𝑔,

proving that 𝑓 and 𝑔 are homotopic. ♮

Lemma 15.5.7. For each 𝑛 ∈ Z the map 𝑒𝑛 : 𝑆1 → 𝑆1
given by 𝜁 ↦→ 𝜁𝑛 is a continuous

map of degree

deg 𝑒𝑛 = 𝑛.

Proof. Notice that from definition we have 𝑒𝑛(𝑒2𝜋i𝑡) = 𝑒2𝜋i(𝑛𝑡) = 𝑞𝜙𝑛(𝑡), where 𝜙𝑛 ∈
PathR(0, 𝑛) is the linear path 𝜙𝑛(𝑡) ≔ 𝑡𝑛. Therefore deg 𝑒𝑛 = 𝜙𝑛(1) = 𝑛. ♮

Theorem 15.5.8 (deg is a ring isomorphism). The map deg: [𝑆1, 𝑆1] → Z given by

[ 𝑓 ] ↦→ deg 𝑓 is a ring isomorphism. In other words, the degree map is an isomorphism

of the first cohomology group of 𝑆1
with Z:

𝐻1(𝑆1) ≃ Z.
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Proof. From Lemma 15.5.6 we know that deg is a bĳective map, we need to show that

it’s also a ring morphism. Consider any two endomorphism classes [ 𝑓 ], [𝑔] ∈ [𝑆1, 𝑆1]
with degrees deg[ 𝑓 ] ≔ 𝑛 and deg[𝑔] ≔ 𝑚, then:

• (Additive structure). From Lemma 15.5.7 we know that 𝑓 ∼
h
𝑒𝑛 and 𝑔 ∼

h
𝑒𝑚 ,

moreover given any 𝜁 ∈ 𝑆1
one has

(𝑒𝑛 · 𝑒𝑚)(𝜁) = 𝑒𝑛(𝜁)𝑒𝑚(𝜁) = 𝜁𝑛+𝑚 .

Therefore 𝑒𝑛 · 𝑒𝑚 = 𝑒𝑛+𝑚 and, consequently

deg([ 𝑓 ]·[𝑔]) = deg([𝑒𝑛]·[𝑒𝑚]) = deg[𝑒𝑛 ·𝑒𝑚] = deg[𝑒𝑛+𝑚] = 𝑛+𝑚 = deg[ 𝑓 ]+deg[𝑔].

• (Multiplicative structure). Given any 𝜁 ∈ 𝑆1
we have

𝑒𝑛𝑒𝑚(𝜁) = 𝑒𝑛(𝜁𝑚) = 𝜁𝑚𝑛 = 𝜁𝑛𝑚 ,

therefore 𝑒𝑛𝑒𝑚 = 𝑒𝑛𝑚 . From this we find that

deg([ 𝑓 ]◦[𝑔]) = deg([𝑒𝑛]◦[𝑒𝑚]) = deg[𝑒𝑛◦𝑒𝑚] = deg[𝑒𝑛𝑚] = 𝑛𝑚 = deg[ 𝑓 ]·deg[𝑔].

This finishes the proof that deg is an isomorphism of rings

[𝑆1, 𝑆1] ≃ Z.

♮

Corollary 15.5.9 (Automorphisms of 𝑆1
). If 𝑓 ∈ AutTop(𝑆1) is an automorphism, then

deg 𝑓 = ±1. As a consequence, either 𝑓 ∼
h

id𝑆1 or 𝑓 ∼
h
𝜌, where 𝜌 represents the

reflection by complex conjugation.

Proof. If 𝑓 is an automorphism, let 𝑓 −1
: 𝑆1 → 𝑆1

be its inverse. Therefore 𝑓 𝑓 −1 = id𝑆1 ,

implying in

1 = deg id𝑆1 = deg( 𝑓 𝑓 −1) = deg 𝑓 · deg 𝑓 −1,

which can only be the case if deg 𝑓 = deg 𝑓 −1 = ±1. Notice that the identity morphism

is id𝑆1 = 𝑒1, therefore deg id𝑆1 = 1. On the other hand, the reflection 𝜌: 𝑆1 → 𝑆1

maps 𝑒2𝜋i𝑡 ↦→ 𝑒−2𝜋i𝑡
—thus 𝜌 = 𝑒−1, implying in deg 𝜌 = −1. From the latter two

considerations, the last proposition follows. ♮

Example 15.5.10. A null-homotopic map 𝑓 : 𝑆1 → 𝑆1
has deg 𝑓 = 0, since it’s homotopic

to a constant map.

Corollary 15.5.11. The circle 𝑆1
is not contractible.

Proof. Since deg id𝑆1 = 1, from our considerations from Example 15.5.10 we conclude

that id𝑆1 isn’t null-homotopic and therefore there exists no contraction of the circle. ♮

Corollary 15.5.12. There exists no retraction 𝐷2 → 𝑆1
.

Proof. Suppose, for the sake of contradiction, that there exists a retraction 𝑟:𝐷2 → 𝑆1

such that 𝑟𝜄 = id𝑆1 , where 𝜄: 𝑆1 ↩→ 𝐷2
is the canonical inclusion. Since 𝐷2

is a

contractible space, then 𝑟 is null-homotopic. This would imply that 𝑟𝜄 was null-

homotopic and thus would be id𝑆1 , which contradicts Corollary 15.5.11. Therefore 𝑟

cannot exist. ♮
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Applications of 𝜋1(𝑆1)
Theorem 15.5.13 (Brouwer’s fixed point). Every continuous map 𝐷2 → 𝐷2

has a fixed

point.

Proof. Let 𝑓 :𝐷2 → 𝐷2
be any continuous map. Suppose, for the sake of contradiction,

that 𝑓 admits no fixed point. We construct a map 𝑟:𝐷2 → 𝑆1
as follows: for each 𝑥 ∈ 𝐷2

,

since 𝑓 𝑥 ≠ 𝑥, we can define a point 𝑟𝑥 ∈ 𝑆1
given by 𝑟𝑥 ≔

𝑓 𝑥−𝑥
∥ 𝑓 𝑥−𝑥∥ . Notice 𝑟 defines

a retraction of the disk to the sphere, contradicting the result of Corollary 15.5.12,

therefore 𝑓 must admit at least one fixed point. ♮

Theorem 15.5.14 (Fundamental Theorem of Algebra). Every non-constant polynomial

with coefficients in C has root in C.

Proof. Let 𝑝(𝑧) = 𝑧𝑛 + 𝑎1𝑧
𝑛−1 + · · · + 𝑎𝑛 be any polynomial—note that the restriction to

the case of monomials does not create any loss of generality. Suppose, for the sake of

contradiction, that 𝑝 admits no roots in C. Then for any real number 𝑟 ⩾ 0

Finish this proof (look Hatcher’s book)

♮
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Chapter 16

Covering Spaces

16.1 The van Kampen Theorem

For the Fundamental Groupoid

Theorem 16.1.1 (van Kampen theorem for the fundamental groupoid). Let 𝑋 be a

space, and𝒪 be a connected open cover
1

of 𝑋 that is closed under finite intersections—

which is a subcategory of Top whose morphisms are inclusions. Considering the

functor Π1: Top → Grpd, the fundamental groupoid Π1𝑋 is the colimit of the functor

Π1|𝒪 , that is:

Π1𝑋 ≃ colim𝑈∈𝒪 Π1𝑈

in the category Grpd.

Proof. We’ll show that Π1| Let 𝒢 be a groupoid and consider the constant functor

𝐶:𝒪 → Grpd mapping 𝑈 ↦→ 𝒢 and 𝜄 ↦→ id𝒢 for any object 𝑈 ∈ 𝒪 and morphism 𝜄 of

𝒪. Let 𝜂:Π1|𝒪 ⇒ 𝐶 be a natural transformation. The pair (𝒢 , 𝜂) forms a cocone over

the functor Π1|𝒪 : indeed, given an object𝑈 ∈ 𝒪 there exists a morphism of groupoids

𝜂𝑈 :Π1𝑈 → 𝐶𝑈 = 𝒢 and from naturality, given any inclusion 𝜄:𝑈 ↩→ 𝑉 in 𝒪 one has

that

Π1𝑈 𝐶𝑈 = 𝒢

Π1𝑉 𝐶𝑉 = 𝒢
Π1𝜄

𝜂𝑈

𝐶𝜄=id𝒢

𝜂𝑉

commutes in Grpd—showing that 𝜂𝑈 = id𝒢 𝜂𝑈 = 𝜂𝑉 ◦ Π1𝜄, hence compatibility Π1 is

satisfied, making (𝒢 , 𝜂) a cocone.

Consider the collection (𝑖𝑈 :Π1𝑈 → Π1𝑋)𝑈∈𝒪 of canonical inclusions of groupoids.

To show the universal property of Π1𝑋 we must construct a unique morphism of

1
That is, composed of connected open subsets of 𝑋.
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groupoids (that is, a functor between groupoids) 𝜒:Π1𝑋 → 𝒢 such that

𝒢 Π1𝑈

Π1𝑋

𝜂𝑈

𝑖𝑈

𝜒 (16.1)

commutes in Grpd for all𝑈 ∈ 𝒪.

To that end, for every 𝑥 ∈ 𝑋, if 𝑥 ∈ 𝑈 let 𝜒𝑥 ≔ 𝜂𝑈𝑥. For the morphisms of

Π1𝑋, consider any path 𝑓 ∈ Path𝑋(𝑥, 𝑦) on 𝑋. If im 𝑓 lies interely in some object

𝑈 ∈ 𝒪, simply define 𝜒[ 𝑓 ] ≔ 𝜂𝑈[ 𝑓 ]—since 𝒪 is closed under finite intersections, if

im 𝑓 ⊆ 𝑈 ∩ 𝑉 for some 𝑈,𝑉 ∈ 𝒪, then the image 𝜂•[ 𝑓 ] is independent of the choice

of 𝑈 or 𝑉 . Consider now the case where 𝑓 has an image not entirely contained in a

single element of 𝒪, but multiple ones, say im 𝑓 ⊆ ⋃𝑛
𝑗=1
𝑈 𝑗 for some finite collection

of sets 𝑈 𝑗 ∈ 𝒪—since 𝒪 is closed under finite intersections, this, we shall define a

corresponding collection of paths ( 𝑓𝑗 : 𝐼 → 𝑈 𝑗)𝑛𝑗=1
such that

𝑓 = 𝑓𝑛 𝑓𝑛−1 · · · 𝑓2 𝑓1.

With this collection in hands we may define 𝜒[ 𝑓 ] ≔ 𝜂𝑈𝑛 [ 𝑓𝑛] · · · 𝜂𝑈1
[ 𝑓1].

We must ensure that this is well defined: let 𝑔 ∈ Path𝑋(𝑥, 𝑦) be another path and

suppose there exists a homotopy 𝜀: 𝑓 ⇒ 𝑔. Take a decomposition (𝑔𝑗 : 𝐼 → 𝑉𝑗)𝑚𝑗=1
for

sets 𝑉𝑗 ∈ 𝒪. Consider a partition (𝐽𝑗 × 𝑆 𝑗)ℓ𝑗=1
of the square 𝐼 × 𝐼 such that im 𝜀|𝐽𝑗×𝑆𝑗 ⊆ 𝑈

for some 𝑈 ∈ 𝒪, and such that (𝐽𝑗)ℓ𝑗=1
is a refinement for the decompositions of 𝑓 and

𝑔—that is, 𝑓 |𝐽𝑗 and 𝑔|𝐽𝑗 are paths entirely contained in some set of 𝒪. In this way we

see that 𝜀 induces a collection of homotopies (𝜀𝑗 : 𝑓𝑗 ⇒ 𝑔𝑗)ℓ𝑗=1
proving that [ 𝑓𝑗] = [𝑔𝑗]

in some Π1𝑈 , therefore 𝜒[ 𝑓 ] = 𝜒[𝑔]. Hence 𝜒 is a uniquely defined functor satisfying

Eq. (16.1). ♮

For the Fundamental Group
Theorem 16.1.2 (van Kampen theorem for the fundamental group). Let (𝑋, 𝑥) ∈ Top∗/
be a path-connected space, and 𝒪 be a path-connected open cover of 𝑋 closed under

finite intersections—and such that 𝑥 ∈ 𝑈 for every𝑈 ∈ 𝒪, therefore𝒪 is a subcategory

of Top∗/ whose morphisms are inclusions. Then the fundamental groupoid of 𝑋 is the

colimit of the functor 𝜋1|𝒪 :𝒪 → Grp, that is:

𝜋1(𝑋, 𝑥) ≃ colim𝑈∈𝒪 𝜋1(𝑈, 𝑥).

We first prove a particular case of the classical van Kampen theorem and after

generalize.

Lemma 16.1.3. The van Kampen theorem for the fundamental group holds when 𝒪 is

finite.
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Proof. Let 𝐺 be a group and 𝐶:𝒪 → Grp be the constant functor on 𝐺 and consider the

cocone (𝐺, 𝜂:𝜋1|𝒪 ⇒ 𝐶) over the functor 𝜋1|𝒪 . We’ll construct a morphism of groups

𝜒:𝜋1(𝑋, 𝑥) → 𝐺. Recall that the inclusion functor 𝐽:𝜋1(𝑋, 𝑥) → Π1𝑋 is an equivalence

of categories, since 𝜋1(𝑋, 𝑥) is a skeleton of Π1𝑋 by Proposition 15.4.10. Define a

quasi-inverse of 𝐽 as follows: consider a collection (𝛾𝑦)𝑦∈𝑋 of paths 𝛾𝑦 ∈ Path𝑋(𝑥, 𝑦)
where im 𝛾𝑦 ⊆ 𝑈 when 𝑦 ∈ 𝑈 and 𝛾𝑥 ≔ cons𝑥—this is possible because 𝒪 is closed

under finite intersections—then define 𝐹:Π1𝑋 → 𝜋1(𝑋, 𝑥) by mapping 𝑓 : 𝑎 → 𝑏 to

𝐹 𝑓 ≔ 𝛾𝑏 𝑓 𝛾−1

𝑎 : 𝑥 → 𝑥.

Notice that the quasi-inverse functors 𝐽 and 𝐹 induce, for each𝑈 ∈ 𝒪, a correspond-

ing pair of quasi-inverse functors

𝐹𝑈 : Π1𝑈 ⇄ 𝜋1(𝑈, 𝑥) : 𝐽𝑈 .

Then we can construct a cocone (𝐺, 𝛿:Π1|𝒪 ⇒ 𝐶) over the functor Π1|𝒪 , where 𝛿𝑈 ≔

𝜂𝑈𝐹𝑈 :Π1𝑈 → 𝐺. By means of Theorem 16.1.1 there exists a unique morphism of

groupoids 𝜉:Π1𝑋 → 𝐺 (where 𝐺 is interpreted as a groupoid with a single object)

such that

Π1𝑈 𝜋1(𝑈, 𝑥) 𝐺

Π1𝑋

𝐹𝑈

𝑖𝑈

𝜂𝑈

𝜉

commutes in Grpd for every𝑈 ∈ 𝒪. Define 𝜒 ≔ 𝜉𝐽:𝜋1(𝑋, 𝑥) → 𝐺, and notice that since

𝜂𝑈𝐹𝑈 = 𝜉𝑖𝑈 we can precompose with 𝐽𝑈 :𝜋1(𝑈, 𝑥) → Π1𝑈 and use that 𝐹𝑈 𝐽𝑈 = id𝜋1(𝑈,𝑥)
to obtain that 𝜂𝑈 = 𝜉𝑖𝑈 𝐽𝑈 . Notice however that given any [𝑔] ∈ 𝜋1(𝑈, 𝑥) one has

𝑖𝑈 𝐽𝑈[𝑔] = [𝑔] ∈ Π1𝑋 while 𝐽 𝑗𝑈[𝑔] = [𝑔] ∈ Π1𝑋 again—for the canonical inclusion

𝑗𝑈 :𝜋1(𝑈, 𝑥) ↩→ 𝜋1(𝑋, 𝑥)—therefore 𝑖𝑈 𝐽𝑈 = 𝐽 𝑗𝑈 . This proves that 𝜂𝑈 = 𝜉𝐽 𝑗𝑈 = 𝜒 𝑗𝑈 for

every𝑈 ∈ 𝒪, that is

𝜋1(𝑈, 𝑥) 𝐺

Π1𝑋

𝜋1(𝑋, 𝑥)

𝜂𝑈

𝑗𝑈

𝜉

𝐽

𝜒

commutes in Grp, which proves the universal property for the colimit 𝜋1(𝑋, 𝑥). ♮

Proof of the Classical van Kampen Theorem

Let 𝒪 be a path-connected open cover of 𝑋 closed under intersections and composed

of neighbourhoods of the chosen base-point 𝑥. Let 𝔉 ⊆ 2
𝒪

be the category whose

objects are the finite subsets of 𝒪 of the cover that is closed under finite intersections, and

morphisms are inclusions. Given any such subset 𝒞 ∈ 𝔉, we know from Lemma 16.1.3

that the space𝑈𝒞 ≔
⋃
𝑈∈𝒞 𝑈 satisfies

𝜋1(𝑈𝒞 , 𝑥) ≃ colim𝑈∈𝒞 𝜋1(𝑈, 𝑥). (16.2)
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• Let’s prove that the colimit of the functor 𝜋1|𝔉:𝔉 → Grp—which maps each

𝒞 ∈ 𝔉 to the group 𝜋1(𝑈𝒞 , 𝑥)—is the fundamental group 𝜋1(𝑋, 𝑥). Given any

group 𝐺 and a its corresponding constant functor 𝐶𝐺:𝔉→ Grp with 𝐶𝐺𝒞 ≔ 𝐺,

let 𝜂:𝜋1|𝔉 ⇒ 𝐶𝐺 be a natural transformation. The pair (𝐺, 𝜂) is then a cocone

over the functor 𝜋1|𝔉.

We’ll construct a unique morphism of groups 𝜒:𝜋1(𝑋, 𝑥) → 𝐺 satisfying the

coherence of the cocones using the same technique from Theorem 16.1.1. If

𝑓 : 𝑥 → 𝑥 is a loop contained entirely in a set𝑈𝒞 ⊆ 𝑋 for some 𝒞 ∈ 𝔉𝐹, we simply

map 𝜒[ 𝑓 ] ≔ 𝜂𝒞 [ 𝑓 ]. If on the other hand 𝑓 is not entirely contained in a single

set, say that 𝑓 is contained in the union

⋃𝑛
𝑗=1
𝑈 𝑗 for sets 𝑈 𝑗 ∈ 𝒞 and define a

collection of decompositions of 𝑓 , namely ( 𝑓𝑗 : 𝐼 → 𝑈 𝑗)𝑛𝑗=1
, for which 𝑓 is the result

of the concatenation of paths. From the same argument as before, merely map

𝜒[ 𝑓 ] ≔ 𝜂𝑈𝑛 [ 𝑓𝑛] · · · 𝜂𝑈1
[ 𝑓1], which is well defined and unique

2
. Therefore one has

colim𝒞∈𝔉 𝜋1(𝑈𝒞 , 𝑥) ≃ 𝜋1(𝑋, 𝑥). (16.3)

• For the final part of the proof, we shall prove that the colimits of the functors

𝜋1|𝒪 and 𝜋1|𝔉 agree so that the van Kampen theorem is true. Recalling Eq. (16.2),

one has

colim𝒞∈𝔉 𝜋1(𝑈𝒞 , 𝑥) ≃ colim𝒞∈𝔉(colim𝑈∈𝒞 𝜋1(𝑈, 𝑥))
≃ colim(𝒪 ,𝔉) 𝜋1(𝑈, 𝑥),

where (𝒪 ,𝔉) is the category whose objects are pairs (𝑈,𝒞) ∈ 𝒞 × 𝔉, and mor-

phisms are paired inclusions—also 𝜋1(−, 𝑥)|(𝒪 ,𝔉): (𝒪 ,𝔉) → Grp is defined to map

(𝑈,𝒞) to 𝜋1(𝑈, 𝑥). Notice that the functors 𝜋1(−, 𝑥)|𝒪 and 𝜋1(−, 𝑥)|(𝒪 ,𝔉) factor as

𝒪 Grp

(𝒪 ,𝔉)

𝜋1(−,𝑥)|𝒪

𝜄

𝜋1(−,𝑥)|(𝒪 ,𝔉)
𝑝

Where 𝜄𝑈 ≔ (𝑈, {𝑈}) and 𝑝(𝑈,𝒞) ≔ 𝑈 . Therefore one has an isomorphism

colim𝑈∈𝒪 𝜋1(𝑈, 𝑥) ≃ colim(𝑈,𝒞)∈(𝒪 ,𝔉) 𝜋1(𝑈, 𝑥). (16.4)

Therefore, by Eqs. (16.3) and (16.4) we have

colim𝑈∈𝒪 𝜋1(𝑈, 𝑥) ≃ 𝜋1(𝑋, 𝑥)

as wanted.

2
Simply refer to the proof of Theorem 16.1.1, now it should be clear that the proof follows exactly

the same steps
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16.2 Covering Spaces

Initial Constructions
Definition 16.2.1 (Covering space). A surjective continuous map 𝑝:𝐸→ 𝐵 is said to be

a covering space over 𝐵 if for every point 𝑥 ∈ 𝐵, there exists a neighbourhood 𝑈 ⊆ 𝐵 of

𝑥 that is evenly covered by 𝑝, that is: there exists a bundle isomorphism over 𝐵 between

the pullback
3

of 𝑝 over 𝑈 and a product bundle 𝜋:𝑈 × 𝐸𝑥 → 𝑈 with discrete4 fibre
𝐸𝑥 = 𝑝−1𝑥. Diagrammatically, one has that the diagram

𝑈 × 𝐸𝑥 𝑝−1𝑈 𝐸

𝑈 𝐵

≃

𝜋

⌟
𝑝

commutes in Top, where the topological isomorphism 𝑈 × 𝐸𝑥 ≃−→ 𝑝−1𝑈 is explicitly

given by (𝑢, 𝑒) ↦→ 𝑒. Said concisely, a covering space is a locally trivial bundle with

discrete fibre.

Yet another equivalent way of defining a covering space goes as follows. 𝐵 is evenly

covered by 𝑝 if there exists an open cover𝒰 of 𝐵 such that any𝑈 ∈ 𝒰 has a preimage

𝑝−1𝑈 =
∐

𝛼𝑉𝛼 where 𝑉𝛼 is an open set of 𝐸, and the restriction 𝑝|𝑉𝛼 :𝑉𝛼
≃−→ 𝑈 is a

topological isomorphism.

Corollary 16.2.2. A covering space is a local topological isomorphism.

Proof. Given a covering space 𝑝:𝐸→ 𝐵 and 𝑥 ∈ 𝐸, we can consider the neighbourhood

𝑈 ⊆ 𝐵 of 𝑝𝑥 that is evenly covered by 𝑝. Then from our last definition we know that

𝑈 is isomorphic to a disjoint union of open sets of 𝐸. Let 𝑉 ⊆ 𝑝−1𝑈 be one such open

set which is also a neighbourhood of 𝑥. Then the restriction 𝑝|𝑉 :𝑉 → 𝑝(𝑉) = 𝑈 is an

isomorphism, showing that 𝑝 is indeed a local isomorphism. ♮

Notation 16.2.3 (Sheets). Let 𝑝:𝐸 → 𝐵 be a covering space and 𝑥 ∈ 𝐵 be any point.

Consider a neighbourhood 𝑈 ⊆ 𝐵 of 𝑥 such that 𝑝 admits a trivialisation 𝜙: 𝑝−1𝑈 ≃−→
𝑈 ×𝐸𝑥 . Since 𝐸𝑥 is discrete, we have an isomorphism𝑈 ×𝐸𝑥 ≃

∐
𝑒∈𝐸𝑥 𝑈 × 𝑒. Moreover,

clearly𝑈 ≃ 𝑈 × 𝑒 for any 𝑒 ∈ 𝐸𝑥 . We shall define a sheet over𝑈 to be an open set

𝑈𝑒 ≔ 𝜙−1(𝑈 × {𝑒}) ⊆ 𝐸. (16.5)

The motivation comes from the fact that𝑈𝑒 ≃ 𝑈 × 𝑒 ≃ 𝑈 .

Proposition 16.2.4 (Covering projections are open). Given a covering space 𝑝:𝐸 → 𝐵,

the projection 𝑝 is open.

3
It should be noted that the pullback of 𝑝 over𝑈 is nothing more than the induced bundle 𝜄∗𝑝 given

by the inclusion 𝜄:𝑈 ↩→ 𝐵.

4
Here, discrete means a space together with the discrete topology. We shall make use of the functor

Disc: Set→ Topmapping a bare set 𝑆 to the topological space Disc 𝑆with underlying set 𝑆 and endowed

with the discrete topology.
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Proof. Consider the open cover (𝑈𝑥)𝑥∈𝐵 of 𝐵—where 𝑈𝑥 is a neighbourhood of 𝑥 such

that there exists a topological isomorphism 𝑝−1𝑈𝑥 ≃ 𝑈𝑥 × Disc𝐸𝑥 , for each 𝑥 ∈ 𝐵.

Under the product topology, projections are open maps (see Lemma 13.3.5), therefore

𝑝|𝑝−1𝑈𝑥
is an open map for each 𝑥 ∈ 𝐵. Given any open set 𝑉 ⊆ 𝐸, notice that

𝑉 =
⋃
𝑥∈𝐵(𝑊 ∩ 𝑝−1𝑈𝑥), therefore

𝑝𝑉 = 𝑝
(⋃
𝑥∈𝐵
(𝑊 ∩ 𝑝−1𝑈𝑥)

)
=

⋃
𝑥∈𝐵

𝑝(𝑊 ∩ 𝑝−1𝑈𝑥)

is the union of open sets, thus open—which shows that 𝑝 is an open map. ♮

Lemma 16.2.5 (Fibre-wise diagonal of covering space is open and closed). Let 𝑝:𝐸→ 𝐵

be a covering space, and 𝐸 ×𝐵 𝐸 be the pullback of 𝑝 with itself. Then the diagonal of

𝐸 with respect to the fibre product over 𝐵, namely

Δ𝐵𝐸 = {(𝑒 , 𝑒) ∈ 𝐸 ×𝐵 𝐸 : 𝑒 ∈ 𝐸},

is an open and closed set in 𝐸 ×𝐵 𝐸.

Proof. First we prove that Δ𝐵𝐸 is open. Let 𝑒 ∈ 𝐸 be any point and 𝑈𝑝𝑒 ⊆ 𝐵 be a

neighbourhood of 𝑝𝑒 together with an isomorphism

𝑝−1𝑈𝑝𝑒 ≃ 𝑈𝑝𝑒 × 𝐸𝑝𝑒 = 𝑈𝑝𝑒 × {𝑒}.

Since 𝑝−1𝑈𝑝𝑒 is open, it follows that 𝑈𝑝𝑒 × {𝑒} ↩→ 𝐸 is open. Then the set (𝐸 ×𝐵 𝐸) ∩
(𝑈𝑝𝑒 ×𝑈𝑝𝑒) is an open neighbourhood of (𝑒 , 𝑒) in 𝐸 ×𝐵 𝐸. This shows that Δ𝐵𝐸 is open.

To show that Δ𝐵𝐸 is closed, let (𝑥, 𝑦) ∈ 𝐸 ×𝐵 𝐸 with 𝑥 ≠ 𝑦. Let 𝑈 ⊆ 𝐵 be a

neighbourhood of 𝑝𝑥 = 𝑝𝑦 that is evenly covered, and consider the induced sheets

𝑈𝑥 , 𝑈𝑦 ⊆ 𝐸 for 𝑥 and 𝑦, respectively. From the assumption that 𝑥 and 𝑦 are distinct

points, we have an empty intersection𝑈𝑥∩𝑈𝑦 = ∅—which shows that𝑈𝑥×𝑈𝑦 is disjoint

from Δ𝐵𝐸. Therefore (𝐸×𝐵𝐸)∩(𝑈𝑥×𝑈𝑦) is a neighbourhood for (𝑥, 𝑦) ∈ 𝐸×𝐵𝐸 outside

of Δ𝐵𝐸, showing that Δ𝐵𝐸 is closed. ♮

16.3 Lifting Properties
Definition 16.3.1 (Lift). Let 𝑓 :𝑌 → 𝑋 and 𝑔:𝑍→ 𝑋 be morphisms. We define a lift of
𝑔 along 𝑓 to be a morphism �̂�:𝑍→ 𝑌 such that the following diagram commutes:

𝑌

𝑍 𝑋

𝑓

𝑔

�̂�

Proposition 16.3.2 (Homotopy lift via covering space). Let 𝑝:𝐸 → 𝐵 be a covering

space and consider a homotopy 𝜂:𝑋 × 𝐼 → 𝐵. Let �̂�0:𝑋 → 𝐸 be a lift of 𝜂(−, 0) along 𝑝.
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Then there exists a unique lift �̂�:𝑋 × 𝐼 → 𝐸 of 𝜂 along 𝑝 which extends �̂�0. That is, the

following diagram commutes:

𝑋 × 0 𝐸

𝑋 × 𝐼 𝑋

�̂�0

𝑝
�̂�

𝜂

Proof. We shall prove this proposition in three acts, first we shall construct a lift with

respect to a neighbourhood of any given point 𝑥 ∈ 𝑋, later the uniqueness of such lift,

and finally how all this pieces together to form the required lift.

(i) Let 𝑥 ∈ 𝑋 be any point and take, for each (𝑥, 𝑡) ∈ 𝑥 × 𝐼, an evenly covered

neighbourhood 𝑈𝑡 ⊆ 𝐵 of 𝜂(𝑥, 𝑡). Now we can choose a neighbourhood 𝑁𝑡 ×
(𝑎𝑡 , 𝑏𝑡) of (𝑥, 𝑡) such that 𝜂(𝑁𝑡 × (𝑎𝑡 , 𝑏𝑡)) ⊆ 𝑈𝑡 is again evenly covered by 𝑝.

Since 𝑥 × 𝐼 is compact, let 0 = 𝑡0 < 𝑡1 < · · · < 𝑡𝑛 = 1 be a partition of 𝐼 such

that {𝑁𝑡 𝑗 × [𝑡 𝑗 , 𝑡 𝑗+1]}𝑛−1

𝑗=0
covers 𝑥 × 𝐼—and also satisfies the requirement that

𝜂(𝑁𝑡 𝑗 ×[𝑡 𝑗 , 𝑡 𝑗+1]) is evenly covered by 𝑝 as in the previous construction. Define the

neighbourhood 𝑁 ≔
⋂𝑛
𝑗=0

𝑁𝑡 𝑗 of 𝑥, so that 𝜂(𝑁 × [𝑡 𝑗 , 𝑡 𝑗+1]) is still evenly covered

by 𝑝 for any 𝑗.

We proceed by induction assuming that, for some 𝑗, the lift �̂� has been constructed

on 𝑁 ×[0, 𝑡 𝑗] and which extends the given starting lift �̂�0. Let𝑈 𝑗 ⊆ 𝐵 be an evenly

covered set containing 𝜂(𝑁×[𝑡 𝑗 , 𝑡 𝑗+1]), and take𝑉𝑗 ⊆ 𝐸 to be an open set projecting

isomorphically onto𝑈 𝑗 via 𝑝 and with �̂�(𝑥, 𝑡) ∈ 𝑉𝑗 . Define

𝑁 ′ × 𝑡 𝑗 ≔ (𝑁 × 𝑡 𝑗) ∩ (�̂�|𝑁×𝑡 𝑗 )−1𝑉𝑗 ,

which is again a neighbourhood of (𝑥, 𝑡 𝑗). From this construction we find that

�̂�(𝑁 ′× 𝑡 𝑗) ⊆ 𝑉𝑗 . Now we define �̂� on 𝑁 ′× [𝑡 𝑗 , 𝑡 𝑗+1] to be the composition of 𝜂 with

𝑝−1
:𝑈 𝑗 → 𝑉𝑗 , that is:

𝑉𝑗

𝑁 ′ × [𝑡 𝑗 , 𝑡 𝑗+1] 𝑈 𝑗

�̂�

𝜂

𝑝−1≃

This procedure is to be done a finite number of iterations, so that in the end we

obtain a lift �̂�:𝑀 × 𝐼 → 𝐸 for some neighbourhood 𝑀 ⊆ 𝑋 of 𝑥.

(ii) To prove the uniqueness of the lifting �̂� we’ll work simply on the case of a

single point 𝑥, so that uniqueness for the total set 𝑋 × 𝐼 will follow from the

uniqueness of the lift on segments 𝑥 × 𝐼 for each 𝑥 ∈ 𝑋. Let �̂� and �̂�′ be two

lifts of 𝜂: 𝑥 × 𝐼 → 𝐵 with �̂�(0) = �̂�′(0). From the same argument as before, take a

partition 0 = 𝑡0 < 𝑡1 < · · · < 𝑡𝑛 = 1 of 𝐼 such that 𝜂([𝑡 𝑗 , 𝑡 𝑗+1]) is contained in an

evenly covered neighbourhood 𝑈 𝑗 ⊆ 𝐵 by 𝑝. Using induction, we may assume

that �̂�|[0,𝑡 𝑗] = �̂�′|[0,𝑡 𝑗] for some 𝑗. Using the fact that [𝑡 𝑗 , 𝑡 𝑗+1] is a connected set,
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the image �̂�([𝑡 𝑗 , 𝑡 𝑗+1]) ⊆ 𝐸 will also be connected. Therefore there exists a set

𝑉𝑗 ⊆ 𝐸 containing �̂�([𝑡 𝑗 , 𝑡 𝑗+1]), and with 𝑉𝑗 ≃ 𝑈 𝑗 via 𝑝. Since �̂�𝑡 𝑗 = �̂�′𝑡 𝑗 then by

connectedness �̂�′([𝑡 𝑗 , 𝑡 𝑗+1]) ⊆ 𝑉𝑗 . The lift condition implies in 𝑝�̂� = 𝑝�̂�′, however

we also know that 𝑝 is injective in𝑉𝑗—therefore it follows that �̂�|[𝑡 𝑗 ,𝑡 𝑗+1] = �̂�′|[𝑡 𝑗 ,𝑡 𝑗+1].
This procedure is continued for finitely many steps and shows that �̂� = �̂�′.

(iii) Notice that, by choosing a point 𝑥 ∈ 𝑋, we obtain a lift piece of the form𝑀×𝐼 → 𝐸

where𝑀 ⊆ 𝑋 is a neighbourhood of 𝑥. Notice however that in the overlap of such

neighbourhoods, when one considers the whole range of points contained in 𝑋,

we must have an agreement of the lift pieces. Therefore, such neighbourhoods

may be glued to create a well defined lift �̂�:𝑋 × 𝐼 → 𝐸. Moreover, using the proof

of the last item we know that each segment �̂�|𝑥×𝐼 is unique for any 𝑥 ∈ 𝑋, thus �̂�
itself is unique.

♮

Corollary 16.3.3. Let 𝑝:𝐸→ 𝐵 be a covering space. The following are lifting properties

associated to 𝑝:

(a) For each path 𝛾: 𝐼 → 𝐵 starting at 𝑥0 ∈ 𝐵 and each 𝑒0 ∈ 𝑝−1𝑥0 there exists a unique
lift �̂�: 𝐼 → 𝐸 which starts at 𝑒0.

(b) For each homotopy 𝜂: 𝐼 × 𝐼 → 𝐵 of paths starting at 𝑥0 and each 𝑒0 ∈ 𝑝−1𝑥0 there is

a unique lifted homotopy �̂�: 𝐼 × 𝐼 → 𝐸 of paths starting at 𝑒0.

(c) The lift of a constant path is constant.

(d) Every homotopy between paths lifts to a homotopy of paths
5
.

Proposition 16.3.4. Given a covering 𝑝:𝐸 ↠ 𝐵, the induced morphism of groups

𝑝∗:𝜋1(𝐸, 𝑒)↣ 𝜋1(𝐵, 𝑝𝑒)

is a monomorphism for any 𝑒 ∈ 𝐸.

Proof. Let [ �̂� ] be a kernel element of 𝑝∗, so that 𝑝∗[ �̂� ] = [ 𝑓 ] = [cons𝑝𝑒]. Thus there

exists a homotopy 𝜂: 𝑓 ⇒ cons𝑝𝑒 and via Proposition 16.3.2 we obtain a lifted ho-

motopy of loops �̂�: �̂� ⇒ cons𝑒 , showing that [ �̂� ] = [cons𝑒]. Therefore 𝑝 is indeed a

monomorphism of groups. ♮

Proposition 16.3.5. Let 𝐸 and 𝐵 be path-connected spaces. The number of sheets

of a pointed covering space 𝑝: (𝐸, 𝑒) → (𝐵, 𝑏) is equal to the index of the subgroup

𝑝∗𝜋1(𝐸, 𝑒) in 𝜋1(𝐵, 𝑏).

Proof. Define the notation 𝐺 ≔ 𝑝∗𝜋1(𝐸, 𝑒). Let 𝛾 ∈ Ω(𝐵, 𝑏) be a loop and consider its

lifted loop �̂� ∈ Ω(𝐸, 𝑒).
Continue

♮

5
Since the end-points are fixed—which was pointed out in item (c).
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Theorem 16.3.6 (Lifting out of connected space). Let 𝑝:𝐸 → 𝐵 be a covering space,

and 𝑓 :𝑌 → 𝑋 be a continuous map, where 𝑌 is a connected space. Consider two lifts
of 𝑓 along 𝑝: continuous maps �̂�1, �̂�2:𝑌 ⇒ 𝐸 such that the triangle

𝐸

𝑌

𝑋

𝑝

�̂�1

�̂�2

𝑓

commutes in Top. If there exists 𝑦 ∈ 𝑌 such that �̂�1𝑦 = �̂�2𝑦, then the lifts agree

everywhere �̂�1 = �̂�2.

Proof. Consider the pullback 𝐸 ×𝐵 𝐸 of 𝑝 with itself and consider the uniquely defined

morphism ( �̂�1, �̂�2):𝑌 → 𝐸 ×𝐵 𝐸 making the diagram

𝑌

𝐸 ×𝐵 𝐸 𝐸

𝐸 𝐵

�̂�1

�̂�2
⌟

𝑝

𝑝

commute. Define Δ𝐵𝐸 ⊆ 𝐸 ×𝐵 𝐸 for the diagonal of 𝐸 with respect to the fibre

product. Using Lemma 16.2.5 we know that Δ𝐵𝐸 is both open and closed, thus

𝑉 ≔ ( �̂�1, �̂�2)−1(Δ𝐵𝐸) ⊆ 𝑌 is both open and closed in 𝑌, which is a non-empty set

since by hypothesis �̂�1 and �̂�2 agree at least in one point of 𝑌. Since 𝑉 is closed, then

𝑌 ∖𝑉 is open in 𝑌 and certainly disjoint from 𝑉 . Since their union is the whole space

𝑌, by the hypothesis that 𝑌 is connected, it must be the case that 𝑉 = 𝑌. Therefore

�̂�1 = �̂�2 as wanted. ♮

Proposition 16.3.7. Let 𝑞:𝐸 → 𝐵 × 𝐼 be a locally trivial covering space with fibre 𝐹.

Then 𝐵 admits an open cover𝒰 for which 𝑞 is trivial over𝑈 × 𝐼 for each𝑈 ∈ 𝒰 .

Prove when needed

16.4 Coverings and 𝐺-Actions
Definition 16.4.1 (Properly discontinuous action). Given a discrete topological group

𝐺, a left action𝐺×𝐸→ 𝐸 is said to be properly discontinuous if for each pair (𝑔, 𝑥) ∈ 𝐺×𝐸,

where 𝑔 ≠ 𝑒, there exists a neighbourhood𝑈 ⊆ 𝐸 of 𝑥 such that

𝑈 ∩ 𝑔𝑈 = ∅.
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In particular, every properly discontinuous action is free.

Definition 16.4.2 (𝐺-principal covering space). Let 𝐺 be a discrete topological group.

A left 𝐺-principal covering space is a covering 𝑝:𝐸→ 𝐵 together with a properly discon-

tinuous left action 𝐺 ⟳ 𝐸 for which 𝑝(𝑔𝑥) = 𝑝𝑥 for every pair (𝑔, 𝑥) ∈ 𝐺 × 𝐸, and such

that the induced action on the fibres is transitive.

Proposition 16.4.3. If 𝐺 ⟳ 𝑋 is a properly discontinuous action of a discrete group 𝐺

on a space 𝑋, the canonical projection 𝑞:𝑋 ↠ 𝑋/𝐺 is a 𝐺-principal covering space.

Proof. First of all, it is clear that 𝑞(𝑔𝑥) = 𝑞𝑥 ∈ 𝑋/𝐺 for any pair (𝑔, 𝑥) ∈ 𝐺×𝑋. Let [𝑥] ∈
𝑋/𝐺 be any point, and 𝑉 ⊆ 𝑋 be a neighbourhood of 𝑥 such that 𝑉 ∩ 𝑔𝑉 ≠ ∅ implies

𝑔 = 𝑒, and define 𝑈 ≔ 𝑞𝑉 . Notice that since 𝐺 acts by topological isomorphisms, one

has 𝑞−1𝑈 =
⋃
𝑔∈𝐺 𝑔𝑉—now, since each 𝑔𝑉 is open, it follows that 𝑞−1𝑈 ⊆ 𝑋 is open.

Since 𝑋/𝐺 has the quotient topology, then𝑈 ⊆ 𝑋/𝐺 is open.

Consider 𝑞−1𝑈 =
∐

𝑔∈𝐺𝑉𝑔 , where𝑉𝑔 ≔ 𝑔𝑉 . Given any 𝑔 ∈ 𝐺, suppose there exists

ℎ ∈ 𝐺 such that 𝑉𝑔 ∩𝑉ℎ ≠ ∅—then for any 𝑥′ ∈ 𝑉𝑔 ∩𝑉ℎ , one has ℎ−1𝑥′ ∈ 𝑉𝑔 ∩𝑉 , and

from construction this implies in ℎ−1𝑔 = 𝑒, thus ℎ = 𝑔.

It remains for us to show a trivialisation for 𝑞—we shall prove that 𝑞|𝑉𝑔 :𝑉𝑔 → 𝑈 is

an isomorphism. Since quotient maps are open, it suffices to show that 𝑞|𝑉𝑔 is bĳective.

Let [𝑥′] ∈ 𝑈 be any point, and take 𝑥′′ ∈ 𝑉 such that 𝑞𝑥′′ = [𝑥′], then in particular

𝑔𝑥′′ ∈ 𝑔𝑉 and 𝑞(𝑔𝑥′′) = [𝑔𝑥′′] = [𝑥′]—thus 𝑞|𝑉𝑔 is surjective. For injectivity, let

𝑥′, 𝑥′′ ∈ 𝑉 be a pair of points such that 𝑞(𝑔𝑥′) = 𝑞(𝑔𝑥′′), then [𝑥′] = [𝑥′′] in 𝑋/𝐺, which

implies in the existence of a point ℎ ∈ 𝐺 such that 𝑥′ = ℎ𝑥′′, then 𝑥′′ ∈ 𝑉∩𝑉ℎ—therefore

ℎ = 𝑒 and hence 𝑥′ = 𝑥′′, thus in particular 𝑔𝑥′ = 𝑔𝑥′′ as wanted. ♮

Definition 16.4.4 (Deck transformations). Given a covering space 𝑝:𝐸→ 𝐵, we define

a group of automorphisms Aut(𝑝) of the cover 𝑝 to be composed of topological iso-

morphisms 𝛼:𝐸 ≃−→ 𝐸 such that 𝑝𝛼 = 𝑝—such maps are called deck transformations of

the covering 𝑝.

Example 16.4.5 (Translations). Given a left 𝐺-principal covering 𝑝:𝐸 → 𝐵, the left
translation of 𝐸 by 𝑔 ∈ 𝐸, the isomorphism ℓ𝑔 :𝐸 ≃−→ 𝐸 mapping 𝑒 ↦→ 𝑔𝑒, is a deck

transformation of 𝑝. The collection of such maps (ℓ𝑔)𝑔∈𝐺 define a morphism of groups

ℓ :𝐺 −→ Aut(𝑝).

Assume that 𝐸 is a connected space. Let 𝑥 ∈ 𝐵 be any point and consider any deck

transformation 𝛼 ∈ Aut(𝑝). From the fact that 𝛼 is bĳective and 𝑝𝛼 = 𝑝, it acts as a

permutation on the fibre 𝑝−1𝑥. Since 𝑝 is a𝐺-principal covering, then𝐺 acts transitively

on the fibres: hence given any two points 𝑒 , 𝑒′ ∈ 𝑝−1𝑥, since 𝛼𝑒 ∈ 𝑝−1(𝑝𝑒), it follows

that there exists 𝑔 ∈ 𝐺 such that 𝛼𝑒′ = 𝑔(𝛼𝑒). Therefore 𝛼, using the connectedness of

𝐸, is uniquely defined by its image under a single point. This shows that, under these

assumptions, ℓ is an isomorphism 𝐺 ≃ Aut(𝑝).

Proposition 16.4.6. Let 𝑝:𝐸 → 𝐵 be a covering space. The following are properties

concerning the automorphism group of 𝑝:
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(a) If 𝐸 is a connected space, then Aut(𝑝) has a properly discontinuous action on 𝐸.

(b) If 𝐵 is locally path connected and𝐻 ⊆ Aut(𝑝) is a subgroup, then the induced map

𝑞:𝐸/𝐻 → 𝐵 is a covering.

Proof. (a) Consider any point 𝑒 ∈ 𝐸 and deck transformation 𝑔 ∈ Aut(𝑝). Since 𝑝 is a

covering, choose𝑈 ⊆ 𝐵 to be an evenly covered neighbourhood of 𝑝𝑒 and let𝑈𝑒 be

a sheet over 𝑈 with 𝑒 ∈ 𝑈𝑒 . Suppose there exists a point 𝑒′ ∈ 𝑈𝑒 ∩ 𝑔𝑈𝑒 and notice

that, since 𝑝𝑔 = 𝑝, we have 𝑝𝑒′ = 𝑝(𝑔−1𝑒′).

Continue proof of the properties of the automorphism group of covering

spaces.

♮

Proposition 16.4.7. Let𝐸 be a simply connected space. If𝐺 ⟳ 𝐸 is a properly discontin-

uous action of a discrete topological group 𝐺, then the action induces an isomorphism

of groups

𝜋1(𝐸/𝐺) ≃ 𝐺.

Proof. Let [𝑥] ∈ 𝐸/𝐺 be any base point, and choose 𝑥 ∈ 𝑞−1[𝑥]—where 𝑞:𝐸 ↠ 𝐸/𝐺 is

the canonical projection. Define a map 𝜓𝑥 :𝜋1(𝐸/𝐺, [𝑥]) → 𝐺 such that 𝜓𝑥[𝛼] = 𝑔 if

and only if �̂�𝑥(1) = 𝑔𝑥—where �̂�𝑥 : 𝐼 → 𝐸 is the lift of 𝛼 over 𝑞. We now show that 𝜓𝑥

is the required isomorphism of groups:

• (Well defined) Suppose that [𝛼] = [𝛽] and that 𝜓𝑥[𝛼] = 𝑔 while 𝜓𝑥[𝛽] = ℎ.

This means that �̂�𝑥(1) = 𝑔𝑥 and �̂�𝑥(1) = ℎ𝑥, but since �̂�𝑥 = �̂�𝑥 , then 𝑔𝑥 = ℎ𝑥

and hence ℎ−1𝑔𝑥 = 𝑥. Since 𝐺 has a properly discontinuous action, there exists

a neighbourhood 𝑈 ⊆ 𝐸 of 𝑥 such that 𝑈 ∩ (ℎ−1𝑔)𝑈 is non-empty, thus it is

necessarily the case that ℎ−1𝑔 = 𝑒, thus ℎ = 𝑔. This proves that 𝜓𝑥[𝛼] = 𝜓𝑥[𝛽].
• (Injective) Suppose 𝜓𝑥[𝛼] = 𝜓𝑥[𝛽], then �̂�𝑥(1) = 𝑔𝑥 = �̂�𝑥(1) for some 𝑔 ∈ 𝐺. This

shows that �̂�𝑥 ∼rel 𝜕 𝐼 �̂�𝑥 , hence 𝛼 ∼
rel 𝜕 𝐼 𝛽 thus [𝛼] = [𝛽].

• (Surjective) From the fact that 𝜋1(𝐸/𝐺, [𝑥]) acts transitively on the fibres of 𝑞, it

follows that 𝜓𝑥 is surjective.

• (Group morphism) Let 𝜓𝑥[𝛼] = 𝑔 and 𝜓𝑥[𝛽] = ℎ and define 𝑘 ≔ 𝜓𝑥[𝛽 · 𝛼], so that

𝑘𝑥 = (𝛽 · 𝛼)𝑥(1) = (�̂��̂�𝑥(1) · �̂�𝑥)(1) = �̂�𝑔𝑥(1) = 𝑔�̂�𝑥(1) = 𝑔ℎ𝑥,

therefore 𝑘 = 𝑔ℎ.

♮

16.5 Fibre Transport
Definition 16.5.1 (Homotopy lifting property). A continuous map 𝑝:𝐸 → 𝐵 is said

to have the homotopy lifting property (HLP) for a given space 𝑋 if: for any homotopy

435



𝜂:𝑋 × 𝐼 → 𝐵 and continuous map 𝑎:𝑋 → 𝐸 such that 𝑝𝑎𝑥 = 𝜂(𝑥, 0) exists a homotopy

𝛿:𝑋 × 𝐼 → 𝐸 such that the diagram

𝑋 𝐸

𝑋 × 𝐼 𝐵

𝑎

𝑖0 𝑝𝛿

𝜂

commutes in Top—the map 𝑖0:𝑋 ↩→ 𝑋 × 𝐼 is defined as 𝑥 ↦→ (𝑥, 0)

Check proof of these last fibration stuff—tom Dieck’s book

Definition 16.5.2 (Fibration). A continuous map 𝑝:𝐸 → 𝐵 is said to be a fibration if it

satisfies the homotopy lifting property for every space.

Theorem 16.5.3. A covering space is a fibration.

Proposition 16.5.4 (Unique path lifting). Let 𝑝:𝐸→ 𝐵 be a covering space, and 𝛾: 𝐼 → 𝐵

be a path with initial point 𝛾0 ≔ 𝑝𝑒 ∈ 𝐵. Then there exists a unique lifting 𝐼 → 𝐸 of 𝛾
that begins in 𝑒. Furthermore, any two paths 𝑢, 𝑣: 𝐼 ⇒ 𝐸 with 𝑢0 = 𝑣0 are homotopic if

and only if their images are homotopic in 𝐵.

Lemma 16.5.5. Let 𝑝:𝐸→ 𝐵 be a covering space and define 𝑝𝑒0 ≔ 𝑏0. Let 𝑌 be a path

connected and locally path connected space, and 𝑓 :𝑌 → 𝐵 be a continuous map with

𝑓 𝑦0 = 𝑏0. There exists a lift 𝑌 → 𝐸 of 𝑓 over 𝑝 such that 𝑦0 ↦→ 𝑒0 if and only if

𝑓∗𝜋1(𝑌, 𝑦0) ⊆ 𝑝∗𝜋1(𝐸, 𝑒0).

If such a lift exists, then it’s unique.

See Munkres, page 478
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Chapter 17

Cellular Structures

17.1 Compactly Generated Spaces

Weak-Hausdorff Spaces
Definition 17.1.1 (Weak-Hausdorff space). A space 𝑋 is said to be weak-Hausdorff if for

every compact Hausdorff space 𝐾 and continuous map 𝑔:𝐾 → 𝑋 one has that 𝑔(𝐾) is
closed in 𝑋.

Corollary 17.1.2. A weak-Hausdorff space is T1.

Proof. Let 𝑋 be a weak-Hausdorff space and 𝑥 ∈ 𝑋, we shall take advantage of the fact

that 𝑋 is T1 if and only if {𝑥} is closed in 𝑋. Let 𝐾 be a compact set and cons𝑥 :𝐾 → 𝑋

be the constant map 𝑘 ↦→ 𝑥, which is continuous. Since 𝑔𝐾 = {𝑥}, and 𝑔𝐾 is closed by

hypothesis, the property follows. ♮

Lemma 17.1.3. If 𝑋 is weak-Hausdorff, 𝐾 is a compact Hausdorff space, and 𝑔:𝐾 → 𝑋

is a morphism, then 𝑔𝐾 is a compact Hausdorff subspace of 𝑋.

Proof. We already know from Proposition 14.2.2 that 𝑔𝐾 is compact, thus we shall

only prove that 𝑔𝐾 is Hausdorff. Let 𝑥, 𝑦 ∈ 𝑔𝐾 be any two distinct points. Using

Corollary 17.1.2 and Proposition 14.6.2 we can find disjoint open sets𝑈,𝑉 ⊆ 𝐾 such that

𝑔−1𝑥 ⊆ 𝑈 and 𝑔−1𝑦 ⊆ 𝑉 . Then the sets 𝐾 ∖𝑈 and 𝐾 ∖𝑉 are closed in 𝐾, thus compact
(see Proposition 14.2.5). Therefore the sets 𝑔(𝐾 ∖ 𝑈) and 𝑔(𝐾 ∖ 𝑉) are both closed in
𝑋. From this we know that 𝑔𝐾 ∖ 𝑔(𝐾 ∖ 𝑈) and 𝑔𝐾 ∖ 𝑔(𝐾 ∖ 𝑉) are both open in 𝑔𝐾,

both of which are disjoint and contain 𝑥 and 𝑦, respectively—which shows that 𝑋 is

Hausdorff. ♮

Definition 17.1.4 (Compactly closed). A subset 𝐴 of 𝑋 is said to be compactly closed if,

for every compact space 𝐾 and morphism 𝑔:𝐾 → 𝑋, the preimage 𝑔−1𝐴 is closed in 𝐾.

Proposition 17.1.5. If 𝑋 is a weak-Hausdorff space, a subset 𝐴 ⊆ 𝑋 is compactly closed

if and only if the intersection of 𝐴 with each compact subset of 𝑋 is closed.
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Proof. • (⇒) Suppose 𝐴 is compactly closed, and let 𝐾 ⊆ 𝑋 be any compact sub-

space of 𝑋. If we consider the inclusion morphism 𝜄:𝐾 ↩→ 𝑋, we have that

𝜄−1𝐴 = 𝐾 ∩ 𝐴 is closed.

• (⇐) Assume the latter property, and let 𝐾 be a compact space together with a

morphism 𝑔:𝐾 → 𝑋. Since 𝑔𝐾 is compact in 𝑋 it follows from assumption that

𝐴 ∩ 𝑔𝐾 is closed in 𝑋. Since 𝑔 is continuous, then 𝑔−1(𝐴 ∩ 𝑔𝐾) = 𝑔−1𝐴 is closed

in 𝐾.

♮

𝑘-Spaces
Definition 17.1.6 (𝑘-space). A space 𝑋 is said to be a 𝑘-space if every compactly closed

subspace of 𝑋 is closed. The full-subcategory of Top whose objects are 𝑘-spaces will

be denoted by 𝑘-Top.

Lemma 17.1.7 (𝑘-ification). Given a topological space (𝑋, 𝜏), we can transform 𝑋 into

a 𝑘-space by creating a topology 𝜏𝑘 where 𝐶 is closed in (𝑋, 𝜏𝑘) if and only if 𝐶 is

compactly closed in (𝑋, 𝜏). We shall shortly denote the 𝑘-space (𝑋, 𝜏𝑘) by 𝑘𝑋.

Definition 17.1.8 (𝑘-ification functor). We define the 𝑘-ification functor

𝑘: Top −→ 𝑘-Top

to be the functor mapping topological spaces 𝑋 to its 𝑘-ified space 𝑘𝑋, and 𝑘 𝑓 ≔ 𝑓 for

every topological morphism 𝑓 .

Lemma 17.1.9. If 𝑋 is a weak-Hausdorff space, then 𝑘𝑋 is also a weak-Hausdorff

𝑘-space.

Notation 17.1.10 (Products). In what follows, we shall denote by 𝑋 ×c 𝑌 the cartesian
product of spaces 𝑋 and 𝑌, which shall be endowed with the usual product topology.

Moreover, from now on we shall reserve the notation

𝑋 × 𝑌 ≔ 𝑘(𝑋 ×c 𝑌),

which may seem odd, but is a convention used throughout the literature and we’ll

adopt here.

Proposition 17.1.11 (Quotients). The quotient of a 𝑘-space is a 𝑘-space.

Proof. Let 𝑋 be a 𝑘-space and 𝑞:𝑋 ↠ 𝑌 be a quotient map—we want to show that

𝑌 is a 𝑘-space. Let 𝐴 ⊆ 𝑌 be a compactly closed subset. We’ll prove that 𝑞−1𝐴 is

compactly closed in 𝑋, thus closed, yielding the conclusion that 𝐴 is closed in 𝑌.

Given any compact space 𝐾 and a morphism 𝜙:𝐾 → 𝑋. Then the map 𝑞𝜙:𝐾 → 𝑌

is such that (𝑞𝜙)−1𝐴 = 𝜙−1(𝑞−1𝐴) is closed in 𝐾 since 𝐴 is compactly generated—the

result follows. ♮
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Proposition 17.1.12. Let 𝑋 and 𝑌 be 𝑘-spaces, and consider quotient maps 𝑞:𝑋 ↠ 𝑋′

and 𝑝:𝑌 ↠ 𝑌′. Then the product

𝑞 × 𝑝:𝑋 × 𝑌 ↠ 𝑋′ × 𝑌′

is also a quotient map.

Proposition 17.1.13. A 𝑘-space 𝑋 is weak-Hausdorff if and only if the diagonal Δ𝑋 is

closed in 𝑋 × 𝑋.

Proof. • (⇐) Assume that Δ𝑋 is closed in 𝑋 × 𝑋. Let 𝐾 be a compact space and

𝜙:𝐾 → 𝑋 a continuous map. Since 𝑋 is a 𝑘-space, we may simply show that 𝜙𝐾
is compactly closed. To that end, let 𝐶 be another compact space together with a

morphism 𝜓:𝐶 → 𝑋, then

𝜓−1(𝜙𝐾) = 𝜋2(𝜙 × 𝜓)−1(Δ𝑋)

is a closed subset of 𝐶—where 𝜋2:𝐾 × 𝐶 ↠ 𝐶 is the canonical second projection.

This proves that 𝜙𝐾 is compactly closed.

• (⇒) Suppose 𝑋 is a weak-Hausdorff 𝑘-space. It suffices to show that Δ𝑋 is

compactly closed in 𝑋 ×c 𝑋, so that Δ𝑋 is closed in the 𝑘-space 𝑋 × 𝑋. Let 𝐾 be

any compact set and 𝜙:𝐾 → 𝑋 ×c 𝑋 be a morphism. Considering the canonical

projections 𝜋1,𝜋2:𝑋 ×c 𝑋 ⇒ 𝑋, define the set

𝐴 ≔ 𝜋1(𝜙𝐾) ∪ 𝜋2(𝜙𝐾)

of 𝑋. The set 𝐴 is constructed so that one has 𝜙𝐾 ⊆ 𝐴×c 𝐴 and hence 𝜙−1(Δ𝑋) =
𝜙−1(Δ𝐴). Since 𝑋 is weak-Hausdorff, if we consider the maps 𝜋1𝜙,𝜋2𝜙:𝐾 ⇒ 𝑋,

we find that𝜋1𝜙𝐾 and𝜋2𝜙𝐾 are both compact Hausdorff subspaces of𝑋—hence

𝐴 is a compact Hausdorff space. Since 𝐴 is Hausdorff, it follows that Δ𝐴 is closed

in 𝐴 ×c 𝐴, therefore by continuity 𝜙−1(Δ𝐴) = 𝜙−1(Δ𝑋) is closed in 𝐾.

♮

CG Spaces
Definition 17.1.14 (Compactly generated space). A space 𝑋 is said to be compactly
generated (or, shortly, CG space) if 𝑋 is a weak-Hausdorff 𝑘-space. The full-subcategory

of Top composed of compactly generated spaces will be denoted by cgTop.

The 𝑘-ification functor 𝑘: Top → 𝑘-Top can also act on the category of weak-

Hausdorff spaces wH-Top, producing compactly generated spaces:

𝑘: wH-Top −→ cgTop.

Lemma 17.1.15. The canonical forgetful functor 𝑗: cgTop → wH-Top embedding CG

spaces as weak-Hausdorff spaces is such that there exists a bĳection

MorcgTop(𝑋, 𝑘𝑌) ≃MorwH-Top(𝑗𝑋, 𝑌)
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for every 𝑋 ∈ cgTop and 𝑌 ∈ wH-Top. Then 𝑘 is right-adjoint to 𝑗:

cgTop wH-Top
𝑗

𝑘

Example 17.1.16. As examples of compactly generated spaces we have:

(a) If 𝑋 is locally compact, then it is a compactly generated space.

(b) If 𝑋 is a first-countable weak-Hausdorff space, then it is compactly generated.

Lemma 17.1.17. Let 𝑋 and 𝑌 be topological spaces, then

(a) If 𝑋 is locally compact and 𝑌 is compactly generated, then

𝑋 × 𝑌 = 𝑋 ×c 𝑌.

(b) If both 𝑋 and 𝑌 are weak-Hausdorff, then

𝑋 × 𝑌 = 𝑘𝑋 × 𝑘𝑌.

(c) If both 𝑋 and 𝑌 are compactly generated, then 𝑋 × 𝑌 is a product in the category

cgTop.

Lemma 17.1.18. Let 𝑋 be a compactly generated space. A set-function 𝑓 :𝑋 → 𝑌 is

continuous if and only if the restriction 𝑓 |𝐾 is continuous for every compact subspace

𝐾 ⊆ 𝑋.

Proposition 17.1.19 (Quotients of CG spaces). Let 𝑋 be a compactly generated space,

and 𝑞:𝑋 ↠ 𝑌 be a quotient map. Then 𝑌 is compactly generated if and only if the

preimage of the diagonal of 𝑌,

(𝑞 × 𝑞)−1(Δ𝑌),
is closed in 𝑋 × 𝑋.

Proof. • (⇒) Suppose𝑌 is compactly generated. From Proposition 17.1.13 we know

thatΔ𝑌 is a closed subspace of𝑌×𝑌, therefore by continuity of 𝑞×𝑞with respect to

the product topology 𝑋 ×c𝑋 (see Proposition 13.3.7) we obtain that (𝑞× 𝑞)−1(Δ𝑌)
is a closed subspace of 𝑋 ×c 𝑋, it follows

1
that (𝑞 × 𝑞)−1(Δ𝑌) is closed in 𝑋 × 𝑋.

• (⇐) Suppose that (𝑞 × 𝑞)−1(Δ𝑌) is closed in 𝑋 × 𝑋. Since 𝑞 is a quotient map,

then 𝑌 is a quotient space of a 𝑘-space 𝑋—therefore 𝑌 itself is a 𝑘-space.

Since 𝑞 is a quotient map and𝑋 is in particular a 𝑘-space, from Proposition 17.1.12

we know that 𝑞 × 𝑞:𝑋 × 𝑋 ↠ 𝑌 × 𝑌 is a quotient map. Since (𝑞 × 𝑞)−1(Δ𝑌) is

closed in 𝑋 × 𝑋 then Δ𝑌 is closed in 𝑌 × 𝑌. Therefore by Proposition 17.1.13 we

conclude that 𝑌 is compactly generated.

♮
1
Given any space 𝑍, if 𝐶 ⊆ 𝑍 is a closed set then, given any compact set 𝐾 and continuous map

𝑔:𝐾 → 𝑍, we are always ensured that 𝑔−1𝐶 is closed—this merely follows from the continuity of 𝑔.

Therefore 𝑘𝑍 preserves the closed sets of 𝑍, in the sense that if 𝐶 is closed in 𝑍 then 𝐶 is also closed in

𝑘𝑍
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Proposition 17.1.20. Let𝑋 and𝑌 be compactly generated spaces, and𝐴 ⊆ 𝑋 be a closed
subspace. Then for every morphism 𝑓 :𝐴 → 𝑌 the attaching space 𝑌 ∪ 𝑓 𝑋 is compactly
generated.

Definition 17.1.21 (Weak topology). Let (𝑋𝑗)𝑗∈𝐽 be a collection of topological spaces

together with inclusions 𝑋𝑗 ↩→ 𝑋𝑗+1. We define the weak topology on the union set

𝑋 ≔
⋃
𝑗∈𝐽 𝑋𝑗 as follows: a set 𝑈 ⊆ 𝑋 is open if and only if 𝑈 ∩ 𝑋𝑗 is open in 𝑋𝑗 for all

𝑗 ∈ 𝐽.

Proposition 17.1.22 (Colimits). Let (𝑋𝑗)𝑗∈𝐽 be a collection of compactly generated spaces

together with inclusions 𝑋𝑗 ↩→ 𝑋𝑗+1 with closed images. Then the colimit

colim𝑗∈𝐽 𝑋𝑗 =
⋃
𝑗∈𝐽
𝑋𝑗

is compactly generated2
.

17.2 Construction of CW-Complexes
Definition 17.2.1 (Attaching cells to a space). Let 𝑓 :

∐
𝑗∈𝐽 𝑆

𝑛−1

𝑗
→ 𝑋 be a morphism of

topological spaces, where 𝐽 is a set and 𝑆𝑛−1

𝑗
is an indexed copy of the (𝑛 − 1)-sphere.

We shall consider the attaching space 𝑌 given by the pushout∐
𝑗∈𝐽 𝑆

𝑛−1

𝑗
𝑋

∐
𝑗∈𝐽 𝐷

𝑛
𝑗

𝑋 ∪ 𝑓
(∐

𝑗∈𝐽 𝐷
𝑛
𝑗

)
C 𝑌

𝑓

⌜

where 𝐷𝑛
𝑗
←↪ 𝑆𝑛−1

denotes an indexed copy of the 𝑛-disk. We define the following

notions concerning the triple (𝑌, 𝑋, 𝑓 ):

• An 𝑛-cell in𝑌 is defined to be the image 𝑒𝑛
𝑗

of a disk𝐷𝑛
𝑗

in𝑌, so that by construction

we have 𝑌 = 𝑋 ∪
( ⋃

𝑗∈𝐽 𝑒
𝑛
𝑗

)
.

• One can decompose 𝑓 into a collection of maps ( 𝑓 𝑛
𝑗

:𝐷𝑛
𝑗
→ 𝑌)𝑗∈𝐽 , each of these is

called a characteristic map.

Definition 17.2.2 (Filtered space). A filtered topological space 𝑋 is a space together with

an increasing sequence (𝑋𝑛)𝑛∈N of closed subspaces, with inclusions 𝑋𝑛 ↩→ 𝑋𝑛+1 for

all 𝑛 ∈ N, and

𝑋 = colim𝑛∈N 𝑋𝑛 =

⋃
𝑛∈N

𝑋𝑛 .

Where 𝑋 is endowed with the weak topology.

2
The colimit of the sequence is endowed with the weak topology (see Definition 17.1.21).
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Definition 17.2.3 (Relative cell complex). A relative cell complex is a pair (𝑋, 𝐴) where

𝐴 is a 𝑘-space, and 𝑋 is a filtered space with:

• The initial space of the sequence (𝑋𝑛)𝑛∈N associated to 𝑋 is

𝑋0 = 𝐴⨿
(∐
𝑗∈𝐽0

𝐷0

𝑗

)
,

where 𝐷0

𝑗
is a copy of the 0-disk indexed by a set 𝐽0.

• For each 𝑛 ∈ N we have an associated attaching map 𝑓𝑛 :

∐
𝑗∈𝐽𝑛+1

𝑆𝑛
𝑗
→ 𝑋𝑛 such

that

𝑋𝑛+1 = 𝑋𝑛 ∪ 𝑓𝑛
( ∐
𝑗∈𝐽𝑛+1

𝐷𝑛+1

𝑗

)
where 𝑆𝑛

𝑗
and 𝐷𝑛+1

𝑗
are copies of the 𝑛-sphere and (𝑛 + 1)-disk indexed by a set

𝐽𝑛+1, respectively. In other words, the following diagram is a pushout in Top:∐
𝑗∈𝐽𝑛+1

𝑆𝑛−1

𝑗
𝑋𝑛

∐
𝑗∈𝐽𝑛+1

𝐷𝑛
𝑗

𝑋𝑛+1

𝑓𝑛

⌜

Each space 𝑋𝑛 is called the 𝑛-skeleton of (𝑋, 𝐴).

We say that (𝑋, 𝐴) is a finite relative cell complex if 𝑋 has finitely many 𝑛-cells for each

𝑛 ∈ N. Moreover, if 𝑋 = 𝑋𝑛 we say that (𝑋, 𝐴) is an 𝑛-dimensional relative cell complex.

Together with relative cell complexes we define a cellular map 𝜙: (𝑋, 𝐴) → (𝑌, 𝐵)
between relative cell complexes to be a continuous map 𝜙(𝑋𝑛) ⊆ 𝑌𝑛 for each 𝑛 ∈ N.

We say that a pair (𝑌, 𝐴) is a subcomplex of (𝑋, 𝐴) if 𝑌 is a subspace of 𝑋 that is given

by the union of 𝐴 with cells of 𝑋.

A CW-complex is a relative cell complex (𝑋,∅), that is, each skeleton 𝑋𝑛 is formed

exclusively by attaching 𝑛-cells on 𝑋𝑛−1.
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Chapter 18

Bundles

18.1 Bundle

Initial Construction

Definition 18.1.1 (Bundle). A bundle is defined to be a triple (𝐸, 𝑝, 𝐵), where 𝐸 and 𝐵

are spaces and 𝑝:𝐸 → 𝐵 is a morphism. We refer to 𝐵 as the base space, while 𝐸 is the

total space, and 𝑝 is the projection of the bundle. As usual, given any 𝑏 ∈ 𝐵, we name

the object 𝑝−1𝑏 the fibre of the bundle over 𝑏.

A sub-bundle of (𝐸, 𝑝, 𝐵) is a bundle (𝐸′, 𝑝′, 𝐵′) such that 𝐸′ and 𝐵′ are subspaces of 𝐸

and 𝐵, respectively, and 𝑝′ = 𝑝|𝐸′:𝐸′→ 𝐵′.

Definition 18.1.2 (Product bundle). A product bundle over 𝐵 with fibre 𝐹 is a triple

(𝐵 × 𝐹, 𝑝, 𝐵)where 𝑝(𝑥, 𝑦) ≔ 𝑥 is the first projection.

Definition 18.1.3 (Cross section). Given a bundle (𝐸, 𝑝, 𝐵), a cross section of the bundle

is a section 𝑠: 𝐵 → 𝐸 of 𝑝—that is, 𝑝𝑠 = id𝐵. As an immediate consequence of this

definition, if (𝐸′, 𝑝′, 𝐵′) is a sub-bundle of (𝐸, 𝑝, 𝐵), then 𝑠 is a cross section of (𝐸′, 𝑝′, 𝐵′)
if and only if 𝑠𝐵 ⊆ 𝐸′.

Lemma 18.1.4 (Product bundle cross section). Given a product bundle (𝐵 × 𝐹, 𝑝, 𝐵), a

cross section 𝑠: 𝐵 → 𝐵 × 𝐹 will always have the form 𝑠 = id𝐵 × 𝑓 , where 𝑓 : 𝐵 → 𝐹 is

a uniquely defined morphism. Therefore the collection of cross sections of product

bundles is in bĳection with the collection of maps 𝐵→ 𝐹.

Proof. Let 𝑠 be any cross section of (𝐵 × 𝐹, 𝑝, 𝐵), from the definition of 𝑠, there exists

unique morphisms 𝑠′: 𝐵 → 𝐵 and 𝑓 : 𝐹 → 𝐵 such that 𝑠 = 𝑠′ × 𝑓—it remains to be

shown that 𝑠′ is the identity on 𝐵. From definition of a product bundle, we know that

𝑝𝑠 = 𝑠′—since 𝑝 is the projection of the first factor—moreover, from the definition of a

cross section, 𝑝𝑠 = id𝐵, therefore 𝑠′ = id𝐵 as wanted. ♮
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Definition 18.1.5 (Stiefel variety). We define the Stiefel variety of orthonormal 𝑘-frames1

in R𝑛
to be the compact subspace Stie𝑘 R𝑛 ⊆ (𝑆𝑛−1)𝑘 for which (𝑣1, . . . , 𝑣𝑘) ∈ Stie𝑘 R𝑛

if

and only if ⟨𝑣𝑖 , 𝑣 𝑗⟩ = 𝛿𝑖 𝑗—where ⟨−,−⟩ is the standard euclidean inner product.

Definition 18.1.6 (Grassmann variety). The real 𝑘-Grassmann variety is defined to be

the topological space Grass𝑘 R𝑛
whose points are 𝑘-dimensional subspaces of R𝑛

, and

endowed with the quotient topology generated by the map Stie𝑘 R𝑛 ↠ Grass𝑘 R𝑛
given

by (𝑣1, . . . , 𝑣𝑘) ↦→ ⟨𝑣1, . . . , 𝑣𝑘⟩. Since Stie𝑘 R𝑛
is compact, it follows that Grass𝑘 R𝑛

is

also compact.

Example 18.1.7. Notice that Stie1 R𝑛 = 𝑆𝑛−1
and by the construction of the Grassman-

nian variety, we see that Grass1 R𝑛 = RP𝑛−1
.

Definition 18.1.8 (Bundle morphism). Given two bundles (𝐸, 𝑝, 𝐵) and (𝐸′, 𝑝′, 𝐵′), a

morphism of bundles (𝐸, 𝑝, 𝐵) → (𝐸′, 𝑝′, 𝐵′) is a pair (𝑢, 𝑓 ) of morphisms 𝑢:𝐸 → 𝐸′ and

𝑓 : 𝐵→ 𝐵′ such that the diagram

𝐸 𝐸′

𝐵 𝐵′

𝑢

𝑝 𝑝′

𝑓

commutes in Top—equivalently, 𝑢(𝑝−1𝐵) ⊆ 𝑝′−1( 𝑓 𝐵). The special case where the base

spaces coincide, we define a bundle morphism over 𝐵 (also referred to as 𝐵-morphism)

(𝐸, 𝑝, 𝐵) → (𝐸′, 𝑝′, 𝐵) to be a morphism 𝑢:𝐸→ 𝐸′ such that the triangle

𝐸 𝐸′

𝐵

𝑢

𝑝 𝑝′

commutes in Top, which can equivalently be expressed as the condition 𝑢(𝑝−1𝐵) ⊆
𝑝′−1𝐵.

Given any two bundle morphisms (𝑢, 𝑓 ): (𝐸, 𝑝, 𝐵) → (𝐸′, 𝑝′, 𝐵′) and (𝑣, 𝑔): (𝐸′, 𝑝′, 𝐵′) →
(𝐸′′, 𝑝′′, 𝐵′′), we define the composition of those morphisms to be the pair

(𝑣, 𝑔) ◦ (𝑢, 𝑓 ) ≔ (𝑣𝑢, 𝑔 𝑓 ): (𝐸, 𝑝, 𝐵) −→ (𝐸′′, 𝑝′′, 𝐵′′),

which is again a bundle morphism, since

𝐸 𝐸′ 𝐸′′

𝐵 𝐵′ 𝐵′′

𝑢

𝑝 𝑝′

𝑣

𝑝′′

𝑓 𝑔

is a commutative diagram in Top.

1
A 𝑘-frame in an 𝑛-dimensional vector space is an ordered collection of 𝑘 linearly independent

vectors.
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Example 18.1.9 (Cross section as bundle morphism). Notice that a cross section is

nothing more than a bundle morphism over 𝐵 of the form 𝑠: (𝐵, id𝐵 , 𝐵) → (𝐸, 𝑝, 𝐵).

Definition 18.1.10 (Category of bundles). We denote by Bun the category composed of

bundles and bundle morphisms. Given a space 𝐵, we can also define a full subcategory

Bun𝐵 of Bun, whose objects are bundles with base space 𝐵 and bundle morphisms over

𝐵.

Definition 18.1.11 (Fibre of a bundle). We say that a space 𝐹 is the fibre of a bundle

(𝐸, 𝑝, 𝐵) if there exists a topological isomorphism 𝑝−1𝑏 ≃ 𝐹 for every 𝑏 ∈ 𝐵. A bundle

(𝐸, 𝑝, 𝐵) is said to be trivial with fibre 𝐹 if there exists a bundle 𝐵-isomorphism (𝐸, 𝑝, 𝐵) ≃
(𝐵 × 𝐹, 𝑝, 𝐵).

Universal Properties
Proposition 18.1.12 (Products in Bun). Given a family of bundles (𝐸 𝑗 , 𝑝 𝑗 , 𝐵𝑗)𝑗∈𝐽 , we

define the product of this family of bundles to be the bundle(∏
𝑗∈𝐽

𝐸 𝑗 ,
∏
𝑗∈𝐽

𝑝 𝑗 ,
∏
𝑗∈𝐽

𝐵 𝑗

)
,

which is defines a product in the category Bun.

Proposition 18.1.13 (Pullbacks in Bun𝐵). Given two bundles 𝜉 = (𝐸, 𝑝, 𝐵) and 𝜉′ =
(𝐸′, 𝑝′, 𝐵), define

𝐸 ⊕ 𝐸′ ≔ {(𝑥, 𝑥′) ∈ 𝐸 × 𝐸′ : 𝑝𝑥 = 𝑝′𝑥′},
and 𝑞:𝐸 ⊕ 𝐸′→ 𝐵 to be the morphism 𝑞(𝑥, 𝑥′) ≔ 𝑝𝑥 = 𝑝′𝑥′. Then the triple

𝜉 ⊕ 𝜉′ ≔ (𝐸 ⊕ 𝐸′, 𝑞, 𝐵),

called fibre product over 𝐵 of 𝜉 and 𝜉′, is the pullback of the pair (𝜉, 𝜉′) in the category

Bun𝐵.

Induced Bundle
Definition 18.1.14 (Induced bundle). Let 𝜉 = (𝐸, 𝑝, 𝐵) be a bundle, and 𝑓 : 𝐵0 → 𝐵 be a

continuous map. There exists an induced bundle of 𝜉 under 𝑓 , denoted 𝑓 ∗𝜉, with base

space 𝐵0 and total space 𝐸0 defined as the pullback:

𝐸0 𝐸

𝐵0 𝐵

⌟

𝑓𝜉

𝑝0
𝑝

𝑓

Explicitly, 𝐸0 consists of pairs (𝑏0, 𝑥) ∈ 𝐵0 ×𝐸 such that 𝑓 𝑏0 = 𝑝𝑥. The projection of the

bundle 𝑓 ∗𝜉 is the map 𝑝0:𝐸0 → 𝐵0 given by (𝑏0, 𝑥) ↦→ 𝑏0.

The mapping 𝑓𝜉:𝐸0 → 𝐸 given by (𝑏0, 𝑥) ↦→ 𝑥 induces a morphism of bundles

( 𝑓𝜉 , 𝑓 ): 𝑓 ∗𝜉→ 𝜉, the so called canonical morphism of an induced bundle.
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Proposition 18.1.15. Let 𝜉 = (𝐸, 𝑝, 𝐵) be a bundle and 𝑓 : 𝐵0 → 𝐵 be a continuous map.

Considering the canonical morphism ( 𝑓𝜉 , 𝑓 ): 𝑓 ∗𝜉 → 𝜉, for each 𝑏0 ∈ 𝐵0 the restricted

map

𝑓𝜉: 𝑝−1

0
𝑏0

≃−→ 𝑝−1( 𝑓 𝑏0)
is a topological isomorphism. Furthermore, given a bundle 𝜂 = (𝐸′, 𝑝′, 𝐵0) and a mor-

phism (𝑣, 𝑓 ):𝜂→ 𝜉, there exists a unique 𝐵0-morphism 𝑤:𝜂→ 𝑓 ∗𝜉 such that 𝑓𝜉𝑤 = 𝑣. In

other words, the following diagram

𝐸′ 𝐸

𝐸0

𝑣

𝑤
𝑓𝜉

commutes in Top.

Proof. For the first part of the proposition, recalling the definition one has that the

fibre 𝑝−1

0
𝑏0 is composed of pairs (𝑏0, 𝑥) ∈ 𝑏0 × 𝐸 such that 𝑝𝑥 = 𝑓 𝑏0—that is, 𝑝−1

0
𝑏0 =

𝑏0× 𝑝−1( 𝑓 𝑏0). Since 𝑓𝜉(𝑏0, 𝑥) = 𝑥, then its restriction is a topological isomorphism with

local inverse 𝑥 ↦→ (𝑏0, 𝑥).
To prove the second part, define a map 𝑤:𝐸′→ 𝐸0 by 𝑤 ≔ (𝑝′, 𝑣), therefore

𝐸′ 𝐸0

𝐵0

𝑤

𝑝′ 𝑝0

commutes, showing that 𝑤 is a 𝐵0-morphism. Moreover, we have for any 𝑦 ∈ 𝐸′ that

𝑓𝜉𝑤𝑦 = 𝑓𝜉(𝑝′𝑦, 𝑣𝑦) = 𝑣𝑦,

therefore 𝑓𝜉𝑤 = 𝑣 as wanted. For the uniqueness of 𝑤, suppose ℓ :𝐸′ → 𝐸0 satisfies

both 𝑝0ℓ = 𝑝′ and 𝑓𝜉ℓ = 𝑣, then since ℓ = (𝑝0ℓ , 𝑓𝜉ℓ ) = (𝑝′, 𝑣), this shows that ℓ = 𝑤. ♮

Proposition 18.1.16. Given any continuous map 𝑓 : 𝐵0 → 𝐵, the induced bundle con-

struction via 𝑓 is a functor

𝑓 ∗: Bun𝐵 → Bun𝐵0
.

Moreover, given any morphism 𝑢: 𝜉→ 𝜂 in Bun𝐵, the diagram

𝐸( 𝑓 ∗𝜂) 𝐸𝜂

𝐸( 𝑓 ∗𝜉) 𝐸𝜉

𝐵0 𝐵

𝑓𝜂

𝑓 ∗𝑢

𝑓𝜉

𝑢

𝑓
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Proof. For the functoriality, given any 𝐵-bundle morphism 𝑢: 𝜉 → 𝜂, the associated

map 𝑓 ∗𝑢: 𝑓 ∗𝜉→ 𝑓 ∗𝜂 is canonically given by the mapping (𝑏0, 𝑥) ↦→ (𝑏0, 𝑢𝑥), which is a

𝐵0-morphism of bundles. Moreover, if we consider the identity morphism id𝜉: 𝜉→ 𝜉
one has

𝑓 ∗(id𝜉)(𝑏0, 𝑥) = (𝑏0, 𝑥) = id 𝑓 ∗𝜉(𝑏0, 𝑥),
therefore 𝑓 ∗ id𝜉 = id 𝑓 ∗𝜉. Also, if 𝑣:𝜂→ 𝜁 is any other bundle morphism, we have

𝑓 ∗(𝑣𝑢)(𝑏0, 𝑥) = (𝑏0, 𝑣𝑢𝑥) = 𝑓 ∗(𝑣)(𝑏0, 𝑢𝑥) = 𝑓 ∗(𝑣)( 𝑓 ∗(𝑢)(𝑏0, 𝑥)),

that is, 𝑓 ∗(𝑣𝑢) = 𝑓 ∗𝑣 ◦ 𝑓 ∗𝑢. This finishes the proof that 𝑓 ∗ is indeed a functor.

The only additional information the diagram brings is that 𝑢 𝑓𝜉 should equal 𝑓𝜂 𝑓
∗𝑢,

and this is what we’ll show. Let (𝑏0, 𝑥) ∈ 𝐸( 𝑓 ∗𝜉) be any point, then

𝑢 𝑓𝜉(𝑏0, 𝑥) = 𝑢𝑥 = 𝑓𝜂(𝑏0, 𝑢𝑥) = 𝑓𝜂( 𝑓 ∗𝑢)(𝑏0, 𝑥),

which proves the commutativity of the diagram. ♮

Proposition 18.1.17 (Functorial transitivity of the induced bundle). Consider continu-

ous maps 𝐵1

𝑔
−→ 𝐵0

𝑓
−→ 𝐵, and a bundle 𝜉 = (𝐸, 𝑝, 𝐵). Then the following are properties

concerning the induced bundles over 𝜉:

(a) Considering the identity map id: 𝐵→ 𝐵, there exists a bundle 𝐵-isomorphism

id
∗ 𝜉 ≃ 𝜉.

(b) There exists a 𝐵1-isomorphism of bundles

𝑔∗ 𝑓 ∗𝜉 ≃ ( 𝑓 𝑔)∗𝜉.

Proof. Notice that the morphisms of bundles 𝜉 → id
∗ 𝜉 given by 𝑥 ↦→ (𝑝𝑥, 𝑥) has

an inverse (𝑏, 𝑥) ↦→ 𝑥, proving the first isomorphism. For the second item, de-

fine 𝑢: 𝑔∗ 𝑓 ∗𝜉 → ( 𝑓 𝑔)∗𝜉 by the mapping 𝑢(𝑏1, (𝑏0, 𝑥)) ≔ (𝑏1, 𝑥) then by the fact that

(𝑏1, (𝑏0, 𝑥)) ∈ 𝐸(𝑔∗ 𝑓 ∗𝜉) if and only if 𝑔𝑏1 = 𝑝1(𝑏0, 𝑥) = 𝑏0, we can conclude that 𝑢 is an

isomorphism of 𝐵1-bundles. ♮

18.2 Fibre Bundles
Definition 18.2.1 (Bundle projection). Let 𝑋, 𝐵, and 𝐹 be Hausdorff spaces. We say

that a continuous map 𝑝:𝑋 → 𝐵 is a bundle projection with fibre 𝐹 if for each 𝑏 ∈ 𝐵 there

exists a neighbourhood𝑈 ⊆ 𝐵 of 𝑏 such that there is a topological isomorphism

𝜙:𝑈 × 𝐹 −→ 𝑝−1𝑈, such that 𝑝𝜙(𝑥, 𝑦) = 𝑥

for all 𝑥 ∈ 𝑈 and 𝑦 ∈ 𝐹—the map 𝜙 is called a trivialisation of the bundle over 𝑈 . This

means that on the set 𝑝−1𝑈 , the map 𝑝 is a projection of the type𝑈 × 𝐹 ↠ 𝑈 .
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Definition 18.2.2 (Fibre bundle). Let 𝐺 be a topological group acting effectively on a

Hausdorff space 𝐹—seen as a group of topological isomorphisms. Let 𝑋 and 𝐵 be

Hausdorff spaces. We define a fibre bundle (or simply bundle) over the base space 𝐵 with

total space 𝑋, fibre 𝐹, and structure group 𝐺, to be a pair (𝑝,Φ)where 𝑝:𝑋 → 𝐵 is a bundle
projection andΦ is a collection of trivialisations of 𝑝 (as described in Definition 18.2.1)—

the members of Φ will be called charts over𝑈—such that:

• For each 𝑏 ∈ 𝐵 there exists a neighbourhood𝑈 ⊆ 𝐵 of 𝑏 and a chart 𝜙 ∈ Φ of the

form 𝜙:𝑈 × 𝐹→ 𝑝−1𝑈 , where 𝜙 is a local trivialisation of 𝑝 over𝑈 .

• Given a chart 𝜙:𝑈 × 𝐹→ 𝑝−1𝑈 , member of Φ, any subset 𝑉 ⊆ 𝑈 is such that the

restriction 𝜙|𝑉×𝐹 belongs to the family Φ.

• Given any pair of charts 𝜙,𝜓 ∈ Φ over a common open set 𝑈 , there exists a

continuous map 𝜃:𝑈 → 𝐺 such that

𝜓(𝑢, 𝑦) = 𝜙(𝑢, 𝜃(𝑢)(𝑦)).

• The family Φ is maximal among the collections satisfying the previous properties.

The fibre bundle is said to be smooth if each object above is a smooth manifold and all

maps are smooth morphisms.

18.3 Vector Bundle

First definitions
Definition 18.3.1 (Vector bundle). A (topological) vector bundle is a fibre bundle with a

fibre R𝑛
and structure group contained in GL𝑛(R). Given a vector bundle 𝜉, we denote

its total space by 𝐸𝜉 and base space by 𝐵𝜉.

Notation 18.3.2. Given a vector bundle 𝜉 = (𝐸, 𝑝, 𝐵), we denote by 𝜉𝑏 ≔ 𝑝−1𝑏 (which

can also be denoted by 𝐸𝑏) the fibre of 𝑏 ∈ 𝐵 over 𝑝.

Definition 18.3.3 (Morphism of vector bundles). If 𝜉 = (𝐸, 𝑝, 𝐵) and 𝜉′ = (𝐸′, 𝑝′, 𝐵′)
are any two vector bundles, we define a bundle morphism 𝜉 → 𝜉′ is a pair (𝑢, 𝑓 ) of

continuous maps 𝑢:𝐸→ 𝐸′ and 𝑓 : 𝐵→ 𝐵′ such that the diagram

𝐸 𝐸′

𝐵 𝐵′

𝑝

𝑢

𝑝′

𝑓

commutes and the restriction 𝑢𝑏 : 𝜉𝑏 → 𝜉′
𝑓 𝑏

is R-linear for every 𝑏 ∈ 𝐵.

Definition 18.3.4. We denote by VecBun the category of vector bundles and morphisms

between them. Furthermore, given a base space 𝐵, we also define a full subcategory

VecBun𝐵 of vector bundles with base 𝐵 and 𝐵-morphisms.
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Charts and Atlases
Definition 18.3.5 (Vector bundle chart & atlas). Given a vector bundle (𝐸, 𝑝, 𝐵), we

define an 𝑛-dimensional vector bundle chart (𝑈, 𝜙), for some open set 𝑈 ⊆ 𝐵, to be a

topological isomorphism

𝜙: 𝑝−1𝑈
≃−→ 𝑈 × R𝑛

such that the diagram

𝑝−1𝑈 𝑈 × R𝑛

𝑈

𝜙

𝑝

𝜋1

commutes in Top—and 𝜋1 is the projection of the first factor. The isomorphism 𝜙
induces a collection (𝜙𝑥 : 𝑝−1𝑥 ≃−→ R𝑛)𝑥∈𝑈 of isomorphisms given by the composition

𝑝−1𝑥 𝑥 × R𝑛 R𝑛
𝜙

≃

𝜙𝑥

≃
𝜋2

Therefore, given any 𝑦 ∈ 𝑝−1𝑈 , if 𝑦 ∈ 𝑝−1𝑥, then 𝜙𝑦 = (𝑥, 𝜙𝑥𝑦).

Definition 18.3.6. A family Φ ≔ (𝑈 𝑗 , 𝜙 𝑗)𝑗∈𝐽 of vector bundle charts on (𝐸, 𝑝, 𝐵) with

domain covering 𝐵 and values in R𝑛
is said to form a vector bundle atlas for (𝐸, 𝑝, 𝐵) if

for any two vector bundle charts (𝑈, 𝜙) and (𝑉,𝜓) of Φ we have:

(a) For every 𝑥 ∈ 𝑈 ∩𝑉 , the transition map

𝜓𝑥𝜙
−1

𝑥 : R𝑛 ≃−→ R𝑛

is an R-linear topological isomorphism.

(b) The map 𝑔:𝑈 ∩𝑉 → GL𝑛(R) sending 𝑥 ↦→ 𝜓𝑥𝜙−1

𝑥 is continuous.

If such conditions are satisfied, by the requirement of item (b), the atlas Φ induces a

collection of continuous maps

(𝑔𝑖 𝑗 :𝑈𝑖 ∩𝑈 𝑗 −→ GL𝑛(R))(𝑖 , 𝑗)∈𝐽×𝐽 ,

called cocycle of Φ. For any three 𝑖 , 𝑗 , 𝑘 ∈ 𝐽, and 𝑥 ∈ 𝑈𝑖 ∩𝑈 𝑗 ∩𝑈𝑘 , one has that

𝑔𝑖 𝑗(𝑥)𝑔𝑗𝑘(𝑥) = ((𝜙𝑖)𝑥(𝜙−1

𝑗 )𝑥)((𝜙 𝑗)𝑥(𝜙−1

𝑘
)𝑥) = (𝜙𝑖)𝑥(𝜙−1

𝑘
)𝑥 = 𝑔𝑖𝑘𝑥.

Moreover, for any 𝑗 ∈ 𝐽 we find 𝑔𝑖𝑖𝑥 = idR𝑛 . The tuple (𝐸, 𝑝, 𝐵,Φ), is said to be a vector
bundle with 𝑛-dimensional fibre. Furthermore an atlas for (𝐸, 𝑝, 𝐵) is a subatlas of Φ.

For every 𝑥 ∈ 𝐵, we can endow the fibre 𝐸𝑥 with the structure of an R-vector space

for which 𝜙𝑥 :𝐸𝑥
≃−→ R𝑛

is an R-linear isomorphism, independently of the choice of

(𝜙, 𝑈) ∈ Φ. We’ll thus call 𝐸 an 𝑛-plane bundle
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Definition 18.3.7 (Zero section). Given a vector bundle𝜉, we shall denote by Zero: 𝐵𝜉→
𝐸𝜉 the zero section of 𝜉, that is, the mapping 𝑥 ↦→ 0 ∈ 𝐸𝑥 .

Definition 18.3.8 (Trivial vector bundle). The 𝑛-dimensional trivial vector bundle is the

vector bundle

𝜀𝑛𝐵 ≔ (𝐵 × R𝑛 , 𝑝, 𝐵,Φ),

where 𝑝 is the projection of the first component, and Φ is the unique maximal vector

bundle atlas on 𝜀𝑛
𝐵

containing identity maps for each open set of 𝐵 × R𝑛
. A vector

bundle over 𝐵 is said to be trivial if it is isomorphic—such isomorphism is said to be a

trivialisation—to 𝜀𝑛
𝐵

for some 𝑛 ∈ N.

Definition 18.3.9 (Smooth vector bundle). A vector bundle 𝜉 is said to be smooth if its

associated spaces are smooth manifolds and the projection is a 𝐶∞-morphism.

Example 18.3.10 (Tangent bundle). Given a smooth 𝑛-manifold 𝑀, we define the tan-
gent bundle (see the discussion at Section 23.4) of 𝑀 to be the vector bundle (𝑇𝑀,𝜋, 𝑀).
For each chart 𝜙:𝑈 → R𝑛

we define a vector bundle chart 𝜋−1𝑈 → 𝑈 × R𝑛
mapping

tangent vectors 𝑋 ↦→ (𝑥, 𝜙∗ 𝑥𝑋).
Given any𝐶∞-morphism 𝑓 :𝑀 → 𝑁 of manifolds, there is an induced vector bundle

morphism 𝑇 𝑓 :𝑇𝑀 → 𝑇𝑁 .

Theorem 18.3.11 (Isomorphism of vector bundles). Let 𝑢: 𝜉 → 𝜂 be a 𝐵-morphism of

𝑛-dimensional vector bundles. Then 𝑢 is a 𝐵-isomorphism of vector bundles if and

only if 𝑢𝑏 : 𝜉𝑏 → 𝜂𝑏 is an R-linear isomorphism for each 𝑏 ∈ 𝐵.

Proof. (⇒) If 𝑢 is a 𝐵-isomorphism of vector bundles, then the restriction mapping

𝑢−1|𝜂𝑏 :𝜂𝑏 → 𝜉𝑏 is an inverse for 𝑢𝑏 .

(⇐) For the converse, suppose that the restriction 𝑢𝑏 : 𝜉𝑏
≃−→ 𝜂𝑏 is a linear isomor-

phism for all 𝑏 ∈ 𝐵. Construct a set-function 𝑣:𝐸𝜂 → 𝐸𝜉 such that 𝑣|𝜂𝑏 ≔ 𝑢−1

𝑏
—we

must show that 𝑣 is continuous. Let 𝑈 ⊆ 𝐵 be any open set, and 𝜙: 𝜉−1𝑈 ≃−→ 𝑈 × R𝑛

and 𝜓:𝜂−1𝑈 ≃−→ 𝑈 × R𝑛
be vector bundle charts for 𝜉 and 𝜂, respectively. Then if

we consider the map 𝜓𝑢𝜙−1
, we find that it has the form (𝑏, 𝑥) ↦→ (𝑏, 𝑓𝑏𝑥)—where

𝑏 ↦→ 𝑓𝑏 is a mapping 𝑈 → GL𝑛(R). On the other hand, the map 𝜙𝑣𝜓−1
is of the form

(𝑏, 𝑥) ↦→ (𝑏, 𝑓 −1

𝑏
𝑥)—where 𝑏 ↦→ 𝑓 is again a map𝑈 → GL𝑛(R). ♮

Definition 18.3.12 (Whitney sum). Given vector bundles 𝜉, 𝜂 ∈ VecBun𝐵, we define the

Whitney sum of 𝜉 and 𝜂 to be the fibre product 𝜉⊕𝜂 ∈ VecBun𝐵, where (𝜉⊕𝜂)𝑏 = 𝜉𝑏⊕𝜂𝑏
has the structure of the direct sum of vector spaces. Given charts 𝜙:𝑈 × R𝑛 → 𝜉−1𝑈

and 𝜓:𝑈 ×R𝑚 → 𝜂−1𝑈 for the respective vector bundles, we define an induced vector

bundle chart for 𝜉 ⊕ 𝜂 to be

𝜙 ⊕ 𝜓:𝑈 × R𝑛+𝑚 → 𝜉−1𝑈 ⊕ 𝜂−1𝑈.
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Induced Vector Bundles
Proposition 18.3.13 (Induced vector bundle). Let 𝜉 = (𝐸, 𝑝, 𝐵) be an 𝑛-dimensional

vector bundle, and 𝑓 : 𝐵0 → 𝐵 be a continuous map. Then the induced bundle 𝑓 ∗𝜉 =

(𝐸0, 𝑝0, 𝐵0) admits a unique vector bundle structure, and the canonical morphism

( 𝑓𝜉 , 𝑓 ): 𝑓 ∗𝜉→ 𝜉 is a vector bundle morphism. Moreover, 𝑓𝜉: 𝑝−1

0
𝑏0 → 𝜉−1𝑏 is a a linear

isomorphism (refer to Definition 18.1.14).

Proof. From Definition 18.1.14 we know that 𝑝−1

0
𝑏0 = 𝑏0 × 𝑝−1( 𝑓 𝑏0). Consider a pair of

fibre points (𝑏0, 𝑥), (𝑏0, 𝑦) ∈ 𝑝−1

0
𝑏0 and define vector space structures (𝑏0, 𝑥) + (𝑏0, 𝑦) ≔

(𝑏0, 𝑥 + 𝑦), and 𝜆(𝑏0, 𝑥) = (𝑏0,𝜆𝑥) for any 𝜆 ∈ R. We know that the restriction

𝑓𝜉: 𝑝−1

0
𝑏0 → 𝑝−1( 𝑓 𝑏0) is a topological isomorphism (see Proposition 18.1.15), but via

the linear structure just defined in 𝑝−1

0
𝑏0, we see that 𝑓𝜉 is also a linear map, thus it’s

an isomorphism of vector spaces. This shows that 𝑝−1

0
𝑏0 is restrained to this linear

structure, which proves uniqueness.

For a local trivialisation of 𝑓 ∗𝜉, consider, for any open set 𝑈 ⊆ 𝐵, a vector bundle

chart ℎ:𝑈 × R𝑛 → 𝑝−1𝑈 for 𝜉. We can construct a map ℎ′: 𝑓 −1𝑈 × R𝑛 → 𝑝−1

0
( 𝑓 −1𝑈)

mapping (𝑏0, 𝑥) ↦→ (𝑏0, ℎ( 𝑓 𝑏0, 𝑥)), which forms a vector bundle chart for 𝑓 ∗𝜉 over the

open set 𝑓 −1𝑈 . ♮

Homotopy Properties of Vector Bundles
Lemma 18.3.14 (Local trivialization). Let 𝜉 = (𝐸, 𝑝, 𝐵 × 𝐼) be a 𝐶𝑟 vector bundle for

some 0 ⩽ 𝑟 ⩽ ∞. Then every point 𝑏 ∈ 𝐵 admits a neighbourhood 𝑉 ⊆ 𝐵 such that

𝜉|𝑉×𝐼 is trivial.

Proof. Since 𝜉 is locally trivial and 𝐼 is compact, then given 𝑏 ∈ 𝐵 consider a neigh-

bourhood 𝑉𝑗 ⊆ 𝐵 of 𝑏 and a partition 0 = 𝑡0 < · · · < 𝑡𝑚 = 1 of 𝐼 such that 𝜉 is trivial

in a neighbourhood of 𝑉𝑗 × 𝐼 𝑗 ≔ 𝑉𝑗 × [𝑡 𝑗−1, 𝑡 𝑗] for each 0 < 𝑗 ⩽ 𝑚. Define 𝑉 ≔
⋂𝑚
𝑗=1
𝑉𝑗

and let (𝑈 𝑗)𝑚𝑗=1
be a collection where 𝑈 𝑗 ⊆ 𝐼 is a neighbourhood of 𝐼 𝑗 such that 𝜉|𝑉×𝑈𝑗

is trivial.

We do induction on 𝑚. For the base case 𝑚 = 1 it follows by construction that

𝜉|𝑉×𝑈1
is trivial and since 𝐼1 = 𝐼 then 𝑈1 = 𝐼. Now if 𝑚 > 1 we can proceed assuming

that the case is true for all 𝑛 < 𝑚: for each 1 ⩽ 𝑗 ⩽ 𝑚 we find a neighbourhood 𝐽 ⊆ 𝐼 of

the interval 𝐼1 ∪ · · · ∪ 𝐼 𝑗 = [0, 𝑡 𝑗] for which 𝜉|𝑉×𝐽 is trivial. This hints at the fact that it

is sufficient to prove this construction for the case 𝑚 = 2, and this is what we’ll set out

to do.

Take two sub-intervals 𝑈1 ≔ [0, 𝑏] and 𝑈2 ≔ [𝑎, 1] where 0 < 𝑎 < 𝑏 < 1. Let

𝜙 𝑗 : 𝑝
−1(𝑉×𝑈 𝑗) → (𝑉×𝑈 𝑗)×R𝑛

, for 𝑗 ∈ {1, 2}, be𝐶𝑟-charts (where we assumed 𝜉 to be 𝑛-

dimensional). Associated with these maps is the cocycle mapping 𝑔21:𝑉×(𝑈1∩𝑈2) →
GL𝑛(R)mapping 𝑥 ↦→ 𝜙1 𝑥𝜙−1

2 𝑥
. Let 𝑎 < 𝑐 < 𝑏 and consider a 𝐶𝑟-map 𝜆:𝑈2 → 𝑈1 ∩𝑈2

for which𝜆|[𝑎,𝑐] = id[𝑎,𝑐]. Defining 𝜇 ≔ id𝑉 ×𝜆:𝑉×[𝑎, 1] → 𝑉×[𝑎, 𝑏], we can construct

a map

ℎ ≔ 𝑔𝜇:𝑉 × [𝑎, 1] −→ GL𝑛(R)
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such that ℎ|𝑉×[𝑎,𝑐] = 𝑔|𝑉×[𝑎,𝑐]. This allows us to construct a trivialisation 𝜓 where we

define, for each 𝑥 ∈ 𝑉 × 𝐼, a map 𝜓𝑥 : 𝜉𝑥 → R𝑛
, and

𝜓𝑥 ≔

{
𝜙1 𝑥 , if 𝑥 ∈ 𝑉 × [0, 𝑐]
ℎ(𝑥)𝜙2 𝑥 , if 𝑥 ∈ 𝑉 × [𝑎, 1]

so that by construction for any 𝑥 ∈ [𝑎, 𝑐] one has ℎ(𝑥)𝜙2 𝑥 = (𝜙1 𝑥𝜙−1

2𝑥
)𝜙2 𝑥 = 𝜙1 𝑥 ,

showing that𝜓𝑥 is well defined. This defines a trivialisation𝜓: 𝑝−1(𝑉×𝐼) → (𝑉×𝐼)×R𝑛

as wanted. ♮

Corollary 18.3.15. Any 𝐶𝑟 vector bundle, with 0 ⩽ 𝑟 ⩽ ∞, over an interval is trivial

Oriented Vector Bundles
Definition 18.3.16. Let 𝜉 be a vector bundle. We define an orientation for 𝜉 to be a

family 𝜔 = (𝜔𝑥)𝑥∈𝐵𝜉 where 𝜔𝑥 is an orientation for the vector space fibre 𝜉𝑥 such that

𝜉 has an atlas for which: every chart 𝜙: 𝜉|𝑈 → R𝑛
in the atlas Φ of 𝜉 has an orientation

preserving map 𝜙𝑥 : (𝜉𝑥 , 𝜔𝑥) → (R𝑛 , 𝜔𝑛)2. If this is the case, 𝜔 is said to be a coherent
family of orientations of the fibres and Φ is an oriented atlas of 𝜉.

Lemma 18.3.17. Let 𝑓 :𝜂 ≃−→ 𝜉 be an isomorphism in VecBun, and let 𝜔 be an orienta-

tion for 𝜉. Then there exists a unique orientation 𝜃 for 𝜂 for which 𝑓 preserves the

orientations of the fibres.

Proposition 18.3.18. Every vector bundle over a simply connected manifold admits an

orientation.

Proposition 18.3.19. A vector bundle 𝜉 over a manifold 𝑀 is orientable if and only if

every loop 𝛾 ∈ Ω𝑀 preserves the orientation of 𝜉𝛾(0).

Corollary 18.3.20. An orientable vector bundle over a connected manifold has only

two orientations.

2
The use of 𝜔𝑛 denotes the standard orientation for the euclidean space R𝑛

(see Definition 6.6.13).
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Chapter 19

Homology

19.1 Singular Homology

Life in Topological Spaces: Singular Simplices

Definition 19.1.1 (Convexity). The following are definitions concerning convexity of

spaces in R𝑛
:

(a) Given any two points 𝑥, 𝑦 ∈ R𝑛
, we define the segment from 𝑥 to 𝑦 to be the set of

points {(1 − 𝑡)𝑥 + 𝑡𝑦 : 𝑡 ∈ [0, 1]}.

(b) A set 𝐶 ⊆ R𝑛
is said to be convex if for any pair of points 𝑥, 𝑦 ∈ 𝐶 the segment from

𝑥 to 𝑦 is contained in 𝐶.

(c) Given a set 𝐴 ⊆ R𝑛
, we define the convex hull of 𝐴 to be the intersection of all

convex sets of R𝑛
containing 𝐴.

(d) An 𝑚-simplex 𝜎 in R𝑛
is defined to be the convex-hull of a collection of 𝑚 + 1

distinct points {𝑥0, . . . , 𝑥𝑚} such that the set {𝑥 𝑗 − 𝑥0 : 1 ⩽ 𝑗 ⩽ 𝑚} is linearly

independent. The points 𝑥 𝑗 are called the vertices of 𝜎. If an order is assigned to

the collection of vertices of 𝜎, then we obtain an ordered simplex—the ordered

simplex is commonly written as 𝜎 = [𝑥0, . . . , 𝑥𝑚].

Lemma 19.1.2. Let {𝑥0, . . . , 𝑥𝑚} ⊆ R𝑛
be a collection of 𝑚 + 1 distinct points. Then

the set 𝐿 = {𝑥 𝑗 − 𝑥0 : 1 ⩽ 𝑗 ⩽ 𝑚} is linearly independent if and only if for any

two sequences of parameters (𝑠 𝑗)𝑚𝑗=0
and (𝑡 𝑗)𝑚𝑗=0

satisfying both

∑
𝑗 𝑠 𝑗𝑥 𝑗 =

∑
𝑗 𝑡 𝑗𝑥 𝑗 and∑

𝑗 𝑠 𝑗 =
∑
𝑗 𝑡 𝑗 implies that 𝑠 𝑗 = 𝑡 𝑗 for each 0 ⩽ 𝑗 ⩽ 𝑚.

Proof. Suppose that 𝐿 is linearly independent and the two conditions hold for a given
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pair of sequences of parameters. Then

0 =

𝑚∑
𝑗=0

(𝑠 𝑗 − 𝑡 𝑗)𝑥 𝑗

=

𝑚∑
𝑗=0

(𝑠 𝑗 − 𝑡 𝑗)𝑥 𝑗 −
( 𝑚∑
𝑗=0

𝑠 𝑗 − 𝑡 𝑗
)
𝑥0

=

𝑚∑
𝑗=1

(𝑠 𝑗 − 𝑡 𝑗)(𝑥 𝑗 − 𝑥0)

but since 𝐿 is linearly independent, then it must be the case that 𝑠 𝑗 − 𝑡 𝑗 = 0. For the

second case, assume only that the two conditions for any pair sequences are met: then

if

∑𝑚
𝑗=1

𝑎 𝑗(𝑥 𝑗 − 𝑥0) = 0 then

∑
𝑗 𝑎 𝑗𝑥 𝑗 =

∑
𝑗 𝑎 𝑗𝑥0 hence 𝑎 𝑗 = 0 for each 1 ⩽ 𝑗 ⩽ 𝑚—proving

that 𝐿 is linearly independent. ♮

Corollary 19.1.3. Let 𝜎 be the 𝑚-simplex given by the convex hull of the set of points

{𝑥0, . . . , 𝑥𝑚}. Then every point contained in 𝜎 is uniquely represented by

∑𝑚
𝑗=0
𝑡 𝑗𝑥 𝑗

where 𝑡 𝑗 ⩾ 0 and

∑
𝑗 𝑡 𝑗 = 1. The tuple (𝑡0, . . . , 𝑡𝑚) is called the barycentric coordinates of

the point in question.

Corollary 19.1.4. Let 𝜎 = [𝑥0, . . . , 𝑥𝑚] be an ordered 𝑚-simplex. Then the map Δ𝑚
top
→

𝜎, from the standard topological 𝑚-simplex, given by (𝑡0, . . . , 𝑡𝑚) ↦→
∑𝑚
𝑗=0
𝑡 𝑗𝑥 𝑗 is an

isomorphism of topological spaces.

Definition 19.1.5 (Singular simplex). Let𝑋 be a topological space. We define a singular
𝑚-simplex in 𝑋 to be a morphism of topological spaces 𝜙:Δ𝑚

top
→ 𝑋.

Following the construction of the singular complex functor (see Definition 20.2.19)

we define a structure of a free abelian group to the set

Sing𝑚 𝑋 ≔ Sing
Δ𝑚

top

𝑋 = MorTop(Δ𝑚top
, 𝑋).

An element of Sing𝑚 𝑋 is called a singular 𝑚-chain of 𝑋 and assumes the form

∑
𝜙 𝑛𝜙𝜙

for finitely many non-zero integers 𝑛𝜙 associated with singular 𝑚-simplices 𝜙.

Together with the singular simplex we also define, for each 0 ⩽ 𝑗 ⩽ 𝑚 a morphism

of abelian groups

𝜕
(𝑗)
𝑚 : Sing𝑚 𝑋 −→ Sing𝑚−1

𝑋

called 𝑗-th face map, which is explicitly given by

𝜕
(𝑗)
𝑚 𝜙(𝑡0, . . . , 𝑡𝑚−1) ≔ 𝜙(𝑡0, . . . , 𝑡 𝑗−1, 0, 𝑡 𝑗 , . . . , 𝑡𝑚−1).

That is, the 𝑗-th face map embeds Δ𝑚−1

top
into Δ𝑚

top
face opposite to the 𝑗-th vertex and

then map it to 𝑋 again via 𝜙. More compactly, we can also write

𝜕
(𝑗)
𝑚 𝜙 C 𝜙|[0,...,̂ 𝑗 ,...,𝑚].
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We shall also define the boundary operator to be the morphism of abelian groups

𝜕𝑚 : Sing𝑚 𝑋 −→ Sing𝑚−1
𝑋

to be given by the alternating sum of face maps

𝜕𝑚 ≔

𝑚∑
𝑗=0

(−1)𝑗 𝜕(𝑗)𝑚 .

Proposition 19.1.6. The composition of the maps Sing𝑚 𝑋
𝜕𝑚−−→ Sing𝑚−1

𝑋
𝜕𝑚−1−−−→ Sing𝑚−2

𝑋

is identically zero. That is, the boundary of an 𝑚-chain is an (𝑚 − 1)-chain with empty

boundary.

Proof. With no loss of generality, consider merely one singular 𝑚-simplex 𝜙. One has

𝜕𝑚−1 𝜕𝑚 𝜙 =

𝑚∑
𝑖=0

(−1)𝑖
( 𝑚−1∑
𝑗=0

(−1)𝑗𝜕𝑗𝜕𝑖𝜙
)

=

𝑚∑
𝑖=0

(−1)𝑖
(∑
𝑖> 𝑗

(−1)𝑗𝜙|[𝑣0 ,...,̂𝑣 𝑗 ,...,̂𝑣𝑖 ,...,𝑣𝑚−2] +
∑
𝑖< 𝑗

(−1)𝑗−1𝜙|[𝑣0 ,...,̂𝑣𝑖 ,...,̂𝑣 𝑗 ,...,𝑣𝑚−2]
)

Notice that the first term accounts for the removal of 𝑗 then of 𝑖, with 𝑖 > 𝑗, yielding

a factor (−1)𝑖+𝑗 for each newly generated simplex. The second term deals with the

removal of 𝑖 first and then 𝑗, with 𝑖 < 𝑗, thus 𝑗 must be updated to a lower index by

1, hence the factor (−1)𝑖+𝑗−1
. Notice that the pair of sums has different signs and the

same simplices—therefore they pairwise cancel, yielding zero. ♮

Cycles & Boundaries: Homology
Definition 19.1.7. Let 𝑋 be a topological space. We define the following:

(a) A singular 𝑛-chain 𝑐 ∈ Sing𝑛 𝑋 is said to be an 𝑛-cycle if 𝜕 𝑐 = 0. The collection of

𝑛-cycles of Sing𝑛 𝑋 forms a subgroup Z𝑛(𝑋).
(b) A singular 𝑛-chain 𝑏 ∈ Sing𝑛 𝑋 is called an 𝑛-boundary if there exists 𝑠 ∈ Sing𝑛+1

𝑋

with 𝜕 𝑠 = 𝑏. The collection of such 𝑛-boundaries forms a subgroup of Sing𝑛 𝑋

named B𝑛(𝑋)
(c) From Proposition 19.1.6 we obtain B𝑛(𝑋) ⊆ Z𝑛(𝑋) and thus we may define the 𝑛-th

singular homology group of 𝑋 as the quotient group

H𝑛(𝑋) ≔ Z𝑛(𝑋)/B𝑛(𝑋).

Definition 19.1.8 (Chain complex). We define a chain complex to be a Z-graded abelian

group 𝐶 = (𝐶𝑛)𝑛∈Z together with a graded endomorphism 𝜕:𝐶 → 𝐶 of degree −1 such
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that 𝜕 ◦ 𝜕 = 0. Given chain complexes (𝐶, 𝜕) and (𝐶′, 𝜕′) we define a morphism of chain
complexes (or chain map) Φ:𝐶 → 𝐶′ to be a morphism of graded abelian groups with

zero degree satisfying the commutativity of the square

𝐶𝑛 𝐶𝑛−1

𝐶′𝑛 𝐶′
𝑛−1

Φ𝑛

𝜕𝑛

Φ𝑛−1

𝜕′𝑛

for every 𝑛 ∈ Z.

Considering the Z-graded abelian groups Z•(𝐶) = ker 𝜕 and B•(𝐶) = im 𝜕we obtain

the following Z-graded quotient abelian group

H•(𝐶) = Z•(𝐶)/B•(𝐶).

Moreover, given a chain mapΦ:𝐶 → 𝐶′ sinceΦ(Z•(𝐶)) ⊆ Z•(𝐶′) andΦ(B•(𝐶)) ⊆ B•(𝐶)
thenΦ induces a morphism of graded groups between the homology groups associated

with 𝐶 and 𝐶′:
Φ∗: H•(𝐶) −→ H•(𝐶′).

Given a topological space 𝑋, its associated chain complex is given by Sing• 𝑋
together with the boundary operator 𝜕 and the homology of 𝑋 is the homology of the

chain complex (Sing• 𝑋, 𝜕).

Corollary 19.1.9. Given a topological space 𝑋, the homology H•(𝑋) is zero if and only

if the sequence (Sing• 𝑋, 𝜕•) is exact. In other words, H•(𝑋)measures how exact is the

chain complex of 𝑋.

Proposition 19.1.10. Let 𝑓 :𝑋 → 𝑌 be a morphism of topological spaces. For each

𝑛 ∈ Z and singular 𝑛-simplex 𝜙 ∈ Sing𝑛 𝑋 we obtain an induced singular 𝑛-simplex

in 𝑌 given by the pushforward 𝑓# 𝑛(𝜙) = 𝑓 𝜙 ∈ Sing𝑛 𝑌. From this we obtain a morphism

of abelian groups 𝑓# 𝑛 : Sing𝑛 𝑋 → Sing𝑛 𝑌. This can be extended to a chain map

𝑓#: Sing• 𝑋 −→ Sing•𝑌.

Moreover, this map also induces a graded morphism of zero degree between the

homology groups of 𝑋 and 𝑌:

𝑓∗: H•(𝑋) −→ H•(𝑌).

Both 𝑓# and 𝑓∗ have a functorial nature.

Proof. To prove that 𝑓# is a chain map, it must be the case that

Sing𝑛 𝑋 Sing𝑛−1
𝑋

Sing𝑛 𝑌 Sing𝑛−1
𝑌

𝑓# 𝑛

𝜕𝑛

𝑓# 𝑛−1

𝜕′𝑛
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commutes for any 𝑛 ∈ Z. Let 𝜙 ∈ Sing𝑛 𝑋 be any element and notice that for any

0 ⩽ 𝑗 ⩽ 𝑛 we have

𝑓# 𝑛−1(𝜕(𝑗)𝑛 𝜙) = 𝑓 𝜙|[0,...,̂ 𝑗 ,...,𝑛],
moreover

𝜕′𝑛
(𝑗)
𝑓#𝑛(𝜙) = ( 𝑓#𝑛(𝜙))|[0,...,̂ 𝑗 ,...,𝑛] = ( 𝑓 𝜙)|[0,...,̂ 𝑗 ,...,𝑛] = 𝑓 𝜙|[0,...,̂ 𝑗 ,...,𝑛]

therefore the diagram indeed commutes. ♮

Proposition 19.1.11. Let (𝐶𝜆 , 𝜕𝜆)𝜆∈Λ be a collection of chain complexes and define a

chain complex 𝐶 ≔
⊕

𝜆∈Λ 𝐶
𝜆

as 𝐶𝑝 =
⊕

𝜆∈Λ 𝐶
𝜆
𝑝 and the natural boundary maps. Then

there exists a natural isomorphism

H•(𝐶) ≃
⊕
𝜆∈Λ

H•(𝐶𝜆)

Proof. From construction we have Sing• 𝐶 =
⊕

𝜆∈Λ Sing• 𝐶
𝜆
. Therefore for any 𝑝 ∈ Z

we have

H𝑝(𝐶) = Z𝑝(𝐶)/B𝑝(𝐶)

=

⊕
𝜆∈Λ Z𝑝(𝐶𝜆)⊕
𝜆∈Λ B𝑝(𝐶𝜆)

≃
⊕
𝜆∈Λ

Z𝑝(𝐶𝜆)/B𝑝(𝐶𝜆)

=

⊕
𝜆∈Λ

H𝑝(𝐶𝜆).

♮

Proposition 19.1.12. Let 𝑋 ≃ ∐
𝜆∈Λ 𝑋𝜆 be a topological space, where 𝑋𝜆 are path-

connected components of 𝑋, then

H•(𝑋) ≃
⊕
𝜆∈Λ

H•(𝑋𝜆).

Proof. For each 𝑝 ∈ Z consider the morphism of groups Θ𝑝 :

⊕
𝜆 Sing𝑝 𝑋𝜆 → Sing𝑝 𝑋

given by (∑
𝜙𝜆

𝑛𝜆,𝜙𝜆𝜙
)
𝜆
↦−→

∑
𝜆

∑
𝜙𝜆

𝑛𝜆,𝜙𝜆𝜙𝜆.

The Z-graded abelian group morphism Θ:

⊕
𝜆 Sing• 𝑋𝜆 → Sing• 𝑋 given by (Θ𝑝)𝑝∈Z

is a morphism between free abelian groups, therefore Θ is injective. Let 𝜙 ∈ Sing𝑝 𝑋

be any singular 𝑝-simplex of 𝑋. Since Δ
𝑝

top
is path-connected, its image 𝜙(Δ𝑝

top
) ⊆ 𝑋

must be contained in some unique path-connected component 𝑋𝜆 of 𝑋. Therefore we

might as well restrict the target of 𝜙 and obtain a singular 𝑝-simplex 𝜙|𝑋𝜆 ∈ Sing𝑝 𝑋𝜆.

This shows that Θ𝑝(𝜙|𝑋𝜆) = 𝜙 and therefore Θ is a surjective map. Therefore Θ is an

isomorphism. Using Proposition 19.1.11 we obtain the desired isomorphism between

homology groups. ♮
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19.2 Calculating The Homology: Some Examples
Proposition 19.2.1. Let 𝑋 be path-connected, then H0(𝑋) ≃ Z.

Proof. Define the morphism of groups 𝜀: Sing
0
𝑋 → Z to be given by

∑
𝑗 𝑛 𝑗𝜎𝑗 ↦→

∑
𝑗 𝑛 𝑗—

which is clearly surjective. Notice that if 𝜎 ∈ Sing
1
𝑋 is any singular 1-simplex, then

𝜕1 𝜎 = 𝜎[̂0,1] − 𝜎[0,̂1]. Therefore 𝜀𝜎 = 1 − 1 = 0 and thus im 𝜕1 ⊆ ker 𝜀. For the contrary,

let

∑
𝑗 𝑛 𝑗𝜎𝑗 ∈ ker 𝜀—that is,

∑
𝑗 𝑛 𝑗 = 0. Let 𝑥0 ∈ 𝑋 be any point and, since 𝑋 is path-

connected, take for each 𝑗 a singular 1-simplex 𝜏𝑗 :Δ1

top
→ 𝑋 (which is a path in 𝑋 since

Δ1

top
= 𝐼) connecting 𝑥0 with im 𝜎𝑗—which is a unique point in 𝑋 the domain of 𝜎𝑗 is a

single point Δ0

top
. Then

𝜕1

(∑
𝑗

𝑛 𝑗𝜏𝑗
)
=

∑
𝑗

𝑛 𝑗(𝜎𝑗 − 𝑥0) =
∑
𝑗

𝑛 𝑗𝜎𝑗 −
(∑

𝑗

𝑛 𝑗

)
𝑥0 =

∑
𝑗

𝑛 𝑗𝜎𝑗 ,

which shows that ker 𝜀 ⊆ im 𝜕1. Therefore

Sing
0
𝑋 Z

Sing
0
𝑋

ker 𝜀

𝜀

≃

induces a unique isomorphism H0(𝑋) ≃ Z since

Sing
0
(𝑋)/ker 𝜀 = Sing

0
(𝑋)/im 𝜕1 = H0(𝑋).

♮

Example 19.2.2 (Single point space homology). Let 𝑋 = {∗} be the discrete space with

a single point. For any 𝑝 ∈ N we have a unique singular 𝑝-simplex 𝜙𝑝 :Δ
𝑝

top
→ 𝑋, and

thus 𝜕
(𝑗)
𝑝 𝜙𝑝 = 𝜙𝑝−1—where 𝜙𝑝−1 is the unique singular 𝑝 − 1-simplex of 𝑋. This shows

that each Sing𝑝 𝑋 is a cyclic group generated by 𝜙𝑝 . Moreover, for any 𝑝 ∈ N we have

𝜕 𝜙𝑝 =

𝑝∑
𝑗=0

(−1)𝑗 𝜕 𝑗 𝜙𝑝 =
𝑝∑
𝑗=0

(−1)𝑗𝜙𝑝−1 =

{
𝜙𝑝−1, if 𝑝 is even and 𝑝 > 0

0, otherwise

Therefore one has Z𝑝(𝑋) = B𝑝(𝑋) for each 𝑝 > 0, and Z0(𝑋) = Sing
0
𝑋 while B0(𝑋) = 0.

Hence we conclude that the homology groups associated to 𝑋 are

H𝑝(𝑋) =
{

Z, if 𝑝 = 0

0, if 𝑝 > 0

where H0(𝑋) = Z comes from the fact that 𝑋 is path-connected and Proposition 19.2.1.

Theorem 19.2.3. Let 𝑋 ⊆ R𝑛
be a convex subspace. Then for any 𝑝 > 0 we have

H𝑝(𝑋) = 0.
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Proof. If 𝑋 = ∅ then we are done, now assume that 𝑋 is non-empty. Let 𝑥 ∈ 𝑋 be

any point and consider a singular 𝑝-simplex 𝜙 ∈ Sing𝑝 𝑋 for some 𝑝 ⩾ 0. Since 𝑋 is

convex, we can define a singular (𝑝 + 1)-simplex 𝜃 ∈ Sing𝑝+1
𝑋 given by

𝜃(𝑡0, . . . , 𝑡𝑝+1) ≔
{
(1 − 𝑡0)

(
𝜙
(
𝑡1

1−𝑡0 , . . . ,
𝑡𝑝+1

1−𝑡0

))
+ 𝑡0𝑥, for 𝑡0 < 1

𝑥, for 𝑡0 = 1.

We have to check that 𝜃 is indeed continuous at 𝑥. Notice that

lim

𝑡0→1

∥𝜃(𝑡0, . . . , 𝑡𝑝+1) − 𝑥∥ = lim

𝑡0→1

(1 − 𝑡0)(𝜙 (
𝑡1

1 − 𝑡0
, . . . ,

𝑡𝑝+1

1 − 𝑡0

))
− (1 − 𝑡0)𝑥


⩽ lim

𝑡0→1

(1 − 𝑡0)
(𝜙 (

𝑡1

1 − 𝑡0
, . . . ,

𝑡𝑝+1

1 − 𝑡0

) + ∥𝑥∥) .
Using the fact that the image 𝜙(Δ𝑝

top
) ⊆ 𝑋 is compact, it follows that the second term

of the right-hand side of the above equation is bound, therefore

lim

𝑡0→1

∥𝜃(𝑡0, . . . , 𝑡𝑝+1) − 𝑥∥ = 0.

This construction induces a morphism 𝑇𝑝 : Sing𝑝 𝑋 → Sing𝑝+1
𝑋 given by 𝜙 ↦→ 𝜃

for every 𝑝 ⩾ 0. Moreover, notice that 𝜕0

𝑝+1
𝑇𝑝𝜙 = 𝜕0

𝑝+1
𝜃 = 𝜙 and 𝑇𝑝 𝜕

0

𝑝+1
𝜃 = 𝑇𝑝𝜙 = 𝜃,

therefore the induced morphism 𝑇: Sing• 𝑋 → Sing• 𝑋 is an isomorphism of Z-graded

abelian groups with inverse 𝜕0

•. Hence Sing𝑝 𝑋 ≃ Sing𝑝+1
𝑋 for any 𝑝 ⩾ 0.

We now check that 𝑇 is a chain map. For each 1 ⩽ 𝑗 ⩽ 𝑝 + 1 one has

𝜕
𝑗

𝑝+1
(𝑇𝑝(𝜙))(𝑡0, . . . , 𝑡𝑝) = 𝑇𝑝(𝜙)(𝑡0, . . . , 𝑡 𝑗−1, 0, 𝑡 𝑗 , . . . , 𝑡𝑝)

= (1 − 𝑡0)
(
𝜙
(
𝑡1

1 − 𝑡0
, . . . ,

𝑡 𝑗−1

1 − 𝑡0
, 0,

𝑡 𝑗

1 − 𝑡0
, . . . ,

𝑡𝑝

1 − 𝑡𝑝

))
+ 𝑡0𝑥

and for 𝜕
𝑗−1

𝑝 we have

𝑇𝑝−1(𝜕 𝑗−1

𝑝 𝜙)(𝑡0, . . . , 𝑡𝑝) = (1 − 𝑡0) 𝜕 𝑗−1

𝑝 𝜙
(
𝑡1

1 − 𝑡0
, . . . ,

𝑡𝑝

1 − 𝑡0

)
+ 𝑡0𝑥

= (1 − 𝑡0)𝜙
(
𝑡1

1 − 𝑡0
, . . . ,

𝑡 𝑗−1

1 − 𝑡0
, 0,

𝑡 𝑗

1 − 𝑡0
, . . . ,

𝑡𝑝

1 − 𝑡0

)
+ 𝑡0𝑥.

With this we conclude that

𝜕
𝑗

𝑝+1
𝑇𝑝 = 𝑇𝑝−1 𝜕

𝑗−1

𝑝 .
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For any 𝜙 ∈ Sing𝑝 𝑋 we have

𝜕𝑝+1 𝑇𝑝𝜙 = 𝜕0

𝑝+1
𝑇𝑝𝜙 +

𝑝+1∑
𝑗=1

(−1)𝑗 𝜕 𝑗
𝑝+1

𝑇𝑝𝜙

= 𝜕0

𝑝+1
𝑇𝑝𝜙 +

𝑝+1∑
𝑗=1

(−1)𝑗 𝜕 𝑗
𝑝+1

𝑇𝑝𝜙 −
( 𝑝+1∑
𝑗=1

(−1)𝑗𝑇𝑝−1 𝜕
𝑗−1

𝑝 𝜙 +
𝑝∑
𝑗=0

(−1)𝑗𝑇𝑝−1 𝜕
𝑗
𝑝 𝜙

)
= 𝜕0

𝑝+1
𝑇𝑝𝜙 +

( 𝑝+1∑
𝑗=1

(−1)𝑗 𝜕 𝑗
𝑝+1

𝑇𝑝𝜙 −
𝑝+1∑
𝑗=1

(−1)𝑗𝑇𝑝−1 𝜕
𝑗−1

𝑝 𝜙
)
+

𝑝∑
𝑗=0

(−1)𝑗𝑇𝑝−1 𝜕
𝑗
𝑝 𝜙

= 𝜕0

𝑝+1
𝑇𝑝𝜙 +

𝑝∑
𝑗=0

(−1)𝑗𝑇𝑝−1 𝜕
𝑗
𝑝 𝜙

= 𝜙 − 𝑇 𝜕𝑝 𝜙

Therefore we conclude that for any 𝑝 ⩾ 1 we have

𝜕𝑝+1 𝑇𝑝 + 𝑇𝑝−1 𝜕𝑝 = idSing𝑝 𝑋
.

Consider a cycle 𝑧 ∈ Z𝑝(𝑋) for 𝑝 > 0 and notice that 𝜕𝑝+1 𝑇𝑝𝑧 +𝑇𝑝−1 𝜕𝑝 𝑧 = 𝑧 implies

in 𝜕𝑝+1 𝑇𝑝𝑧 = 𝑧 since 𝜕𝑝 𝑧 = 0. Therefore from definition we conclude that 𝑧 ∈ B𝑝(𝑋),
which implies that H𝑝(𝑋) = 0 for each 𝑝 > 0. ♮

19.3 Chain Homotopies
Let 𝑇: (𝐶, 𝜕) → (𝐶′, 𝜕′) be a morphism of graded groups of degree 1. The morphism

of graded groups

𝜕′𝑇 + 𝑇 𝜕:𝐶 −→ 𝐶′

is then of degree 0 since both 𝜕 and 𝜕′ have degree −1. Moreover, 𝜕′𝑇 + 𝑇 𝜕 is in fact a

chain map since

𝜕′(𝜕′𝑇 + 𝑇 𝜕) = 𝜕′ 𝜕′𝑇 + 𝜕′𝑇 𝜕 = 𝜕′𝑇 𝜕 = 𝜕′𝑇 𝜕+𝑇 𝜕 𝜕 = (𝜕′𝑇 + 𝑇 𝜕) 𝜕

shows that it satisfies the needed commutativity condition. Notice that for any cycle

𝑧 ∈ Z𝑝(𝐶)we have

(𝜕′𝑇 + 𝑇 𝜕)𝑧 = 𝜕′𝑇𝑧 + 𝑇 𝜕 𝑧 = 𝜕′𝑇𝑧 ∈ B𝑝(𝐶′).

Therefore the induced morphism of homology groups

(𝜕′𝑇 + 𝑇 𝜕)∗: H•(𝐶) −→ H•(𝐶′)

is identically zero.
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Definition 19.3.1. Let 𝑓 , 𝑔: (𝐶, 𝜕) → (𝐶′, 𝜕′) be parallel chain maps. We say that 𝑓

and 𝑔 are chain-homotopic if there exists a morphism of graded groups 𝑇:𝐶 → 𝐶′ with

degree 1 such that

𝜕′𝑇 + 𝑇 𝜕 = 𝑓 − 𝑔.
Proposition 19.3.2. Let 𝑓 , 𝑔:𝐶 ⇒ 𝐶′ be chain-homotopic chain morphisms, then we

have the equality

𝑓∗ = 𝑔∗: H•(𝐶) −→ H•(𝐶′)
of the induced morphisms of homology groups.

Proof. Let 𝑇:𝐶 → 𝐶′ be a chain-homotopy between 𝑓 and 𝑔, thus 𝑓 − 𝑔 = 𝜕′𝑇 − 𝑇 𝜕
and we have

𝑓∗ − 𝑔∗ = ( 𝑓 − 𝑔)∗ = (𝜕′𝑇 − 𝑇 𝜕)∗ = 0.

♮

Theorem 19.3.3. Let 𝑓 , 𝑔:𝑋 ⇒ 𝑌 be homotopic topological morphisms. Then we have

the equality

𝑓∗ = 𝑔∗: H•(𝑋) −→ H•(𝑌)
of the induced morphisms of homology groups.

Proof. In view of Proposition 19.3.2 we shall merely prove that the maps 𝑓# and 𝑔# are

chain-homotopic. Let 𝜂: 𝑓 ⇒ 𝑔 be a homotopy and consider the inclusions 𝑖0, 𝑖1:𝑋 ⇒
𝑋 × 𝐼 mapping, respectively 𝑥 ↦→ (𝑥, 0) and 𝑥 ↦→ (𝑥, 1).

We now discuss why it is sufficient for 𝑖0 # and 𝑖1 # to be chain-homotopic in order

for 𝑓# and 𝑔# to be chain-homotopic. Suppose that 𝑖0 # and 𝑖1 # are indeed chain-

homotopic and let 𝑇: Sing∗ 𝑋 → Sing∗(𝑋 × 𝐼) be a degree 1 morphism of graded

abelian groups such that 𝜕𝑋×𝐼 𝑇 + 𝑇 𝜕𝑋 = 𝑖0 # − 𝑖1 #. If we now consider the induced

map 𝜂#: Sing∗(𝑋 × 𝐼) → Sing∗ 𝑋 we see that

𝜂#(𝜕𝑋×𝐼 𝑇 + 𝑇 𝜕𝑋) = 𝜂#(𝑖0 # − 𝑖1 #)
𝜕𝑋(𝜂#𝑇) + (𝜂#𝑇) 𝜕𝑋 = 𝑓# − 𝑔#.

Thus we see that if 𝑖0 # and 𝑖1 # are chain-homotopic it follows that 𝑓# and 𝑔# are also

chain-homotopic, as wanted.

We shall prove the existence of the chain-homotopy 𝑇: Sing• 𝑋 → Sing•(𝑋 × 𝐼) via

induction. Let 𝑋 denote any topological space and suppose there exists 𝑛 > 0 such

that for any integer 𝑗 < 𝑛 there exists a morphism of abelian groups (𝑇𝑋)𝑗 : Sing𝑗 𝑋 →
Sing𝑗+1

(𝑋 × 𝐼) such that

(𝜕𝑋×𝐼)𝑗+1(𝑇𝑋)𝑗 + (𝑇𝑋)𝑗−1(𝜕𝑋)𝑗 = (𝑖0 #)𝑗 − (𝑖1 #)𝑗 (19.1)

and that for any topological morphism ℎ:𝑋 → 𝑍 the following diagram commutes for

any 𝑗 < 𝑛:

Sing𝑗 𝑋 Sing𝑗+1
(𝑋 × 𝐼)

Sing𝑗 𝑍 Sing𝑗+1
(𝑍 × 𝐼)

(𝑇𝑋 )𝑗

ℎ#
(ℎ×id𝐼)#

(𝑇𝑍)𝑗

(19.2)
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We shall now define a map (𝑇𝑋)𝑛 : Sing𝑛 𝑋 → Sing𝑛+1
(𝑋×𝐼). Let𝜙 ∈ Sing𝑛 𝑋 be any sin-

gular 𝑛-simplex and consider the identity singular 𝑛-simplex id𝑛 ∈ Sing𝑛 Δ
𝑛
top

. Notice

that since 𝜙#(id𝑛) = 𝜙 id𝑛 = 𝜙, then if we define (𝑇Δ𝑛
top

)𝑛 : Sing𝑛 Δ
𝑛
top
→ Sing𝑛+1

(Δ𝑛
top
× 𝐼)

following the naturality requirement presented in Eq. (19.2) then we may ask for

𝑇𝑋𝜙 = 𝑇𝑋𝜙# id𝑛 = (𝜙 × id𝐼)#(𝑇Δ𝑛
top

id𝑛). (19.3)

Hence in order to define (𝑇𝑋)𝑛 it is sufficient to define (𝑇Δ𝑛
top

)𝑛 .

For the sake of convenience, we shall adopt the notation 𝜕 ≔ 𝜕Δ𝑛
top

and 𝜕′ ≔ 𝜕Δ𝑛
top
×𝐼 .

Let 𝑑 ∈ Sing𝑛 Δ
𝑛
top

be any singular 𝑛-simplex and consider the chain

𝑐 ≔ 𝑖0 #𝑑 − 𝑖1 #𝑑 − 𝑇Δ𝑛
top

𝜕𝑛 𝑑 ∈ Sing𝑛(Δ𝑛top
× 𝐼).

Notice that 𝑐 is in fact a cycle, since

𝜕′𝑛 𝑐 = 𝜕′𝑛 𝑖0 #𝑑 − 𝜕′𝑛 𝑖1 #𝑑 − 𝜕′𝑛 𝑇Δ𝑛
top

(𝜕𝑛 𝑑)
= 𝑖0 # 𝜕𝑛 𝑑 − 𝑖1 # 𝜕𝑛 𝑑 − [𝑖0 # 𝜕𝑛 𝑑 − 𝑖1 # 𝜕𝑛 𝑑 − 𝑇Δ𝑛

top

𝜕𝑛−1 𝜕𝑛 𝑑]
= 0

where we used Eq. (19.1) in order to expand the 𝜕′𝑛(𝑇Δ𝑛
top

)𝑛−1(𝜕𝑛 𝑑) term. Hence we

conclude that 𝑐 ∈ Z𝑛(Δ𝑛
top
×𝐼). Moreover, from Theorem 19.2.3 we see that H𝑛(Δ𝑛

top
×𝐼) =

0 thus 𝑐 ∈ B𝑛(Δ𝑛
top
× 𝐼) and there exists 𝑏 ∈ Sing𝑛+1

(Δ𝑛
top
× 𝐼) such that 𝜕′𝑛+1

𝑏 = 𝑐. We

shall define

𝑇Δ𝑛
top

𝑑 ≔ 𝑏.

Therefore 𝜕′𝑛+1
𝑇Δ𝑛

top

𝑑 = 𝜕′𝑛+1
𝑏 = 𝑐 and hence

𝜕′𝑛+1
𝑇Δ𝑛

top

𝑑 + 𝑇Δ𝑛
top

𝜕𝑛 𝑑 = 𝑖0 #𝑑 − 𝑖1 #𝑑.

This finishes the final inductive step and proves that Eq. (19.3) can be constructed:

𝑇𝑋 : Sing𝑛 𝑋 −→ Sing𝑛+1
(𝑋 × 𝐼).

From the naturality expressed in Eq. (19.2) we find that for any 𝜙 ∈ Sing𝑛 𝑋 the

maps 𝑖0 # and 𝑖1 # induce

𝑖0 #𝜙 = 𝑖0 #𝜙# id𝑛 = (𝜙 × id𝐼)𝑖0 # id𝑛

𝑖1 #𝜙 = 𝑖1 #𝜙# id𝑛 = (𝜙 × id𝐼)𝑖1 # id𝑛

Moreover, notice that

𝜕𝑋×𝐼 𝑇𝑋𝜙 + 𝑇𝑋 𝜕𝑋 𝜙 = 𝜕𝑋×𝐼 𝑇𝑋𝜙# id𝑛 +𝑇𝑋 𝜕𝑋 𝜙# id𝑛

= 𝜕𝑋×𝐼(𝜙 × id𝐼)#𝑇𝑋 id𝑛 +𝑇𝑋𝜙# 𝜕Δ𝑛
top

id𝑛

= (𝜙 × id𝐼)# 𝜕Δ𝑛
top
×𝐼 𝑇Δ𝑛

top

id𝑛 +(𝜙 × id𝐼)#𝑇Δ𝑛
top

𝜕Δ𝑛
top

id𝑛

= (𝜙 × id𝐼)#(𝜕Δ𝑛
top
×𝐼 𝑇Δ𝑛

top

id𝑛 +𝑇Δ𝑛
top

𝜕Δ𝑛
top

id𝑛)
= (𝜙 × id𝐼)#(𝑖0 # id𝑛 −𝑖1 # id𝑛)
= 𝑖0 #𝜙 − 𝑖1 #𝜙.
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Moreover, naturality can be proved as follows:

𝑇𝑋 𝜕𝑋 𝜙 = 𝑇𝑋 𝜕𝑋 𝜙# id𝑛

= 𝑇𝑋𝜙# 𝜕Δ𝑛
top

id𝑛

= (𝜙 × id𝐼)#𝑇Δ𝑛
top

𝜕Δ𝑛
top

id𝑛

= 𝜕𝑋×𝐼(𝜙 × id𝐼)#𝑇Δ𝑛
top

id𝑛

= 𝜕𝑋×𝐼 𝑇𝑋𝜙# id𝑛

= 𝜕𝑋×𝐼 𝑇𝑋𝜙.

This finishes the proof that 𝑇𝑋 is indeed a chain-homotopy between 𝑖0 # and 𝑖1 # as

wanted. ♮

19.4 Homotopy Invariance
Corollary 19.4.1. Let 𝑓 :𝑋 ≃−→

h
𝑌 be a homotopy equivalence, then the induced homology

map 𝑓∗: H•(𝑋) → H•(𝑌) is an isomorphism of Z-graded abelian groups:

H•(𝑋) ≃ H•(𝑌).

Proof. Let 𝑔:𝑌 → 𝑋 be a homotopy inverse of 𝑓 . Thus 𝑔 𝑓 ∼
h

id𝑋 and 𝑓 𝑔 ∼
h

id𝑌 , thus

via Theorem 19.3.3 we obtain (𝑔 𝑓 )∗ = 𝑔∗ 𝑓∗ = idSing• 𝑋 and ( 𝑓 𝑔)∗ = 𝑓∗𝑔∗ = idSing• 𝑌 . This

shows that 𝑓∗ and 𝑔∗ are inverses of each other and thus 𝑓∗ is an isomorphism. ♮

Corollary 19.4.2. Let 𝐴 be a retract of 𝑋 and 𝜄:𝐴 ↩→ 𝑋 be the canonical inclusion, then

𝜄∗: H•(𝐴) → H•(𝑋) is a split monomorphism onto a direct summand. If 𝐴 is a deformation
retract of 𝑋, then 𝜄∗ is an isomorphism

Proof. Since 𝜄 admits a left inverse 𝑟:𝑋 → 𝐴 then 𝑟∗𝜄∗ = id
H•(𝐴) shows that 𝜄∗ is a split

monomorphism. We now show that 𝜄∗ maps H•(𝐴) onto a direct summand of H•(𝑋).
Let 𝐺1 ≔ im 𝜄∗ and 𝐺2 ≔ ker 𝑟∗ be two subgroups of H•(𝑋). Let 𝛼 ∈ H•(𝑋) be any

element and notice that we can write 𝛼 = 𝜄∗𝑟∗𝛼 + (𝛼 − 𝜄∗𝑟∗𝛼), where 𝜄∗𝑟∗𝛼 ∈ im 𝜄∗ and

since 𝑟∗ is a left inverse of 𝜄∗ then 𝛼− 𝜄∗𝑟∗𝛼 ∈ ker 𝑟∗. Therefore we have H•(𝑋) = 𝐺1+𝐺2,

furthermore, if 𝛽 ∈ 𝐺1 ∩ 𝐺2 we have that there exists 𝛾 ∈ H•(𝐴) such that 𝜄∗𝛾 = 𝛽 and

𝑟∗𝛽 = 0, therefore

𝛾 = 𝑟∗𝑖∗𝛾 = 𝑟∗𝛽 = 0

hence 𝛽 = 0. This shows that 𝐺1 ∩ 𝐺2 = 0, thus 𝐺1 + 𝐺2 = 𝐺1 ⊕ 𝐺2 and H•(𝑋) =
𝐺1 ⊕ 𝐺2. ♮

19.5 Long Exact Sequence Theorem
Theorem 19.5.1. Given a short exact sequence of chain complexes with degree zero

chain maps:

0 𝐴 𝐵 𝐶 0
𝑖 𝑗
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the following long sequence of homology groups is exact:

· · · H𝑝(𝐵) H𝑝(𝐶) H𝑝−1(𝐴) · · ·𝑖∗ 𝑗∗ 𝛿 𝑖∗

Proof. We shall define 𝛿: H•(𝐶) → H•(𝐴)with degree −1. Let 𝑐 ∈ Z𝑝(𝐶) and since 𝑗𝑝 is

surjective, there exists 𝑏 ∈ 𝐵𝑝 such that 𝑗𝑝𝑏 = 𝑐. Furthermore,

𝑗𝑝−1 𝜕
𝐵
𝑝 𝑏 = 𝜕𝐶𝑝 𝑗𝑝𝑏 = 𝜕𝐶𝑝 𝑐 = 0,

from the fact that 𝑗 is a chain map—therefore 𝜕𝐵𝑝 𝑏 ∈ ker 𝑗𝑝−1 = im 𝑖𝑝−1. Since 𝜕𝐵𝑝 𝑏 ∈
im 𝑖𝑝−1 then there exists a unique 𝑎 ∈ 𝐴𝑝−1 such that 𝑖𝑝−1𝑎 = 𝜕𝐵𝑝 𝑏—the uniqueness of 𝑎

comes from the fact that 𝑖 is an injective map. Define the map 𝛿𝑝 : H𝑝(𝐶) → H𝑝−1(𝐴) to
take 𝛿𝑝[𝑐] ≔ [𝑎]. We need to show that 𝛿𝑝 is well defined, which requires us to prove

that the mapping [𝑐] ↦→ [𝑎] is independent of the choice of 𝑏 and 𝑐:

• Let 𝑏′ ∈ 𝐵𝑝 be such that 𝑗𝑝𝑏
′ = 𝑐, thus 𝑏′ − 𝑏 ∈ ker 𝑗𝑝 and since ker 𝑗𝑝 = im 𝑖𝑝 it

follows that there exists 𝑎′ ∈ 𝐴𝑝 for which 𝑖𝑝𝑎
′ = 𝑏′ − 𝑏. Therefore

𝜕𝐵𝑝 𝑏
′ = 𝜕𝐵𝑝 𝑏 + 𝜕𝐵𝑝 𝑖𝑝𝑎

′ = 𝑖𝑝𝑎 + 𝑖𝑝 𝜕𝐴𝑝 𝑎′ = 𝑖𝑝(𝑎 + 𝜕𝐴𝑝 𝑎
′),

which shows that [𝑎 + 𝜕𝐴𝑝 𝑎
′] = [𝑎], therefore the construction is independent of

the choice of 𝑏.

• Let [𝑐′] = [𝑐] so that 𝑐′− 𝑐 ∈ B𝑝(𝐶), and choose 𝛼 ∈ 𝐶𝑝+1 such that 𝑐′− 𝑐 = 𝜕𝐶𝑝+1
𝛼.

By the surjectiveness of 𝑗, choose 𝑏′ ∈ 𝐵𝑝+1 for which 𝛼 = 𝑗𝑝+1𝑏
′
. Therefore

𝑐′ = 𝑐 + 𝜕𝐶𝑝+1
𝛼 = 𝑐 + 𝜕𝐶𝑝+1

𝑗𝑝+1𝑏
′ = 𝑗𝑝(𝑏) + 𝑗𝑝(𝜕𝐵𝑝+1

𝑏′) = 𝑗𝑝(𝑏 + 𝜕𝐵𝑝+1
𝑏′).

Moreover, one also has

𝜕𝐵𝑝 (𝑏 + 𝜕𝐵𝑝+1
𝑏′) = 𝜕𝐵𝑝 𝑏 + 𝜕𝐵𝑝 𝜕

𝐵
𝑝+1

𝑏′ = 𝜕𝐵𝑝 𝑏,

therefore 𝑖𝑝−1𝑎 = 𝜕𝐵𝑝 𝑏 = 𝜕𝐵𝑝 (𝑏 + 𝜕𝐵𝑝+1
𝑏′). This shows us that the construction is

agnostic of the choice of representative of the class [𝑐].

It remains for us to prove that the resulting sequence of homology groups is exact:

• (im 𝑖∗ = ker 𝑗∗) Notice that by functoriality we have 𝑗∗𝑖∗ = (𝑗𝑖)∗ = 0 since im 𝑖 ⊆
ker 𝑗—this shows that im 𝑖∗ ⊆ ker 𝑗∗. On the other hand, if [𝑏] ∈ ker 𝑗∗ 𝑝 is any

element, then 𝑗𝑝𝑏 ∈ B𝑝(𝐶) and there exists 𝑐 ∈ 𝐶𝑝+1 such that 𝑗𝑝𝑏 = 𝜕𝐶𝑝+1
𝑐. Since

𝑗 is surjective, there also exists 𝑏′ ∈ 𝐵𝑝+1 such that 𝑗𝑝+1𝑏
′ = 𝑐. Notice that

𝑗𝑝 𝜕
𝐵
𝑝+1

𝑏′ = 𝜕𝐵𝑝 𝑗𝑝+1𝑏
′ = 𝜕𝐵𝑝 𝑐 = 𝑗𝑝𝑏,

therefore 𝑏 − 𝜕𝐵𝑝+1
𝑏′ ∈ ker 𝑗𝑝 = im 𝑖𝑝 . Since 𝑖 is injective it follows that there exists

a unique 𝑎 ∈ 𝐴𝑝 such that 𝑖𝑎 = 𝑏 − 𝜕𝐵𝑝+1
𝑏′. Notice that since [𝑏] ∈ H𝑝(𝐵) then in

particular 𝑏 ∈ Z𝑝(𝐵), therefore

𝑖𝑝−1 𝜕
𝐴
𝑝 𝑎 = 𝜕𝐵𝑝 𝑖𝑝𝑎 = 𝜕𝐵𝑝 (𝑏 − 𝜕𝐵𝑝+1

𝑏′) = 𝜕𝐵𝑝 𝑏 − 𝜕𝐵𝑝 𝜕
𝐵
𝑝+1

𝑏′ = 0.
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From the injectivity of 𝑖 we conclude that 𝜕𝐴𝑝 𝑎 = 0, therefore 𝑎 ∈ 𝑍𝑝(𝐴) and hence

[𝑏] = [𝑏 − 𝜕𝐵𝑝+1
𝑏′] = [𝑖𝑝𝑎] = 𝑖∗ 𝑝[𝑎],

which proves that ker 𝑗∗ 𝑝 ⊆ im 𝑖∗ 𝑝 and in general ker 𝑗∗ ⊆ im 𝑖∗.

• (im 𝑗∗ = ker 𝛿) By the definition of 𝛿 we have 𝛿 𝑗∗ = 0 thus im 𝑗∗ ⊆ ker 𝛿. Let

[𝑐] ∈ ker 𝛿𝑝 then 𝛿𝑝[𝑐] = [𝑎] = 0, which means that 𝑎 ∈ B𝑝−1(𝐴) and therefore

there exists 𝑎′ ∈ 𝐴𝑝 such that 𝑎 = 𝜕𝐴𝑝 𝑎
′
. Since 𝑗 is surjective, let 𝑏 ∈ 𝐵𝑝 be such

that 𝑗𝑝𝑏 = 𝑐, then

𝑗𝑝(𝑏 − 𝑖𝑝𝑎′) = 𝑗𝑝𝑏 − 𝑗𝑝 𝑖𝑝𝑎′ = 𝑗𝑝𝑏 = 𝑐,

moreover we also have

𝜕𝐵𝑝 (𝑏 − 𝑖𝑝𝑎′) = 𝜕𝐵𝑝 𝑏 − 𝜕𝐵𝑝 𝑖𝑝𝑎
′ = 𝜕𝐵𝑝 𝑏 − 𝑖𝑝−1 𝜕

𝐴
𝑝 𝑎
′ = 𝜕𝐵𝑝 𝑏 − 𝑖𝑝−1𝑎 = 0

therefore 𝑏 − 𝑖𝑝𝑎′ ∈ Z𝑝(𝐵) and hence

𝑗∗ 𝑝[𝑏 − 𝑖𝑝𝑎′] = [𝑗𝑝(𝑏 − 𝑖𝑝𝑎′)] = [𝑐],

showing that ker 𝛿 ⊆ im 𝑗∗.

• (im 𝛿 = ker 𝑖∗) By the definition of 𝛿, if 𝑎 ∈ im 𝛿𝑝 with 𝛿[𝑐] = [𝑎], and both 𝑗𝑝𝑏 = 𝑐

and 𝑖𝑝−1𝑎 = 𝜕𝐵𝑝 𝑏 then

𝑖∗ 𝑝−1[𝑎] = [𝑖𝑝−1𝑎] = [𝜕𝐵𝑝 𝑏] = 0,

thus im 𝛿 ⊆ ker 𝑖∗. Moreover, if [𝑎′] ∈ ker 𝑖∗ 𝑝−1, let 𝑖𝑝−1𝑎 = 𝜕𝐵𝑝 𝑏 for some 𝑏 ∈ 𝐵𝑝 .
Since

𝜕𝐶𝑝 𝑗𝑝𝑏 = 𝑗𝑝−1 𝜕
𝐵
𝑝 𝑏 = 𝑗𝑝−1𝑖𝑝−1𝑎 = 0,

then 𝑗𝑝𝑏 ∈ Z𝑝(𝐶) and hence 𝛿[𝑗𝑏] = [𝑎]. Therefore ker 𝑖∗ ⊆ im 𝛿.

♮

Proposition 19.5.2. The long exact sequence induced by short exact sequences of chain

complexes is natural. In other terms, given a commutative diagram with exact rows:

0 𝐶 𝐷 𝐸 0

0 𝐶′ 𝐷′ 𝐸′ 0

𝑓

𝛼

𝑔

𝛽 𝛾

𝑓 ′ 𝑔′

then the following diagram with long exact rows commutes:

· · · H𝑛(𝐷) H𝑛(𝐸) H𝑛−1(𝐶) H𝑛−1(𝐷) · · ·

· · · H𝑛(𝐷′) H𝑛(𝐸′) H𝑛−1(𝐶′) H𝑛−1(𝐷′) · · ·

𝑔∗

𝛽∗

𝛿𝑛

𝛾∗

𝑓∗

𝛼∗ 𝛽∗

𝑔′∗ 𝛿𝑛 𝑓 ′∗
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19.6 Reduced Homology
Definition 19.6.1 (Reduced homology). Let 𝑋 be a non-empty topological space, and

define a surjective morphism 𝜀: Sing
0
𝑋 ↠ Z given by

∑
𝑗 𝑛 𝑗𝜙 𝑗 ↦→

∑
𝑗 𝑛 𝑗 . Notice that

im 𝜕1 ⊆ ker 𝜀 since given any 𝜏 ∈ Sing
1
𝑋 we have

𝜀 𝜕1 𝜏 = 𝜀(𝜏(1) − 𝜏(0)) = 1 − 1 = 0.

Therefore the sequence

· · · Sing
2
𝑋 Sing

1
𝑋 Sing

0
𝑋 Z 0

𝜕2 𝜕1 𝜀

is a chain complex—in fact, we call such complex the augmented chain complex of 𝑋. It

is to be noticed that from the isomorphism theorem for groups there exists a unique

morphism 𝜀∗: H0(𝑋) → Z such that the following diagram commutes

Sing
0
𝑋 Z

H0(𝑋) = Sing
0
𝑋

im 𝜕1

𝜀

𝜀∗

If we now define a Z-graded group H̃•(𝑋) as follows: for each 𝑝 > 0 let H̃𝑝(𝑋) ≔ H𝑝(𝑋),
while H̃0(𝑋) ≔ ker 𝜀/im 𝜕1. The group H̃𝑝(𝑋) is called the 𝑝-th reduced homology group
of 𝑋.

In particular we know that ker 𝜀∗ = ker 𝜀/im 𝜕1, therefore we may define a choice-

dependent isomorphism

H̃0(𝑋) ⊕ Z ≃ H0(𝑋)
as follows: given 𝜓 ∈ Sing

0
𝑋, define the mappings ([∑𝑗 𝑛 𝑗𝜙 𝑗], 𝑚) ↦→ [

∑
𝑗 𝑛 𝑗𝜙 𝑗 + 𝑚𝜓]

together with an inverse [∑𝑗 𝑛 𝑗𝜙 𝑗] ↦→ ([
∑
𝑗 𝑛 𝑗𝜙 𝑗 −

∑
𝑗 𝑛 𝑗𝜓],

∑
𝑗 𝑛 𝑗). Another way to see

the existence of this isomorphism is to notice that since im 𝜀∗ = Z and ker 𝜀∗ = H̃0(𝑋)
then there exists a short exact sequence

0 H̃0(𝑋) H0(𝑋) Z 0
𝜀

and since Z is free then the sequence splits and there exists an isomorphism H0(𝑋) ≃
H̃0(𝑋) ⊕ Z as expected.

19.7 Mayer-Vietoris Sequence

Barycentric Subdivision

To be added
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Mayer-Vietoris Theorem
Definition 19.7.1. Let𝑋 be a topological space and𝒰 be an open cover of𝑋. Denote by

Sing
𝒰
• 𝑋 the Z-graded abelian group given by groups Sing

𝒰
𝑛 𝑋 composed of singular

𝑛-simplices
1 𝜙:Δ𝑛

top
→ 𝑋 such that im 𝜙 ⊆ 𝑈 for some 𝑈 ∈ 𝒰—for each 𝑛 ∈ Z. Since

im 𝜕 𝑗 𝜙 ⊆ im 𝜙, the boundary map

𝜕: Sing
𝒰
• 𝑋 → Sing

𝒰
• 𝑋

is well defined and has degree −1.

Given another topological space 𝑌 together with an open covering𝒱 and a contin-

uous map 𝑓 :𝑋 → 𝑌 for which each 𝑈 ∈ 𝒰 has image 𝑓 𝑈 ⊆ 𝑉 for some 𝑉 ∈ 𝒱 , we

have an induced chain map 𝑓#: Sing
𝒰
• 𝑋 → Sing

𝒱
• 𝑌.

Theorem 19.7.2. Let𝒰 be a collection of subsets of 𝑋 such that the interior of𝒰 is an

open cover for 𝑋, then the canonical inclusion map 𝜄: Sing
𝒰
• 𝑋 → Sing• 𝑋 induces an

isomorphism

𝜄∗: H•(Sing
𝒰
• 𝑋) ≃−→ H•(𝑋).

Theorem 19.7.3. Let 𝑋 be a space and𝑈,𝑉 ⊆ 𝑋 be subsets such that Int𝑈 ∪ Int𝑉 = 𝑋

with inclusion maps:

𝑈

𝑈 ∩𝑉 𝑈 ∪𝑉 = 𝑋

𝑉

𝑘𝑖

𝑗 ℓ

Then there exists a long exact sequence of homology groups, called the Mayer-Vietoris
sequence, of the form

· · · H𝑛(𝑈 ∩𝑉) H𝑛(𝑈) ⊕ H𝑛(𝑉) H𝑛(𝑋) H𝑛−1(𝑈 ∩𝑉) · · ·𝑖∗⊕ 𝑗∗ 𝑘∗−ℓ∗ 𝛿

Moreover, this sequence is natural—that is, given subsets𝑈 ′, 𝑉 ′ ⊆ 𝑋′ with Int𝑈 ′∪
Int𝑉 ′ = 𝑋 and a continuous map 𝑓 :𝑋 → 𝑋′ for which 𝑓 𝑈 ⊆ 𝑈 ′ and 𝑓 𝑉 ⊆ 𝑉 ′ then the

following diagram commutes:

· · · H𝑛(𝑈 ∩𝑉) H𝑛(𝑈) ⊕ H𝑛(𝑉) H𝑛(𝑋) H𝑛−1(𝑈 ∩𝑉) · · ·

· · · H𝑛(𝑈 ′ ∩𝑉 ′) H𝑛(𝑈 ′) ⊕ H𝑛(𝑉 ′) H𝑛(𝑋′) H𝑛−1(𝑈 ∩𝑉) · · ·
𝑓∗ 𝑓∗⊕ 𝑓∗ 𝑓∗ 𝑓∗

Proof. For convenience, let 𝒰 ≔ {𝑈,𝑉}. Let 𝑆𝑈 and 𝑆𝑉 be the sets consisting of all

singular 𝑛-simplices in 𝑈 and 𝑉 , respectively. If F: Set→ Ab denotes the free abelian

group functor, then it follows that

Sing𝑛(𝑈 ∩𝑉) = F(𝑆𝑈 ∩ 𝑆𝑉) and Sing
𝒰
𝑛 𝑋 = F(𝑆𝑈 ∪ 𝑆𝑉).

1
A simplex with such property is called𝒰 -small.
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Define a morphism of groups

ℎ: F(𝑆𝑈) ⊕ F(𝑆𝑉)↠ F(𝑆𝑈 ∪ 𝑆𝑉)

to be given by (𝜙,𝜓) ↦→ 𝜙 − 𝜓, which gives an epimorphism. Further, define a

monomorphism of groups

𝑔: F(𝑆𝑈 ∩ 𝑆𝑉)↣ F(𝑆𝑈) ⊕ F(𝑆𝑉)

mapping 𝜏 ↦→ (𝜏, 𝜏). Notice that from construction we have ℎ𝑔 = 0, hence im 𝑔 ⊆ ker ℎ.

On the other hand, let (Φ,Ψ) ≔ (∑𝜙∈𝑆𝑈 𝑛𝜙𝜙,
∑

𝜓∈𝑆𝑉 𝑚𝜓𝜓) ∈ ker ℎ, which is the

case if and only if for each 𝜙 ∈ 𝑆𝑈 associated with a non-zero coefficient 𝑛𝜙 there

exists 𝜓 ∈ 𝑆𝑉 with 𝑚𝜓 = 𝑛𝜙 and 𝜓 = 𝜙—this construction should be bĳective in the

singular simplices that have non-zero coefficient in order to obtain Φ +Ψ = 0. From

this consideration, we conclude that for (Φ,Ψ) to be an element of the kernel of ℎ it

must be the case that each non-zero simplex lies in the intersection 𝑆𝑈 ∩ 𝑆𝑉 , therefore

it is clear that ker ℎ ⊆ im 𝑔. This shows us that

0 Sing𝑛(𝑈 ∩𝑉) Sing𝑛𝑈 ⊕ Sing𝑛 𝑉 Sing𝑛(𝑈 ∪𝑉) 0

𝑔 ℎ

(19.4)

is a short exact sequence, which can be extended as a short exact sequence of chain

complexes and degree zero chain maps 𝑔 and ℎ.

Using the long exact sequence theorem on Eq. (19.4) we obtain an exact sequence

of homology groups

· · · H𝑛(𝑈 ∩𝑉) H𝑛(𝑈) ⊕ H𝑛(𝑉) H
𝒰
𝑛 (𝑋) H𝑛−1(𝑈 ∩𝑉) · · ·𝑔∗ ℎ∗ 𝛿

Now using the isomorphism from Theorem 19.7.2 we obtain the desired long exact

sequence. ♮

Corollary 19.7.4. Let𝑋 be a non-empty topological space, and𝑈,𝑉 ⊆ 𝑋 be intersecting

subsets such that Int𝑈 ∪ Int𝑉 = 𝑋. There exists an exact sequence

· · · H̃𝑝(𝑈 ∩𝑉) H̃𝑝(𝑈) ⊕ H̃𝑝(𝑉) H̃𝑝(𝑋) H̃𝑝−1(𝑈 ∩𝑉) · · ·

and the reduced homology makes this sequence end:

· · · H̃0(𝑈) ⊕ H̃0(𝑉) H̃0(𝑋) 0

Applications of The Mayer-Vietoris Sequence
Example 19.7.5 (The circle). Consider the circle 𝑆1

and denote by 𝑠 and 𝑛 its south

and north poles, respectively. Define subsets 𝑈 ≔ 𝑆1 ∖ 𝑠 and 𝑉 ≔ 𝑆1 ∖ 𝑛. First let us

calculate the first homology group of 𝑆1
: to that end, we can use the Mayer-Vietoris

sequence for the triple (𝑆1, 𝑈, 𝑉) to obtain an exact sequence

H1(𝑈) ⊕ H1(𝑉) H1(𝑆1) H0(𝑈 ∩𝑉) H0(𝑈) ⊕ H0(𝑉)
𝑘∗−ℓ∗ 𝛿 𝑖∗⊕ 𝑗∗
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Notice that both𝑈 and 𝑉 are contractible spaces, therefore they have the same homo-

topy as the single point space, that is

H𝑝(𝑈) = H𝑝(𝑉) =
{

Z, if 𝑝 = 0

0, otherwise

Thus H1(𝑈) ⊕ H1(𝑉) = 0—implying that 𝛿 is a monomorphism—and we also have

H0(𝑈) ⊕ H0(𝑉) ≃ Z ⊕ Z. On the other hand, the set 𝑈 ∩ 𝑉 is homotopic to a space

consisting of two points—that is, 𝑈 ∩ 𝑉 ≃
h
{∗} ⨿ {∗}—thus in particular we have an

isomorphism H0(𝑈∩𝑉) ≃ Z⊕Z by mapping 𝑎𝜙+𝑏𝜓 ↦→ (𝑎, 𝑏). In summary, we obtain

the following exact sequence

0 H1(𝑆1) Z ⊕ Z Z ⊕ Z𝛿 𝑖′∗⊕ 𝑗′∗

where both 𝑖′∗, 𝑗
′
∗: Z ⊕ Z ⇒ Z map (𝑎, 𝑏) ↦→ 𝑎 + 𝑏, since 𝑖∗ and 𝑗∗ are inclusions. Given

an element 𝑎𝜙 + 𝑏𝜓 ∈ H0(𝑈 ∩𝑉), we find that 𝑎𝜙 + 𝑏𝜓 corresponds to an element of

the kernel of 𝑖′∗ ⊕ 𝑗′∗ if and only if 𝑎 = −𝑏. Hence ker(𝑖′∗ ⊕ 𝑗′∗) is a subgroup of Z ⊕ Z
generated by elements of the form (𝑎,−𝑎)—that is,

ker(𝑖′∗ ⊕ 𝑗′∗) = im 𝛿 ≃ Z.

Since 𝛿 is injective, then H1(𝑆1) ≃ im 𝛿, therefore H1(𝑆1) ≃ Z.

Moreover, for the case of 𝑝 > 1 we have an exact sequence

H𝑝(𝑈) ⊕ H𝑝(𝑉) H𝑝(𝑆1) H𝑝−1(𝑈 ∩𝑉)
𝑘∗−ℓ∗ 𝛿

however from previous considerations we know that for 𝑝 > 1 we have both H𝑝(𝑈) =
H𝑝(𝑉) = 0 and H𝑝−1(𝑈∩𝑉) = 0. This shows that ker 𝛿 = H𝑝(𝑆1) and since im(𝑘∗−ℓ∗) = 0

it follows from exactness that H𝑝(𝑆1) = 0. This results shows us that:

H𝑝(𝑆1) =
{

Z, if 𝑝 = 1

0, otherwise

Example 19.7.6 (𝑛-spheres). Let’s consider the general case of an 𝑛-sphere 𝑆𝑛 ⊆ R𝑛+1
,

where 𝑛 > 0. Let 𝑛, 𝑠 ∈ 𝑆𝑛 be the north and south poles, respectively, and define

subsets 𝑈 ≔ 𝑆𝑛 ∖ 𝑛 and 𝑉 ≔ 𝑆𝑛 ∖ 𝑠. Via the stereographic projection we know that

there are topological isomorphisms

𝑈 ≃ R𝑛 ≃ 𝑉 and 𝑈 ∩𝑉 ≃ R𝑛 ∖ 0,

furthermore, 𝑆𝑛−1
is a deformation retract of R𝑛 ∖ 0, hence 𝑈 ∩𝑉 ≃

h
𝑆𝑛−1

. Therefore

we have, for any 𝑝:

H𝑝(𝑈) ⊕ H𝑝(𝑉) H𝑝(𝑆𝑛) H𝑝−1(𝑈 ∩𝑉) H𝑝−1(𝑈) ⊕ H𝑝−1(𝑉)

H𝑝(R𝑛) ⊕ H𝑝(R𝑛) H𝑝(𝑆𝑛) H𝑝−1(𝑆𝑛−1) H𝑝−1(R𝑛) ⊕ H𝑝−1(R𝑛)

𝑘∗−ℓ∗

≃

𝛿 𝑖∗⊕ 𝑗∗

≃ ≃

ℎ∗ 𝑑∗ 𝑔∗
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Since R𝑛
is contractible then for 𝑝 > 0 we have H𝑝(R𝑛) = 0, therefore both end terms

of the above sequence are zero. By exactness of the sequence, this implies that for

𝑝 > 1 the map 𝛿 is an isomorphism H𝑝(𝑆𝑛) ≃ H𝑝−1(𝑆𝑛−1). Therefore, for 𝑝 = 𝑛 we find

recursively that H𝑛(𝑆𝑛) ≃ H1(𝑆1) ≃ Z. In the case of 𝑝 = 1 and 𝑛 > 1 we have that both

𝑑∗ and 𝑔∗ are monomorphisms, thus H1(𝑆𝑛) ≃ 0—this also follows from Hurewicz’s

theorem. Otherwise, if 𝑝 > 1 and 𝑝 ≠ 𝑛 then H𝑝(𝑆𝑛). This settles the following: for

𝑛 > 0

H𝑝(𝑆𝑛) =
{

Z, if 𝑝 ∈ {0, 𝑛}
0, otherwise

for the case 𝑛 = 0, 𝑆0
consists of two points—therefore has two path connected com-

ponents, hence H0(𝑆0) ≃ Z ⊕ Z, thus

H𝑝(𝑆0) =
{

Z ⊕ Z, if 𝑝 = 0

0, otherwise

Example 19.7.7 (Torus). Consider the torus 𝑇. We shall calculate the homology of 𝑇

using two different coverings𝑈 and 𝑉 :

(a) Let𝑈 and 𝑉 be intersecting subsets of 𝑇, where𝑈 is one half of the torus and 𝑉 is

the other half—therefore:

𝑈 ≃ 𝑉 ≃
h
𝑆1

and 𝑈 ∩𝑉 = 𝑆1 ⨿ 𝑆1.

Since 𝑇 is path-connected, we know that H0(𝑇) = Z.

• For the case where 𝑝 > 2 we have

H𝑝(𝑈) ⊕ H𝑝(𝑉) H𝑝(𝑇) H𝑝−1(𝑈 ∩𝑉)

0 H𝑝(𝑇) 0

≃ ≃

hence from exactness we obtain H𝑝(𝑇) = 0.

• For the case 𝑝 = 2 we have

H2(𝑈) ⊕ H2(𝑉) H2(𝑇) H1(𝑈 ∩𝑉) H1(𝑈) ⊕ H1(𝑉)

0 H2(𝑇) Z ⊕ Z Z ⊕ Z

𝑘∗−ℓ∗ 𝛿

≃

𝑖∗⊕ 𝑗∗

≃

Since the sequence is exact, then H2(𝑇)↣ Z ⊕ Z is a monomorphism. Let’s

analyse the map 𝑖∗ ⊕ 𝑗∗: let 𝑢, 𝑣 ∈ 𝑍1(𝑈 ∩𝑉) be equators, where 𝑢 sits in one

of the cylinders while 𝑣 in the other. Notice however that

(𝑖∗ ⊕ 𝑗∗)[𝛼]𝑈∩𝑉 = (𝛼, 𝛽) = (𝑖∗ ⊕ 𝑗∗)[𝛽]𝑈∩𝑉
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since the classes of 𝛼 and 𝛽 are equal in both H1(𝑈) and H1(𝑉). From injectivity

of 𝛿 we know that H2(𝑇) ≃ im 𝛿, moreover exactness implies in im 𝛿 = ker(𝑖∗⊕
𝑗∗). Notice that

ker(𝑖∗ ⊕ 𝑗∗) = Z[𝛼 − 𝛽]𝑈∩𝑉 ≃ Z,

therefore H2(𝑇) ≃ Z.

• For the case where 𝑝 = 1 we have

H1(𝑈 ∩𝑉) H1(𝑈) ⊕ H1(𝑉) H1(𝑇) H0(𝑈 ∩𝑉) H0(𝑈) ⊕ H0(𝑉)

Z ⊕ Z Z ⊕ Z H1(𝑇) Z ⊕ Z Z ⊕ Z

(𝑖∗⊕ 𝑗∗)1

≃

𝑘∗−ℓ∗

≃

𝛿 (𝑖∗⊕ 𝑗∗)0

≃ ≃

In order to analyse the map (𝑖∗⊕ 𝑗∗)0 we can take distinct points 𝑢, 𝑣 ∈ 𝑈∩𝑉—

each contained in one of the two connected components of 𝑈 ∩ 𝑉—so that

[𝑢]𝑈 generates H0(𝑈)while [𝑣]𝑉 generates H0(𝑉). It follows that

H0(𝑈 ∩𝑉) ≃ Z[𝑢]𝑈∩𝑉 ⊕ Z[𝑣]𝑈∩𝑉 .

Notice that since [𝑢]𝑈 = [𝑣]𝑈 and [𝑢]𝑉 = [𝑣]𝑉 then

(𝑖∗ ⊕ 𝑗∗)0[𝑢]𝑈∩𝑉 = (𝑖∗ ⊕ 𝑗∗)0[𝑣]𝑈∩𝑉 ,

therefore, ker(𝑖∗ ⊕ 𝑗∗)0 = Z[𝑢 − 𝑣]𝑈∩𝑉 ≃ Z and from exactness we have

im 𝛿 = ker(𝑖∗ ⊕ 𝑗∗)0 ≃ Z.

It should be noted that the long sequence can be split into short exact se-

quences, for instance, we are interested in the following induced short se-

quence:

0 im(𝑘∗ − ℓ∗)1 H1(𝑇) im 𝛿 0

0 im(𝑘∗ − ℓ∗)1 H1(𝑇) ker(𝑖∗ ⊕ 𝑗∗)0 0

Moreover, we have

im(𝑘∗ − ℓ∗) ≃
Z ⊕ Z

ker(𝑘∗ − ℓ∗)
≃ Z ⊕ Z

im(𝑖∗ ⊕ 𝑗∗)1
≃ Z ⊕ Z

Z
≃ Z,

therefore the short exact sequence above becomes the split sequence

0 Z H1(𝑇) Z 0

which implies in H1(𝑇) ≃ Z ⊕ Z.
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This can be summarised as

H𝑝(𝑇) =


Z, if 𝑝 = 0

Z ⊕ Z, if 𝑝 = 1

Z, if 𝑝 = 2

0, otherwise

(b) Let 𝑝 ∈ 𝑇 be any point. Consider the cover composed of𝑈 ≔ 𝑇 ∖ 𝑝 and 𝑉 being a

disk around 𝑝. Notice that 𝑉 is topologically isomorphic to a disk in R2
, which is

a convex euclidean set, thus

H𝑝(𝑉) =
{

Z, if 𝑝 = 0

0, otherwise

Also notice that 𝑈 ∩ 𝑉 = 𝑉 ∖ 𝑝, which is isomorphic to 𝑆1
, hence H𝑝(𝑈 ∩ 𝑉) ≃

H𝑝(𝑆1). The reader should now draw for himself the gluing diagram of 𝑇 without

a point, noticing that we can homotopically remove the inside face of the diagram,

remaining only the gluing boundaries, which after being glued we see that𝑇∖𝑝 ≃
h

𝑆1 ∨ 𝑆1
, hence H𝑝(𝑈) ≃ H𝑝(𝑆1 ∨ 𝑆1). Using the the Hurewicz’s theorem we obtain:

H1(𝑈) ≃ H1(𝑆1 ∨ 𝑆1) ≃ 𝜋Ab

1
(𝑆1 ∨ 𝑆1) = (Z ∗ Z)Ab ≃ Z ⊕ Z.

Notice that for 𝑝 ⩾ 3 we have

0 = H𝑝(𝑈) ⊕ H𝑝(𝑉) H𝑝(𝑇) H𝑝−1(𝑈 ∩𝑉) = 0

therefore from exactness we get H𝑝(𝑇) = 0. For the case where 𝑝 = 2 we have:

H2(𝑈) ⊕ H2(𝑉) H2(𝑇) H1(𝑈 ∩𝑉) H1(𝑈) ⊕ H1(𝑉)

(Z ⊕ Z) ⊕ 0

0 H2(𝑇) Z Z ⊕ Z

≃

≃

≃

Since 𝐻1(𝑉) is zero, then in particular the map H1(𝑈 ∩𝑉) → H1(𝑈) ⊕H1(𝑉) sends

[𝜙] ↦→ (0, 0), therefore the induced map Z → Z ⊕ Z is zero, that is, has kernel Z.

Since the sequence is exact, the image of H2(𝑇) → Z equals Z, therefore being both

an injection and surjection, proving that H2(𝑇) ≃ Z.

Now for 𝑝 = 1:

H1(𝑈 ∩𝑉) H1(𝑈) ⊕ H1(𝑉) H1(𝑇) H0(𝑈 ∩𝑉) H0(𝑈) ⊕ H0(𝑉)

(Z ⊕ Z) ⊕ 0

Z Z ⊕ Z H1(𝑇) Z Z ⊕ Z

≃

≃

≃

≃
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Furthermore, from exactness we know that Z ⊕ Z→ H1(𝑇) has null kernel, hence

a monomorphism, since the image of Z→ Z ⊕ Z is zero. On the other hand, since

H0(𝑈 ∩𝑉) → H0(𝑈) ⊕ H0(𝑉) induces an injective mapping 1 ↦→ (1, 1) of the form

Z → Z ⊕ Z, then by exactness it follows that the image of H1(𝑇) → H0(𝑈 ∩ 𝑉) is

identically zero. This proves that Z ⊕ Z → H1(𝑇) is also an epimorphism, which

shows the existence of an isomorphism H1(𝑇) ≃ Z ⊕ Z. In summary we have:

H𝑝(𝑇) =


Z, if 𝑝 = 0

Z ⊕ Z, if 𝑝 = 1

Z, if 𝑝 = 2

0, otherwise

where H0(𝑇) = Z comes from the fact that 𝑇 is path-connected.

Example 19.7.8 (Klein bottle). Let 𝐾 denote the Klein bottle and let both 𝑀 and 𝑀′

denote copies of a Möbius band. If the relation ∼ denoted the gluing of 𝑀 and 𝑀′

along their boundary, then 𝐾 ≃ (𝑀 ⨿𝑀′)/∼. Moreover, we know that 𝑀 = 𝑀′ ≃
h
𝑆1

and 𝑀 ∩𝑀′ ≃
h
𝑆1

. From this we know that for each 𝑝 > 2 we have

H𝑝(𝑀) ⊕ H𝑝(𝑀′) H𝑝(𝐾) H𝑝−1(𝑀 ∩𝑀′)

0 H𝑝(𝐾) 0

therefore H𝑝(𝐾) = 0 from exactness. Let’s consider the case where 𝑝 = 2:

H2(𝑀) ⊕ H2(𝑀′) H2(𝐾) H1(𝑀 ∩𝑀′) H1(𝑀) ⊕ H1(𝑀′)

0 H2(𝐾) Z Z ⊕ Z

Consider the circle 𝜎 ∈ 𝑍1(𝑀 ∩ 𝑀′), which generates all 1-cycles of the intersection,

then when mapped back to either 𝑀 or 𝑀′we obtain a cycle looping two times around

the boundary of the strips, therefore the induced mapping Z→ Z⊕Z takes 1 ↦→ (2, 2),
showing that the map is injective—hence has a null kernel. Since H2(𝐾)↣ Z is also

injective, then H2(𝐾) is isomorphic to its image in Z—which on the other hand is equal

to the kernel of Z→ Z ⊕ Z by exactness of the sequence—hence H2(𝐾) = 0.

For the case where 𝑝 = 1 we have:

H1(𝑀) ⊕ H1(𝑀′) H1(𝐾) H0(𝑀 ∩𝑀′) H0(𝑀) ⊕ H0(𝑀′) H0(𝐾)

Z ⊕ Z H1(𝐾) Z Z ⊕ Z Z

Notice that Z→ Z⊕Z maps 1 ↦→ (1, 1) since it maps the generator of the circle 𝑀 ∩𝑀′
to the generators of the disjoint circles 𝑀 and 𝑀′. This mapping is injective, therefore

473



by exactness it follows that the map H1(𝐾) → Z is identically zero. From this we can

extract the following short exact sequence:

0 H1(𝑀 ∩𝑀′) H1(𝑀) ⊕ H1(𝑀) H1(𝐾) 0

0 Z Z ⊕ Z H1(𝐾) 0

therefore from the isomorphism theorem for groups we have

H1(𝐾) ≃
Z ⊕ Z

im(Z→ Z ⊕ Z) =
Z ⊕ Z

{(2𝑥, 2𝑥) : 𝑥 ∈ Z} ≃ Z ⊕ (Z/2Z).

Indeed, the last isomorphism is given by the mapping [𝑎, 𝑏] ↦→ (𝑎 + 𝑏, [𝑏]): surjectivity

is trivial, and on the other hand if (𝑎 − 𝑏, [𝑏]) = (0, [0]) then 𝑎 = 𝑏 and 𝑏 = 2𝑐 for

some 𝑐 ∈ Z therefore [𝑎, 𝑏] = [2𝑐, 2𝑐] = 0, proving injectivity—which shows the last

isomorphism. In summary we obtain:

H𝑝(𝐾) =


Z, if 𝑝 = 0

Z ⊕ (Z/2Z), if 𝑝 = 1

0, otherwise

Example 19.7.9 (Projective plane). Consider RP2
as the gluing of the Möbius strip 𝑀

with the disk 𝐷 along the boundary. Let 𝑝 ∈ RP2
be any point, define 𝑈 to be a disk

around 𝑝, and𝑉 ≔ RP2 ∖ 𝑝 ≃
h
𝑀 ≃

h
𝑆1

—then we also have𝑈 ∩𝑉 = 𝑈 ∖ 𝑝 ≃
h
𝑆1

. For

any 𝑝 > 2 we have

H𝑝(𝑈) ⊕ H𝑝(𝑉) H𝑝(RP2) H𝑝−1(𝑈 ∩𝑉)

0 H𝑝(RP2) 0

and from exactness we obtain H𝑝(RP2) = 0. For the case 𝑝 = 2 we have

H2(𝑈) ⊕ H2(𝑉) H2(RP2) H1(𝑈 ∩𝑉) H1(𝑈) ⊕ H1(𝑉)

0 ⊕ Z

0 H2(RP2) Z Z

𝛿 𝑖∗⊕ 𝑗∗

From injectivity of the map 𝛿 we find H2(RP2) ≃ im 𝛿 and from exactness we have

im 𝛿 = ker(𝑖∗ ⊕ 𝑗∗). Notice however that the mapping Z → Z must send 1 ↦→ 2 since

the generator of H1(𝑈 ∩𝑉) is a loop through the circle, which is certainly a boundary

in H1(𝑈) since 𝑈 is a disk, while 𝑗 will map such loop to a double loop around the

boundary of the Möbius strip. This shows that 𝑖∗ ⊕ 𝑗∗ is injective and hence has null
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kernel, proving that H2(RP2) = 0. For the case where 𝑝 = 1 one has, in the reduced

homology case, that:

H1(𝑈 ∩𝑉) H1(𝑈) ⊕ H1(𝑉) H1(RP2) H̃0(𝑈 ∩𝑉)

H̃0(𝑆1)

Z Z H1(RP2) 0

𝑖∗⊕ 𝑗∗ 𝑘∗−ℓ∗

Since Z ↠ H1(RP2) is surjective, there exists an isomorphism

H1(RP2) ≃ Z/ker(𝑘∗ − ℓ∗) = Z/im(𝑖∗ ⊕ 𝑗∗) = Z/2Z.

Moreover, since RP2
is path-connected then H0(RP2) ≃ Z. In summary we obtained:

H𝑝(RP2) =


Z, if 𝑝 = 0

Z/2Z, if 𝑝 = 1

0, otherwise
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Part VI

Homotopy Theory
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Chapter 20

Simplicial Sets

20.1 Simplex Category

Construction
Definition 20.1.1 (Skeletal simplex category). We denote by ∆ the category whose

objects are natural numbers [𝑛] ≔ {0 ⩽ 1 ⩽ . . . ⩽ 𝑛}, and whose morphisms 𝜙: [𝑛] →
[𝑚] are order-preserving—that is, if 𝑖 ⩽ 𝑗 then 𝜙(𝑖) ⩽ 𝜙(𝑗). The category ∆ is called

the skeletal simplex category.

Along with the simplex category comes distinguished morphisms:

• For each 0 ⩽ 𝑗 ⩽ 𝑛, we denote by 𝛿𝑛
𝑗
: [𝑛 − 1]↣ [𝑛] the order-preserving injective

morphism skipping the 𝑗-th value:

𝛿𝑛𝑗 (𝑖) ≔
{
𝑖 , if 𝑖 < 𝑗 ,

𝑖 + 1, 𝑖 ⩾ 𝑗.

This morphism is called elementary faces.
• For each 0 ⩽ 𝑗 ⩽ 𝑛, we denote by 𝜎𝑛

𝑗
: [𝑛 + 1] ↠ [𝑛] the surjective morphism

repeating the 𝑗-th value twice and every other value only once:

𝜎𝑛𝑗 (𝑖) ≔
{
𝑖 , if 𝑖 ⩽ 𝑗 ,

𝑖 − 1, if 𝑖 > 𝑗.

This morphism is called elementary degeneracies.

When convenient, we may drop the superscript of these maps and simply refer to them

as 𝛿𝑖 and 𝜎𝑗 .

Notation 20.1.2 (Morphisms in ∆). When convenient, a morphism 𝑓 : [𝑛] → [𝑚] in ∆
shall be explicitly denoted by

𝑓 ≔ ⟨ 𝑓0 𝑓1 . . . 𝑓𝑛⟩
where 𝑓𝑗 ≔ 𝑓 𝑗 ∈ [𝑚] for each 0 ⩽ 𝑗 ⩽ 𝑛. Moreover these maps can also be referred to

as simplicial operators.
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Lemma 20.1.3 (Generating morphisms in ∆). Every morphism of ∆ can be generated

by a composition of elementary faces and degeneracies.

Proof. Let 𝑓 : [𝑛] → [𝑚] be any morphism of ∆. We can factor 𝑓 through an injection

𝜄: [𝑛]↣ [𝑘] and a surjection 𝑠: [𝑘]↠ [𝑚]:

[𝑛] [𝑚]

[𝑘]

𝑓

𝑠 𝜄

where 𝑘 ≔ | im 𝑓 |. Since 𝑠 and 𝜄 must be order-preserving maps, it follows that they can

be written as a finite composition of elementary degeneracies and elementary faces. ♮

Corollary 20.1.4. Every monomorphism of ∆ is split (admits a retraction), while every

epimorphism of ∆ is split (admits a section).

Proof. Given an elementary face 𝛿 𝑗 : [𝑛] ↣ [𝑛 + 1] the elementary degeneracy map

𝜎𝑗 : [𝑛 + 1]↠ [𝑛] is a retract of 𝛿 𝑗 , and 𝛿 𝑗 is a section of 𝜎𝑗 . ♮

Corollary 20.1.5 (Cosimplicial identities). Fix any 𝑛 ∈ N and consider indices 0 ⩽ 𝑖 , 𝑗 ⩽
𝑛. The following identities correlate elementary faces and degeneracies:

(1) If 𝑖 < 𝑗 then 𝛿𝑛
𝑗
𝛿𝑛−1

𝑖
= 𝛿𝑛

𝑖
𝛿𝑛−1

𝑗−1
.

(2) If 𝑖 < 𝑗 then 𝜎𝑛−1

𝑖
𝜎𝑛
𝑗
= 𝜎𝑛−1

𝑗−1
𝜎𝑛
𝑖
.

(3) If 𝑖 < 𝑗 then 𝜎𝑛−1

𝑖
𝛿𝑛
𝑗
= 𝛿𝑛−1

𝑗−1
𝜎𝑛−2

𝑖
.

(4) If 𝑖 = 𝑗 − 1 or 𝑖 = 𝑗, then 𝜎𝑛
𝑖
𝛿𝑛+1

𝑗
= id𝑛 .

(5) If 𝑖 > 𝑗 then 𝜎𝑛−1

𝑖
𝛿𝑛
𝑗
= 𝛿𝑛−1

𝑗
𝜎𝑛−2

𝑖−1
.

These identities can be found in the following four commutative diagrams:

[𝑛 − 2] [𝑛 − 1]

[𝑛 − 1] [𝑛]

𝛿𝑛−1

𝑖

𝛿𝑛−1

𝑗−1

𝛿𝑛
𝑗

𝛿𝑛
𝑖

[𝑛 + 1] [𝑛]

[𝑛] [𝑛 − 1]

𝜎𝑛
𝑗

𝜎𝑛
𝑖 𝜎𝑛−1

𝑖

𝜎𝑛−1

𝑗−1

[𝑛 − 1] [𝑛]

[𝑛 − 2] [𝑛 − 1]

𝛿𝑛
𝑗

𝜎𝑛−2

𝑖
𝜎𝑛−1

𝑖

𝛿𝑛−1

𝑗−1

[𝑛 − 1] [𝑛]

[𝑛 − 2] [𝑛 − 1]

𝛿𝑛
𝑗

𝜎𝑛−2

𝑖−1
𝜎𝑛−1

𝑖

𝛿𝑛−1

𝑗
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Definition 20.1.6 (Cosimplicial object). Given a category C, we define a cosimplicial
object in C to be a covariant functor

𝐹: ∆ −→ C.
Any cosimplicial object 𝐹 is completely determined by 𝐹[𝑛] for all 𝑛 ∈ N and by the

maps 𝐹𝛿𝑖 and 𝐹𝜎𝑗 . The collection of all cosimplicial objects of C will be denoted by

CoSimp(C).

Limits & Colimits in ∆
Lemma 20.1.7 (Pushout of injections). Let 𝜄: [𝑘] ↩→ [𝑛] and 𝜏: [𝑘] ↩→ [𝑚] be order-

preserving inclusions where

𝜄(𝑗) ≔ 𝑗 and 𝜏(𝑗) ≔ 𝑗 + (𝑚 − 𝑘),
that is, 𝜄 sends [𝑘] to the initial segment of [𝑛], while 𝜏 sends [𝑘] to the terminal segment

of [𝑚]. There exists a pushout

[𝑘] [𝑛]

[𝑚] [𝑛] ∪[𝑘] [𝑚]

𝜄

𝜏
⌜

in the simplex category ∆.

Proof. Indeed, if we consider [𝑚 + 𝑛 − 𝑘] as a candidate for the pushout, notice that the

following diagram commutes

[𝑘] [𝑛]

[𝑚] [𝑚 + 𝑛 − 𝑘]

𝜄

𝜏 𝜏

𝜄

Now, consider any object [ℓ ] ∈ ∆ together with two morphisms 𝑓 : [𝑛] → [ℓ ] and

𝑔: [𝑚] → [ℓ ] such that 𝑓 𝜄 = 𝑔𝜏. Define a map 𝜙: [𝑚 + 𝑛 − 𝑘] → [ℓ ] as follows

𝜙(𝑗) ≔

𝑔(𝑗), if 𝑗 ⩽ 𝑚 − 𝑘,
𝑔(𝑗) = 𝑓 (𝑗 − (𝑚 − 𝑘)), if 𝑚 − 𝑘 ⩽ 𝑗 ⩽ 𝑚,

𝑓 (𝑗 − (𝑚 − 𝑘)), if 𝑚 ⩽ 𝑗 ⩽ 𝑚 + 𝑛 − 𝑘.
It is easy to see that 𝜙 is an order-preserving map and is uniquely defined so that the

following diagram commutes

[𝑘] [𝑛]

[𝑚] [𝑚 + 𝑛 − 𝑘]

[ℓ ]

𝜄

𝜏 𝜏 𝑓

𝜄

𝑔

𝜙
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Therefore [𝑚+𝑛− 𝑘] = [𝑛]∪[𝑘] [𝑚] since we are in a skeletal category and isomorphism

classes contain a unique representative. ♮

These pushouts lead to an interesting construction, any object [𝑛] ∈ ∆ is the colimit

of a diagram consisting of [0]’s and [1]’s, since

[0] [𝑛]

[𝑚] [𝑚 + 𝑛]

0

𝑚
⌜

Lemma 20.1.8 (Pushout of surjections). The following properties concern the pushout

of pairs of surjective morphisms in ∆:

(a) Considering the cosimplicial identity (2) (see Corollary 20.1.5), where 𝑖 < 𝑗, there

exists sections 𝛼: [𝑛] → [𝑛 + 1] of 𝜎𝑛
𝑖
, and 𝛽: [𝑛 − 1] → [𝑛] of 𝜎𝑛−1

𝑖
such that the

following diagram commutes

[𝑛 + 1] [𝑛]

[𝑛] [𝑛 − 1]

𝜎𝑛
𝑗

𝜎𝑛
𝑖 𝜎𝑛−1

𝑖
𝛼

𝜎𝑛−1

𝑗−1

𝛽

that is, 𝜎𝑛
𝑗
𝛼 = 𝛽𝜎𝑛−1

𝑗−1
— these sections are said to be compatible with the square.

Therefore, the square is an absolute pushout.

(b) Let 𝑝: [𝑛] ↠ [𝑘] and 𝑞: [𝑛] ↠ [ℓ ] be surjections in ∆. Then the pushout of 𝑝 and 𝑞

exists and is absolute:
[𝑛] [ℓ ]

[𝑘] [𝑚]

𝑞

𝑝

⌜

Proof. For the proof of item (a), proceed as follows. From the cosimplicial identity (3) we

have 𝛿𝑛+1

𝑖
𝜎𝑛
𝑖
= 𝜎𝑛+1

𝑖
𝛿𝑛+2

𝑖+1
, moreover, from (4) we obtain 𝜎𝑛+1

𝑖
𝛿𝑛+2

𝑖+1
= id𝑛+1 — thus 𝛿𝑛+1

𝑖
is

a section of 𝜎𝑛
𝑖
. Analogously, we find that 𝛿𝑛

𝑖
is a section of 𝜎𝑛−1

𝑖
. For the compatibility

condition, notice that since 𝑖 < 𝑗, then from (5) we know that 𝜎𝑛
𝑗
𝛿𝑛+1

𝑖
= 𝛿𝑛

𝑖
𝜎𝑛−1

𝑗−1
.

Therefore we may define 𝛼 ≔ 𝛿𝑛+1

𝑖
and 𝛽 ≔ 𝛿𝑛

𝑖
.

For item (b), since surjections are finite compositions of degeneracies, via item (a)

and Proposition 2.5.27, we conclude that the square in (b) is an absolute pushout. ♮

Lemma 20.1.9. The following are properties of pullbacks along monomorphisms and

pushouts along epimorphisms in the simplex category ∆:
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(a) If 𝑓 : [𝑚]↣ [𝑛] is a monomorphism, then if 𝑔: [𝑘] → [𝑛] is any morphism such that

im 𝑔 ∩ im 𝑓 ≠ ∅, then the square

[𝑎] [𝑘]

[𝑚] [𝑛]

⌟
𝑔

𝑓

is a pullback in ∆.

(b) If 𝑓 : [𝑚]↠ [𝑛] is an epimorphism, then for any morphism 𝑔: [𝑚] → [𝑘], then square

[𝑚] [𝑛]

[𝑘] [𝑏]

𝑓

𝑔

⌜

is a pushout in ∆.

I did not understand how to prove this, the proof presented on the book is a bit

mysterious

20.2 Simplicial Sets

Construction
Definition 20.2.1 (Simplicial object). For any category C, a simplicial object in C is a

contravariant functor ∆op → C. We define Simp(C) to be the category whose objects

are simplicial objects and natural transformations between them—such category is

commonly referred to as the simplicial category of C.

Notation 20.2.2 (Unwrapping the definition). Less compactly, a simplicial object 𝑋 ∈
Simp(C) consists of a collection of objects (𝑋𝑛)𝑛∈N, for 𝑋𝑛 ≔ 𝑋[𝑛] ∈ C, and arrows

𝛼∗:𝑋𝑛 → 𝑋𝑚 in C for each map 𝛼: [𝑚] → [𝑛] in ∆. The nature of these arrows are as

discussed in Remark 1.7.3.

Notation 20.2.3 (Simplicial sets, notations and nomenclatures). In particular, the most

important case we’ll study for the time being is the simplicial category of sets, which we

denote by sSet. The objects of sSet shall be called simplicial sets.
Given a simplicial set 𝑋 ∈ sSet, the points of 𝑋𝑛 ∈ Set will be referred to as the

𝑛-cells (or 𝑛-simplices) of 𝑋 ∈ sSet.

Since every map 𝛼 in ∆ may be decomposed into elementary face and degeneracies,

the the collection 𝛿∗
𝑖

and 𝜎∗
𝑗

also generate the morphisms 𝛼∗ between the objects of
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(𝑋𝑛)𝑛∈N of C. In the context of the simplicial category, we denote them by

𝑑𝑛𝑖 ≔ (𝛿𝑛𝑖 )∗:𝑋𝑛 −→ 𝑋𝑛−1,

𝑠𝑛𝑗 ≔ (𝜎𝑛𝑗 )∗:𝑋𝑛 −→ 𝑋𝑛+1,

for all 0 ⩽ 𝑖 , 𝑗 ⩽ 𝑛. The arrows 𝑑𝑖 are called face maps (or cofaces), while the arrows 𝑠 𝑗
are called degeneracy maps (or codegeneracies) of the simplicial object 𝑋.

A map 𝜂:𝑋 ⇒ 𝑌 is a natural transformation between simplicial objects if and only if

it is compatible with the face and degeneracy maps, that is, the following two diagrams

commute in C for all 𝑛 ∈ N, 0 ⩽ 𝑖 , 𝑗 ⩽ 𝑛:

𝑋𝑛 𝑌𝑛

𝑋𝑛−1 𝑌𝑛−1

𝜂𝑛

𝑑𝑛
𝑖

𝑑𝑛
𝑖

𝜂𝑛−1

𝑋𝑛 𝑌𝑛

𝑋𝑛+1 𝑌𝑛+1

𝜂𝑛

𝑠𝑛
𝑗

𝑠𝑛
𝑗

𝜂𝑛+1

Corollary 20.2.4 (Simplicial identities). Since the face and degeneracy maps 𝑑𝑖 and

𝑠 𝑗 are dual to the elementary face and degeneracy maps 𝛿𝑖 and 𝜎𝑗 , they satisfy the

following identities—which are dual to Corollary 20.1.5:

(1) 𝑑𝑖𝑑 𝑗 = 𝑑 𝑗−1𝑑𝑖 , for 𝑖 < 𝑗.

(2) 𝑠 𝑗𝑠𝑖 = 𝑠𝑖𝑠 𝑗−1, for 𝑖 < 𝑗.

(3) 𝑑 𝑗𝑠𝑖 = 𝑠𝑖𝑑 𝑗−1, for 𝑖 < 𝑗 − 1.

(4) 𝑑 𝑗𝑠𝑖 = id, if 𝑖 = 𝑗 or 𝑖 = 𝑗 − 1.

(5) 𝑑 𝑗𝑠𝑖 = 𝑠𝑖−1𝑑 𝑗 , for 𝑖 > 𝑗.

Subcomplexes

Definition 20.2.5 (Subcomplex). By a subcomplex of a simplicial set we mean a subobject.

Lemma 20.2.6. Given a morphism of simplicial sets 𝑓 :𝑋 → 𝑌, the image 𝑓 𝑋 is a

subcomplex of 𝑌.

Discrete Simplicial Sets

Definition 20.2.7 (Discrete simplicial set). We say that a simplicial set 𝑋 is discrete if

every simplicial operator 𝑓 : [𝑚] → [𝑛] induces a bĳective set-function 𝑓 ∗:𝑋𝑛 → 𝑋𝑚 . We

denote by sSetdisc
the full subcategory of sSet consisting of discrete simplicial sets.

For every set 𝑆, there exists a discrete simplicial set 𝑆disc
where 𝑆disc

𝑛 ≔ 𝑆 for each

𝑛 ∈ N, and for any 𝑓 : [𝑛] → [𝑚]we have 𝑆disc 𝑓 ≔ id𝑆.

Corollary 20.2.8. For any set 𝑆 and simplicial set 𝑋, there exists a bĳection

MorsSet(𝑆disc, 𝑋) ≃MorSet(𝑆, 𝑋0).
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Proof. Define a set-function Φ: MorsSet(𝑆disc, 𝑋) → MorSet(𝑆, 𝑋0) by mapping each

simplicial set morphism 𝑓 : 𝑆disc → 𝑋 to the corresponding set function 𝑓0: 𝑆 → 𝑋0.

To prove that Φ is injective, consider simplicial morphisms 𝑓 , 𝑔: 𝑆disc ⇒ 𝑋 such that

𝑓0 = 𝑔0. Applying the naturallity of 𝑓 and 𝑔 to the simplicial operator 𝑗: [𝑛] → [0] we

obtain that 𝑗∗ 𝑓0 = 𝑓𝑛 and 𝑗∗𝑔0 = 𝑔𝑛 , but since 𝑓0 = 𝑓0, then 𝑓𝑛 = 𝑔𝑛—proving that 𝑓 = 𝑔.

Surjectivity is immediate, therefore Φ is a bĳection. ♮

Proposition 20.2.9 (sSetdisc
& Set). The full subcategory of discrete simplicial sets is

equivalent to the category of sets.

Proof. We start by constructing a functor disc: Set → sSetdisc
where we define the

simplicial set 𝑆disc
associated with a given set 𝑆 to be the simplicial set with 𝑆disc

𝑛 = 𝑆

for every 𝑆. Each set-function 𝑓 :𝐴 → 𝐵 is mapped to their corresponding simplicial

set morphism 𝑓 :𝐴disc → 𝐵disc
given by 𝑓𝑛 ≔ 𝑓 :𝐴→ 𝐵 for each 𝑛 ∈ N. We now show

that disc is an equivalence of categories:

• (Fully faithful) Given any two sets, 𝑆 and𝑇, define a set-functionΦ: MorSet(𝑆, 𝑇) →
MorsSetdisc(𝑆disc, 𝑇disc) by mapping each set function 𝑓 : 𝑆 → 𝑇 to 𝑓 : 𝑆disc → 𝑇disc

as above. Then it’s clear that Φ is a bĳection.

• (Essentially surjective) Given any 𝑋 ∈ sSetdisc
, consider the set 𝑆 ≔ 𝑋0—we’ll

show that 𝑋 ≃ 𝑆disc
. Define a morphism of simplicial sets 𝑓 : 𝑆disc → 𝑋 where

𝑓0 ≔ id𝑋0
. Let 𝛼: [𝑛] → [0] be any simplicial operator. Since 𝛼∗:𝑋0

≃−→ 𝑋𝑛 is a

bĳection, then by naturality of 𝑓 we find that

𝑋0

𝑆

𝑋𝑛

≃ 𝛼∗

id𝑋
0

𝑓𝑛

commutes in Set, making 𝑓𝑛 a bĳection, which proves that 𝑓 is a natural isomor-

phism of simplicial sets.

♮

Standard Simplices
Definition 20.2.10 (Standard simplex). We define the standard 𝑛-simplex Δ𝑛 to be the

contravariant functor ∆op → Set represented by [𝑛], that is, the simplicial set

Δ𝑛 ≔ Mor∆(−, [𝑛]).

The generator of the standard 𝑛-simplex corresponds to the 𝑛-cell

𝜄𝑛 ≔ id[𝑛] ∈ Δ𝑛[𝑛].
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Let 𝜙: [ℓ ] → [𝑘] be any simplicial operator, then the action of 𝜙 on the cells of Δ𝑛 is

given by the map Δ𝑛𝜙 = 𝜙∗:Δ𝑘 → Δℓ . Explicitly, given a 𝑘-cell 𝛼: [𝑘] → [𝑛] of Δ𝑛 , the

action of the simplicial operator 𝜙 on 𝛼 yields an ℓ -cell(
𝜙∗𝛼 = 𝛼𝜙: [ℓ ] −→ [𝑛]

)
∈ Δ𝑛[ℓ ].

Lemma 20.2.11 (Yoneda consequences). Given a simplicial set𝑋, there exists a bĳection

MorsSet(Δ𝑛 , 𝑋) ≃ 𝑋𝑛 ,

which is explicitly given by the map 𝜂 ↦→ 𝜂𝑛 𝜄𝑛 . Equivalently, for each 𝑛-cell 𝑥 ∈ 𝑋𝑛 ,

there exists a unique morphism of simplicial sets 𝜂𝑥 :Δ𝑛 → 𝑋 such that 𝜂𝑥𝑛 𝜄𝑛 = 𝑥.

Proof. Consider the Yoneda functor 𝐻∆: ∆→ sSet, mapping each object [𝑛] ↦→ Δ𝑛 and

each simplicial operator 𝑓 : [𝑛] → [𝑚] to the morphism of simplicial sets 𝑓∗:Δ𝑛 → Δ𝑚 .

Explicitly, for each 𝑘 ∈ N we have ( 𝑓∗)𝑘 :Δ𝑛[𝑘] → Δ𝑚[𝑘] mapping 𝛼 ↦→ 𝑓 𝛼. By the

Yoneda lemma we know that there exists, for each 𝑛 ∈ N, a bĳection

MorsSet(Δ𝑛 , 𝑋) = MorsSet(𝐻∆[𝑛], 𝑋) ≃ 𝑋𝑛 .

♮

Definition 20.2.12 (Representing map of a cell). Regarding Lemma 20.2.11, we shall

refer to 𝜂𝑥 as the representing map of the 𝑛-cell 𝑥. When convenient, we’ll simply denote

𝜂𝑥 by 𝑥:Δ𝑛 → 𝑋.

Corollary 20.2.13. There exists a bĳection

MorsSet(Δ𝑛 ,Δ𝑚) ≃ Δ𝑚[𝑛].

The inverse of this set-function is explicitly given by mapping each simplicial operator

𝛼: [𝑛] → [𝑚] to the corresponding morphism of simplicial sets 𝛼∗:Δ𝑛 → Δ𝑚—where

𝛼∗ acts on any 𝑘-cell 𝑥 ∈ Δ𝑛[𝑘] as 𝛼∗𝑥 = 𝛼𝑥 ∈ Δ𝑚[𝑘].

Proof. In the proof of Lemma 20.2.11, merely consider the case where 𝑋 ≔ Δ𝑚 . ♮

Corollary 20.2.14 (Standard simplices & ∆). The full subcategory sSetΔ of sSet con-

sisting of standard simplices is equivalent to the simplex category ∆.

Proof. Consider the functor 𝐹: ∆ → sSetΔ given by [𝑛] ↦→ Δ𝑛 and mapping each

simplicial operator 𝑓 : [𝑛] → [𝑚] to its corresponding morphism of simplicial sets

𝑓∗:Δ𝑛 → Δ𝑚 . By Lemma 20.2.11 we see that 𝐹 is fully faithful and essentially

surjective—thus an equivalence of categories. ♮

Definition 20.2.15 (Standard simplices on totally ordered sets). Given a totally ordered

set 𝑆, we define the standard 𝑆-simplicial set Δ𝑆 to be the functor
1

Δ𝑆 ≔ MortOrd(−, 𝑆)|∆,

that is, for each 𝑛 ∈ N we define Δ𝑆𝑛 to be the collection of order preserving maps

[𝑛] → 𝑆.

1
We denote by tOrd the category of totally ordered sets.
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Definition 20.2.16 (Boundary of a standard simplex). For every 𝑛 ∈ N, we define the

boundary of the standard 𝑛-simplex Δ𝑛 to be the subobject

𝜕Δ𝑛 ≔ colim𝑘∈[𝑛] Δ
[𝑛]∖𝑘 =

⋃
𝑘∈[𝑛]

Δ[𝑛]∖𝑘

composed of all codimension-one faces of Δ𝑛 . Explicitly, for each 𝑘 ∈ N we have

𝜕Δ𝑛[𝑘] = { 𝑓 ∈ Mor∆([𝑘], [𝑛]) : 𝑓 [𝑘] ≠ [𝑛]} ⊆ Δ𝑛[𝑘],

composed of all non-surjective 𝑘-cells of Δ𝑛 .

Proposition 20.2.17. The boundary 𝜕Δ𝑛 is the maximal proper subcomplex of Δ𝑛 .

Proof. Let 𝑋 be a proper subcomplex of Δ𝑛 .

Prove

♮

Geometric Realization of the Simplex Category
We define, for each 𝑛 ∈ N, a corresponding standard topological 𝑛-simplex Δ𝑛

top
given by

Δ𝑛
top

≔

{
(𝑡0, . . . , 𝑡𝑛) ∈ R𝑛+1

:

𝑛∑
𝑗=0

𝑡 𝑗 = 1 and 𝑡 𝑗 ⩾ 0 for all 𝑗

}
.

Each Δ𝑛
top

is composed of 𝑛 + 1 vertices 𝑣 𝑗 ≔ (𝛿𝑖 𝑗)𝑛𝑖=0
.

From a categorical point of view, standard topological simplices are nothing more

than a functor

Δ•
top

: ∆ −→ Top,
mapping objects Δ•

top
[𝑛] ≔ Δ𝑛

top
—where Δ𝑛

top
is endowed with the standard euclidean

topology—and for each morphism 𝑓 : [𝑛] → [𝑚] in ∆, we map Δ•
top
𝑓 ≔ 𝑓∗, where

𝑓∗:Δ𝑛
top
→ Δ𝑚

top
is a uniquely determined continuous map such that 𝑓∗(𝑣 𝑗) ≔ 𝑣 𝑓 (𝑗).

From this definition we obtain

𝑓∗(𝑡0, . . . , 𝑡𝑛) = (𝑠0, . . . , 𝑠𝑚), where 𝑠 𝑗 =
∑
𝑓 (𝑖)=𝑗

𝑡𝑖 ,

that is, 𝑠 𝑗 is the sum of the points that are collapsed to the 𝑗-th coordinate.

This functor gives us a geometric visualization of the action of the elementary face

and degeneracies:

• Given an elementary face map 𝛿 𝑗 : [𝑛 − 1] ↣ [𝑛], for any 0 ⩽ 𝑗 ⩽ 𝑛, the corre-

sponding map (𝛿 𝑗)∗:Δ𝑛−1

top
↩→ Δ𝑛

top
is given by

(𝛿 𝑗)∗𝑣𝑖 =
{
𝑣𝑖 , if 𝑖 < 𝑗 ,

𝑣𝑖+1, if 𝑖 ⩾ 𝑗.

That is, (𝛿 𝑗)∗ embeds Δ𝑛−1

top
as a face of Δ𝑛

top
opposite to the 𝑗-th vertex.
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• An elementary degeneracy map 𝜎𝑗 : [𝑛 + 1] ↠ [𝑛], for any 0 ⩽ 𝑗 ⩽ 𝑛, has a map

(𝜎𝑗)∗:Δ𝑛+1

top
↠ Δ𝑛

top
mapping the vertices as follows

(𝜎𝑗)∗𝑣𝑖 =
{
𝑣𝑖 , if 𝑖 ⩽ 𝑗 ,

𝑣𝑖−1, if 𝑖 > 𝑗.

Geometrically, the degeneracy map makes Δ𝑛+1

top
into Δ𝑛

top
by removing a face of

dimension 1—through the projection parallel to the line connecting 𝑣 𝑗 and 𝑣 𝑗+1.

Geometric Realization of a Simplicial Set
Given a simplicial set 𝑋: ∆op → Set, we consider the topological space∐

𝑛∈N
𝑋𝑛 × Δ𝑛top

and construct in this space a minimal equivalence relation ∼gr for which points (𝑥, 𝑡) ∈
𝑋𝑛 × Δ𝑛

top
and (𝑥′, 𝑡′) ∈ 𝑋𝑚 × Δ𝑚

top
are equivalent—(𝑥, 𝑡) ∼gr (𝑥′, 𝑡′)—if and only if there

exists a morphism 𝛼: [𝑚] → [𝑛] in ∆ such that 𝑥′ = 𝛼∗𝑥 and 𝑡 = 𝛼∗𝑡′. In an equivalent

manner, we may summarize this equivalence relation as gluing points of the form

(𝑥, 𝛼∗𝑡) ∼gr (𝛼∗𝑥, 𝑡).

The points of the resulting quotient space (∐𝑛∈N 𝑋𝑛 ×Δ𝑛top
)/∼gr are denoted by 𝑥⊗ 𝑡—

corresponding to the class of a pair (𝑥, 𝑡).
Study why this construction is related to a tensor product of the form 𝑋 ⊗∆ Δ•

top
.

Definition 20.2.18 (Geometric realization functor). We define the geometric realization
of the category of simplicial sets to be a functor

| − |: sSet −→ Top,

mapping |𝑋| ≔ (∐𝑛∈N 𝑋𝑛 × Δ𝑛
top
)/∼gr and for each natural transformation 𝜂:𝑋 → 𝑌

we have a topological morphism |𝜂|: |𝑋| → |𝑌| given by 𝑥 ⊗ 𝑡 ↦→ 𝜂𝑛𝑥 ⊗ 𝑡, for (𝑥, 𝑡) ∈
𝑋𝑛 × Δ𝑛

top
.

For any simplicial set 𝑋, each 𝑛-cell 𝑥 ∈ 𝑋𝑛 induces topological morphism

�̂�:Δ𝑛
top
−→ |𝑋|, mapping 𝑡 ↦−→ 𝑥 ⊗ 𝑡.

From construction, given a morphism 𝛼: [𝑛] → [𝑚] in ∆ and a point 𝑦 ∈ 𝑋𝑚 such that

𝑦 = 𝛼∗𝑥, the diagram

Δ𝑚
top

Δ𝑛
top

|𝑋|

𝛼∗

�̂� �̂�

(20.1)
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commutes in Top.

This looks like there exists an induced slice over category C/|𝑋|—where C is

a subcategory of Top consisting of standard topological simplices and mor-

phisms between them—whose objects are �̂� and morphisms 𝜙: �̂� → �̂� are maps

𝜙∗:Δ𝑚
top
→ Δ𝑛

top
for some 𝜙: [𝑛] → [𝑚] in ∆.

Given any category C and a functor 𝐹: ∆→ C, we can define a simplicial set induced

by any object 𝐶 ∈ C given by

MorC(𝐹(−), 𝐶): ∆op −→ Set.

This simplicial set maps each [𝑛] ∈ ∆ to the set of morphisms MorC(𝐹𝑛, 𝐶), and each

morphism 𝛼: [𝑚] → [𝑛] of ∆ to the set-function 𝛼∗: MorC(𝐹𝑛, 𝐶) →MorC(𝐹𝑚, 𝐶).

Definition 20.2.19 (Singular complex). Let C be a category and 𝐹: ∆→ C be a functor.

We define the singular complex of C to be the functor

Sing𝐹: C −→ sSet

mapping each object 𝐶 ∈ C to the simplicial set

Sing𝐹(𝐶) ≔ MorC(𝐹(−), 𝐶): ∆op −→ Set,

and each map 𝛼: [𝑚] → [𝑛] to the set-function

Sing𝐹(𝛼) ≔ 𝛼∗: MorC(𝐹𝑛, 𝐶) −→MorC(𝐹𝑚, 𝐶).

In particular, the standard topological simplices functor Δ•
top

: ∆ → Top induces a

singular complex on each topological space. Since we shall be mostly interested in this

particular case for the time being, we shall reserve the notation

Sing ≔ Sing
Δ•

top

: Top −→ sSet,

with no subscripts, for the standard topological simplices functor. In this case, given

a topological space 𝑇, we shall denote by Sing(𝑇)𝑛 the image of [𝑛] ∈ ∆ under the

simplicial set Sing(𝑇).

Given a simplicial set 𝑋, the collection of simplexes (�̂�𝑛)𝑛∈N, where 𝑥𝑛 ∈ 𝑋𝑛 ,

covers the whole topological space |𝑋|—in the sense that collection of images forms

a cover of |𝑋|. Therefore, given any topological morphism 𝜙: |𝑋| → 𝑇, this map

is completely defined by the family of compositions (𝜙�̂�𝑛 :Δ𝑛
top
→ 𝑇)𝑛∈N. Given a

morphism 𝛼: [𝑛] → [𝑛] in ∆, by Eq. (20.1), the diagram

Δ𝑚
top

Δ𝑛
top

|𝑋|

𝑇

𝛼∗

�̂�𝑚

𝜙 �̂�𝑚

�̂�𝑛

𝜙�̂�𝑛𝜙
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commutes in Top. This construction induces unique a collection of maps

(𝜙𝑛 :𝑋𝑛 −→ Sing(𝑇)𝑛)𝑛∈N,

where 𝜙𝑛(𝑥) ↦→ 𝜙�̂�. Notice that this family of arrows is nothing more than a natural

transformation 𝜙:𝑋 ⇒ Sing(𝑇) between simplicial sets. From this we conclude that

there exists a natural bĳection

MorTop(|𝑋|, 𝑇) ≃MorsSet(𝑋, Sing(𝑇)),

thus the singular complex functor is right adjoint to the geometric realization,

sSet Top
|−|

Sing

Geometric Realization as a CW-complex
Definition 20.2.20 (Degenerate 𝑛-cell). Given a simplicial set 𝑋, we say that an 𝑛-cell

𝑥 ∈ 𝑋𝑛 is degenerate if 𝑥 ∈ 𝑠 𝑗𝑋𝑛−1 for some codegeneracy map 𝑠 𝑗 :𝑋𝑛−1 → 𝑋𝑛 , where

0 ⩽ 𝑗 ⩽ 𝑛 − 1.

Equivalently, 𝑥 is denenerate if there exists a surjective map 𝛼: [𝑛]↠ [𝑚] and 𝑚-cell

𝑦 ∈ 𝑋𝑚 for which 𝑥 = 𝛼∗𝑦.

Lemma 20.2.21 (Eilenberg-Zilber). Let 𝑥 be a 𝑛-cell of a given simplicial set 𝑋. There

exists a unique pair (𝛼, 𝑦) such that 𝛼: [𝑛] ↠ [𝑘] is a surjective map and 𝑦 is a non-
degenerate 𝑘-cell of 𝑋 satisfying 𝛼∗𝑦 = 𝑥.

Proof. The existence of the pair (𝛼, 𝑦) comes straight from definition. Now suppose

(𝛽, 𝑧) is another pair satisfying the said property, where 𝑧 is a non-degenerate ℓ -cell of

𝑋. Since pushouts of a pair of surjections in ∆ are absolute (see Lemma 20.1.8), the

pushout of the pair (𝛼, 𝛽):
[𝑛] [𝑘]

[ℓ ] [𝑠]

𝛼

𝛽
⌜

𝛾

𝜔

is turned into a pullback by the simplicial set 𝑋: ∆op → Set, that is:

𝑋𝑛 𝑋𝑘

𝑋ℓ 𝑋𝑠

⌟

𝛼∗

𝛽∗ 𝛾∗

𝜔∗

From the pushout property, 𝛾 and 𝜔 are epimorphisms, thus split, 𝑋 ensures that 𝛾∗

and 𝜔∗ are split-epimorphisms in Set. Therefore there exists 𝑠-cells 𝑎, 𝑏 ∈ 𝑋𝑠 such

that 𝛾∗𝑎 = 𝑦 and 𝜔∗𝑏 = 𝑧. Notice however that we assumed 𝑦 and 𝑧 to be both non-

degenerate, hence it must be the case that 𝛾 and 𝜔 are identities. This implies in 𝛽 = 𝛼
and 𝑦 = 𝑧. ♮
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Notice that, given a simplicial set 𝑋, we can naturally construct a filtration for 𝑋

(see Definition 17.2.2) by defining for each 𝑛 ∈ N the subspace |𝑋|𝑛 of |𝑋| given by

|𝑋|𝑛 ≔ {𝑥 ⊗ 𝑡 ∈ |𝑋| : (𝑥, 𝑡) ∈ 𝑋𝑘 × Δ𝑘top
for some 𝑘 ⩽ 𝑛},

so that the collection (|𝑋|𝑛)𝑛∈N defines a filtration—that is, |𝑋|𝑛 ⩽ |𝑋|𝑛+1 and |𝑋| =⋃
𝑛∈N |𝑋|𝑛 is endowed with the weak topology (see Definition 17.1.21).

Lemma 20.2.22. Given a simplicial set 𝑋, the subspace |𝑋|0 ⊆ |𝑋| is discrete and given

by

|𝑋|0 = 𝑋0 × Δ0

top
.

Proof. We shall create an isomorphism between both spaces. Define a surjective map

𝑋0 × Δ0

top
↠ |𝑋|0 by mapping (𝑥, 1) ↦→ 𝑥 ⊗ 1. Now, suppose that for some 𝑥, 𝑦 ∈ 𝑋0

one has 𝑥 ⊗ 1 = 𝑦 ⊗ 1, then there must exist a pair (𝑧, 𝑡) ∈ 𝑋𝑛 × Δ𝑛
top

, for some 𝑛 ∈ N,

and parallel morphisms 𝛼, 𝛽: [0]⇒ [𝑛] in ∆ for which

(𝑥, 𝛼∗1) = (𝛼∗𝑧, 𝑡) and (𝑦, 𝛽∗1) = (𝛽∗𝑧, 𝑡).

Since Δ0

top
= 1 is a single point, then 𝛼∗ = 𝛽∗ and hence 𝛼 = 𝛽, which shows that

𝑥 = 𝑦. ♮

Notation 20.2.23. Denote by 𝑋nd

𝑛 the collection of all non-degenerate 𝑛-cells of a given

simplicial set 𝑋.

Lemma 20.2.24. Let 𝜉 ∈ |𝑋| be any point, and let 𝑛 ∈ N be the minimal index such that

there exists (𝑥, 𝑡) ∈ 𝑋𝑛 ×Δ𝑛
top

for which 𝜉 = 𝑥 ⊗ 𝑡. Then 𝑥 is a non-degenerate simplex,

and if 𝑛 ⩾ 1 then 𝑡 ∈ IntΔ𝑛
top

—also, if that is the case, then the pair (𝑥, 𝑡) is unique with

such property.

Proof. We shall prove this lemma in three steps:

• (𝑥 is non-degenerate) Suppose for the sake of contradiction that 𝑥 is degenerate,

so that there exists a pair (𝛼: [𝑛] ↠ [𝑚], 𝑦) with 𝑦 ∈ 𝑋𝑚 and 𝑚 < 𝑛 such that

𝛼∗𝑦 = 𝑥. From this one obtains

𝑥 ⊗ 𝑡 = 𝛼∗𝑦 ⊗ 𝑡 = 𝑦 ⊗ 𝛼∗𝑡

then (𝑦, 𝛼∗𝑡) ∈ 𝑋𝑚 × Δ𝑚
top

satisfies 𝜉 = 𝑦 ⊗ 𝛼∗𝑡, which contradicts the assumption

that 𝑛 was the minimal element of N with this property.

• (𝑡 ∈ IntΔ𝑛
top

) Assume that 𝑛 ⩾ 1 and, for the sake of contradiction, suppose that

𝑡 ∈ 𝜕Δ𝑛
top

—so that there exists at least one coordinate of 𝑡 that is zero. From this

last comment, it follows that there exists an injective map 𝛽: [𝑘]↣ [𝑛], for some

𝑘 < 𝑛, such that 𝑡 ∈ 𝛽∗Δ𝑘
top

. If 𝑠 ∈ Δ𝑘
top

is the point such that 𝛽∗𝑠 = 𝑡, then

𝜉 = 𝑥 ⊗ 𝑡 = 𝑥 ⊗ 𝛽∗𝑠 = 𝛽∗𝑥 ⊗ 𝑠,

but 𝛽∗𝑥 ∈ Δ𝑘
top

, which contradicts again the minimality of 𝑛.
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• (Uniqueness of the pair (𝑥, 𝑡)) Assume again that 𝑛 ⩾ 1, and suppose that 𝜉 =

𝑥 ⊗ 𝑡 = 𝑦 ⊗ 𝑠 for some 𝑥, 𝑦 ∈ 𝑋nd

𝑛 and 𝑡 , 𝑠 ∈ IntΔ𝑛
top

—which can be assumed

using the result of the last item. From the definition of⊗we may consider a finite

zig-zag (𝛼 𝑗 , 𝛽 𝑗)𝑁𝑗=1
in ∆:

[𝑛 𝑗−1] [𝑚 𝑗]

[𝑘 𝑗]
𝛼 𝑗 𝛽 𝑗

where 𝑛0 and 𝑚𝑁 are both defined to be 𝑛 and the intersection im 𝛽 𝑗 ∩ im 𝛼 𝑗+1 is

non-empty for every 1 ⩽ 𝑗 < 𝑁—together with a collection of pairs

(
(𝑥 𝑗 , 𝑡 𝑗), (𝑦 𝑗 , 𝑠 𝑗)

)𝑁
𝑗=0
∈

𝑁∏
𝑗=0

(𝑋𝑘 𝑗 × Δ
𝑘 𝑗
top
) × (𝑋𝑚𝑗 × Δ

𝑚𝑗

top
)

for which one has the following relations:

(𝑥 𝑗 , (𝛼 𝑗)∗𝑡 𝑗) = (𝛼∗𝑗𝑦 𝑗−1, 𝑠 𝑗−1) and (𝑥 𝑗 , (𝛽 𝑗)∗𝑡 𝑗) = (𝛽∗𝑗𝑦 𝑗 , 𝑠 𝑗),

and (𝑥0, 𝑡0) ≔ (𝑥, 𝑡), while (𝑦𝑁 , 𝑠𝑁 ) ≔ (𝑦, 𝑠).
By hypothesis, since 𝑡 and 𝑠 are interior points ofΔ𝑛

top
, then it must be the case that

both 𝛼1 and 𝛽𝑁 are surjective, so that 𝑘1, 𝑘𝑁 ⩾ 𝑛. We proceed by induction on the

zig-zag length 𝑁 . If 𝑁 = 1, then the zig-zag is composed by two surjective maps

𝛼, 𝛽: [𝑘] ⇒ [𝑛]. Since pushouts of surjective maps exist in ∆ and are absolute, if

we consider the pushout of the pair (𝛼, 𝛽):

[𝑘] [𝑛]

[𝑛] [ℓ ]

𝛼

𝛽
⌜

𝛾

the contravariant functor 𝑋 maps this universal square to a pullback in Set:

𝑋𝑘 𝑋𝑛

𝑋𝑛 𝑋ℓ

⌟

𝛼∗

𝛽∗ 𝛾∗

Then since 𝛾 is a split epimorphism, so is 𝛾∗, which proves the existence of

an ℓ -cell 𝑧 ∈ 𝑋ℓ such that 𝛾∗𝑧 = 𝑥. However, since 𝑥 is non-degenerate and

𝑛 is minimal, this can only happen if ℓ = 𝑛 so that 𝛼, 𝛽 = id[𝑛]—implying on

(𝑥, 𝑡) = (𝑦, 𝑠).

492



Assume, for the hypothesis of induction, that equality of the points is stablished

for some 𝑁 − 1 > 1. We now work on the case 𝑁 > 1: our goal will be to shorten

the zig-zag sequence by one. Start by factoring the morphism 𝛽1 as follows

[𝑘1] [𝑚1]

[𝑚′
1
]

𝛽1

𝜀 𝛿

If we now consider the pushout of the pair of surjective maps (𝛼1, 𝜀), the simplicial

set takes this pushout to a pullback in Set and from an analogous argument as

done above, we conclude that we must have 𝜀 = id[𝑘1]. Therefore the factorization

of 𝛽1 reduces solely to 𝛽1 = 𝛿, which is a monomorphism. Since im 𝛼2 ∩ im 𝛽1 ≠ ∅,

then by Lemma 20.1.9 we know that the pullback of the pair (𝛽1, 𝛼2) exists in ∆:

[𝑘′
1
] [𝑘2]

[𝑘1] [𝑚1]

𝜃

⌟
𝜂 𝛼2

𝛽1

(20.2)

Considering the simplex covariant functor Δ•
top

, we have a corresponding square

Δ
𝑘′

1

top
Δ
𝑘2

top

Δ
𝑘1

top
Δ
𝑚1

top

𝜃∗

𝜂∗
⌟

(𝛼2)∗

(𝛽1)∗

in Top, which is again a pullback.

Prove that Δ•
top

does indeed preserve the pullback

Therefore can find 𝑐 ∈ 𝑋𝑘′
1

such that 𝑐 = 𝜂∗𝑥1 = 𝜃∗𝑦1, and take the unique𝑤 ∈ Δ𝑘
′
1

top

such that 𝜂∗𝑤 = 𝑡1 and 𝜃∗𝑤 = 𝑠1.

Notice that by the pullback Eq. (20.2) one has

[𝑛] [𝑚1] [𝑚2]

[𝑘1] [𝑘2]

[𝑘′
1
]

𝛼1

𝛽1

𝛽2

𝛼2

𝜂 𝜃

so together with the pair (𝑐, 𝑤) ∈ 𝑋𝑘′
1

× Δ
𝑘′

1

top
and [𝑛]

𝛼1𝜂←− [𝑘′
1
]

𝛽2𝜃−→ [𝑚2] we can

shorten the zig-zag length by one, yielding the case 𝑁 − 1, which is true by

hypothesis. Therefore (𝑥, 𝑡) = (𝑦, 𝑠) and the lemma follows.
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♮

Theorem 20.2.25. Let 𝑋 be a simplicial set. The geometric realization of 𝑋 has a

natural structure of a CW-complex with exactly one closed 𝑛-cell �̂�:Δ𝑛
top
→ |𝑋| for

each non-degenerate 𝑛-cell 𝑥 ∈ 𝑋𝑛 .

Proof. Let (𝑥, 𝑡), (𝑦, 𝑠) ∈ ∐
𝑥∈𝑋nd

𝑛
Δ𝑛

top
be any two points. We analyse the case where

𝑥 ⊗ 𝑡 = 𝑦 ⊗ 𝑠 are equivalent points of |𝑋|𝑛 by means of Lemma 20.2.24:

• If both 𝑡 , 𝑠 ∈ IntΔ𝑛
top

then by the uniqueness of representatives we find that

(𝑥, 𝑡) = (𝑦, 𝑠).

• Now if for instance 𝑡 ∈ 𝜕Δ𝑛
top

, then there exits a unique (𝑧, 𝑟) ∈ 𝑋𝑘 × IntΔ𝑘
top

for

some minimal 𝑘 < 𝑛 such that 𝑥⊗𝑡 = 𝑧⊗𝑡. Notice however that since 𝑘 is minimal

and unique with such property, then it must be the case that 𝑠 ∈ 𝜕Δ𝑛
top

—therefore

in this case one has both points

(𝑥, 𝑡), (𝑦, 𝑠) ∈
∐
𝑥∈𝑋nd

𝑛

𝜕Δ𝑛
top
.

From this we can conclude that the following square is a pushout in Top:∐
𝑥∈𝑋nd

𝑛
𝜕Δ𝑛

top
|𝑋|𝑛−1

∐
𝑥∈𝑋nd

𝑛
Δ𝑛

top
|𝑋|𝑛

⌜

(�̂�)
𝑥∈𝑋nd

𝑛

which proves that |𝑋| is a 𝐶𝑊-complex. ♮

Definition 20.2.26 (Skeletal filtrations in sSet). Let 𝑋 be a simplicial set. We define the

skeletal filtration of𝑋 to be the collection (sk𝑛 𝑋)𝑛∈N of simplicial sets, where sk𝑛 𝑋 is the

smallest subcomplex of 𝑋 containing every 𝑘-cell 𝑥 ∈ 𝑋𝑘 for each 0 ⩽ 𝑘 ⩽ 𝑛. Explicitly,

the collection of 𝑘-cells of sk𝑛 𝑋 is

(sk𝑛 𝑋)𝑘 =
⋃

0⩽ 𝑗⩽𝑘

{
𝑥 𝑓 ∈ 𝑋𝑘 : 𝑥 ∈ 𝑋𝑗 and 𝑓 ∈ Mor∆([𝑘], [𝑗])

}
.

Therefore for each 𝑛 ∈ N the simplicial set sk𝑛 𝑋 is a subcomplex of sk𝑛+1 𝑋.

From construction we see that

𝑋 = colim𝑛∈N sk𝑛 𝑋,

which is, loosely, the union of all sk𝑛 𝑋.
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Remark 20.2.27 (On Definition 20.2.26). Note by a subobject 𝑆 ∈ sSet of the simplicial

set 𝑋 we actually mean an isomorphism class of natural monomorphisms—meaning,

a class of natural transformations 𝜂: 𝑆 ⇒ 𝑋 for which each associated morphism

𝜂[𝑛]: 𝑆𝑛 ↣ 𝑋𝑛 is a monomorphism in Set. We say that (𝑆, 𝜂) is equivalent to another

subobject (𝐵, 𝜉: 𝐵 ⇒ 𝑋) of 𝑋 if there exists a natural isomorphism 𝜎: 𝑆 ≃=⇒ 𝐵 such that,

for any [𝑛] ∈ ∆, the diagram

𝑋𝑘

𝑆𝑘 𝐵𝑘

𝜂[𝑘]

≃
𝜎[𝑘]

𝜉[𝑘]

commutes in Set.

Corollary 20.2.28 (Pushouts & pullbacks in sSet). Let 𝑋, 𝑌 and 𝑍 be simplicial sets.

We define the following:

(a) Given morphisms of simplicial sets 𝑓 :𝑋 → 𝑍 and 𝑔:𝑌 → 𝑍, the pullback of the

pair ( 𝑓 , 𝑔) to be the simplicial set 𝑃 defined as follows: for each 𝑛 ∈ N, the set 𝑃𝑛
is the pullback

𝑃𝑛 𝑌𝑛

𝑋𝑛 𝑍𝑛

⌟
𝑔𝑛

𝑓𝑛

in the category of sets.

(b) Given morphisms of simplicial sets 𝑢:𝑋 → 𝑍 and 𝑣:𝑌 → 𝑍, the pushout of the

pair (𝑢, 𝑣) to be the simplicial set 𝑄 defined as follows: for each 𝑛 ∈ N, the set 𝑄𝑛

is the pushout

𝑍𝑛 𝑌𝑛

𝑋𝑛 𝑄𝑛

⌜

𝑣𝑛

𝑢𝑛

in the category of sets.

Proof. These limits all exist in Set, therefore each limit is well defined in sSet. ♮

Proposition 20.2.29. Given a simplicial set 𝑋, the square∐
𝑥∈𝑋nd

𝑛
𝜕Δ𝑛 sk𝑛−1 𝑋

∐
𝑥∈𝑋nd

𝑛
Δ𝑛 sk𝑛 𝑋

⌜

is a pushout in sSet.
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Proof. Let 𝑃 ∈ sSet be the pushout of the given square, and define 𝑝:𝑃 → sk𝑛 𝑋 to be

unique morphism of simplicial sets making the diagram∐
𝑥∈𝑋nd

𝑛
𝜕Δ𝑛 sk𝑛−1 𝑋

∐
𝑥∈𝑋nd

𝑛
Δ𝑛 𝑃

sk𝑛 𝑋

⌜

𝑝

commute in sSet. We’ll show that 𝑝 is an isomorphism of simplicial sets:

• (Epimorphism) Let 𝑥 ∈ (sk𝑋𝑛)𝑘 be any 𝑘-cell, and let (𝑦, 𝛼: [𝑘] ↠ [𝑚]) be the

unique representative pair of 𝑥 with 𝑦 ∈ 𝑋𝑚 being a non-degenerate 𝑚-cell such

that 𝑥 = 𝑦𝛼 and 𝑚 ⩽ 𝑘. If it is the case that 𝑚 < 𝑛, then 𝑥 is a degenerate 𝑘-cell

and also 𝑦 ∈ sk𝑛−1 𝑋—but then 𝑥 ∈ sk𝑛−1 𝑋 via 𝛼∗, showing that 𝑥 ∈ im 𝑝𝑘 . For

the case where 𝑚 = 𝑛 we see that 𝑥 is non-degenerate and therefore (𝑥,Δ𝑛) ∈∐
𝑥∈𝑋nd

𝑛
Δ𝑛 , thus 𝑥 ∈ im 𝑝𝑘 by the commutativity of

(𝑥,Δ𝑛) 𝑃𝑘

(sk𝑛 𝑋)𝑘
𝑥

𝑝𝑘

where 𝑥:Δ𝑛 → (sk𝑛 𝑋)𝑘 is the unique representative morphism of 𝑥.

• (Monomorphism) To prove that 𝑝 is a monomorphism it suffices to show the

following two properties:

(i) Let 𝑥 ∈ 𝑋nd

𝑛 be any non-degenerate 𝑛-cell and consider the canonical mor-

phisms 𝑥:Δ𝑛 → sk𝑛 𝑋 and sk𝑛−1 𝑋 ↣ sk𝑛 𝑋—we’ll show that the pullback
of this pair of morphisms is 𝜕Δ𝑛 .

Let 𝛼 ∈ Δ𝑛[𝑘] be a 𝑘-cell such that the 𝑘-cell 𝑥𝛼 ∈ 𝑋𝑘 is an element of

(sk𝑛−1 𝑋)𝑘 . Suppose, for the sake of contradiction, that 𝛼 is an epimorphism,

so that 𝑛 ⩽ 𝑘. Since 𝑥𝛼 a 𝑘-cell of the (𝑛 − 1)-skeleton, the unique pair

(𝑦, 𝛽: [𝑘] ↠ [𝑚])—where 𝑦 ∈ 𝑋𝑚 is non-degenerate with 𝑚 < 𝑛 and 𝑦𝛽 =

𝑥𝛼—is such that 𝑦 ∈ (sk𝑛 𝑋)𝑚 . Since 𝛼 and 𝛽 are epimorphisms in ∆, their

pushout exists and is absolute:

[𝑘] [𝑛]

[𝑚] [ℓ ]

𝛼

𝛽
⌜

𝛿

𝛾
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Since 𝑋 is covariant, the corresponding square is a pullback in sSet:

𝑋𝑘 𝑋𝑛

𝑋𝑚 𝑋ℓ

⌟
𝛼∗

𝛽∗

𝛾∗

𝛿∗

Using the fact that 𝑦𝛽 = 𝑥𝛼, there exists 𝑧 ∈ 𝑋ℓ such that 𝑧𝛿 = 𝑥 and 𝑧𝛾 = 𝑦.

Since 𝑥 is assumed to be non-degenerate, and 𝛿 is an epimorphism with

ℓ ⩽ 𝑛 and 𝑧𝛿 = 𝑥, then it must be the case that 𝛿 = id[𝑛] and hence ℓ = 𝑛.

Note however that 𝑚 < 𝑛 so that 𝛾: [𝑚] → [𝑛] should not be able to be an

epimorphism, which is a contradiction. From this it follows that 𝛼 isn’t an

epimorphism and hence 𝛼 ∈ 𝜕Δ𝑛[𝑘] is a 𝑘-cell of the boundary. We thus

conclude that

𝜕Δ𝑛 sk𝑛−1 𝑋

Δ𝑛 sk𝑛 𝑋

⌟

𝑥

(ii) Given any two distinct non-degenerate 𝑛-cells 𝑥, 𝑦 ∈ 𝑋nd

𝑛 , let the square

𝑄 Δ𝑛

Δ𝑛 sk𝑛 𝑋

𝑣

𝑤 𝑥

𝑦

be a pullback in sSet. Our goal will be to show that 𝑣 and 𝑤 can be factored

through the monomorphism 𝜕Δ𝑛 ↣ Δ𝑛 .

Consider a pair of 𝑘-cells 𝛼, 𝛽 ∈ Δ𝑛[𝑘] such that 𝑥𝛼 = 𝑦𝛽. First, notice that if

one of them was an identity map, then 𝑘 would coincide with 𝑛 and it would

follow that both 𝛼 and 𝛽 are identities, yielding 𝑥 = 𝑦, which contradicts the

assumption of 𝑥 and 𝑦 being distinct cells. We can therefore assume that

neither 𝛼 nor 𝛽 are identities. Consider the factorization

[𝑘] [𝑛]

[𝑚1]

𝛼

𝛼− 𝛼+

[𝑘] [𝑛]

[𝑚2]

𝛽

𝛽− 𝛽+

Since 𝛼− and 𝛽− are epimorphisms, their pushout exists and is absolute:

[𝑘] [𝑚1]

[𝑚2] [ℓ ]

𝛼−

𝛽−
⌜

𝛿

𝛾

(20.3)
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Since 𝑋 is covariant, the corresponding square is a pullback in sSet:

𝑋𝑘 𝑋𝑚1

𝑋𝑚2
𝑋ℓ

⌟

𝛼∗−

𝛽∗−

𝛾∗

𝛿∗

Therefore there exists 𝑧 ∈ 𝑋ℓ for which 𝑧𝛼−𝛾 = 𝑥 while 𝑧𝛿𝛽− = 𝑦. Now,

since both 𝑥 and 𝑦 are non-degenerate cells, it follows that all maps in

Eq. (20.3) are identity morphisms. It then follows that 𝛼 = 𝛼+ and 𝛽 = 𝛽+
are monomorphisms. Since neither of them is an identity, it follows that

𝛼, 𝛽 ∈ 𝜕Δ𝑛 are 𝑘-cells of the boundary. This shows that 𝑣 and 𝑤 can be both

factorized through 𝜕Δ𝑛 ↣ Δ𝑛 .

♮
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Chapter 21

Wheeled Graphs

21.1 Colouring the Portrait
Definition 21.1.1 (Colours & Profiles). Fix, for the remaining of the chapter, a non-empty
set ℭ—whose elements will be called colours. A ℭ-profile is a finite1 sequence of colours

of ℭ.

Notation 21.1.2. We denote a ℭ-profile by 𝑐 = (𝑐1, . . . , 𝑐𝑛) or also 𝑐[1,𝑛] = 𝑐 when the

indexing matters. Some of the operations on profiles are the following:

• The length of the profile is denoted by |𝑐| = 𝑛.

• Given 1 ⩽ 𝑗 ⩽ 𝑛, we define the notion of colour removal:

𝑐 ∖ 𝑐 𝑗 ≔ (𝑐1, . . . , 𝑐𝑖−1, 𝑐𝑖+1, . . . , 𝑐𝑛).

• Given another ℭ-profile 𝑑, with |𝑑| = 𝑚, we define the concatenation of 𝑑 and 𝑐 to

be the ℭ-profile

(𝑑, 𝑐) ≔ (𝑑1, . . . , 𝑑𝑚 , 𝑐1, . . . , 𝑐𝑛).

• Given a permutation 𝜎 ∈ Sym𝑛 , we define the action of 𝜎 on the profile 𝑐 to be

the ℭ-profile 𝜎𝑐 given by

𝜎𝑐 ≔ (𝑐𝜎(1), . . . , 𝑐𝜎(𝑛)).

Definition 21.1.3 (ℭ-profile category). We define a category Prof(ℭ)whose objects are

ℭ-profiles, and a morphism 𝜎: 𝑐 → 𝑑 is a permutation such that 𝜎𝑐 = 𝑑.

1
Empty sequences are also admitted.
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Chapter 22

Model Categories

Definition 22.0.1 (Model category). Let ℰ be a category. We say that ℰ has a model
structure if their morphisms are classified into three classes: fibrations (denoted by the

arrow ↠), cofibrations (denoted by ↣), and weak equivalences (denoted by
≃−→), which

satisfy the following properties:

(a) The category ℰ is complete and cocomplete1
.

(b) Given a commutative diagram

𝑋 𝑍

𝑌

𝑓

𝑔 ℎ

in ℰ, if any two of the maps 𝑓 , 𝑔 and ℎ are weak equivalences, then the third is a

weak equivalence.

(c) If 𝑓 is a retract—in the category Mor(ℰ)—of a morphism 𝑔, and 𝑔 is a weak

equivalence, then 𝑓 is also a weak equivalence. For a shorter punchline, the classes

of fibrations and cofibrations is closed under retracts.

(d) Given a commutative square

𝐴 𝐸

𝑋 𝐵

𝑗 𝑝

in ℰ where 𝑗 is a cofibration and 𝑝 is a fibration, the dotted morphism 𝑋 → 𝐸

exists when either 𝑗 or 𝑝 is a weak equivalence. Said differently, fibrations have the

right lifting property with respect to trivial cofibrations (both a cofibration and a weak

equivalence), while trivial fibrations (both a fibration and a weak equivalence) have

the right lifting property with respect to cofibrations.

1
Has all small limits and colimits by Definition 2.5.10.
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(e) Every morphism 𝑓 :𝑋 → 𝑌 can be factored as

𝑋 𝑌′

𝑋′ 𝑌

𝑗

𝑓𝑖 ≃ ≃ 𝑞

𝑝

where 𝑗 is a cofibration and 𝑞 is a trivial fibration , and 𝑖 is a trivial cofibration and 𝑝 is

a fibration.

The category ℰ together with its model structure is said to be a model category.
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Part VII

Manifold Theory
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Chapter 23

Differentiable Manifolds

23.1 Differentiable Manifolds

Charts & Atlases
Definition 23.1.1 (Atlas). Let 𝑋 be an 𝑛-dimensional topological manifold. An atlas of

class 𝐶𝑝 on 𝑋 is a collection of charts {(𝑈 𝑗 , 𝜙 𝑗)}𝑗∈𝐽 such that

(a) For all 𝑗 ∈ 𝐽,𝑈 𝑗 ⊆ 𝑋 is an open set, and the collection {𝑈 𝑗}𝑗∈𝐽 is an open cover for 𝑋.

(b) For every 𝑗 ∈ 𝐽, 𝜙 𝑗 :𝑈 𝑗 → 𝑉𝑗 is a topological isomorphism from the open set 𝑈 𝑗 ⊆ 𝑋
to an open set 𝑉𝑗 ⊆ 𝑅𝑛 .

(c) For each pair 𝑖 , 𝑗 ∈ 𝐽, the induced change of coordinates map

𝜙 𝑗𝜙
−1

𝑖 : 𝜙𝑖(𝑈𝑖 ∩𝑈 𝑗) ≃−→ 𝜙 𝑗(𝑈𝑖 ∩𝑈 𝑗)

is of class𝐶𝑝 — that is, every chart of the atlas with intersecting domain is compatible.

Definition 23.1.2 (Chart & atlas compatibility). Let 𝑋 be a topological 𝑛-manifold. If

(𝑈, 𝜙:𝑈 ≃−→ 𝑉) and (𝑈 ′,𝜓:𝑈 ′ ≃−→ 𝑉 ′) are charts on 𝑋, we say that they are 𝐶𝑝-compatible
if the two induced transition maps

𝜙𝜓−1

:𝜓(𝑈 ∩𝑈 ′) −→ 𝜙(𝑈 ∩𝑈 ′) and 𝜓𝜙−1

: 𝜙(𝑈 ∩𝑈 ′) −→ 𝜓(𝑈 ∩𝑈 ′)

are of class 𝐶𝑝 .

From this definition, we say that a chart is said to be compatible with a given atlas

if it is compatible with every chart of the atlas. Moreover, given two atlases, we say

that they are compatible if every chart of one is compatible with the other atlas.

Lemma 23.1.3. Let𝒜 ≔ {(𝑈 𝑗 , 𝜙 𝑗)}𝑗∈𝐽 be an atlas on a topological manifold 𝑋. If both

(𝑉,𝜓) and (𝑊, 𝜎) are charts of 𝑋 compatible with the atlas𝒜, then they are compatible

with each other.

Proof. Let 𝑝 ∈ 𝑉∩𝑊 be any point and let 𝑗 ∈ 𝐽 be such that 𝑝 ∈ 𝑈 𝑗 — thus 𝑝 ∈ 𝑉∩𝑊∩𝑈 𝑗 .

Since 𝜙 𝑗𝜓−1
and 𝜎𝜙−1

𝑗
are 𝐶𝑝 maps, then 𝜎𝜓 = (𝜎𝜙−1

𝑗
) ◦ (𝜙 𝑗𝜓−1) is 𝐶𝑝 when restricted

to 𝜓(𝑉 ∩𝑊 ∩𝑈 𝑗). Moreover, since 𝜓(𝑝) ∈ 𝜓(𝑉 ∩𝑊 ∩𝑈 𝑗), it follows that 𝜎𝜓 is 𝐶𝑝 on
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𝜓(𝑝)— therefore 𝜎𝜓 is 𝐶𝑝 on every point of its domain since 𝑝 was chosen arbitrarily.

The same analogous argument can be used to show that 𝜓𝜎−1
is 𝐶𝑝 . ♮

Proposition 23.1.4. The compatibility of atlases form an equivalence relation.

Proof. Clearly reflexivity and symmetry are satisfied. Let 𝒰 ≔ {(𝑈 𝑗 , 𝜙 𝑗)}𝑗∈𝐽 and

𝒱 ≔ {(𝑉𝑖 ,𝜓𝑖)}𝑖∈𝐼 be two compatible atlases for some topological manifold 𝑋. If

𝒜 ≔ {(𝐴𝑠 , 𝜇𝑠)}𝑠∈𝑆 is another atlas for 𝑋, which happens to be compatible to 𝒰 , then

for every 𝑠 ∈ 𝑆 the maps 𝜙 𝑗𝜇−1

𝑠 and 𝜇𝑠𝜙−1

𝑗
are of class 𝐶𝑝 for any 𝑗 ∈ 𝐽. Since 𝜙 𝑗𝜓−1

𝑖

and 𝜓𝑖𝜙−1

𝑗
are 𝐶𝑝 for all 𝑖 ∈ 𝐼, then in particular

𝜇𝑠𝜓
−1

𝑖 = (𝜇𝑠𝜙−1

𝑗 ) ◦ (𝜙 𝑗𝜓
−1

𝑖 ) and 𝜓𝑖𝜇
−1

𝑠 = (𝜓𝑖𝜙
−1

𝑗 ) ◦ (𝜙 𝑗𝜇
−1

𝑠 )

are both maps of class 𝐶𝑝 . Therefore we conclude that𝒜 is compatible with 𝒱 . ♮

Corollary 23.1.5. Any atlas on a topological manifold is contained in a unique maximal
atlas — an atlas is said to be maximal if it isn’t contained in any atlas other than itself.

𝐶𝑝-Manifolds
Classical Definition

In this chapter we shall mostly consider the case of 𝐶∞-manifolds, also called smooth
manifolds, but for generality we’ll define differentiable manifolds for all 𝑝 ∈ N ∪ {∞}.

Definition 23.1.6 (𝐶𝑝-manifold structure on 𝑋). The equivalence classes of atlases of

class 𝐶𝑝 on a topological space 𝑋 define what is called a 𝐶𝑝-manifold structure on 𝑋.

Alternative Definition

We now give another definition of a 𝐶𝑝-manifold structure on topological spaces, to

do that, we first introduce the following concept.

Definition 23.1.7 (Functionally structured space). Let 𝑋 be a topological space. A

functional structure on 𝑋 is a map 𝐹𝑋 on the collection of open sets of 𝑋 such that, for

any open set𝑈 ⊆ 𝑋, we have:

(a) 𝐹𝑋(𝑈) is a subalgebra of 𝐶(𝑈), the algebra of continuous real valued maps on𝑈 .

(b) 𝐹𝑋(𝑈) contains all constant maps.

(c) If 𝑉 ⊆ 𝑈 is another open set of 𝑋, and 𝑓 ∈ 𝐹𝑋(𝑈), then 𝑓 |𝑉 ∈ 𝐹𝑋(𝑉).
(d) If𝑈 =

⋃
𝑗∈𝐽 𝑈 𝑗 , and 𝑓 :𝑈 → R is a continuous map such that 𝑓 |𝑈𝑗 ∈ 𝐹𝑋(𝑈 𝑗) for each

𝑗 ∈ 𝐽, then it follows that 𝑓 ∈ 𝐹𝑋(𝑈).

The pair (𝑋, 𝐹𝑋) is called a functionally structured space.
Let𝑈 ⊆ 𝑋 be open. For any open set 𝑉 ⊆ 𝑈 we define

𝐹𝑈(𝑉) ≔ 𝐹𝑋(𝑉),

and hence (𝑈, 𝐹𝑈) is a functionally structured space.
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Definition 23.1.8 (Morphisms of functionally structured spaces). A morphism

𝜙: (𝑋, 𝐹𝑋) → (𝑌, 𝐹𝑌)

between functionally structured spaces is a map 𝜙:𝑋 → 𝑌 such that, for any open set

𝑉 ⊆ 𝑌 and 𝑓 ∈ 𝐹𝑌(𝑉), we have 𝑓 𝜙 ∈ 𝐹𝑋(𝜙−1(𝑉)).

Definition 23.1.9 (Second definition of a 𝐶𝑝-manifold). An 𝑛-dimensional differen-

tiable manifold is second countable functionally structured Hausdorff space (𝑀, 𝐹)
which is locally isomorphic to (R𝑛 , 𝐶𝑝).

The local isomorphism is equivalent to the requirement that, for each point 𝑝 ∈ 𝑀,

there exists a neighbourhood 𝑈 ⊆ 𝑀 of 𝑝 such that (𝑈, 𝐹𝑈) ≃ (𝑉, 𝐶𝑝𝑉) as functionally

structured spaces — for some open set 𝑉 ⊆ R𝑛
.

Lemma 23.1.10. Let 𝑈,𝑉 ⊆ 𝑅𝑛 be open subspaces. An isomorphism between func-

tionally structured spaces

𝜙: (𝑈, 𝐶𝑝
𝑈
) ≃−→ (𝑉, 𝐶𝑝

𝑉
)

is a map 𝜙:𝑈 → 𝑉 of class 𝐶𝑝 if and only if 𝑓 𝜙 ∈ 𝐶𝑝(𝑈) for all 𝑓 ∈ 𝐶𝑝(𝑉).

Proof. Clearly, if 𝜙:𝑈 → 𝑉 is of class 𝐶𝑝 then 𝑓 𝜙 is a composition of 𝐶𝑝 maps, thus

𝑓 𝜙 ∈ 𝐶𝑝(𝑈) for any 𝑓 ∈ 𝐶𝑝(𝑉).
Conversely, if we have the hypothesis that 𝑓 𝜙 ∈ 𝐶𝑝(𝑈) for all 𝑓 ∈ 𝐶𝑝(𝑉), one may

consider the canonical projections 𝜋 𝑗 : R𝑛 ↠ R and notice that 𝜋 𝑗𝜙 ∈ 𝐶𝑝(𝑈). Therefore

each component of 𝜙 is a 𝐶𝑝(𝑈)map, implying that 𝜙 itself is a 𝐶𝑝(𝑈,𝑉)map. ♮

Lemma 23.1.11 (Equivalence of the definitions). The constructions on Definition 23.1.6

and Definition 23.1.9 are equivalent.

Proof. Let (𝑀, 𝐹) be a 𝐶𝑝-manifold in the sense of Definition 23.1.9. A chart on 𝑀 will

be interpreted as a pair (𝑈, 𝜙:𝑈 ≃−→ 𝑉) such that 𝜙 is an isomorphism (𝑈, 𝐹) ≃ (𝑉, 𝐶𝑝
𝑉
)

of functionally structured spaces. Since every point of 𝑀 has a neighbourhood from

which one can define the above mentioned isomorphism, we see that these charts do

cover the whole space 𝑀.

It remains to be proven that the transition maps are 𝐶𝑝 . From our interpretation of

chart, given any two charts 𝜙: (𝑈, 𝐹𝑈) ≃−→ (𝑉, 𝐶𝑝𝑉) and 𝜓: (𝑈 ′, 𝐹𝑈 ′) ≃−→ (𝑉 ′, 𝐶𝑝𝑉 ′) in 𝑀,

since 𝜙𝜓−1
and 𝜓𝜙−1

are isomorphisms of functionally structured spaces (𝑉, 𝐶𝑝
𝑉
) and

(𝑉 ′, 𝐶𝑝
𝑉 ′) — by Lemma 23.1.10 they are 𝐶𝑝 maps. Therefore, our collection of charts

match the requirements of Definition 23.1.1.

For the converse, let 𝑀 be a 𝐶𝑝-manifold with an atlas 𝒜. For every chart

(𝑈, 𝜙:𝑈 ≃−→ 𝑉) ∈ 𝒜 (where 𝜙 is a topological morphism), define

𝐹(𝑈) ≔ { 𝑓 𝜙 ∈ 𝐶𝑝(𝑈) : 𝑓 ∈ 𝐶𝑝(𝑉)}.

Let 𝑥 ∈ 𝑀 be any point and consider a chart (𝑈,𝜓:𝑈 ≃−→ 𝑉) ∈ 𝒜, where 𝑈 ⊆ 𝑀 is a

neighbourhood of 𝑥. Notice that 𝜙 naturally induces a morphism of functionally struc-

tured spaces 𝜙: (𝑈, 𝐹𝑈) → (𝑉, 𝐶𝑝𝑉)— moreover, since 𝜙 is a topological isomorphism,

then 𝜙 is an isomorphism (𝑈, 𝐹𝑈) ≃ (𝑉, 𝐶𝑝𝑉). ♮
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Definition 23.1.12 (Orientation). A manifold 𝑀 is said to be oriented if for any two

charts 𝜙 and 𝜓 on 𝑀, the Jacobian matrix of the transition map 𝜙𝜓−1
has a positive

determinant for all points of its domain. This maximal atlas on 𝑀 is said to define an

orientation on 𝑀. A manifold endowed with such an atlas is said to be orientable.

Smooth Morphisms
Morphisms Between Manifolds

Remark 23.1.13. From now on, unless stated otherwise, all manifolds are assumed to

be endowed with a smooth structure.

Remark 23.1.14 (Chart notation). When convenient, a chart (𝑈, 𝜙:𝑈 → 𝑉) shall simply

be denoted by 𝜙:𝑈 → 𝑉 .

Definition 23.1.15 (Smooth map). Let 𝑀 and 𝑁 be smooth manifolds of dimension 𝑚

and 𝑛, respectively. A continuous map 𝑓 :𝑀 → 𝑁 is said to be smooth at a point 𝑝 ∈ 𝑀
if there exists a chart (𝑉,𝜓) about 𝑓 (𝑝) in 𝑁 , and a chart (𝑈, 𝜙) about 𝑝 in 𝑀 such that

the map

𝜓 𝑓 𝜙−1

: 𝜙( 𝑓 −1(𝑉) ∩𝑈) → R𝑛 ,

where 𝜙( 𝑓 −1(𝑉) ∩𝑈) ⊆ R𝑚
, is smooth at 𝜙(𝑝). Naturally, 𝑓 is said to be smooth when

𝑓 is smooth at every point of 𝑀.

Remark 23.1.16. The requirement of continuity of 𝑓 :𝑀 → 𝑁 in Definition 23.1.15 is

necessary to ensure that 𝑓 −1(𝑉) ⊆ 𝑀 is open.

Lemma 23.1.17 (Smooth maps are choice-independent). Let 𝑓 :𝑀 → 𝑁 be a smooth

map at 𝑝 ∈ 𝑀 between smooth manifolds. If (𝑈, 𝜙) is any chart about 𝑝 in𝑀 and (𝑉,𝜓)
is any chart about 𝑓 (𝑝) in 𝑁 , then the composition map 𝜓 𝑓 𝜙−1

is 𝐶∞ at 𝜙(𝑝). Since

both 𝑀 and 𝑁 are endowed with 𝐶∞ compatible charts, it follows that the transition

maps 𝜙0𝜙−1
: 𝜙(𝑈0∩𝑈) → 𝜙0(𝑈0∩𝑈) and 𝜓𝜓−1

0
:𝜓0(𝑉0∩𝑉) → 𝜓(𝑉0∩𝑉) are both 𝐶∞

maps. Therefore the composition

(𝜓𝜓−1

0
) ◦ (𝜓0 𝑓 𝜙

−1

0
) ◦ (𝜙0𝜙

−1) = 𝜓 𝑓 𝜙−1

: 𝜙(𝑈0 ∩𝑈) −→ R𝑛 ,

where 𝑛 is the dimension of 𝑁 , is a 𝐶∞ map. Since 𝑝 ∈ 𝑈0 ∩𝑈 , then 𝜓 𝑓 𝜙−1
is 𝐶∞ at

𝜙(𝑝).

Proof. From the definition of smoothness, let (𝑈0, 𝜙0) be a chart about 𝑝 of 𝑀 and

(𝑉0,𝜓0) be a chart about 𝑓 (𝑝) of 𝑁 such that the map 𝜓0 𝑓 𝜙−1

0
is 𝐶∞ at 𝜙0(𝑝). ♮

Proposition 23.1.18. The composition of smooth maps is smooth.

Proof. Let𝑁 , 𝑀 and𝑊 be any three manifolds, and consider two smooth maps 𝑓 :𝑁 →
𝑀 and 𝑔:𝑀 → 𝑊 . Take any three charts (𝑈, 𝜙) of 𝑁 , (𝑉,𝜓) of 𝑀, and (𝐸, 𝛾) of 𝑊 .

Notice that the composition

(𝛾𝑔𝜓−1) ◦ (𝜓 𝑓 𝜙−1) = 𝛾(𝑔 𝑓 )𝜙−1

: 𝜙( 𝑓 −1(𝑉) ∩𝑈) −→ R𝑤 ,
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where 𝑤 is the dimension of 𝑊 , is a 𝐶∞ map since both 𝛾𝑔𝜓−1
and 𝜓 𝑓 𝜙−1

are 𝐶∞.

Since the charts where chosen arbitrarily, it follows that 𝑔 𝑓 is a smooth map. Notice

that the last two conclusions came directly from Proposition 23.1.19. ♮

Equivalent Conditions for Smoothness

Proposition 23.1.19 (Equivalent conditions for smoothness). Let 𝑓 :𝑁 → 𝑀 be a con-

tinuous map between manifolds 𝑁 and 𝑀, with respective dimensions 𝑛 and 𝑚. The

following properties are equivalent:

(a) The continuous map 𝑓 :𝑁 → 𝑀 is a smooth map.

(b) There exists atlases 𝒩 for 𝑁 andℳ for 𝑀 such that, for every chart (𝑈, 𝜙) ∈ 𝒩
and (𝑉,𝜓) ∈ ℳ, the composition

𝜓 𝑓 𝜙−1

: 𝜙( 𝑓 −1(𝑉) ∩𝑈) → R𝑚

is a 𝐶∞ map.

(c) For all pairs of charts (𝑈, 𝜙) on 𝑁 and (𝑉,𝜓) on 𝑀, the composition

𝜓 𝑓 𝜙−1

: ( 𝑓 −1(𝑉) ∩𝑈) → R𝑚

is a 𝐶∞ map.

Proof. • (a) ⇒ (c): Consider any pair of charts (𝑈, 𝜙) on 𝑁 and (𝑉,𝜓) on 𝑀 for

which 𝑓 −1(𝑉) ∩ 𝑈 is non-empty. Take any 𝑝 ∈ 𝑓 −1(𝑉) ∩ 𝑈 . Since 𝑓 is 𝐶∞, it

follows that the composition 𝜓 𝑓 𝜙−1
is 𝐶∞ at 𝜙(𝑝)— thus smooth for any point

of its domain.

• (c)⇒ (b): It suffices to choose atlases with 𝐶∞ compatible charts for 𝑁 and 𝑀.

• (b) ⇒ (a): If 𝑝 ∈ 𝑁 is any point, choose a chart (𝑈, 𝜙) about 𝑝 and (𝑉,𝜓)
about 𝑓 (𝑝). Property (b) ensures that the composition 𝜓 𝑓 𝜙−1

is, in particular,

continuous at 𝜙(𝑝), since 𝑝 ∈ 𝑓 −1(𝑉) ∩𝑈 .

♮

Corollary 23.1.20. Let 𝑀 be an 𝑛-manifold and 𝑓 :𝑀 → R𝑑
be a continuous map. The

following properties are equivalent:

(a) The map 𝑓 :𝑀 → R𝑑
is a 𝐶∞-morphism.

(b) The manifold 𝑀 is endowed with an atlas such that, for every chart 𝜙:𝑈 → 𝑉 of

𝑀, the map 𝑓 𝜙−1
: 𝜙(𝑈) → R𝑑

is a map of class 𝐶∞, where 𝑉 ⊆ R𝑛
.

(c) For all charts 𝜙:𝑈 → 𝑉 of 𝑀, the map 𝑓 𝜙−1
: 𝜙(𝑈) → R𝑑

is of class 𝐶∞, where

𝑉 ⊆ R𝑛
.

Proof. The whole proposition is simply a particular case of Lemma 23.1.26. ♮

Proposition 23.1.21 (Smoothness from projections). Let 𝑀 be an 𝑛-manifold. A map

𝑓 :𝑀 → R𝑑
is a smooth map if and only if its projections 𝑓𝑗 :𝑀 → R, for all 1 ⩽ 𝑗 ⩽ 𝑑,

are smooth maps.
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Proof. From definition, 𝑓 is a smooth map if and only if, for each chart 𝜙:𝑈 → 𝑉 of

𝑀, the map 𝑓 𝜙−1
:𝑉 → R𝑑

is of class 𝐶∞. Moreover, from the definition of continuity

on real spaces, we find that 𝑓 𝜙−1
is 𝐶∞ if and only if 𝑓𝑗𝜙−1

is 𝐶∞ for all 1 ⩽ 𝑗 ⩽ 𝑑. ♮

Proposition 23.1.22. Let 𝑓 :𝑁 → 𝑀 be a continuous map between two manifolds of

dimensions 𝑛 and 𝑚, respectively. The following properties are equivalent:

(a) The map 𝑓 :𝑁 → 𝑀 is a 𝐶∞-morphism.

(b) The manifold 𝑀 is endowed with an atlas such that, for all charts (𝑉,𝜓) of 𝑀, the

map 𝜓 𝑓 : 𝑓 −1(𝑉) → R𝑚
is a 𝐶∞-morphism.

(c) For every chart (𝑉,𝜓) of 𝑀, the map 𝜓 𝑓 : 𝑓 −1(𝑉) → R𝑚
is a 𝐶∞-morphism.

Proof. (b)⇒ (a): Together with the atlas of𝑀, the continuous map 𝑓 induces a structure

on 𝑁 as follows. For each chart (𝑉,𝜓) of 𝑀, construct a collection ℱ𝑉 : for every chart

(𝑈, 𝜙) in the atlas of 𝑁 , define a chart (𝑈 ∩ 𝑓 −1(𝑉), 𝜙|𝑈∩ 𝑓 −1(𝑉))— define ℱ𝑉 to be the

collection of all such chart. Then ℱ𝑉 is a smooth atlas for 𝑓 −1(𝑉) ⊆ 𝑁 . From (b) we

know that 𝜓 𝑓 : 𝑓 −1(𝑉) → R𝑚
is of class 𝐶∞, then by Corollary 23.1.20 we have that

the map 𝜓 𝑓 𝜙−1
: 𝜙(𝑈 ∩ 𝐹−1(𝑉)) → R𝑚

is of class 𝐶∞. Now by Proposition 23.1.19 we

obtain that 𝑓 is a smooth morphism.

(a)⇒ (c): Coordinate charts are 𝐶∞-morphisms and 𝑓 is a 𝐶∞-morphism by hy-

pothesis. Therefore by Proposition 23.1.18 we find that 𝜓 𝑓 is a 𝐶∞-morphism. The

implication (c)⇒ (b) is immediate. ♮

Corollary 23.1.23. Let 𝑓 :𝑁 → 𝑀 be a continuous map between manifolds of dimen-

sions 𝑛 and 𝑚, respectively. The following properties are equivalent:

1. The map 𝑓 :𝑁 → 𝑀 is a 𝐶∞-morphism.

2. The manifold 𝑀 is endowed with an atlas such that, for all charts (𝑉,𝜓), the

projections 𝜓 𝑗 𝑓 : 𝑓
−1(𝑉) → R of 𝑓 relative to the chart, for 1 ⩽ 𝑗 ⩽ 𝑚, are all

𝐶∞-morphisms.

3. For every chart (𝑉,𝜓) of 𝑀, the components of 𝑓 with respect to the chart are

smooth maps, that is, 𝜓 𝑗 𝑓 : 𝑓
−1(𝑉) → R are 𝐶∞-morphisms.

Proof. The proposition is consequence of Proposition 23.1.21 together with Proposi-

tion 23.1.22. ♮

The Category of Smooth Manifolds
Definition 23.1.24 (Category of 𝐶∞-manifolds). We define Man to be the category of

smooth manifolds and smooth morphisms between them, these will be interchangeably

called 𝐶∞-morphisms.

Corollary 23.1.25. An isomorphism in the category Man is a bĳective 𝐶∞-morphism

of manifolds with a smooth inverse. Some call these isomorphisms by “diffeomor-

phisms”, we shall call them 𝐶∞-isomorphisms or smooth isomorphisms.
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Lemma 23.1.26. Let (𝑀, 𝐹𝑀) and (𝑁, 𝐹𝑁 ) be smooth manifolds. A map 𝑓 :𝑀 → 𝑁

is smooth in the sense of Definition 23.1.15 if and only if 𝑓 is smooth in the sense of

Definition 23.1.8.

Proof. Assume that 𝑀 and 𝑁 are, respectively, 𝑚 and 𝑛-dimensional spaces. First we

consider 𝑓 as a morphism of functionally structured spaces. Let 𝑝 ∈ 𝑀 be any point

and consider charts, in the sense of isomorphisms of functionally structured spaces:

• 𝜙:𝑈 ≃−→ 𝑉 in 𝑀 — where𝑈 is a neighbourhood of 𝑝 and 𝑉 ⊆ 𝑅𝑚

• 𝜓:𝑈 ′ ≃−→ 𝑉 ′ in 𝑁 — where𝑈 ′ is a neighbourhood of 𝑓 (𝑝) and 𝑉 ′ ⊆ R𝑛
.

Since 𝜙 is an isomorphism, one can consider its inverse and use the property that,

for any open set 𝑆 ⊆ 𝑉 and map 𝑔 ∈ 𝐹𝑀(𝑆), then 𝑔𝜙−1 ∈ 𝐶∞(𝜙(𝑆)). Since 𝑓 is

a morphism of functionally structured spaces, in particular 𝜋 𝑗𝜓 ∈ 𝐹𝑁 (𝑈 ′) for all

1 ⩽ 𝑗 ⩽ 𝑛, then 𝜋 𝑗𝜓 𝑓 ∈ 𝐹𝑀( 𝑓 −1(𝑈 ′)). Therefore, since 𝑝 ∈ 𝑈 and 𝑓 (𝑝) ∈ 𝑈 ′, the

intersection 𝑓 −1(𝑈 ′) ∩𝑈 ⊆ 𝑀 is non-empty and we can conclude that

𝜋 𝑗𝜓 𝑓 𝜙
−1 ∈ 𝐶∞(𝜙( 𝑓 −1(𝑈 ′) ∩𝑈)).

Since this is the case for every 1 ⩽ 𝑗 ⩽ 𝑛, it follows that 𝜓 𝑓 𝜙−1
is 𝐶∞ — therefore 𝑓 is

smooth in the sense of Definition 23.1.15.

For the converse, suppose 𝑓 :𝑀 → 𝑁 is smooth as in Definition 23.1.15. From the

last property of the functional structures on spaces, we can simply consider a chart

𝜓:𝑈 ′→ 𝑉 ′ in 𝑁 and define a functional structure on 𝑁 as

𝐹𝑁 (𝑈 ′) ≔ {𝑔𝜙 ∈ 𝐶∞(𝑈 ′) : 𝑔 ∈ 𝐶∞(𝑉 ′)}.

If ℎ ∈ 𝐹𝑁 (𝑈 ′) is any map, then the analogous structure 𝐹𝑀 on 𝑀 has

𝐹𝑀( 𝑓 −1(𝑈 ′)) = {𝑤 𝑓 ∈ 𝐶∞( 𝑓 −1(𝑈 ′)) : 𝑤 ∈ 𝐶∞(𝑈 ′)},

therefore ℎ 𝑓 ∈ 𝐹𝑀( 𝑓 −1(𝑈 ′)) as wanted. ♮

Definition 23.1.27 (Lie group). A Lie group is a smooth manifold 𝐺 together with a

multiplicative structure 𝐺 × 𝐺 → 𝐺 and an inverse map 𝐺 → 𝐺, both of which are

𝐶∞-morphisms, making 𝐺 into a group.

𝐶∞-Isomorphisms
Proposition 23.1.28 (Coordinate maps are 𝐶∞-isomorphisms). Let (𝑈, 𝜙:𝑈 → 𝑉) be a

chart on an 𝑛-manifold 𝑀, then 𝜙 is a 𝐶∞-isomorphism.

Proof. By the definition, the coordinate map 𝜙 is a topological isomorphism, we thus

show that both 𝜙 and 𝜙−1
are smooth maps. Lets endow𝑈 with the natural structure

of a manifold via the smooth atlas {(𝑈, 𝜙)}, now for 𝑉 we canonically endow it with

the smooth atlas {(𝑉, id𝑉)}. For the smoothness of 𝜙, it suffices to observe that

id𝑉 𝜙𝜙−1 = id𝑉 is certainly 𝐶∞, therefore by Proposition 23.1.19 we find that 𝜙 is

smooth. Analogously, for the smoothness of 𝜙−1
:𝑉 → 𝑈 , we know that 𝜙𝜙−1

id𝑉 =

id𝑉 , thus 𝜙−1
is smooth for the same reason. ♮
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Proposition 23.1.29 (𝐶∞-isomorphisms are charts). Let𝑀 be an 𝑛-manifold and𝑈 ⊆ 𝑀
be any subset. If 𝑓 :𝑈 → 𝑉 , where 𝑉 ⊆ R𝑛

, is a 𝐶∞-isomorphism, the induced pair

(𝑈, 𝑓 ) is a chart in the smooth structure of 𝑀.

Proof. Given any chart (𝐸, 𝜙) on 𝑀 with non-empty 𝐸 ∩ 𝑈 , we have that 𝑓 𝜙−1
and

𝜙 𝑓 are compositions of smooth maps (by Proposition 23.1.28 and Proposition 23.1.18),

therefore both are smooth maps. This shows that (𝑈, 𝑓 ) is compatible with any inter-

secting chart of 𝑀, therefore by the maximality of the smooth atlas of 𝑀 we find that

(𝑈, 𝑓 ) is a chart of 𝑀. ♮

Proposition 23.1.30. Let𝑈 ⊆ 𝑀 be an open set in the 𝑛-dimensional smooth manifold

𝑀. If 𝐹:𝑈 → 𝐵 is a 𝐶∞-isomorphism where 𝐵 ⊆ R𝑛
is an open set, then the pair (𝑈, 𝐹)

is a coordinate chart in the differentiable structure of 𝑀.

Proof. Given any chart (𝑉, 𝜙) of the manifold𝑀 where𝑈∩𝑉 is non-empty, one has that

the transition maps 𝐹𝜙−1
and 𝜙𝐹−1

are both compostions of 𝐶∞-isomorphisms—thus

themselves 𝐶∞-isomorphisms. Since the differentiable structure of 𝑀 is defined to be

maximal, it must be the case that (𝑈, 𝐹) is a chart in the atlas of 𝑀. ♮

Local Coordinates
Let 𝑀 be an smooth 𝑛-manifold and 𝑓 :𝑀 → R be any real valued map. If 𝑥:𝑈 → 𝑉 is

a chart of 𝑀, we consider the induced map 𝑓 ≔ 𝑓 𝑥−1
:𝑉 → R, a multivariable real map

from a subset of R𝑛
to R. For any 𝑝 ∈ 𝑈 , one has “coordinates” 𝑥(𝑝) = (𝑥1(𝑝), . . . , 𝑥𝑛(𝑝)).

These coordinates can be used to compute 𝑓 via

𝑓 (𝑝) = 𝑓 (𝑥1(𝑝), . . . , 𝑥𝑛(𝑝)),
working as some kind of local coordinates on the open set𝑈 . This an intuitive view of

what the following definition states.

Definition 23.1.31 (Local coordinates). If𝑋 is an R𝑛
modelled manifold, and𝜙:𝑈 → R𝑛

is a chart, where 𝑈 ⊆ 𝑋 is open, then, we say that the collection (𝜙 𝑗)𝑛𝑗=1
are local

coordinates for 𝑋 on𝑈 .

Partial Derivatives
Definition 23.1.32 (Partial derivative). Let 𝑀 be an 𝑛-manifold, and (𝑈, 𝜙) be a chart

of 𝑀. Given a 𝐶∞-morphism 𝑓 :𝑀 → R we define, for all 𝑝 ∈ 𝑈 , the partial derivative
of 𝑓 with respect to 𝜙 𝑗 at 𝑝 to be

𝜕

𝜕𝜙 𝑗

����
𝑝

𝑓 ≔
𝜕 𝑓

𝜕𝜙 𝑗
(𝑝) ≔

𝜕( 𝑓 𝜙−1)
𝜕𝜋 𝑗

(𝜙(𝑝)) ≔ 𝜕

𝜕𝜋 𝑗

����
𝜙(𝑝)
( 𝑓 𝜙−1).

where 𝜙 𝑗 is the 𝑗-th projection of 𝜙, and 𝜋 𝑗 : R𝑛 ↠ R is the 𝑗-th canonical projection,

for 1 ⩽ 𝑗 ⩽ 𝑛. Since 𝜙 is a bĳective map, we have that

𝜕 𝑓

𝜕𝜙 𝑗
◦ 𝜙−1 =

𝜕( 𝑓 𝜙−1)
𝜕𝜋 𝑗

: 𝜙(𝑈) −→ R
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is a map of class 𝐶∞ on 𝜙(𝑈). Moreover, since its pullback is 𝐶∞, then 𝜕 𝑓 /𝜕𝜙 𝑗 is a

𝐶∞-morphism on𝑈 .

Proposition 23.1.33. Let 𝑀 be an 𝑛-manifold and (𝑈, 𝜙) be a chart of 𝑀. Then we have

that for all 1 ⩽ 𝑖 , 𝑗 ⩽ 𝑛, the projections of 𝜙 satisfy

𝜕𝜙𝑖
𝜕𝜙 𝑗

= 𝛿𝑖 𝑗 .

Proof. From the definition, one has

𝜕𝜙𝑖
𝜕𝜙 𝑗
(𝑝) =

𝜕(𝜙𝑖𝜙−1)
𝜕𝜋 𝑗

(𝜙(𝑝)) =
𝜕((𝜋𝑖𝜙) ◦ 𝜙−1)

𝜕𝜋 𝑗
(𝜙(𝑝)) = 𝜕𝜋𝑖

𝜕𝜋 𝑗
(𝜙(𝑝)) = 𝛿𝑖 𝑗

for any 𝑝 ∈ 𝑈 . ♮

Definition 23.1.34 (Jacobian). Let 𝑓 :𝑁 → 𝑀 be a 𝐶∞-morphism — assume 𝑛 and 𝑚

are the respective dimensions of 𝑁 and 𝑀 — and consider a pair of charts (𝑈, 𝜙) of 𝑁

and (𝑉,𝜓) of 𝑀, for which 𝑓 (𝑈) ⊆ 𝑉 . We define the 𝑖-th projection 𝑓 in the chart (𝑉,𝜓)
to be the map

𝑓𝑖 ≔ 𝜓𝑖 𝑓 :𝑈 −→ R,

for all 1 ⩽ 𝑖 ⩽ 𝑚. We also define the Jacobian matrix of 𝑓 in the chart (𝑉,𝜓) to be the

𝑚 × 𝑛 matrix whose (𝑖 , 𝑗)-th component is 𝜕 𝑓𝑖/𝜕𝜙 𝑗 — for 1 ⩽ 𝑖 ⩽ 𝑚 and 1 ⩽ 𝑗 ⩽ 𝑛.

If it is the case that 𝑁 and 𝑀 have the same dimension, we define the Jacobian of 𝑓
in the chart (𝑉,𝜓) to be the determinant of its respective Jacobian matrix.

Inverse Map Theorem for Manifolds
Theorem 23.1.35 (Inverse map theorem). Let 𝑓 :𝑁 → 𝑀 be a 𝐶∞-morphism, 𝑝 ∈ 𝑁 be

any point, and both 𝑁 and 𝑀 be 𝑛-dimensional manifolds. Let (𝑈, 𝜙) be a chart about

𝑝 in 𝑁 , and (𝑉,𝜓) be a chart about 𝑓 (𝑝) in 𝑀, such that 𝑓 (𝑈) ⊆ 𝑉 . Then 𝑓 is locally
invertible at 𝑝 if and only if the determinant det

[ 𝜕 𝑓𝑖
𝜕𝜙 𝑗

]
𝑖 𝑗

is non-zero—where 𝑓𝑖 ≔ 𝜓𝑖 𝑓 .

Proof. Let 𝜋 𝑗 : R𝑛 → R denote the 𝑗-th canonical projection, so that 𝑓𝑖 = 𝜓𝑖 𝑓 = 𝜋𝑖𝜓 𝑓 .
The local representation of 𝑓∗ 𝑝 relative to the charts (𝑈, 𝜙) and (𝑉,𝜓) is given by[ 𝜕 𝑓𝑖

𝜕𝜙 𝑗

]𝑛
𝑖,𝑗=1

=

[𝜕(𝜋𝑖𝜓 𝑓 )
𝜕𝜙 𝑗

]𝑛
𝑖,𝑗=1

=

[𝜕(𝜋𝑖𝜓 𝑓 𝜙−1)
𝜕𝜋 𝑗

(𝜙(𝑝))
]𝑛
𝑖,𝑗=1

. (23.1)

That is, the local representation of 𝑓∗ 𝑝 is the same as the Jacobian matrix of

𝜓 𝑓 𝜙−1

: 𝜙( 𝑓 −1𝑉 ∩𝑈) → R𝑚

at the point 𝜙(𝑝). By the inverse map theorem for Banach spaces (see Theorem A.5.8),

we find that the determinant of the Jacobian Eq. (23.1) is non-zero if and only if

𝜓 𝑓 𝜙−1
is a locally invertible map at 𝜙(𝑝). Notice however that both 𝜙 and 𝜓 are

𝐶∞-isomorphisms, thus 𝜓 𝑓 𝜙−1
is locally invertible at the said point if and only if 𝑓 is

invertible at 𝑝. ♮
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Corollary 23.1.36. Let 𝑀 be an 𝑛-dimensional manifold, and (𝑈, 𝜙) be a chart of 𝑀

about a given point 𝑝 ∈ 𝑀. A 𝐶∞-morphism 𝐹:𝑈 → R𝑛
, in the coordinate chart (𝑈, 𝜙),

forms a coordinate chart
1

about 𝑝 if and only if its Jacobian determinant det

[ 𝜕𝐹𝑖
𝜕𝜙 𝑗

]
𝑖 𝑗

is

non-zero.

Proof. From the inverse map theorem, the determinant of the Jacobian of 𝐹 at the point

𝑝 is non-zero if and only if 𝐹:𝑈 → R𝑛
is locally invertible at 𝑝. Moreover, the condition

for 𝐹 to be locally invertible is equivalent to the existence of a neighbourhood 𝑋 ⊆ 𝑀
of 𝑝 such that the induced map 𝐹:𝑋 → 𝐹(𝑋) is a 𝐶∞-isomorphism, and thus (𝑋, 𝐹) is
a coordinate chart about 𝑝 (see Proposition 23.1.30). ♮

23.2 Structures

Classical Approach

Functional Structured Approach
Definition 23.2.1 (Induced structure). Let (𝑋, 𝐹𝑋) be a functionally structured space,

and 𝜙:𝑋 → 𝑌 be a continuous map, where 𝑌 is a topological space. We define the

induced functional structure on 𝑌 via 𝐹𝑋 and 𝜙 to be given by

𝐹𝑌(𝑈) ≔ { 𝑓 ∈ 𝐶(𝑈) : 𝑓 𝜙 ∈ 𝐹𝑋(𝜙−1(𝑈))},

for any open set𝑈 ⊆ 𝑌.

Definition 23.2.2 (Induced structure on subspace). Let (𝑋, 𝐹) be a functionally struc-

tured space, and 𝐴 ⊆ 𝑋 be a subspace. We construct a functional structure 𝐹𝐴 on 𝐴 as

follows: for all open sets 𝑈 ⊆ 𝐴, a continuous map 𝑓 :𝑈 → R is contained in 𝐹𝐴(𝑈) if
and only if for every 𝑝 ∈ 𝑈 there exists a neighbourhood𝑊 ⊆ 𝑋 of 𝑝 such that 𝑓 is the

restriction to𝑊 ∩ 𝐴 of some map 𝑔 ∈ 𝐹(𝑊).

Definition 23.2.3 (Binary product of manifolds). Let 𝑀 and 𝑁 be manifolds of dimen-

sion 𝑚 and 𝑛, respectively. If 𝜙:𝑈 → R𝑚
is a chart for 𝑀 and 𝜓:𝑉 → R𝑛

is a chart

for 𝑁 , we take 𝜙 × 𝜓:𝑈 × 𝑉 → R𝑚+𝑛
to be a chart for the product space 𝑀 × 𝑁 . The

maximal atlas consisting of such product charts make 𝑀 × 𝑁 into a product manifold

of dimension 𝑚 + 𝑛.

Definition 23.2.4 (Submanifold). Let 𝑀 be an 𝑛-manifold. A subset 𝑁 ⊆ 𝑀 is said to

be a 𝑘-manifold of 𝑀 if for each 𝑝 ∈ 𝑁 there exists a chart 𝜙:𝑈 → 𝑉 of 𝑀 about 𝑝 for

which

𝜙(𝑈 ∩ 𝑁) = 𝑉 ∩ (R𝑘 × {0}).
Charts with this property are called adapted to 𝑁 . The maximal atlas containing all

adapted charts to 𝑁 makes 𝑁 into a manifold.

1
That is, there exists a neighbourhood 𝑋 ⊆ 𝑀 of 𝑝 such that the induced map 𝐹:𝑋 → 𝐹(𝑋) is a

𝐶∞-isomorphism—then (𝑋, 𝐹) is a coordinate chart about 𝑝.
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We define the codimension of 𝑁 in 𝑀 to be the difference 𝑛 − 𝑘. The submanifold

𝑁 is said to be smooth exactly when about each point there exists an adapted smooth

chart to 𝑁 — so that one can find a unique maximal smooth atlas for 𝑁 .

Definition 23.2.5 (Smooth embedding). A 𝐶∞-morphism 𝑓 :𝑁 → 𝑀 is said to be a

smooth embedding if the image 𝑓 (𝑁) ⊆ 𝑀 is a smooth submanifold of 𝑀 and the induced

restriction 𝑓 :𝑁 ≃−→ 𝑓 (𝑁) is a 𝐶∞-isomorphism.

Example 23.2.6 (Sphere). Consider the sphere 𝑆𝑛 ⊆ R𝑛+1
, we’ll define a smooth atlas

on 𝑆𝑛 using solely two charts. To that end, define two points 𝑛 ≔ (0, . . . , 0, 1) and

𝑠 ≔ (0, . . . , 0,−1) in R𝑛+1
— these correspond to the north and south poles of 𝑆𝑛 ,

respectively. Consider the stereographic projection 𝜙𝑛 : 𝑆𝑛 ∖ {𝑛} → R𝑛
, from the sphere

with its north pole cut out to the hyperplane 𝑅𝑛 ≃ R𝑛 × {0} — the stereographic

projection maps each point 𝑥 ∈ 𝑆𝑛 to the intersection of the line passing through 𝑥 and

𝑛, and the hyperplane above-mentioned. The inverse map of 𝜙𝑛 is 𝜋𝑛 : R𝑛 → 𝑆𝑛 ∖ {𝑛},
mapping

𝑥 ↦−→ (2𝑥, ∥𝑥∥
2 − 1)

(1 + ∥𝑥∥)2 .

We define the south stereographic projection 𝜙𝑠 : 𝑆𝑛 ∖ {𝑠} → R𝑛
equivalently. This

construction has a smooth transition map

𝜙𝑠𝜙
−1

𝑛 (𝑥) =
𝑦

∥𝑦∥2

.

23.3 Partitions of Unity
Definition 23.3.1 (Adequate atlas). Given an 𝑚-manifold 𝑀, we say that an atlas

(𝑈 𝑗 , 𝜙 𝑗)𝑗∈𝐽 is adequate if it is locally finite, and for all we have either 𝜙 𝑗(𝑈 𝑗) = R𝑚
or

𝜙 𝑗(𝑈 𝑗) = H𝑚
, and ⋃

𝑗∈𝐽
𝜙−1

𝑗 (Int𝐷𝑚) = 𝑀.

Since every topological manifold is paracompact, by Corollary 14.5.8 we obtain the

following corollary.

Corollary 23.3.2. Let 𝒰 be a covering of 𝑀. There exists an adequate atlas (𝑈 𝑗 , 𝜙 𝑗)𝑗∈𝐽
such that (𝑈 𝑗)𝑗∈𝐽 is a refinement of𝒰 .

Definition 23.3.3 (Bump functions & partition of unity). Let 𝑀 be an 𝑚-manifold and

(𝑈 𝑗 , 𝜙 𝑗)𝑗∈𝐽 be an adequate atlas on 𝑀. Let 𝜆: R𝑚 → R be a smooth non-negative map such

that 𝜆|𝐷𝑚 ≔ 1 and 𝜆|R𝑚∖𝐷𝑚(2) ≔ 0.

• Define, for every 𝑗 ∈ 𝐽, maps 𝜆 𝑗 :𝑀 → R where

𝜆 𝑗|𝑈𝑗 ≔ 𝜆𝜙 𝑗 and 𝜆 𝑗|𝑀∖𝑈𝑗 ≔ 0.

We name the collection (𝜆 𝑗)𝑗∈𝐽 the bump functions associated to (𝑈 𝑗)𝑗∈𝐽 .

515



• Define, for each 𝑗 ∈ 𝐽, maps 𝜇𝑗 :𝑀 → R given by

𝜇𝑗(𝑝) ≔
𝜆 𝑗(𝑝)∑
𝑖∈𝐽 𝜆𝑖(𝑝)

for all 𝑝 ∈ 𝑀. The collection (𝜇𝑗)𝑗∈𝐽 is said to be the partition of unity associated

to the atlas (𝑈 𝑗 , 𝜙 𝑗)𝑗∈𝐽 .

23.4 Tangent Space

Algebra of Germs
Consider any point 𝑝 ∈ 𝑀. Define an equivalence relation ∼𝑝 on the set of real-

valued 𝐶∞-morphisms in 𝑀 as follows: given neighbourhoods 𝑈 and 𝑉 of 𝑝, and

𝐶∞-morphisms 𝑓 :𝑈 → R and 𝑔:𝑉 → R, we say that 𝑓 ∼𝑝 𝑔 if and only if there exists

a neighbourhood 𝑄 ⊆ 𝑈 ∩𝑉 of 𝑝 such that 𝑓 |𝑄 = 𝑔|𝑄 .

Definition 23.4.1 (Algebra of germs in a manifold). Given a manifold 𝑀 and a point

𝑝 ∈ 𝑀, we define the germs of real-valued 𝐶∞-morphisms at 𝑝, to be the natural R-algebra

on the following quotient:

𝐶∞𝑝 (𝑀) ≔ { 𝑓 ∈ MorMan(𝑈,R) : 𝑝 ∈ 𝑈 ⊆ 𝑀}
/
∼𝑝 .

A point-derivation of 𝐶∞𝑝 (𝑀) is an R-linear map 𝑋:𝐶∞𝑝 (𝑀) → R such that

𝑋( 𝑓 𝑔) = (𝑋 𝑓 )𝑔(𝑝) + 𝑓 (𝑝)(𝑋𝑔).

Definition 23.4.2 (Tangent vector & tangent space). Let 𝑀 be a manifold and 𝑝 ∈ 𝑀
be any point. A tangent vector at 𝑝 is a point-derivation on 𝐶∞𝑝 (𝑀). The collection of

tangent vectors at 𝑝, denoted by 𝑇𝑝𝑀, together with a natural action R ×𝑇𝑝𝑀 → 𝑇𝑝𝑀,

forms the R-vector space called tangent space of 𝑀 at 𝑝.

Differential of a Smooth Morphism
Definition 23.4.3 (Differential at a point). Let 𝑓 :𝑁 → 𝑀 be a 𝐶∞-morphism. At every

point 𝑝 ∈ 𝑁 , the morphism 𝑓 induces a pushforward

𝑓∗:𝑇𝑝𝑁 −→ 𝑇𝑓 (𝑝)𝑀,

called differential of 𝑓 at 𝑝, which is an R-linear map between tangent spaces. For

any tangent vector 𝑋𝑝 :𝐶∞𝑝 (𝑁) → R of 𝑇𝑝𝑁 , we define the induced tangent vector

𝑓∗(𝑋𝑝):𝐶∞𝑓 (𝑝)(𝑀) → R of 𝑇𝑓 (𝑝)𝑀 as the R-linear map given by

( 𝑓∗(𝑋𝑝))(𝑔) ≔ 𝑋𝑝(𝑔 𝑓 ) ∈ R,

for all 𝑔 ∈ 𝐶∞
𝑓 (𝑝)(𝑀).
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Proposition 23.4.4. Let 𝑓 :𝑁 → 𝑀 and 𝑔:𝑀 → 𝑃 be 𝐶∞-morphisms of manifolds, and

𝑝 ∈ 𝑁 be a given point. Then one has that the differential of the composition 𝑔 𝑓 at 𝑝,

the linear map (𝑔 𝑓 )∗ 𝑝 :𝑇𝑝𝑁 → 𝑇𝑓 (𝑝)𝑀, satisfies

(𝑔 𝑓 )∗ 𝑝 = 𝑔∗ 𝑓 (𝑝) 𝑓∗ 𝑝 ,

where 𝑔∗ 𝑓 (𝑝) denotes the differential of 𝑔 at 𝑓 (𝑝), while 𝑓∗ 𝑝 the differential of 𝑓 at 𝑝.

Proof. Let 𝑋𝑝 ∈ 𝑇𝑝𝑁 be any tangent vector and ℓ ∈ 𝐶∞
𝑔 𝑓 (𝑝)(𝑃), then one has

((𝑔 𝑓 )∗𝑋𝑝)(ℓ ) = 𝑋𝑝(ℓ (𝑔 𝑓 )),
((𝑔∗ 𝑓∗)𝑋𝑝)(ℓ ) = (𝑔∗( 𝑓∗𝑋𝑝))(ℓ ) = ( 𝑓∗𝑋𝑝)(ℓ 𝑔) = 𝑋𝑝((ℓ 𝑔) 𝑓 ) = 𝑋𝑝(ℓ (𝑔 𝑓 )).

Where we used the fact that 𝑓∗𝑋𝑝 ∈ 𝑇𝑓 (𝑝)𝑀. Therefore we conclude that ((𝑔 𝑓 )∗𝑋𝑝)(ℓ ) =
((𝑔∗ 𝑓∗)𝑋𝑝)(ℓ ). ♮

Corollary 23.4.5. Let 𝑓 :𝑁 → 𝑀 be a 𝐶∞-isomorphism and 𝑝 ∈ 𝑁 be any point, then

the 𝑅-linear map 𝑓∗:𝑇𝑝𝑁 → 𝑇𝑓 (𝑝)𝑀 is an isomorphism of 𝑅-vector spaces.

Proof. Since 𝑓 is an isomorphism of manifolds, consider its inverse 𝑓 −1
:𝑀 → 𝑁 . Using

the chain rule, we find that

id𝑇𝑝𝑁 = (id𝑁 )∗ 𝑝 = ( 𝑓 −1 𝑓 )∗ 𝑝 = 𝑓 −1

∗ 𝑓 (𝑝) 𝑓∗ 𝑝 ,

id𝑇𝑓 (𝑝)𝑀 = (id𝑀)∗ 𝑓 (𝑝) = ( 𝑓 𝑓 −1)∗ 𝑓 (𝑝) = 𝑓∗ 𝑓 −1 𝑓 (𝑝) 𝑓
−1

∗ 𝑓 (𝑝) = 𝑓∗ 𝑝 𝑓
−1

∗ 𝑓 (𝑝).

This shows that 𝑓∗ 𝑝 and 𝑓 −1

∗ 𝑓 (𝑝) are inverses of each other—thus isomorphisms. ♮

Corollary 23.4.6 (Dimension invariance). If 𝑈 ⊆ R𝑛
is an open set 𝐶∞-isomorphic to

an open set 𝑉 ⊆ R𝑚
, then 𝑛 = 𝑚.

Proof. Let 𝑓 :𝑈 → 𝑉 be a 𝐶∞-isomorphism. For any 𝑝 ∈ 𝑈 one has that 𝑓∗ 𝑝 :𝑇𝑝𝑈 →
𝑇𝑓 (𝑝)𝑉 is an isomorphism of vector spaces by Corollary 23.4.5. Since dimR 𝑇𝑝𝑈 = 𝑛 and

dimR 𝑇𝑓 (𝑝)𝑉 = 𝑚, then necessarily 𝑛 = 𝑚. ♮

Definition 23.4.7 (Immersions and submersions). Let 𝑓 :𝑁 → 𝑀 be a 𝐶∞-morphism,

and 𝑝 ∈ 𝑁 be any point—also assume that dim𝑁 = 𝑛 and dim𝑀 = 𝑚. We define the

following two concepts concerning the differential 𝑓∗ 𝑝 :𝑇𝑝𝑁 → 𝑇𝑓 (𝑝)𝑀:

(a) The map 𝑓 is said to be an immersion at 𝑝 if 𝑓∗ 𝑝 is injective—if that is the case, then

𝑛 ⩽ 𝑚. If 𝑓 is an immersion at every point, we simply classify 𝑓 as an immersion.

(b) The map 𝑓 is said to be an submersion at 𝑝 if 𝑓∗ 𝑝 is surjective—if that is the case, then

𝑚 ⩽ 𝑛. If 𝑓 is a submersion at every given point, we call 𝑓 a submersion.

Remark 23.4.8. Mind you: immersions do not need to be injective, neither do submersions

need to be surjective.

We now restate Definition 23.2.4 and Definition 23.2.5 with this new terminology

of immersions. Given a 𝐶∞-morphism 𝑓 :𝑀 → 𝑁 , if 𝑓 is an immersion and is injective,

then the pair (𝑀, 𝑓 ) defines a submanifold of 𝑁 . Consequently, 𝑓 :𝑀 → 𝑓 𝑀 is a 𝐶∞-

isomorphism, being an embedding. Later (see Definition 23.5.1) we shall define 𝑓 𝑀 to

be an embedded submanifold on 𝑁 .
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Tangent Space Basis at a Point
Lemma 23.4.9. Let 𝑀 be an 𝑛-dimensional smooth manifold and (𝑈, 𝜙) be a chart

about a point 𝑝 ∈ 𝑀, then for every 1 ⩽ 𝑗 ⩽ 𝑛 we have

𝜙∗
( 𝜕

𝜕𝜙 𝑗

���
𝑝

)
=

𝜕

𝜕𝜋 𝑗

���
𝜙(𝑝)

where (𝜋 𝑗)𝑛𝑗=1
are the local coordinates of R𝑛

—that is, the canonical projections.

Proof. Let 𝑓 ∈ 𝐶∞
𝜙(𝑝)(R

𝑛) be any smooth morphism, then we have(
𝜙∗

( 𝜕

𝜕𝜙 𝑗

���
𝑝

))
( 𝑓 ) = 𝜕

𝜕𝜙 𝑗

���
𝑝
( 𝑓 𝜙) = 𝜕

𝜕𝜋 𝑗

���
𝜙(𝑝)
( 𝑓 𝜙)𝜙−1 =

𝜕

𝜕𝜋 𝑗

���
𝜙(𝑝)

𝑓 (𝜙𝜙−1) = 𝜕

𝜕𝜋 𝑗

���
𝜙(𝑝)

𝑓

for each 1 ⩽ 𝑗 ⩽ 𝑛. ♮

Proposition 23.4.10 (Tangent space basis at a point). Let𝑀 be an 𝑛-dimensional smooth

manifold, and (𝑈, 𝜙) be a chart about 𝑝 ∈ 𝑀. Then the 𝑅-vector space 𝑇𝑝𝑀 has a basis( 𝜕

𝜕𝜙1

���
𝑝
, . . . ,

𝜕

𝜕𝜙𝑛

���
𝑝

)
Proof. Via Lemma 23.4.9 we know that the map 𝜙∗:𝑇𝑝𝑀 → 𝑇𝜙(𝑝)R𝑛

is 𝑅-linear and

sends each
𝜕

𝜕𝜙 𝑗

��
𝑝

to the corresponding base element
𝜕

𝜕𝜋𝑗

��
𝜙(𝑝) of 𝑇𝜙(𝑝)R𝑛

. Therefore 𝜙∗ is

an R-linear isomorphism and the collection of tangent vectors
𝜕

𝜕𝜙 𝑗

��
𝑝

is a basis. ♮

Proposition 23.4.11 (Transition map matrix). Let (𝑈, 𝜙) and (𝑉,𝜓) be coordinate charts

for an 𝑛-dimensional manifold 𝑀. Then one has on the intersection 𝑈 ∩ 𝑉 , for each

1 ⩽ 𝑗 ⩽ 𝑛,

𝜕

𝜕𝜙 𝑗
=

𝑛∑
𝑖=1

𝜕𝜓𝑖

𝜕𝜙 𝑗

𝜕

𝜕𝜓𝑖

Proof. Let 𝑝 ∈ 𝑈 ∩𝑉 be any point and define [𝑎𝑖 𝑗]𝑛𝑖,𝑗=1
be a change of basis matrix from(

𝜕
𝜕𝜓 𝑗

��
𝑝

)𝑛
𝑗=1

to

(
𝜕

𝜕𝜙 𝑗

��
𝑝

)𝑛
𝑗=1

—that is, the coefficients of the matrix must satisfy

𝜕

𝜕𝜙 𝑗
=

𝑛∑
𝑘=1

𝑎𝑘 𝑗
𝜕

𝜕𝑦𝑘

Since

𝜕𝜓𝑖
𝜕𝜓 𝑗

= 𝛿𝑖 𝑗 then by applying the component 𝜓𝑖 to the above equation of tangent

vectors, one has

𝜕𝜓𝑖

𝜕𝜙 𝑗
=

𝑛∑
𝑘=1

𝑎𝑘 𝑗
𝜕𝜓𝑖

𝜕𝜓𝑘
=

𝑛∑
𝑘=1

𝑎𝑘 𝑗𝛿𝑖𝑘 = 𝑎𝑖 𝑗 .

Which proves the proposition. ♮
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Proposition 23.4.12 (Local expression for the differential of a map). Let 𝑓 :𝑁 → 𝑀

be a 𝐶∞-morphism, and consider a point 𝑝 ∈ 𝑁—moreover, let dim𝑁 = 𝑛 and

dim𝑀 = 𝑚. Given coordinate charts (𝑈, 𝜙) about 𝑝, and (𝑉,𝜓) about 𝑓 (𝑝), the

differential 𝑓∗ 𝑝 :𝑇𝑝𝑁 → 𝑇𝑓 (𝑝)𝑀 can be locally represented—that is, with respect to the

bases

(
𝜕

𝜕𝜙 𝑗

��
𝑝

)𝑛
𝑗=1

and

(
𝜕

𝜕𝜓𝑖

��
𝑓 (𝑝)

)𝑚
𝑖=1

—by the matrix[ 𝜕 𝑓𝑖
𝜕𝜙 𝑗
(𝑝)

]
1⩽𝑖⩽𝑛
1⩽ 𝑗⩽𝑚

where 𝑓𝑖 ≔ 𝜓𝑖 𝑓 is the 𝑖-th component of 𝑓 with respect to 𝜓, for each 1 ⩽ 𝑖 ⩽ 𝑚.

Proof. Given the said coordinate charts, 𝑓∗ 𝑝 will be completely determined by its image

on the local basis of 𝑇𝑝𝑁 given by (𝑈, 𝜙). That is, 𝑓∗ 𝑝 is given by the matrix [𝑎𝑖 𝑗]𝑛𝑖,𝑗=1

whose coefficients satisfy

𝑓∗
( 𝜕

𝜕𝜙 𝑗

���
𝑝

)
=

𝑚∑
𝑘=1

𝑎𝑘 𝑗
𝜕

𝜕𝜓𝑘

���
𝑓 (𝑝)
.

Moreover, if we apply 𝜓𝑖 to the above equation concerning tangent vectors and obtain

𝑎𝑖 𝑗 =
( 𝑚∑
𝑘=1

𝑎𝑘 𝑗
𝜕

𝜕𝜓𝑘

���
𝑓 (𝑝)

)
(𝜓𝑖) = 𝑓∗

( 𝜕

𝜕𝜙 𝑗

���
𝑝

)
(𝜓𝑖) =

𝜕

𝜕𝜙 𝑗

���
𝑝
(𝜓𝑖 𝑓 ) =

𝜕 𝑓𝑖
𝜕𝜙 𝑗
(𝑝).

♮

Rank, & Critical & Regular points
Definition 23.4.13 (Rank at a point). Let 𝑓 :𝑁 → 𝑀 be a 𝐶∞-morphism, and 𝑝 ∈ 𝑁 be

any point. We define the rank of 𝑓 at the point 𝑝 to be

rank𝑝 𝑓 ≔ rank 𝑓∗ 𝑝 .

Locally, by the independence of the choice of coordinate charts—given a chart (𝑈, 𝜙)
about 𝑝, and a chart (𝑉,𝜓) about 𝑓 (𝑝)—one has

rank𝑝 𝑓 = rank

[ 𝜕 𝑓𝑖
𝜕𝜙 𝑗
(𝑝)

]
.

Definition 23.4.14 (Critical & Regular). Let 𝑓 :𝑁 → 𝑀 be a𝐶∞-morphism, and consider

any two points 𝑝 ∈ 𝑁 and 𝑞 ∈ 𝑀. We define the following concerning the classification

of the point 𝑝:

(a) We say that 𝑝 is a critical point of 𝑓 if the differential 𝑓∗ 𝑝 isn’t surjective. The point 𝑞

is said to be a critival value if it is the image of a critical point.

(b) We say that 𝑝 is a regular point of 𝑓 if the differential 𝑓∗ 𝑝 is surjective—that is, 𝑓 is a

submersion at 𝑝.
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Finally, if 𝑞 is not a critical value, we say that it is a regular value—we do not impose 𝑞

to be an element of the image of 𝑓 .

Proposition 23.4.15. Let 𝑓 :𝑀 → R be a 𝐶∞-morphism, and 𝑝 ∈ 𝑀 be any point. Then

𝑝 is a critical point of 𝑓 if and only if there exists a chart (𝑈, 𝜙) about 𝑝 such that

𝜕 𝑓

𝜕𝜙 𝑗
(𝑝) = 0

for all 1 ⩽ 𝑗 ⩽ 𝑛.

Proof. Let (𝑉,𝜓) be any chart about 𝑝. Since 𝑇𝑓 (𝑝)R ≃ R, one has that the differential

𝑓∗ 𝑝 :𝑇𝑝𝑀 → R has rank 𝑓∗ 𝑝 = 1—which means that 𝑓∗ 𝑝 is surjective—or rank 𝑓∗ 𝑝 = 0,

that is, 𝑓∗ 𝑝 = 0. Therefore 𝑓∗ 𝑝 isn’t surjective (i.e. 𝑓 isn’t a submersion at 𝑝) if and only

if 𝑓∗ 𝑝 is zero—which is equivalent to the vanishing of all partial derivatives. ♮

Tangent Bundle
Given an 𝑛-manifold 𝑀, define

𝑇𝑀 ≔

⋃
𝑝∈𝑀

𝑇𝑝𝑀

which will be associated with a natural projection 𝜋:𝑇𝑀 ↠ 𝑀 mapping each pair

(𝑝, 𝜉) ∈ 𝑇𝑀, where 𝜉 ∈ 𝑇𝑝𝑀, to the point 𝑝 ∈ 𝑀.

We wish to define a smooth structure on 𝑇𝑀. To that end, let 𝑝 ∈ 𝑀 be any

point and 𝜙:𝑈 → 𝑈 ′ ⊆ R𝑛
be a chart of 𝑀 about 𝑝, forming a local basis

(
𝜕

𝜕𝜙 𝑗

)𝑛
𝑗=1

for the spaces 𝑇𝑥𝑀 for any 𝑥 ∈ 𝑈 . From this we conclude that there exists a linear

isomorphism 𝜋−1𝑈 ≃ 𝑈 ×R𝑛 ≃ 𝑈 ′×R𝑛
associating each pair

(
𝑝, 𝜉 =

∑𝑛
𝑗=1

𝑎 𝑗
𝜕

𝜕𝜙 𝑗

)
∈ 𝑇𝑀

to (𝑝, 𝜙∗𝜉) ∈ 𝑈 × R𝑛
or (𝜙𝑝, 𝜙∗𝜉) ∈ 𝑈 ′ × R𝑛

. We shall take the latter, which has the

form

(𝜙𝜋) × 𝜙∗:𝜋
−1𝑈 −→ 𝑈 ′ × R𝑛 ,

as a chart on 𝑇𝑀. To see that this gives a smoothly compatible structure to 𝑇𝑀, let

𝜓:𝑉 → R𝑛
be another chart on 𝑀 and consider the transition map 𝜃 ≔ 𝜓𝜙−1

: 𝜙(𝑈 ∩
𝑉) → 𝜓(𝑈 ∩𝑉). The corresponding transition map between the charts (𝜙𝜋) × 𝜙∗ and

(𝜓𝜋)×𝜓∗ is then 𝜃×𝜃∗, which is smooth. This proves that the constructed atlas gives to

𝑇𝑀 a smooth structure of a 2𝑛-dimensional manifold. We shall refer to such manifold

as the tangent bundle of 𝑀.

Definition 23.4.16 (Vector field). Let 𝑀 be a manifold. A vector field on 𝑀 is a section
of the natural projection 𝜋:𝑇𝑀 ↠ 𝑀—that is, a 𝐶∞-morphism 𝜉:𝑀 → 𝑇𝑀 for which

𝜋𝜉 = id𝑀 . More explicitly, given a point 𝑝 ∈ 𝑀 and a chart 𝜙 of 𝑀 about 𝑝, we have

𝜉𝑝 =

𝑛∑
𝑗=1

𝛼 𝑗(𝑝)
𝜕

𝜕𝜙 𝑗
,

where 𝛼 𝑗 :𝑀 → R are 𝐶∞-morphisms. The collection of all vector fields on 𝑀 is

denoted by 𝔛𝑀.
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Definition 23.4.17 (Flow). Let𝑀 be an𝑚-manifold. A smooth flow on𝑀 is a smooth action
of the abelian topological group (R,+) on 𝑀, that is, a 𝐶∞-morphism 𝜃: R ×𝑀 → 𝑀

satisfying:

• For all 𝑥 ∈ 𝑀, we have 𝜃(0, 𝑥) = 𝑥.

• For every pair 𝑠, 𝑡 ∈ R, and point 𝑥 ∈ 𝑀, one has 𝜃(𝑠 + 𝑡 , 𝑥) = 𝜃(𝑠, 𝜃(𝑡 , 𝑥)).

Definition 23.4.18 (Tangent field to a flow). Let 𝜃 be a flow on a manifold 𝑀. We

define a tangent field of 𝜃 to be the vector field 𝜉:𝑀 → 𝑇𝑀 given by

𝜉𝑝 ≔ 𝜃∗
d

d𝑡

���
(0,𝑝)

that is, the vector 𝜉𝑝 ∈ 𝑇𝑀 is tangent to the curve 𝛾(𝑡) ≔ 𝜃(𝑡 , 𝑝) at the point 𝑡 = 0.

Example 23.4.19. Given a sphere 𝑆2𝑛−1 ↩→ C𝑛
, consider the flow 𝜃: R × 𝑆2𝑛−1 → 𝑆2𝑛−1

given by

𝜃(𝑡 , 𝑧) ≔ 𝑒 𝑖𝑡𝑧.

The tangent field 𝜉: 𝑆2𝑛−1 → 𝑇𝑆2𝑛−1
to 𝜃 is then

𝜉(𝑧) = 𝜃∗
d

d𝑡

���
𝑡=0

𝑧 =
d

d𝑡

���
𝑡=0

𝑒 𝑖𝑡𝑧 = 𝑖𝑧.

Therefore 𝜉 is a unitary vector field on the (2𝑛 − 1)-sphere.

Definition 23.4.20 (Parallelizable manifold). An 𝑚-manifold 𝑀 is said to be paral-
lelizable if there exists a 𝐶∞-isomorphism 𝑇𝑀 ≃−→ 𝑀 × R𝑛

for which the restriction

𝑇𝑝𝑀 → 𝑝 × R𝑛
is an R-linear isomorphism for each 𝑝 ∈ 𝑀.

Example 23.4.21. The circle is parallelizable. Indeed, we can use 𝜉:𝑀 → 𝑇𝑀 as the

tangent vector field to the flow R × 𝑆1 → 𝑆1
mapping (𝑡 , 𝑧) ↦→ 𝑒 𝑖𝑡𝑧.

Proposition 23.4.22. The 𝑛-torus is parallelizable.

Proposition 23.4.23. If 𝑛 is odd, then 𝑆𝑛 × 𝑆𝑘 is parallelizable for all 𝑘 ⩾ 1.

To prove: 𝑛-torus and product of spheres are parallelizable

23.5 Submanifolds

Embedded Submanifolds
We shall give two descriptions of what is called an embedded submanifold:

Definition 23.5.1 (Embedded submanifold). A subspace 𝑆 ⊆ 𝑁 is said to be an embedded
submanifold on a manifold 𝑁 if the canonical inclusion 𝑆 ↩→ 𝑁 is a smooth embedding.
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Definition 23.5.2 (Embedded submanifold, again
2
). Let 𝑆 ⊆ 𝑁 be a subspace of the

𝑛-dimensional manifold 𝑁 . We say that 𝑆 is a 𝑘-dimensional embedded submanifold of

𝑁 if for every 𝑝 ∈ 𝑆 there exists a coordinate chart (𝑈, 𝜙) about 𝑝 such that 𝑛 − 𝑘
coordinates of 𝜙 vanish at the intersection𝑈 ∩𝑆. By the possible rearrangement of the

indices, we may assume that

𝜙|𝑈∩𝑆 = (𝜙1, . . . , 𝜙𝑘 , 0, . . . , 0).

The chart (𝑈, 𝜙) is then referred to as an adapted chart relative to 𝑆. We shall denote by

𝜙𝑆:𝑈 ∩ 𝑆→ R𝑘
the induced 𝐶∞-isomorphism given by

𝜙𝑆 ≔ (𝜙1, . . . , 𝜙𝑘),

where (𝑈 ∩ 𝑆, 𝜙𝑆) is a chart for 𝑆 in the subspace topology.

The proof of the equivalence between Definition 23.5.1 and Definition 23.5.2 shall

be postponed to Theorem 23.6.6.

Definition 23.5.3 (Codimension). Let 𝑆 ⊆ 𝑁 be a 𝑘-dimensional submanifold of the

𝑛-dimensional manifold 𝑁 . We define the codimension of 𝑆 as a submanifold of 𝑁 to

be

codim𝑁 𝑆 ≔ 𝑛 − 𝑘.

Proposition 23.5.4 (Embedded submanifolds are manifolds). Let 𝑆 be a embedded

submanifold of 𝑁 and let (𝑈𝛾 , 𝜙𝛾)𝛾∈Γ be a collection of adapted charts of 𝑁 relative to

𝑆, such that the family of charts cover 𝑆. Then the induced collection (𝑈𝛾∩𝑆, 𝜙𝛾 𝑆)𝛾∈Γ is

an atlas for 𝑆, and therefore 𝑆 is itself a manifold. If dim𝑁 = 𝑛 and 𝑆 is locally defined

by the vanishing of 𝑛 − 𝑘 coordinates, then dim 𝑆 = 𝑘.

Proof. Consider two intersecting adapted charts (𝑈, 𝜙) and (𝑉,𝜓) of 𝑁 contained in

the above-mentioned collection. Let 𝑝 ∈ (𝑈 ∩ 𝑉) ∩ 𝑆 be any point, then if 𝜙(𝑝) =
(𝑥1, . . . , 𝑥𝑘 , 0, . . . , 0) and 𝜓(𝑝) = (𝑦1, . . . , 𝑦𝑘 , 0, . . . , 0), we obtain

𝜓𝑆𝜙
−1

𝑆 (𝑥1, . . . , 𝑥𝑘) = 𝜓𝑆(𝑝) = (𝑦1, . . . , 𝑦𝑘).

Since the natural projections 𝜋 𝑗(𝜓𝑆𝜙−1

𝑆
): (𝑈 ∩ 𝑉) ∩ 𝑆 → R are 𝐶∞-morphisms, then

one concludes that the transition map 𝜓𝑆𝜙𝑆 is itself a 𝐶∞-morphism, showing that the

charts are compatible. Therefore the induced family of charts (𝑈𝛾 ∩ 𝑆, 𝜙𝛾 𝑆)𝛾∈Γ is a

smooth atlas for 𝑆. It is immediate that 𝑆 is a 𝑘-dimensional smooth manifold. ♮

Fibre of 𝐶∞-Morphisms
Definition 23.5.5 (Fibres & levels). Given a 𝐶∞-morphism 𝑓 :𝑁 → 𝑀, we say that a

point 𝑞 ∈ 𝑀 is the level of the fibre 𝑓 −1𝑞—in particular, if 𝑞 is a regular value, then we

say that 𝑓 −1𝑞 is a regular fibre.
2
This is the common description when authors call embedded submanifolds by “regular submani-

folds”
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Lemma 23.5.6. Let 𝑔:𝑁 → R be a 𝐶∞-morphism, and 𝑞 ∈ R be any regular value. If

𝑓 :𝑁 → R is defined by 𝑓 ≔ 𝑔 − 𝑞, then 0 is a regular value of 𝑓 and 𝑔−1𝑞 = 𝑓 −1
0.

That is, one can construct a smooth map such that its regular zero fibre equals to a given

regular fibre of 𝑔.

Proof. From construction, it is obvious that 𝑔−1𝑞 = 𝑓 −1
0. To show that 0 is a regular

value of 𝑓 , notice that for all 𝑝 ∈ 𝑁 one has 𝑓∗ 𝑝 = 𝑔∗ 𝑝—therefore 𝑓 and 𝑔 have the exact

same critical points, and thus the same regular values. It follows that 𝑓 −1
0 is indeed a

regular fibre of 𝑓 . ♮

Lemma 23.5.7. Let 𝑔:𝑁 → R be a 𝐶∞-morphism, and let 𝑞 ∈ im 𝑔 be a regular value.

Then the non-empty regular fibre 𝑔−1𝑞 is a regular submanifold of 𝑁 with codimension

1.

Proof. Assume that dim𝑁 = 𝑛. As in Lemma 23.5.6, define 𝑓 :𝑁 → R to be the 𝐶∞-

morphism given by 𝑓 ≔ 𝑔 − 𝑞, so that 𝑔−1(𝑞) = 𝑓 −1(0) and 0 is a regular value of

𝑓 . Given any 𝑝 ∈ 𝑓 −1(0), by definition we have that 𝑝 is a regular point of 𝑓 and

by Proposition 23.4.15 we know that any chart (𝑈, 𝜙) about 𝑝 has a non-vanishing
partial derivative

𝜕 𝑓
𝜕𝜙 𝑗
(𝑝) ≠ 0 for some index 𝑗. By permutation of the indices, one

may assume without much disturbance that

𝜕 𝑓
𝜕𝜙1

(𝑝) ≠ 0 is a non-vanishing partial

derivative. Consider the 𝐶∞-morphism Φ:𝑈 → R𝑛
defined by Φ ≔ ( 𝑓 , 𝜙2, . . . , 𝜙𝑛),

whose jacobian matrix equals

JacΦ =



𝜕 𝑓
𝜕𝜙1

𝜕 𝑓
𝜕𝜙2

. . .
𝜕 𝑓

𝜕𝜙𝑛−1

𝜕 𝑓
𝜕𝜙𝑛

𝜕𝜙2

𝜕𝜙1

𝜕𝜙2

𝜕𝜙2

. . .
𝜕𝜙2

𝜕𝜙𝑛−1

𝜕𝜙2

𝜕𝜙𝑛
...

...
. . .

...
...

𝜕𝜙𝑛
𝜕𝜙1

𝜕𝜙𝑛
𝜕𝜙2

. . .
𝜕𝜙𝑛
𝜕𝜙𝑛−1

𝜕𝜙𝑛
𝜕𝜙𝑛


=


𝜕 𝑓
𝜕𝜙1

𝜕 𝑓
𝜕𝜙2

. . .
𝜕 𝑓

𝜕𝜙𝑛−1

𝜕 𝑓
𝜕𝜙𝑛

0 1 . . . 0 0

...
... . . .

. . .
...

0 0 0 . . . 𝑛


Which has determinant det(JacΦ(𝑝)) = 𝜕 𝑓

𝜕𝜙1

(𝑝) ≠ 0 at the point 𝑝. From the inverse map

theorem (see Corollary 23.1.36) there must exist a neighbourhood 𝑋 ⊆ 𝑀 of 𝑝 such

that (𝑋,Φ:𝑋 → Φ(𝑋)) is a chart about 𝑝 for 𝑀. Notice that by construction one has

Φ|𝑋∩ 𝑓 −1(0) = (0,Φ2, . . . ,Φ𝑛), which shows that (𝑋,Φ) is an adapted chart of 𝑀 relative

to 𝑓 −1(0) = 𝑔−1(𝑞). This shows that every point of 𝑔−1(𝑞) has a corresponding adapted

chart in 𝑀, ensuring that 𝑔−1(𝑞) is a regular submanifold with codim 𝑔−1(𝑞) = 1 ♮

Theorem 23.5.8 (Regular fibres are embedded submanifolds). Let 𝑓 :𝑁 → 𝑀 be a 𝐶∞-

morphism, and let dim𝑁 = 𝑛 while dim𝑀 = 𝑚. Given a regular value 𝑞 ∈ im 𝑓 , the

non-empty regular fibre 𝑓 −1𝑞 is a embedded submanifold of 𝑁 with dim 𝑓 −1𝑞 = 𝑛−𝑚.

Proof. We could simply use Lemma 23.5.6, but we shall construct the proof from the

ground level. Let (𝑉,𝜓) be a chart of 𝑀 about 𝑞 satisfying 𝜓𝑞 = 0 ∈ R𝑚
(that is, (𝑉,𝜓)

is centred at 𝑞)—so that 𝑓 −1𝑉 is a neighbourhood of 𝑓 −1𝑞 in 𝑁 , and one has

𝑓 −1𝑉 ∩ 𝑓 −1𝑞 = 𝑓 −1𝑞 = (𝜓 𝑓 | 𝑓 −1𝑉)−1

0.
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Therefore 𝑓 −1𝑞 is the zero fibre of the map 𝜓 𝑓 , which we can analyse locally as the

zero fibres of the collection of local projections ( 𝑓𝑗 = 𝜋 𝑗(𝜓 𝑓 | 𝑓 −1𝑉))𝑚𝑗=1
. Since 𝑞 ∈ im 𝑓 is

a regular value, every point 𝑝 ∈ 𝑓 −1𝑞 is regular and thus has a surjective 𝑓∗ 𝑝—that is,

𝑛 ⩾ 𝑚 and rank 𝑓∗ 𝑝 = 𝑚. Let (𝑈, 𝜙) be a chart about 𝑝 in 𝑁 where𝑈 ⊆ 𝑓 −1𝑉 . Consider

the local Jacobian representation of 𝑓∗ 𝑝 at (𝑈, 𝜙), and assume that the first 𝑚 ×𝑚 block

of

[ 𝜕 𝑓𝑖
𝜕𝜙 𝑗
𝑝
]

is invertible—if that is not the case, simply rearrange the indices so that this

is true.

Define a𝐶∞-morphism 𝜙′:𝑈 → R𝑛
by making 𝜙′

𝑗
≔ 𝑓𝑗 = 𝜋 𝑗(𝜓 𝑓 | 𝑓 −1𝑉) for 1 ⩽ 𝑗 ⩽ 𝑚,

while 𝜙′
𝑗
≔ 𝜙 𝑗 for the remaining 𝑚 < 𝑗 ⩽ 𝑛. To show that 𝜙′ is locally invertible at 𝑝,

notice that the local Jacobian matrix of 𝑓 about 𝜙′ at 𝑝 is

Jac𝜙′ 𝑓 |𝑝 =

𝜕 𝑓𝑖
𝜕𝜙 𝑗
𝑝

𝜕 𝑓𝑖
𝜕𝜙𝛽

𝑝
𝜕𝜙𝛼

𝜕𝜙 𝑗
𝑝

𝜕𝜙𝛼

𝜕𝜙𝛽
𝑝

 =

[
𝜕 𝑓𝑖
𝜕𝜙 𝑗
𝑝

𝜕 𝑓𝑖
𝜕𝜙𝛽

𝑝

0 id

]
where 1 ⩽ 𝑖 , 𝑗 ⩽ 𝑚 and 𝑚 < 𝛼, 𝛽 ⩽ 𝑛. This shows that

det(Jac𝜙′ 𝑓 |𝑝) = det

[ 𝜕 𝑓𝑖
𝜕𝜙 𝑗

𝑝
]

1⩽𝑖 , 𝑗⩽𝑚
≠ 0,

that is, 𝜙′ is locally invertible at 𝑝 and by Corollary 23.1.36 there exists 𝑈𝑝 ⊆ 𝑈 such

that 𝜙′:𝑈𝑝 → 𝜙′(𝑈𝑝) is a 𝐶∞-isomorphism, and thus (𝑈, 𝜙′) is a chart about 𝑝 in 𝑁 .

Notice that, by construction, 𝑓 −1𝑞 is the set obtained by imposing 𝜙′
𝑗
= 𝑓𝑗 = 0 for

each 1 ⩽ 𝑗 ⩽ 𝑚—thus (𝑈𝑝 , 𝜙′) is an adapted chart for 𝑁 relative to 𝑓 −1𝑞. Therefore

𝑓 −1𝑞 admits an adapted chart for each of its points, showing that it is a embedded

submanifold of dimension 𝑛 − 𝑚. ♮

Corollary 23.5.9 (Producing adapted charts). Let 𝑓 :𝑁 → R𝑚
be a 𝐶∞-morphism and

dim𝑁 = 𝑛, consider the zero fibre 𝑓 −1
0. If there exists a chart (𝑈, 𝜙) about 𝑝 ∈ 𝑓 −1

0

such that

det

[ 𝜕 𝑓𝑖
𝜕𝜙 𝑗

𝑝
]

1⩽𝑖 , 𝑗⩽𝑚
≠ 0,

then there exists a neighbourhood𝑈𝑝 ⊆ 𝑁 of 𝑝 such that the pair (𝑈𝑝 , 𝜙′), where

𝜙′ ≔ ( 𝑓1, . . . , 𝑓𝑚 , 𝜙𝑚+1, . . . , 𝜙𝑛):𝑈𝑝 −→ 𝜙′𝑈𝑝

is a 𝐶∞-isomorphism, forms an adapted chart for 𝑁 relative to 𝑓 −1
0.

Lemma 23.5.10. Let 𝑀 be a manifold and 𝑆 ⊆ 𝑀 be a subset. Then 𝑆 is a embedded

submanifold of 𝑀 with codimension 𝑘 if and only if every point of 𝑆 has a neigh-

bourhood 𝑈 ⊆ 𝑀 such that 𝑈 ∩ 𝑆 is the regular zero fibre of a 𝐶∞-isomorphism

𝜙:𝑈 → R𝑘
.

Proof. Let dim𝑀 ≔ 𝑚. (⇒) Assume 𝑆 is a regular submanifold. For any 𝑝 ∈ 𝑆, take

(𝑈, 𝜙) to be an adapted chart of 𝑀 with respect to 𝑆, so that

𝜙|𝑆 = (𝜙1, . . . , 𝜙𝑚−𝑘 , 0, . . . , 0).
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Define 𝜙:𝑈 → R𝑘
to be the 𝐶∞-isomorphism given by 𝜙 ≔ (𝜙𝑚−𝑘+1, . . . , 𝜙𝑚), so that

one has

𝑆 ∩𝑈 = 𝜙−1

0.

(⇐) For the converse, suppose that 𝑆 admits a pair (𝑈, 𝜙:𝑈 → R𝑘) about each point

𝑝 ∈ 𝑆 such that 𝑈 ∩ 𝑆 is the regular zero fibre of the 𝐶∞-isomorphism 𝜙. Therefore,

any 𝐶∞-isomorphism 𝜙:𝑈 → R𝑚
such that

𝑈 R𝑘

R𝑚

𝜙

𝜙

commutes, forms an adapted chart (𝑈, 𝜙) relative to 𝑆 about 𝑝. This shows that 𝑆 is a

relative submanifold of 𝑀. ♮

23.6 Rank of 𝐶∞-Morphisms
Theorem 23.6.1 (Constant rank, then the fibre is a embedded submanifold). Let 𝑓 :𝑁 →
𝑀 be a 𝐶∞-morphism and 𝑞 ∈ 𝑀 be any point. If 𝑓 has has a locally constant rank 𝑘

at 𝑓 −1𝑞, then the fibre 𝑓 −1𝑞 is a embedded submanifold of 𝑁 of codimension 𝑘.

Proof. Take any 𝑝 ∈ 𝑓 −1𝑞 and, by the constant rank theorem, let (𝑈, 𝜙) be a chart

centred at 𝑝 and (𝑉,𝜓) be a chart centred at 𝑓 𝑝 = 𝑞 such that

𝜓 𝑓 𝜙−1(𝑥1, . . . , 𝑥𝑛) = (𝑥1, . . . , 𝑥𝑘 , 0, . . . , 0) ∈ R𝑚

The zero fibre (𝜓 𝑓 𝜙−1)−1
0 is therefore the common zero fibre of the coordinates⋂𝑘

𝑗=1
(𝜓 𝑓 𝜙−1)−1

𝑗
0. Notice that

𝜙( 𝑓 −1𝑞) = 𝜙( 𝑓 −1(𝜓−1

0)) = (𝜓 𝑓 𝜙−1)−1

0,

therefore 𝑈 ∩ 𝑓 −1𝑞 =
⋂𝑘
𝑗=1

𝜙−1

𝑗
0, proving that (𝑈, 𝜙) is an adapted chart of 𝑁 about 𝑝

with respect to 𝑓 −1𝑞. ♮

Theorem 23.6.2 (Constant rank). Let 𝑁 and 𝑀 be manifolds of dimensions 𝑛 and

𝑚, respectively. Given a 𝐶∞-morphism 𝑓 :𝑁 → 𝑀 with local constant rank 𝑘 in a

neighbourhood of a 𝑝 ∈ 𝑁 , there are charts (𝑈, 𝜙) centred at 𝑝 and (𝑉, 𝜙) centred at

𝑓 𝑝 such that

𝜋 𝑗(𝜓 𝑓 𝜙−1)|𝜙𝑈 = 0

for all 𝑘 < 𝑗 ⩽ 𝑛.

Proof. Let (𝑈 ′, 𝜙′) be a chart about 𝑝, and (𝑉 ′,𝜓′) be a chart about 𝑓 𝑝, and consider

the 𝐶∞-morphism

𝜓′ 𝑓 𝜙′−1

: 𝜙′( 𝑓 −1𝑉 ∩𝑈) −→ R𝑚 .
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Since both 𝜙′ and 𝜓′ are 𝐶∞-isomorphism, it follows that 𝜓′ 𝑓 𝜙′−1
has a local constant

rank 𝑘 at 𝜙′𝑝. By Theorem A.5.11 we conclude that there exists a 𝐶∞-isomorphism

𝜙′′ of a neighbourhood of 𝜙′𝑝 ∈ R𝑛
and a 𝐶∞-isomorphism 𝜓′′ of a neighbourhood of

𝜓 𝑓 𝑝 ∈ R𝑚
for which

𝜓′′(𝜓′ 𝑓 𝜙′−1)𝜙′′−1(𝑥1, . . . , 𝑥𝑛) = (𝑥1, . . . , 𝑥𝑘 , 0, . . . , 0).

Therefore by letting 𝜙 ≔ 𝜙′′𝜙′ and 𝜓 ≔ 𝜓′′𝜓′ we obtain the desired result. ♮

The following theorems are mere corollaries of the constant rank theorem: given a

smooth map 𝑓 :𝑀 → 𝑁 , if 𝑓 is an immersion at a point 𝑝, then it has a locally constant

rank 𝑚 near 𝑝, on the other hand, if 𝑓 is a submersion at a point 𝑞, it has a locally

constant rank 𝑛 near 𝑞.

Theorem 23.6.3 (Immersion). Let 𝜃:𝑀 → 𝑁 be a 𝐶∞-morphism, and dim𝑀 = 𝑚

while dim𝑁 = 𝑛. If 𝜃 is an immersion at 𝑝 ∈ 𝑀, then there are charts 𝜙 about 𝑝 and

𝜓 about 𝜃𝑝 such that the diagram

𝑀 𝑁

R𝑚 R𝑛

𝜃

𝜓𝜙−1

commutes in Man. That is, 𝜃 locally acts as an inclusion about 𝑝.

Theorem 23.6.4. Let 𝜃:𝑀 → 𝑁 be a 𝐶∞-morphism. If 𝜃 is a submersion at some point

𝑝 ∈ 𝑀, there are charts 𝜙 about 𝑝 and 𝜓 about 𝜃𝑝 for which

𝑀 𝑁

R𝑚 R𝑛

𝜃

𝜓𝜙−1

commutes in Man. That is, 𝜃 locally acts as a projection about 𝑝.

Corollary 23.6.5. A smooth submersion is an open map.

Proof. Let 𝑓 :𝑀 → 𝑁 be a smooth submersion and 𝑈 ⊆ 𝑀 be an open subset. Let

𝑓 𝑝 ∈ 𝑓 𝑈 be any point for which 𝑝 ∈ 𝑈 . Applying the submersion theorem to 𝑓 , we

can find a neighbourhood𝑉 ⊆ 𝑈 of 𝑝 for which 𝑓 |𝑉 acts as a projection, which implies

that 𝑓 𝑉 ⊆ 𝑓 𝑈 is a neighbourhood for 𝑝—since projections are open morphisms. This

proves that 𝑓 𝑈 is an open set. ♮

Theorem 23.6.6. Let 𝑁 be an 𝑛-manifold, and 𝑀 be an 𝑚-manifold. Then:

(a) If 𝑓 :𝑁 → 𝑀 is a smooth embedding, then the image 𝑓 𝑁 is an embedded subman-

ifold of 𝑀 in the sense of Definition 23.5.2.
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(b) If 𝑁 is an embedded submanifold of 𝑀 in the sense of Definition 23.5.2, then the

canonical inclusion 𝜄:𝑁 ↩→ 𝑀 is a smooth embedding—thus 𝑁 is an embedded

submanifold in the sense of Definition 23.5.1.

This shows that the two definitions for embedded submanifolds are equivalent.

Proof. (a) By the immersion theorem, let (𝑈, 𝜙) be a chart centred at 𝑝 and (𝑉,𝜓) be a

chart centred at 𝑓 𝑝 such that

𝑈 𝑉

𝜙𝑈 𝜓𝑉

𝑓

𝜙−1 𝜓−1

commutes—where 𝜙𝑈 ⊆ R𝑛
and 𝜙𝑉 ⊆ R𝑚

. Then 𝑓 𝑈 is simply the common

zero fibres of the last 𝑚 − 𝑛 coordinates of 𝜓, that is, 𝑓 𝑈 =
⋂𝑚
𝑗=𝑛+1

𝜓−1

𝑗
0. Since 𝑓 is

injective, it follows that 𝑓 𝑁—endowed with the subspace topology—is isomorphic

to 𝑁 . Therefore 𝑓 𝑈 is open in 𝑓 𝑁 , thus there must exist an open set 𝑉 ′ ⊆ 𝑀 such

that 𝑉 ′ ∩ 𝑓 𝑁 = 𝑓 𝑈 and hence 𝑉 ′ is a neighbourhood of 𝑓 𝑝. Since

(𝑉 ∩𝑉 ′) ∩ 𝑓 𝑁 = 𝑉 ∩ 𝑓 𝑈 = 𝑓 𝑈,

it follows that (𝑉 ∩ 𝑉 ′,𝜓) is an adapted chart of 𝑀 about 𝑓 𝑝 with respect to 𝑓 𝑁 .

Therefore 𝑓 𝑁 is an embedded submanifold in the sense of Definition 23.5.2.

(b) Recall that both 𝜄𝑁 and 𝑁 are endowed with the subspace topology. Since 𝜄 is

injective, the induced map 𝜄:𝑁 → 𝜄𝑁 is a topological isomorphism—therefore 𝜄 is

a topological embedding. In order to show that 𝜄 is an immersion, let 𝑝 ∈ 𝑁 be any

point, and take an adapted chart (𝑉,𝜓) of 𝑀 about 𝑝 with respect to 𝑁—that is,

𝑉 ∩𝑁 =
⋂𝑚
𝑗=𝑛+1

𝜓−1

𝑗
0. Define 𝜓𝑁 ≔ (𝜓1, . . . ,𝜓𝑛):𝑉 ∩𝑁 → 𝜓𝑁 (𝑉 ∩𝑁) ⊆ R𝑛

, then

𝑉 ∩ 𝑁 𝑉

𝜓𝑁 (𝑉 ∩ 𝑁) 𝜓𝑉

𝜄

𝜓−1

𝑁 𝜓−1

commutes, showing that 𝜄 is an immersion.

♮

23.7 Transversality
Definition 23.7.1 (Transversal 𝐶∞-morphism). Let 𝑀 be a manifold and 𝑆 ⊆ 𝑀 be

an embedded submanifold. A 𝐶∞-morphism 𝑓 :𝑁 → 𝑀 is said to be transversal to 𝑆,

denoted 𝑓 ⋔ 𝑆, if for every 𝑝 ∈ 𝑓 −1𝑆 one has

𝑓∗(𝑇𝑝𝑁) + 𝑇𝑓 𝑝𝑆 = 𝑇𝑓 𝑝𝑀.
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Moreover, we can equally define this notion for embedded submanifolds: let𝑁 and

𝐿 be embedded submanifolds of 𝑀. We say that 𝑁 intersects 𝐿 transversely, denoted

𝑁 ⋔ 𝐿, if for any 𝑝 ∈ 𝑁 ∩ 𝐿 we have

𝑇𝑝𝑁 + 𝑇𝑝𝐿 = 𝑇𝑝𝑀.

Theorem 23.7.2 (Transversality). Let 𝑀 be a manifold, and 𝑆 ⊆ 𝑀 be a embedded sub-

manifold with codim𝑀 𝑆 = 𝑘. Then every 𝐶∞-morphism 𝑓 :𝑁 → 𝑀 that is transversal
to 𝑆 is such that 𝑓 −1𝑆 is a embedded submanifold of codimension 𝑘 in 𝑁 .

Proof. Let dim𝑀 ≔ 𝑚 and dim𝑁 ≔ 𝑛. Since 𝑆 is a regular submanifold of 𝑀, given

any point 𝑝 ∈ 𝑓 −1𝑆, we can find an adapted chart (𝑈, 𝜙) of 𝑀 with respect to 𝑆 that is

centred at 𝑓 𝑝 ∈ 𝑆 and such that

𝑈 ∩ 𝑆 = {𝑞 ∈ 𝑀 : 𝜙 𝑗𝑞 = 0 for each 𝑚 − 𝑘 < 𝑗 ⩽ 𝑚},

that is,𝑈 ∩ 𝑆 is the zeros of the last 𝑚 − 𝑘 coordinates of 𝜙.

Define 𝑔:𝑈 → R𝑘
as the 𝐶∞-isomorphism given by those last 𝑚 − 𝑘 coordinates:

𝑔 ≔ (𝜙𝑚−𝑘+1, . . . , 𝜙𝑚),

so that 𝑔|𝑆 = 0. Since 𝑓 𝑝 ∈ 𝑈 then 𝑓 −1𝑈 ∩ 𝑓 −1𝑆 is a neighbourhood for 𝑝 in 𝑁 , and

𝑝 ∈ (𝑔 𝑓 | 𝑓 −1𝑈)−1
0 because 𝑓 𝑝 ∈ 𝑆, therefore

𝑓 −1𝑈 ∩ 𝑓 −1𝑆 = (𝑔 𝑓 | 𝑓 −1𝑈)−1

0.

We shall prove that 0 is a regular value of 𝑔 𝑓 | 𝑓 −1𝑈 so that 𝑓 −1𝑈 ∩ 𝑓 −1𝑆 is a regular

zero fibre of the map. To that end, let 𝑧 ∈ 𝑇0R𝑘
and 𝑥 ∈ (𝑔 𝑓 | 𝑓 −1𝑈)−1

0 be any two

elements. Since 𝑔 is an isomorphism, 0 is a regular value of 𝑔, therefore there exists

𝑦 ∈ 𝑇𝑓 𝑥𝑀 for which 𝑔∗ 𝑓 𝑥(𝑦) = 𝑧. Using the fact that 𝑓 is transversal to 𝑆, there exists

𝑦0 ∈ 𝑇𝑓 𝑥𝑆 and 𝑣 ∈ 𝑇𝑥𝑁 for which 𝑦 = 𝑦0 + 𝑓∗ 𝑥𝑣. Recall that 𝑔|𝑆 = 0 from construction,

therefore 𝑔∗ 𝑓 𝑥(𝑦0) = 0. Hence one has

𝑧 = 𝑔∗ 𝑓 𝑥𝑦 = 𝑔∗ 𝑓 𝑥(𝑦0 + 𝑓∗ 𝑥𝑣) = 𝑔∗ 𝑓 𝑥 𝑓∗ 𝑥𝑣 = (𝑔 𝑓 )∗ 𝑥𝑣,

showing that (𝑔 𝑓 )∗ 𝑥 is surjective—hence 𝑥 is a regular point of 𝑔 𝑓 | 𝑓 −1𝑈 . This shows

that 0 is a regular value of 𝑔 𝑓 | 𝑓 −1𝑈 , therefore the subset 𝑓 −1𝑈 is a neihbourhood of 𝑝

satisfying the desired condition specified in Lemma 23.5.10—moreover, since 𝑝 was

any point of 𝑓 −1𝑆, the theorem follows by just mentioned lemma. ♮

Theorem 23.7.3. Let 𝑀 be an 𝑚-manifold, and both 𝑁 and 𝐿 be submanifolds—whose

dimensions are 𝑛 and ℓ , respectively. If 𝑁 ⋔ 𝐿 in 𝑀, then 𝑁 ∩ 𝐿 is a submanifold of 𝑀

with dimension dim𝑁 ∩ 𝐿 = 𝑛 + ℓ − 𝑚.

Proof. Let 𝑝 ∈ 𝑁 ∩ 𝐿 be any point. Let (𝑈, 𝜙) and (𝑉,𝜓) be adapted charts of 𝑀 about

𝑝 with respect to 𝑁 and 𝐿. Let𝑊 ≔ 𝑈 ∩𝑉 and define the induced maps

𝜂 ≔ (𝜙𝑛+1, . . . , 𝜙𝑚):𝑊 −→ R𝑚−𝑛
and 𝜆 ≔ (𝜓ℓ+1, . . . ,𝜓𝑚):𝑊 −→ R𝑚−ℓ
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so that𝑊 ∩ 𝑁 = 𝜂−1
0 and𝑊 ∩ 𝐿 = 𝜆−1

0 are regular fibres of 𝜂 and 𝜆, respectively.

Consider the product map 𝜂 × 𝜆:𝑊 → R𝑚−𝑛 × R𝑚−ℓ
—we wish to show that (𝜂 ×

𝜆)−1
0 = 𝑊 ∩ (𝑁 ∩ 𝐿) is a regular fibre of 𝜂 × 𝜆, so that (𝑊, 𝜙 × 𝜓) is an adapted chart

of 𝑀 about 𝑝 with respect to 𝑁 ∩ 𝐿. To that end, we shall consider the differential

(𝜂 × 𝜆)∗:𝑇𝑝𝑀 → R𝑚−𝑛 × R𝑚−ℓ
, whose kernel is

ker(𝜂 × 𝜆)∗ = ker𝜂∗ ∩ ker𝜆∗ = 𝑇𝑝𝑁 ∩ 𝑇𝑝𝐿.

On the other hand, we know that

dim ker(𝜂 × 𝜆)∗ = dim𝑇𝑝𝑁 + dim𝑇𝑝𝐿 − dim𝑇𝑝𝑀 = 𝑛 + ℓ − 𝑚,

therefore by the rank plus nullity theorem one has

rank(𝜂 × 𝜆)∗ = 𝑚 − (𝑛 + ℓ − 𝑚) = 2𝑚 − 𝑛 − ℓ = dim(R𝑚−𝑛 × R𝑚−ℓ )

which shows that (𝜂 × 𝜆)∗ is an epimorphism at 𝑝—thus 0 is a regular value of 𝜂 × 𝜆.

This concludes the proof that𝑁∩𝐿 is an embedded submanifold of 𝑀 with dimension

𝑛 + ℓ − 𝑚.

♮

23.8 Classification of 1-Manifolds
Definition 23.8.1 (Parametrization by arc-length). Let 𝐼 ⊆ R be an interval, and 𝑀

be a smooth manifold. We say that a 𝐶∞-morphism 𝑓 : 𝐼 → 𝑀 is a parametrization by
arc-length if the restriction 𝑓 : 𝐼 → 𝑓 𝐼 is a 𝐶∞-isomorphism, and if the velocity vector

𝑓∗ 𝑠1 ∈ 𝑇𝑓 𝑠𝑀 is unitary for each 𝑠 ∈ 𝐼.

Lemma 23.8.2. Consider a pair of arc-length parametrizations 𝐼
𝑓
−→ 𝑀

𝑔
←− 𝐽. Then

𝑓 𝐼 ∩ 𝑔𝐽 has at most two connected components. One has the following properties

concerning the number of connected components:

(a) If 𝑓 𝐼∩ 𝑔𝐽 has only one connected component, then one can extend 𝑓 to an arc-length

parametrization of 𝑓 𝐼 ∪ 𝑔𝐽.
(b) If 𝑓 𝐼 ∩ 𝑔𝐽 has two components, then 𝑀 ≃ 𝑆1

.

Proof. Consider the 𝐶∞-isomorphism

𝑔−1 𝑓 : 𝑓 −1( 𝑓 𝐼 ∩ 𝑔𝐽) ≃−→ 𝑔−1( 𝑓 𝐼 ∩ 𝑔𝐽),

sending open sets of 𝐼 to open sets of 𝐽, and with derivative ±1 everywhere—from

the definition of the parametrization. Let Γ be the pullback of the pair ( 𝑓 , 𝑔)—that is,

composed of pairs (𝑠, 𝑡) ∈ 𝐼 × 𝐽 such that 𝑓 𝑠 = 𝑔𝑡. Therefore Γ is a closed subset of

𝐼 × 𝐽, with the product topology, and consists of line segments with slope ±1 by the

behaviour of 𝑔−1 𝑓 . Since 𝑔−1 𝑓 is an isomorphism, it must be the case that the line

segments don’t end abruptly, but extend from edge to edge of 𝐼 × 𝐽. From the fact that
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𝑔−1 𝑓 is injective and constant derivative, it must be the case that Γ is composed of at

most two line segments—furthermore, if Γ has two components, then they must have

the same slope and the start and end edges has to be distinct. We analyse the number

of components of Γ:

• If Γ has a single component, then one can extend 𝑔−1 𝑓 to a line ℓ : R → R.

Therefore the map 𝑔ℓ : 𝐼 ∪ ℓ−1𝐽 → 𝑓 𝐼 ∪ 𝑔𝐽 forms an extension of 𝑓 .

• If Γ has two components, let those be the line segments connecting (𝑎, 𝛼) → (𝑏, 𝛽)
and (𝑐, 𝛾) → (𝑑, 𝛿)—whose points lie in 𝐼 × 𝐽, with ends in the boundary of the

square, that is, 𝐼 = (𝑎, 𝑑) and 𝐽 = (𝛾, 𝛿) for instance. By merely a translation of 𝐽,

we may assume that 𝛾 = 𝑐 and 𝛿 = 𝑑, for which we obtain the relations

𝑎 < 𝑏 ⩽ 𝑐 < 𝑑 ⩽ 𝛼 < 𝛽.

We may define a continuous maps𝜃: [𝑎, 𝛽] → R given by 𝑡 ↦→ 2𝜋𝑡
𝛼−𝑎 , and ℎ: 𝑆1 → 𝑀

mapping

ℎ(cos(𝜃𝑡), sin(𝜃𝑡)) ≔
{
𝑓 𝑡 , if 𝑎 < 𝑡 < 𝑑

𝑔𝑡, if 𝑐 < 𝑡 < 𝛽

which is well defined since 𝑓 and 𝑔 agree on [𝑐, 𝑑] due to the translation of 𝐽.

Since ℎ𝑆1
is a compact open set of 𝑀, it follows that it must be the case that

ℎ𝑆1 = 𝑀. Therefore, since the restrictions of 𝑓 and 𝑔 are 𝐶∞-isomorphisms, it

follows that ℎ is a 𝐶∞-isomorphism.

♮

Theorem 23.8.3 (Classification of 1-manifolds). Any smooth connected 1-manifold 𝑀

is 𝐶∞-isomorphic to either the circle 𝑆1
or to some interval of real numbers: [0, 1], [0, 1),

(0, 1] or (0, 1). In fact, the following is a complete classification list:

(1) If 𝑀 is compact without boundary, then 𝑀 is 𝐶∞-isomorphic to a circle.

(2) If 𝑀 is compact with boundary, then 𝑀 is 𝐶∞-isomorphic to a closed interval.

(3) If 𝑀 is non-compact without boundary, then 𝑀 is 𝐶∞-isomorphic to an open

interval.

(4) If 𝑀 is non-compact with boundary, then 𝑀 is 𝐶∞-isomorphic to a half-open

interval.

Proof. Given a parametrization by arc-length 𝑓 ′: 𝐽 → 𝑀, via Lemma 23.8.2 one can

extend 𝑓 ′ to a maximal arc-length parametrization 𝑓 : 𝐼 → 𝑀—so that 𝐼 is the maximal

interval 𝑓 can be extended to.

Assuming 𝑀 ̸≃ 𝑆1
, suppose that there exists a limit point 𝑥 of 𝑓 𝐼 with 𝑥 ∈ 𝑀 ∖ 𝑓 𝐼,

so that 𝑓 is not surjective. Let 𝑈 be a neighbourhood of 𝑥 and 𝑔: 𝐼′ → 𝑈 be an

arc-length parametrization of 𝑈 . From Lemma 23.8.2 we can use 𝑔 to extend 𝑓 to a

parametrization 𝑓 𝐼 ∪ 𝑔𝐽, contradicting the hypothesis of maximality of 𝑓 . ♮

Corollary 23.8.4. The boundary of a compact 1-manifold has an even number of points.
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Proof. Indeed, if 𝑀 is a compact 1-manifold with boundary, then it’s isomorphic to

the disjoint union of a collection of closed intervals, each of which has two boundary

points, thus 𝑀 has an even number of boundary points. ♮
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Chapter 24

Cobordism

24.1 Cobordisms

Unoriented Cobordisms

Definition 24.1.1 (Unoriented cobordism). Given a pair Σ0 and Σ1 of smooth compact

(𝑛 − 1)-manifolds without boundary, we define a cobordism between Σ0 and Σ1 to be a

smooth compact 𝑛-manifold 𝑀 whose boundary is 𝜕𝑀 = Σ0 ⨿ Σ1. We thus call the

manifolds Σ0 and Σ1 cobordant.

Example 24.1.2. Two interesting cobordisms are formed from the empty manifold

to the circle, which shall be called birth-of-a-circle, and from the circle to the empty

manifold, so called death-of-a-circle.

Lemma 24.1.3 (Cobordant zero and one dimensional manifolds). Two given compact

0-manifolds without boundary are cobordant if and only if they have the same number

of points modulo 2. Moreover, any two compact 1-manifolds without boundary are

cobordant.

Proof. Let’s consider the case of a pair of 0-manifolds Σ0 and Σ1. Notice that since

every pair of points can be connected by a smooth curve, and every 1-manifold with

boundary has an even number of boundary points
1
, it follows that Σ0 and Σ1 are

cobordant if and only if the disjoint union Σ0 ⨿ Σ1 has an even number of points.

For the second statement, one should recall that a compact 1-manifold is the disjoint

union of circles. Then we can choose one of the manifolds to attach copies of the death-

of-a-circle cobordism for each of its circles, and attach birth-of-a-circle cobordisms

for each of its respective circles of the other 1-manifold. This construction yields a

cobordism between them. ♮

1
This is due to the fact that 1-manifolds are 𝐶∞-isomorphic to a finite disjoint union of circles or

intervals (see Corollary 23.8.4).
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Oriented Cobordisms
Consider the following setup: let Σ be a closed submanifold of 𝑀 with codimension

1, where dim𝑀 = 𝑛. Assume both manifolds to be oriented.

Definition 24.1.4 (Positive normal). Let [𝑣1, . . . , 𝑣𝑛−1] be a positive basis for 𝑇𝑥Σ for

any given point 𝑥 ∈ Σ. We say that a tangent vector 𝑣 ∈ 𝑇𝑥𝑀 is a positive normal if the

induced basis [𝑣1, . . . , 𝑣𝑛−1, 𝑣] for 𝑇𝑥𝑀 is positive.

Definition 24.1.5 (In and out boundaries). If Σ is a connected component of 𝜕𝑀, we

call Σ an in-boundary if a positive normal points inwards relative to 𝑀, and otherwise

an out-boundary—when a positive normal points outward relative to 𝑀.

The notion of an in and out boundary allows us to define the notion of an oriented

cobordism. From now on, a cobordism will always mean an oriented one, unless stated

otherwise.

Definition 24.1.6 (Oriented cobordism). Let Σin and Σout be compact (𝑛−1)-manifolds

without boundary. We define an oriented cobordism between them to be a triple

(𝑀, 𝜄in, 𝜄out), where 𝑀 is a smooth compact oriented 𝑛-manifold, and arrows

Σin 𝑀 Σout

𝜄in 𝜄out

which are 𝐶∞-isomorphisms when restricted to the in and out boundary of 𝑀, respec-

tively. We shall denote the oriented cobordism 𝑀 as an arrow 𝑀:Σin⇒ Σout.

Definition 24.1.7 (Equivalence of cobordisms). Given two cobordisms

Σin Σout

𝑁

𝑀

we say that 𝑀 is equivalent to the cobordism 𝑁 if there exists an orientation-preserving

𝐶∞-isomorphism 𝜙:𝑀 ≃−→ 𝑁 such that the following diagram commutes in Man:

𝑁

Σin Σout

𝑀

𝜙 ≃

24.2 Elements of Morse Theory
Definition 24.2.1. Let 𝑓 :𝑀 → 𝐼 be a 𝐶∞-morphism, and 𝑝 ∈ 𝑀 be a critical point of

𝑓 . We call 𝑝 a non-degenerate point if there exists a chart about 𝑝 for which the local

Hessian of 𝑓 is invertible. Furthermore, define the index of 𝑓 at 𝑝 to be the number of

negative eigenvalues of the local Hessian.
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Definition 24.2.2 (Morse maps). Given a smooth manifold 𝑀, we say that a 𝐶∞-

morphism 𝑓 :𝑀 → 𝐼 is a Morse map if every critical point of 𝑓 is non-degenerate. If

it happens to be the case that 𝑀 is a manifold with boundary, we shall require that

𝑓 −1 𝜕 𝐼 = 𝜕𝑀 and that the boundary points 𝜕 𝐼 = {0, 1} are regular values of 𝑓—this

ensures that 𝜕𝑀 contains no critical points.

The existence of Morse maps is ensured by the following theorem:

Theorem 24.2.3. For any manifold 𝑀 and integer 2 ⩽ 𝑟 ⩽ ∞, the collection of Morse

maps 𝑀 → 𝐼 is dense in 𝐶𝑟(𝑀, 𝐼).

The following is a generalization of the construction of attaching spaces:

Definition 24.2.4 (Gluing). Let 𝑓 :𝑋 → 𝑌 and 𝑔:𝑋 → 𝑍 be topological morphisms.

We define the gluing of 𝑌 and 𝑍 along 𝑋 to be the pushout

𝑋 𝑌

𝑍 𝑌 ⨿𝑋 𝑍

𝑔

𝑓

⌜

Explicitly, 𝑌⨿𝑋 𝑍 is the quotient space of 𝑌⨿ 𝑍 where 𝑦 ∼ 𝑧 if and only if there exists

a common 𝑥 ∈ 𝑋 such that 𝑓 𝑥 = 𝑦 and 𝑔𝑥 = 𝑧.
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Part VIII

Analysis
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Chapter 25

Holomorphic Functions

Definition 25.0.1 (Holomorphic function). A function is said to be holomorphic (also

called analytic) if it is a differentiable complex-valued function with a complex variable.

Let 𝑓 : C → C be a holomorphic function such that 𝑓 = 𝑢 + i𝑣 where 𝑢, 𝑣: C ⇒ R.

Let’s write the variables of 𝑓 as 𝑧 = 𝑥 + i𝑦 so that 𝑓 may be seen as a function of two

variables R2 → R2
given by (𝑥, 𝑦) ↦→ (𝑢(𝑥), 𝑣(𝑦)) from the bĳection C ≃ R2

. Since 𝑓 is

differentiable, then so are 𝑢 and 𝑣. Let’s consider the definition of the derivative of 𝑓

at a point 𝑧 ∈ C:

𝑓 ′(𝑧) = lim

R∋𝑡→0

𝑓 (𝑧 + 𝑡) − 𝑓 (𝑧)
𝑡

= lim

R∋𝑡→0

𝑓 (𝑧 + i𝑡) − 𝑓 (𝑧)
i𝑡

. (25.1)

If we consider the real case where we approach from the purely real values we get

lim

R∋𝑡→0

𝑓 (𝑧 + 𝑡) − 𝑓 (𝑧)
𝑡

= lim

𝑡→0

𝑢(𝑥 + 𝑡 , 𝑦) + i𝑣(𝑥 + 𝑡 , 𝑦) − (𝑢(𝑥, 𝑦) + i𝑣(𝑥, 𝑦))
𝑡

= lim

𝑡→0

𝑢(𝑥 + 𝑡 , 𝑦) − 𝑢(𝑥, 𝑦)
𝑡

+ i lim

𝑡→0

𝑣(𝑥 + 𝑡 , 𝑦) − 𝑣(𝑥, 𝑦)
𝑡

=
𝜕𝑢

𝜕𝑥
+ i

𝜕𝑣

𝜕𝑥
.

On the other hand, if we restrict the limit by approaching from strictly imaginary

values, we obtain:

lim

R∋𝑡→0

𝑓 (𝑧 + i𝑡) − 𝑓 (𝑧)
i𝑡

= lim

𝑡→0

𝑢(𝑥 + i𝑡 , 𝑦) + i𝑣(𝑥 + i𝑡 , 𝑦) − (𝑢(𝑥, 𝑦) + i𝑣(𝑥, 𝑦))
i𝑡

= −i

(
lim

𝑡→0

𝑢(𝑥 + 𝑡 , 𝑦) − 𝑢(𝑥, 𝑦)
𝑡

+ i lim

𝑡→0

𝑣(𝑥 + 𝑡 , 𝑦) − 𝑣(𝑥, 𝑦)
𝑡

)
= −i

𝜕𝑢

𝜕𝑥
+ 𝜕𝑣

𝜕𝑥
.

Since both limits are equal, as seen in Eq. (25.1), we obtain what we call the Cauchy-
Riemann equation for holomorphic functions:
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Theorem 25.0.2 (Cauchy-Riemann). Let 𝐷 ⊆ C be an open set, and 𝑓 = 𝑢 + i𝑣:𝐷 → C
be any function — where 𝑢, 𝑣: R2 ⇒ R are differentiable functions. The function 𝑓 is

holomorphic if and only if the following two equations are satisfied:

𝜕𝑢

𝜕𝑥
=

𝜕𝑣

𝜕𝑦
, and

𝜕𝑣

𝜕𝑥
= −𝜕𝑢

𝜕𝑦
.

Corollary 25.0.3. The complex derivative of the holomorphic function 𝑓 satisfies the

following equalities:

𝑓 ′(𝑧) = 𝜕𝑢

𝜕𝑥
+ i

𝜕𝑣

𝜕𝑥
=

𝜕𝑣

𝜕𝑦
− i

𝜕𝑢

𝜕𝑦
.

Corollary 25.0.4. The squared absolute value of the first order derivative of 𝑓 is equal

to the Jacobian of the R-vector field 𝐹:𝐷 → R2
given by (𝑥, 𝑦) ↦→ (𝑢(𝑥, 𝑦), 𝑣(𝑥, 𝑦)):

| 𝑓 ′(𝑧)|2 = Jac 𝐹(𝑧)

=
𝜕𝑢

𝜕𝑥

𝜕𝑣

𝜕𝑦
− 𝜕𝑢

𝜕𝑦

𝜕𝑣

𝜕𝑥

=

(𝜕𝑢
𝜕𝑥

)
2

+
(𝜕𝑣
𝜕𝑥

)
2

=

(𝜕𝑣
𝜕𝑦

)
2

+
(𝜕𝑢
𝜕𝑦

)
2

25.1 Angles & Holomorphic Maps
Let 𝐷 ⊆ C be an open set and let 𝛾 = 𝑥 + i𝑦: [𝑎, 𝑏] → 𝐷 be a differentiable curve

parametrized by the real valued interval [𝑎, 𝑏] ⊆ R. Consider a holomorphic function

𝑓 :𝐷 → C.

Let’s take a closer look at the composition 𝑓 𝛾: [𝑎, 𝑏] → C. We can interpret 𝛾′(𝑡) as

defining a direction at the tangent space 𝑇𝛾(𝑡)𝐷 whenever 𝛾′(𝑡) ≠ 0. Consider 𝑧0 ≔ 𝛾(𝑡)
and let 𝜂: [𝑎, 𝑏] → 𝐷 be another differentiable curve such that 𝜂(ℎ) = 𝑧0 for some

ℎ ∈ [𝑎, 𝑏].

Theorem 25.1.1 (Holomorphic functions are conformal). If 𝑓 ′(𝑧0) ≠ 0 then the angle

between the directional vectors defined by 𝛾′(𝑡) and 𝜂′(ℎ) at 𝑇𝑧0
𝐷 is the same as the

angle between the directional vectors defined by ( 𝑓 𝛾)′(𝑡) and ( 𝑓 𝜂)′(ℎ).

Proof. Define an inner product ⟨−,−⟩: C×C→ R given by ⟨𝑧, 𝑤⟩ ≔ Re(𝑧𝑤). If 𝑧 = 𝑎+i𝑏

and 𝑤 = 𝑐 + i𝑑 then

⟨𝑧, 𝑤⟩ = Re(𝑎𝑐 + 𝑏𝑑 + i(𝑏𝑐 − 𝑎𝑑)) = 𝑎𝑐 + 𝑏𝑑 = ⟨(𝑎, 𝑏), (𝑐, 𝑑)⟩R2

where ⟨−,−⟩R2 is the canonical inner product of the real vector space R2
.

Let 𝜃(𝑧, 𝑤) be the angle between 𝑧 and 𝑤, then

cos(𝜃(𝑧, 𝑤)) = ⟨𝑧, 𝑤⟩|𝑧||𝑤|
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and since sin(𝑡) = cos(𝑡 − 𝜋/2) it follows that

sin(𝜃(𝑧, 𝑤)) = ⟨𝑧,−i𝑤⟩
|𝑧||𝑤| .

continue proof

♮
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Chapter 26

Normed Vector Spaces

Remark 26.0.1. Throughout this whole chapter we shall denote by 𝑘 a field that is

either C or R — we’ll adopt the use of | − |: 𝑘 → R⩾0 for the standard norm of the

underlying field in order to distinguish that from the norm of the vector spaces.

26.1 Norms on Spaces
Definition 26.1.1 ((Pre)Norm and (pre)normed vector spaces). Let 𝐸 be a 𝑘-vector

space. We say that a map ∥ − ∥:𝐸→ R⩾0 is a pre-norm in 𝐸 if for all 𝑥, 𝑦 ∈ 𝐸 and 𝜆 ∈ 𝑘
the map satisfies the following properties

(a) Product by scalar: ∥𝜆𝑥∥ = |𝜆| ∥𝑥∥.
(b) Triangle inequality: ∥𝑥 + 𝑦∥ ⩽ ∥𝑥∥ + ∥𝑦∥.

Moreover, if ∥ − ∥ satisfies the following additional condition, it is called a norm.

(c) If ∥𝑥∥ = 0 then 𝑥 = 0.

The vector space 𝐸 endowed with the (pre)norm ∥ − ∥ is called a (pre)normed vector
space.

It should be noted immediately that the first condition for a pre-norm implies in

∥0∥ = 0, hence the last condition for ∥ − ∥ to be a norm can be substituted equivalently

by “∥𝑥∥ = 0 if and only if 𝑥 = 0”. Moreover, in a prenormed space, it’s not possible to

assert that a sequence has a unique limit, property which is only ensured by the last

condition.

A simple property that can be extracted from Definition 26.1.1, is that any subspace

of a (pre)normed 𝑘-vector space is itself (pre)normed with the naturally inherited

norm.

Example 26.1.2 (Norms from maps). Let 𝐸 be a 𝑘-vector space and let’s consider any

functional 𝑓 ∈ 𝐸∗. We can build a pre-norm from the linear map 𝑓 by defining a map

∥ − ∥ 𝑓 :𝐸 → R⩾0 given by ∥𝑥∥ 𝑓 ≔ | 𝑓 (𝑥)| — which clearly satisfies all of the required

conditions for a norm. Note however that for ∥−∥ 𝑓 to satisfy the last condition, it must

be true that ker 𝑓 = 0, that is, dim𝑘 𝐸 = 1 necessarily for ∥ − ∥ 𝑓 to be a norm.
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Example 26.1.3 (Metrics from norms). Given a (pre)normed 𝑘-vector space (𝐸, ∥−∥), we

can naturally define a metric in 𝐸 to be a map 𝑑:𝐸×𝐸→ R⩾0 given by 𝑑(𝑥, 𝑦) ≔ ∥𝑥− 𝑦∥
— which makes 𝐸 into a (pre)metric space (refer to Definition 12.3.1). We now verify

each of the conditions for a pre-metric:

(a) If 𝑥, 𝑦 ∈ 𝐸 are any elements, then

𝑑(𝑥, 𝑦) = ∥𝑥 − 𝑦∥ = | − 1| ∥𝑥 − 𝑦∥ = ∥𝑦 − 𝑥∥ = 𝑑(𝑦, 𝑥).

(b) If 𝑧 ∈ 𝐸 is another element, then

𝑑(𝑥, 𝑧) = ∥𝑥 − 𝑧∥ ⩽ ∥𝑥 − 𝑦∥ + ∥𝑦 − 𝑧∥ = 𝑑(𝑥, 𝑦) + 𝑑(𝑦, 𝑧).

Moreover, if ∥ − ∥ is a norm, then we are also able to satisfy:

(c) Given 𝑥, 𝑦 ∈ 𝐸 such that 𝑑(𝑥, 𝑦) = 0, then ∥𝑥 − 𝑦∥ = 0 and since ∥ − ∥ is a norm, we

obtain 𝑥 − 𝑦 = 0, thus 𝑥 = 𝑦 as wanted.

Proposition 26.1.4. Let (𝐸, ∥ − ∥) be a (pre)normed 𝑘-vector space, and 𝑑:𝐸 × 𝐸→ R⩾0

be the (pre)metric induced by ∥ − ∥. Then, 𝐸 is a Hausdorff space if and only if ∥ − ∥ is

a norm.

Proof. Suppose 𝐸 is a Hausdorff space and let 𝑥, 𝑦 ∈ 𝐸 be such that ∥𝑥 − 𝑦∥ = 0, then

in particular 𝑑(𝑥, 𝑦) = 0 and therefore any open ball 𝐵𝑥(𝑟) centred at 𝑥, for 𝑟 > 0, does

also contain 𝑦 — but since 𝐸 is Hausdorff, this can only be true if 𝑥 = 𝑦, thus 𝑥 − 𝑦 = 0

and we obtain that ∥ − ∥ is a norm, and 𝑑 is a metric.

Now, assume that ∥ − ∥ is a norm, thus 𝑑 is a metric and since any metric space is

Hausdorff (see Proposition 12.4.9), in particular, 𝐸 is Hausdorff. ♮

Lemma 26.1.5. Let (𝐸, ∥ − ∥) be a normed 𝑘-vector space, then the following is true for

any given 𝑥, 𝑦, 𝑧 ∈ 𝐸:

(a) If 𝑑:𝐸 × 𝐸→ R⩾0 is the metric induced by ∥ − ∥, then 𝑑(𝑥 + 𝑦, 𝑦 + 𝑧) = 𝑑(𝑥, 𝑧).
(b) The inequality

��∥𝑥∥ − ∥𝑦∥�� ⩽ ∥𝑥 − 𝑦∥ holds.

Proof. (a) 𝑑(𝑥 + 𝑦, 𝑦 + 𝑧) = ∥(𝑥 + 𝑦) − (𝑦 + 𝑧)∥ = ∥𝑥 − 𝑧∥ = 𝑑(𝑥, 𝑧).
(b) Notice that ∥𝑥∥ = ∥(𝑥 − 𝑦) + 𝑦∥ ⩽ ∥𝑥 − 𝑦∥ + ∥𝑦∥, therefore ∥𝑥∥ − ∥𝑦∥ ⩽ ∥𝑥 − 𝑦∥.

Moreover, symmetrically we have that ∥𝑦∥ − ∥𝑥∥ ⩽ ∥𝑦 − 𝑥∥ = ∥𝑥 − 𝑦∥, therefore,

−∥𝑥 − 𝑦∥ ⩽ ∥𝑥∥ − ∥𝑦∥ ⩽ ∥𝑥 − 𝑦∥

as wanted.

♮

Proposition 26.1.6. Any norm in an R-vector space is continuous.

Proof. This follows directly from the inequality obtained in item (b) of Lemma 26.1.5. ♮
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Proposition 26.1.7. Given a (pre)normed 𝑘-vector space 𝐸, if we endow the products

𝐸 × 𝐸 and 𝑘 × 𝐸 with the product topology, addition of vectors and multiplication of

vectors by scalars are both continuous maps.

Proof. Given sequences 𝑥 𝑗 → 𝑥 and 𝑦 𝑗 → 𝑦 for any 𝑥, 𝑦 ∈ 𝐸, then 𝑥 𝑗 + 𝑦 𝑗 → 𝑥 + 𝑦,

let 𝜀 > 0 be any bound, then choose a common 𝑛 ∈ N for which ∥𝑥 − 𝑥 𝑗∥ < 𝜀
2

and

∥𝑦 − 𝑦 𝑗∥ < 𝜀
2

for all 𝑗 ⩾ 𝑛. Therefore, by the triangle inequality

∥(𝑥 + 𝑦) − (𝑥 𝑗 − 𝑦 𝑗)∥ ⩽ ∥𝑥 − 𝑥 𝑗∥ − ∥𝑦 − 𝑦 𝑗∥ < 𝜀 for all 𝑗 > 𝑛,

where we thus conclude that 𝑥 𝑗 + 𝑦 𝑗 → 𝑥 + 𝑦 — all limits are well defined since 𝐸 is

Hausdorff.

Let 𝜆 𝑗 → 𝜆 be a convergent sequence in 𝑘 for any given 𝜆 ∈ 𝑘. Since convergent

sequences are bounded, let 𝑀 ∈ 𝑘 be a bound for (𝑥 𝑗)𝑗∈N, that is, |𝑥 𝑗| < 𝑀 — also,

define 𝑀′ ≔ max(𝑀, |𝜆|). Given any 𝜀 > 0 we choose a common 𝑛 ∈ N for which

|𝜆 − 𝜆 𝑗| < 𝜀
2𝑀′ and ∥𝑥 − 𝑥 𝑗∥ < 𝜀

2𝑀′ for all 𝑗 ⩾ 𝑛. With this we can use the triangle

inequality to find

∥𝜆𝑥 − 𝜆 𝑗𝑥 𝑗∥ = ∥(𝜆 − 𝜆 𝑗)𝑥 𝑗 + 𝜆(𝑥 − 𝑥 𝑗)∥
⩽ ∥(𝜆 − 𝜆 𝑗)𝑥 𝑗∥ + ∥𝜆(𝑥 − 𝑥 𝑗)∥
= |𝜆 − 𝜆 𝑗| ∥𝑥 𝑗∥ + |𝜆| ∥𝑥 − 𝑥 𝑗∥
=

𝜀
2𝑀′
∥𝑥 𝑗∥ + |𝜆|

𝜀
2𝑀′

<
𝜀

2𝑀′
𝑀′ +𝑀′ 𝜀

2𝑀′

= 𝜀,

that is, 𝜆 𝑗𝑥 𝑗 → 𝜆𝑥 as wanted. ♮

Definition 26.1.8 (Equivalence of norms). Given vector space 𝐸 and two norms, ∥ − ∥1

and ∥−∥2, on 𝐸, we say that such norms are equivalent if there exists 𝑎, 𝑏 > 0 such that

for all 𝑣 ∈ 𝐸 we have the inequalities

𝑎∥𝑣∥1 ⩽ ∥𝑣∥2 ⩽ 𝑏∥𝑣∥1.

Proposition 26.1.9. Two norms are equivalent if and only if they induce the same

topology.

Proof. Let 𝐸 be a 𝑘-vector space and both ∥ − ∥1 and ∥ − ∥2 be norms on 𝐸. Let

𝑈 ⊆ (𝐸, ∥ − ∥1) be open and, for any given 𝑥 ∈ 𝑈 , let 𝐵𝑥(𝑟) ⊆ (𝐸, ∥ − ∥1) be an open

ball centred at 𝑥. Notice that if 𝑏 > 0 is the right constant in Definition 26.1.8, then by

choosing the open ball 𝐵𝑥(𝑟/𝑏) ⊆ (𝐸, ∥−∥2), we are able to obtain that for all 𝑦 ∈ 𝐵𝑥(𝑟/𝑏)
we have

∥𝑥 − 𝑦∥1 ⩽ 𝑏∥𝑥 − 𝑦∥2 < 𝑟

thus 𝑦 ∈ 𝐵𝑥(𝑟) in ∥ − ∥1 — this implies in 𝐵𝑥(𝑐𝑟) ⊆ 𝐵𝑥(𝑟) in ∥ − ∥2 and therefore we

conclude that 𝐵𝑥(𝑟) is open in (𝐸, ∥ − ∥2). Notice that the proof can be mirrored for the

other case, thus we are done. ♮
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Quotient Space
Example 26.1.10 (Pre-norm on quotients of normed spaces). Let (𝐸, ∥−∥)be a pre-normed
𝑘-vector space and 𝐹 ⊆ 𝐸 a subspace. We can define a pre-norm ∥ − ∥∼:𝐸/𝐹 → R⩾0 on

the quotient space 𝐸/𝐹 as

∥[𝑣]∥∼ ≔ inf

𝑢∈[𝑣]
∥𝑢∥,

that is, the infimum of the norm of the representatives of the class. This indeed defines

a pre-norm since, if [𝑣], [𝑤] ∈ 𝐸/𝐹, then

∥[𝑣] + [𝑤]∥∼ = inf{∥𝑥 + 𝑦∥ : 𝑥 + 𝑦 ∈ [𝑣] + [𝑤]}
⩽ inf{∥𝑥∥ + ∥𝑦∥ : 𝑥 ∈ [𝑣] and 𝑦 ∈ [𝑤]} (26.1)

We claim that inf{∥𝑥∥ + ∥𝑦∥} ⩽ inf ∥𝑥∥ + inf ∥𝑦∥. To prove that, assume that both

inf ∥𝑥∥ and inf ∥𝑦∥ are finite — otherwise, if one of them is infinite, the inequality is

trivially true. For any 𝜀 > 0 we can find 𝑥′ ∈ [𝑣] and 𝑦′ ∈ [𝑤] for which

inf

𝑥∈[𝑣]
∥𝑥∥ ⩽ ∥𝑥′∥ ⩽ inf

𝑥∈[𝑣]
∥𝑥∥ + 𝜀,

inf

𝑦∈[𝑣]
∥𝑦∥ ⩽ ∥𝑦′∥ ⩽ inf

𝑦∈[𝑣]
∥𝑦∥ + 𝜀.

Therefore we find that inf{∥𝑥∥+∥𝑦∥} ⩽ ∥𝑥′∥+∥𝑦′∥ therefore inf{∥𝑥∥+∥𝑦∥} ⩽ inf ∥𝑥∥+
inf ∥𝑦∥+2𝜀, but since 𝜀 may be indefinitely little, we find that indeed inf{∥𝑥∥+∥𝑦∥} ⩽
inf ∥𝑥∥ + inf ∥𝑦∥. Hence, we can turn to Eq. (26.1) and conclude that

∥[𝑣] + [𝑤]∥∼ ⩽ inf{∥𝑥∥ + ∥𝑦∥ : 𝑥 ∈ [𝑣] and 𝑦 ∈ [𝑤]}
⩽ inf

𝑥∈[𝑣]
∥𝑥∥ + inf

𝑦∈[𝑤]
∥𝑦∥

= ∥[𝑣]∥∼ + ∥[𝑤]∥∼,

thus satisfying the triangle inequality. The condition that ∥𝜆𝑣∥∼ = |𝜆| ∥𝑣∥∼ is trivially

obtained — hence ∥ − ∥∼ is a pre-norm in 𝐸/𝐹.

Proposition 26.1.11 (Quotient norm). The pre-norm ∥−∥∼ described in Example 26.1.10

is a norm if and only if the subspace 𝐹 is closed in 𝐸.

Proof. Let [𝑣] ∈ 𝐸/𝐹 be any class such that ∥[𝑣]∥∼ = 0, therefore, we must be able to

find a sequence (𝑣 𝑗)𝑗∈N of elements 𝑣 𝑗 ∈ [𝑣] such that ∥𝑣 𝑗∥ → 0 as 𝑗 → ∞. Moreover,

choosing 𝑣 ∈ [𝑣] to be any representative, since 𝑣 𝑗−𝑣 ∈ 𝐹 and 𝐹 is closed normed space,

the convergence of the norm to zero implies that 𝑣 𝑗 → 0 for 𝑗 → ∞ in 𝐹 — therefore,

we conclude that 𝐹 ∋ 𝑣 𝑗 − 𝑣 → −𝑣 and thus −𝑣 ∈ 𝐹 from the closeness property, in

particular, we find that 𝑣 ∈ 𝐹.

We now claim that since 𝑣 ∈ 𝐹, then [𝑣] = [0]. Let 𝑢 ∈ [𝑣] be any representative,

then 𝑢 − 𝑣 ∈ 𝐹 and since 𝑣 ∈ 𝐹 by assumption, then in particular 𝑢 ∈ 𝐹, hence 𝑢 ∈ [0]
— that is, [𝑣] ⊆ [0]. Now, if 𝑤 ∈ [0], from definition we obtain 𝑤 ∈ 𝐹, but since 𝑣 ∈ 𝐹
then in particular 𝑤 − 𝑣 ∈ 𝐹 hence 𝑤 ∈ [𝑣] — which implies that [0] ⊆ [𝑣] and thus

[𝑣] = [0] for all 𝑣 ∈ 𝐹. Therefore, from this claim we obtain that ∥[𝑣]∥∼ = 0 implies

[𝑣] = [0] = 𝐹, the zero element of 𝐸/𝐹. ♮
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Proposition 26.1.12 (Norm out of pre-norm). Let (𝐸, ∥ − ∥) be a pre-normed 𝑘-vector

space and 𝐸0 ≔ {𝑥 ∈ 𝐸 : ∥𝑥∥ = 0}. Then, the map ∥ − ∥∼:𝐸/𝐸0 → R⩾0 defined by

∥[𝑥]∥∼ ≔ ∥𝑥∥ is well defined and is a norm for the space 𝐸/𝐸0.

Proof. Let [𝑥] ∈ 𝐸/𝐸0 be a class such that ∥[𝑥]∥∼ = 0. Choose any representative 𝑥 ∈ [𝑥]
and notice that since ∥𝑥∥ = 0 then 𝑥 ∈ 𝐸0, that is, [𝑥] ⊆ 𝐸0 — moreover, if 𝑦 ∈ 𝐸0, then

surely 𝑦 ∈ [𝑥], that is, 𝐸0 ⊆ [𝑥]. This shows that [𝑥] = 𝐸0, where 𝐸0 = [0] ∈ 𝐸/𝐸0. ♮

Examples of Normed Spaces
The following is an immediate proposition, so we won’t bother to write down the

proof.

Lemma 26.1.13 (Complex conjugate space norm). Let (𝐸, ∥ − ∥) be a pre-normed C-

vector space. Then the naturally induced map ∥ − ∥:𝐸 → R⩾0 is a pre-norm for the

complex conjugate space 𝐸.

Proposition 26.1.14. Let 𝐸 be a pre-normed 𝑘-vector space, 𝐹 ⊆ 𝐸 be a closed subspace,

and 𝑥 ∈ 𝐸 ∖ 𝐹. Then there exists a scalar 𝐶 > 0 for which, for every given scalar 𝜆 ∈ 𝑘
and vector 𝑦 ∈ 𝐹, we have

|𝜆| ⩽ 𝐶∥𝜆𝑥 + 𝑦∥.
Proof. If 𝜆 = 0 then the proposition follows trivially. Otherwise, let 𝜆 ≠ 0 and notice

that since 𝐹 is closed, there must exist 𝜃 > 0 for which ∥𝑥 − 𝑦∥ ⩾ 𝜃 for every given

𝑦 ∈ 𝐹 — since 𝑥 lies outside of 𝐹. In particular, since − 1

𝜆 𝑦 ∈ 𝐹, then ∥𝑥 − (− 1

𝜆 𝑦)∥ ⩾ 𝜃
— notice that such choice of vector was not made arbitrarily since

∥𝜆𝑥 + 𝑦∥ = |𝜆| ∥𝑥 − (−𝑦/𝜆)∥ ⩾ |𝜆|𝜃,
therefore, if we choose 𝐶 ≔ 1

𝜃 , we obtain the desired inequality. ♮

Example 26.1.15 (𝑝-norms). The following are recurrent norms on two of the most

relevant spaces to our analytical study of normed 𝑘-vector spaces:

(a) For every integer 1 ⩽ 𝑝 < ∞ we define a norm ∥ − ∥𝑝 : 𝑘𝑛 → R⩾0 defined by, for all

𝑥 ∈ 𝑘𝑛 ,

∥𝑥∥𝑝 ≔
( 𝑛∑
𝑗=1

|𝑥 𝑗|𝑝
)

1/𝑝
.

(b) The infinite case for the space 𝑘𝑛 is defined by a map ∥ − ∥∞: 𝑘𝑛 → R⩾0 given by

∥𝑥∥∞ ≔ max

1⩽ 𝑗⩽𝑛
|𝑥 𝑗|.

(c) Let ℓ 𝑝(𝐽) ⊆ 𝑘 𝐽 be the 𝑘-vector subspace consisting of maps 𝑓 : 𝐽 → 𝑘 with countable
support — that is,

∑
𝑡∈𝐽 | 𝑓 (𝑡)|𝑝 < ∞. For each integer 1 ⩽ 𝑝 < ∞, we define a norm

∥ − ∥𝑝 : ℓ 𝑝(𝐽) → R⩾0 given by

∥ 𝑓 ∥𝑝 ≔
(∑
𝑡∈𝐽
| 𝑓 (𝑡)|𝑝

)
1/𝑝
.
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(d) For the infinite case, we define ℓ∞(𝐽) ⊆ 𝑘 𝐽 to be the 𝑘-vector subspace consisting of

maps 𝑓 : 𝐽 → 𝑘 such that sup𝑡∈𝐽 | 𝑓 (𝑡)| < ∞. We define the norm ∥−∥∞: ℓ∞(𝐽) → R⩾0

by

∥ 𝑓 ∥∞ ≔ sup

𝑡∈𝐽
| 𝑓 (𝑡)|.

In fact, each one of the above spaces is Banach, but we’ll prove this later. We need now

to prove that these are indeed normed vector spaces.

Proof. (a) Let 𝑥 ∈ 𝑘𝑛 be any vector and 𝜆 ∈ 𝑘 any scalar, then

∥𝜆𝑥∥𝑝 =
(∑

𝑗

|𝜆𝑥 𝑗|𝑝
)

1/𝑝
=

(
|𝜆|𝑝

∑
𝑗

|𝑥 𝑗|𝑝
)

1/𝑝
= |𝜆| ∥𝑥∥𝑝 .

Moreover, if 𝑦 ∈ 𝑘𝑛 is another vector, then since 𝑝 ⩾ 1 we may just use Minkowski’s

inequalities (see Proposition A.1.9) in order to obtain the triangle inequality — it

should be noted that 𝑝 < 1 does not yield a valid triangle inequality, hence justifying

the restriction 𝑝 ⩾ 1. Also, if ∥𝑧∥ = 0 for some 𝑧 ∈ 𝑘𝑛 , then 𝑧 𝑗 = 0 for all 1 ⩽ 𝑗 ⩽ 𝑛

— since |𝑧 𝑗| = 0 — and thus 𝑧 = 0.

(b) The map ∥ − ∥∞: 𝑘𝑛 → R⩾0 is clearly a norm.

(c)

(d) Let 𝜆 ∈ 𝑘 and 𝑓 , 𝑔 ∈ ℓ∞(𝐽) be any elements. Since sup𝑡 | 𝑓 (𝑡)| < ∞, we conclude that

∥𝜆 𝑓 ∥ = sup𝑡 |𝜆 𝑓 (𝑡)| = sup𝑡 |𝜆| | 𝑓 (𝑡)| = |𝜆| sup𝑡 | 𝑓 (𝑡)|, thus ∥𝜆 𝑓 ∥ = |𝜆| ∥ 𝑓 ∥. More-

over, we have sup𝑡 | 𝑓 (𝑡)+ 𝑔(𝑡)| ⩽ sup𝑡(| 𝑓 (𝑡)|+|𝑔(𝑡)|) ⩽ sup𝑡 | 𝑓 (𝑡)|+sup𝑡 |𝑔(𝑡)| < ∞,

therefore ∥ 𝑓 + 𝑔∥ ⩽ ∥ 𝑓 ∥ + ∥𝑔∥. Also, if ℎ ∈ ℓ∞(𝐽) is a map such that ∥ℎ∥ = 0,

then sup𝑡 |ℎ(𝑡)| = 0, which by the definition of the supremum of a set and since

|ℎ(𝑡)| ⩾ 0, we conclude that ℎ(𝑡) = 0 for every 𝑡 ∈ 𝐽 — that is, ℎ = 0.

Prove that the maps define norms for ℓ 𝑝 and ℓ∞, moreover, prove that each of

the mentioned spaces is Banach.

♮

Lemma 26.1.16. Let ∥ − ∥𝑝 , ∥ − ∥∞: 𝑘𝑛 ⇒ R⩾0 be the norms defined in Example 26.1.15,

then the following inequality holds for all 1 ⩽ 𝑝 < ∞ and all 𝑥 ∈ 𝑘𝑛 :

∥𝑥∥∞ ⩽ ∥𝑥∥𝑝 ⩽ 𝑛1/𝑝∥𝑥∥∞.

Therefore ∥ − ∥𝑝 and ∥ − ∥∞ are equivalent norms.

Proof. Since (∑𝑗 |𝑥 𝑗|𝑝)1/𝑝 ⩽ (∑𝑗(max𝑗 |𝑥 𝑗|)𝑝)1/𝑝 = 𝑛1/𝑝
max𝑗 |𝑥 𝑗|, we obtain ∥𝑥∥𝑝 ⩽

𝑛1/𝑝∥𝑥∥∞. Moreover, clearly ∥𝑥∥∞ ⩽ ∥𝑥∥𝑝 , thus the proposition follows. ♮

Example 26.1.17 (ℓ∞ space of maps). Let 𝑋 be any set and define ℓ∞(𝑋) to be a 𝑘-vector

subspace of 𝑘𝑋 , consisting of all bounded maps. We define a norm ∥−∥∞: ℓ∞(𝑋) → R⩾0

to be the map given by

∥ 𝑓 ∥∞ ≔ sup

𝑡∈𝑋
| 𝑓 (𝑡)|.

Such norm is called the uniform norm on the function space.
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Example 26.1.18 (Uniform convergence norm). Let 𝑋 be a Hausdorff space and Ω ⊆ 𝑋
be a compact set. If 𝐶(Ω, 𝑘)denotes the 𝑘-vector space of continuous functionalsΩ→ 𝑘,

the map ∥ − ∥∞:𝐶(Ω, 𝑘) → R⩾0 given by

∥ 𝑓 ∥∞ ≔ sup

𝑡∈Ω
| 𝑓 (𝑡)| = max

𝑡∈Ω
| 𝑓 (𝑡)|

defines a norm in 𝐶(Ω, 𝑘). Moreover, the normed 𝑘-vector space (𝐶(Ω, 𝑘), ∥ − ∥∞) is

Banach.

Proof.
Prove

♮

26.2 Properties of Normed Vector Spaces

Finite Dimensional
Lemma 26.2.1. Let 𝐸 be an 𝑛-dimensional normed 𝑘-vector space and {𝑥1, . . . , 𝑥𝑛}
be a basis of 𝐸. There exists a scalar 𝐶 > 0 such that, for every choice of scalars

{𝜆1, . . . ,𝜆𝑛} ⊆ 𝑘, we have  𝑛∑
𝑗=1

𝜆 𝑗𝑥 𝑗

 ⩾ 𝐶

𝑛∑
𝑗=1

|𝜆 𝑗|.

Proof. For the sake of brevity, denote 𝑆 ≔
∑𝑛
𝑗=1
|𝜆 𝑗|. If 𝑆 = 0 then the lemma follows

trivially. Suppose that 𝑆 > 0 and, for the sake of contradiction, that there exists no

scalar 𝐶 > 0 such that ∥∑𝑗 |𝜆 𝑗𝑥 𝑗|∥ ⩾ 𝐶
∑
𝑗 |𝜆 𝑗|— this implies that for all integer 𝑝 ⩾ 1

there exists a point 𝑦𝑝 ≔
∑𝑛
𝑗=1

𝜆 𝑗(𝑝)𝑥 𝑗 such that

𝑛∑
𝑗=1

|𝜆 𝑗(𝑝)| ⩾ 𝑝∥𝑦𝑝∥. (26.2)

Moreover, for each 𝑝 ⩾ 1, we may as well construct 𝑧𝑝 ≔
∑𝑛
𝑗=1

𝛼 𝑗(𝑝)𝑥 𝑗 — where

𝛼 𝑗 : N→ 𝑘 for all 1 ⩽ 𝑗 ⩽ 𝑛 — for which

𝛼 𝑗(𝑝) ≔
𝜆 𝑗(𝑝)∑𝑛
𝑗=1
|𝜆 𝑗(𝑝)|

.

This ensures us that

∑
𝑗 𝛼 𝑗(𝑝) = 1 — hence |𝛼 𝑗(𝑝)| ⩽ 1. Dividing Eq. (26.2) by

∑
𝑗 |𝜆 𝑗(𝑝)|

we find

1

𝑝
⩾ ∥𝑦𝑝∥. (26.3)

For every fixed 1 ⩽ 𝑗 ⩽ 𝑛, the sequence (𝛼 𝑗(𝑝))𝑝 is bounded and since we are

working either with the complex or real numbers as the underlying field, we can

conclude from Bolzano-Weirstraß theorem (see Theorem 14.3.2) that from the sequence
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of bounded scalars one can extract a convergent subsequence (𝛼 𝑗(𝑝′))𝑝′ — assume that

𝛼 𝑗(𝑝′) → 𝛽 𝑗 for some 𝛽 𝑗 ∈ 𝑘. This induces a subsequence of (𝑦𝑝)𝑝 , given by (𝑦𝑝′)𝑝′, so

that 𝑦𝑝′ →
∑
𝑗 𝛽 𝑗𝑥 𝑗 — moreover,

∑
𝑗 |𝛽 𝑗| = 1. However, from Eq. (26.3) we find that

𝑦𝑝 → 0, thus also 𝑦𝑝′ → 0. Since 𝐸 is Hausdorff, the limit of the sequence (𝑦𝑝′)𝑝′ must

be unique, hence

∑
𝑗 𝛽 𝑗𝑥 𝑗 = 0 — which contradicts the initial hypothesis that the set

{𝑥1, . . . , 𝑥𝑛}was linearly independent in 𝐸.

This shows one cannot build a sequence (𝑦𝑝)𝑝 for which Eq. (26.2) is satisfied, hence

the proposition follows. ♮

Corollary 26.2.2. The unit ball is compact in a finite dimensional normed vector space.

Proof. Let 𝐸 be an 𝑛-dimensional 𝑘-vector space and {𝑒1, . . . , 𝑒𝑛} be a basis for 𝐸. Let

(𝑥𝑝)𝑝∈N be a sequence of points in the unit ball 𝐵0(1) (that is, ∥𝑥𝑝∥ ⩽ 1) — we’ll

define for each 𝑝 ∈ N that 𝑥𝑝 ≔
∑𝑛
𝑗=1

𝛼 𝑗(𝑝)𝑒 𝑗 , where 𝛼 𝑗 : N → 𝑘 for all 1 ⩽ 𝑗 ⩽ 𝑛.

One concludes that, since ∥𝛼 𝑗(𝑝)∥ ⩽ 1 for each 1 ⩽ 𝑗 ⩽ 𝑛, we can use the Bolzano-

Weierstraß theorem (see Theorem 14.3.2) to conclude that we can extract a convergent

subsequence (𝛼 𝑗(𝑝′))𝑝′ from (𝛼 𝑗(𝑝))𝑝∈N — for instance, assume that 𝛼 𝑗(𝑝) → 𝛽 𝑗 for

some 𝛽 𝑗 ∈ 𝑘. Then the induced subsequence (𝑥𝑝′)𝑝′ is such that 𝑥𝑝′ →
∑
𝑗 𝛽 𝑗𝑒 𝑗 ≔ 𝑥.

Moreover, for each 𝑝′ we have the inequality ∥𝑥∥ ⩽ ∥𝑥 − 𝑥𝑝′∥ + ∥𝑥𝑝∥ ⩽ ∥𝑥 − 𝑥𝑝′∥ + 1,

thus as 𝑝′→∞we have ∥𝑥− 𝑥𝑝′∥ → 0 and therefore ∥𝑥∥ ⩽ 1 — that is, every sequence

in 𝐵0(1) has a convergent subsequence in 𝐵0(1), which by Theorem 14.3.8 implies that

𝐵0(1) is compact in 𝐸. ♮

Lemma 26.2.3. If 𝐸 is a finite dimensional 𝑘-vector space, then all norms in 𝐸 are

equivalent.

Proof. Assume that {𝑒1, . . . , 𝑒𝑛} is a basis for 𝐸. We’ll show that every norm is equiv-

alent to ∥ − ∥:𝐸 → R⩾0 given by ∥∑𝑛
𝑗=1

𝜆 𝑗𝑒 𝑗∥ ≔
∑𝑛
𝑗=1
|𝜆 𝑗|. Let ∥ − ∥′:𝐸 → R⩾0 be any

other norm — then from the triangle inequality we have, for any point 𝑥 ≔
∑
𝑗 𝜆 𝑗𝑒 𝑗 in

𝐸:

∥𝑥∥′ ⩽
𝑛∑
𝑗=1

∥𝜆 𝑗𝑒 𝑗∥ ⩽ max

1⩽ 𝑗⩽𝑛
∥𝑒 𝑗∥

𝑛∑
𝑗=1

|𝜆 𝑗| = max

1⩽ 𝑗⩽𝑛
∥𝑒 𝑗∥ ∥𝑥∥.

Defining 𝐶 ≔ max𝑗 ∥𝑒 𝑗∥, we have shown that ∥𝑥∥′ ⩽ 𝐶∥𝑥∥.
For the last part, we must prove the existence of a scalar𝐵 > 0 such that ∥𝑥∥ ⩽ 𝐵∥𝑥∥′.

We proceed by contradiction, that is, assuming we can choose a sequence of points

(𝑥𝑝)𝑝∈N such that

∥𝑥𝑝∥ ⩾ 𝑝∥𝑥𝑝∥′ (26.4)

for all 𝑝 ∈ N. Let (𝑦𝑝)𝑝∈N be the sequence defined by 𝑦𝑝 ≔ 𝑥𝑝/∥𝑥𝑝∥, so that ∥𝑦𝑝∥ = 1

— thus, by Eq. (26.4) we obtain the bound ∥𝑦𝑝∥′ ⩽ 1/𝑝, thus 𝑦𝑝 → 0. If we let

𝑦𝑝 ≔
∑
𝑗 𝛼 𝑗(𝑝)𝑒 𝑗 , we obtain that

∑
𝑗 |𝛼 𝑗(𝑝)| = 1 implies |𝛼 𝑗(𝑝)| ⩽ 1 — hence, for every

fixed 1 ⩽ 𝑗 ⩽ 𝑛, the sequence (𝛼 𝑗(𝑝))𝑝∈N contains a convergent subsequence (𝛼 𝑗(𝑝′))𝑝′
such that 𝛼 𝑗(𝑝′) → 𝛽 𝑗 for some 𝛽 𝑗 ∈ 𝑘. Moreover, the limits are such that

∑
𝑗 |𝛽 𝑗| = 1.

Therefore, the induced subsequence (𝑦𝑝′)𝑝′ is such that 𝑦𝑝′ →
∑
𝑗 𝛽 𝑗𝑒 𝑗 — however, since

𝐸 is Hausdorff, the sequence must have a unique limit, hence

∑
𝑗 𝛽 𝑗𝑒 𝑗 = 0, which is

only possible if 𝛽 𝑗 = 0 for all 1 ⩽ 𝑗 ⩽ 𝑛 — this contradicts the fact that

∑
𝑗 |𝛽 𝑗| = 1. We
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conclude that a sequence (𝑥𝑝)𝑝∈N satisfying Eq. (26.4) must not exist, thus implying

that there exists 𝐵 > 0 such that ∥𝑥∥ ⩽ 𝐵∥𝑥∥′ for all 𝑥 ∈ 𝐸. ♮

Corollary 26.2.4. Every finite dimensional normed 𝑘-vector space is Banach.

Proof. We’ll work on a 𝑛-dimensional 𝑘-vector space (𝐸, ∥−∥)— where we let {𝑒1, . . . , 𝑒𝑛}
be any basis and ∥ − ∥′ be the norm ∥∑𝑗 𝜆 𝑗𝑒 𝑗∥′ ≔

∑
𝑗 |𝜆 𝑗|. Let (𝑥𝑝)𝑝∈N be any Cauchy

sequence with respect to ∥ − ∥, and define 𝑥𝑝 ≔
∑
𝑗 𝜆 𝑗(𝑝)𝑒 𝑗 for some map 𝜆 𝑗 : N → 𝑘.

From Lemma 26.2.3 we find that there exists 𝐶 > 0 for which ∥𝑥∥′ ⩽ 𝐶∥𝑥∥ for every

𝑥 ∈ 𝐸— therefore (𝑥𝑝)𝑝∈N is also Cauchy with respect to ∥−∥′. Hence, for all 𝜀 > 0 there

exists 𝑁 ∈ N such that for all 𝑝, 𝑞 ⩾ 𝑁 we have ∥𝑥𝑝 − 𝑥𝑞∥′ =
∑
𝑗 |𝜆 𝑗(𝑝) − 𝜆 𝑗(𝑞)| < 𝐶𝜀

— therefore for every 1 ⩽ 𝑗 ⩽ 𝑛 we have |𝜆 𝑗(𝑝) − 𝜆 𝑗(𝑞)| < 𝐶𝜀, which implies that

(𝜆 𝑗(𝑝))𝑝∈N is Cauchy in 𝑘. Let for instance 𝜆 𝑗(𝑝) → 𝛼 𝑗 for some 𝛼 𝑗 ∈ 𝑘. Moreover,

notice that ∥𝑥𝑝 −
∑
𝑗 𝛼 𝑗𝑒 𝑗∥′ =

∑
𝑗 |𝜆 𝑗(𝑝) − 𝛼 𝑗|, which converges to zero as 𝑝 →∞— thus

𝑥𝑝 →
∑
𝑗 𝛼 𝑗𝑒 𝑗 , which proves that (𝑥𝑝)𝑝∈N converges in 𝐸. ♮

Proposition 26.2.5 (Compact sets). If 𝐸 is a finite dimensional normed 𝑘-vector space,

a subset Ω ⊆ 𝐸 is compact if and only if Ω is bounded and closed.

Proof. The first part comes from Proposition 14.2.20. For the second, let Ω be bounded

and closed. If dim𝐸 = 𝑛, we let {𝑒1, . . . , 𝑒𝑛} be a basis for 𝐸. Let (𝑥𝑝)𝑝∈N be any

sequence of points in Ω and assume that each 𝑥𝑝 has the form 𝑥 𝑗 ≔
∑𝑛
𝑖=1

𝜆𝑖(𝑝)𝑒𝑖 for

scalars 𝜆𝑖(𝑝) ∈ 𝑘. From the boundness of Ω one can find 𝑀 > 0 such that ∥𝑥𝑝∥ ⩽ 𝐶 for

every index 𝑝 ∈ N. Evoking Lemma 26.2.1 for each index 𝑝 ∈ N, we find that

𝑀 ⩾ ∥𝑥𝑝∥ ⩾ 𝐶

𝑛∑
𝑖=1

|𝜆𝑖(𝑝)|,

for some 𝐶 > 0. Fixing any 1 ⩽ 𝑖 ⩽ 𝑛, one concludes that |𝜆𝑖(𝑝)| ⩽ 𝑀 and therefore

the sequence (𝜆𝑖(𝑝))𝑝∈N is bounded. Using Bolzano-Weierstraß theorem (see Theo-

rem 14.3.2) there exists a convergent subsequence (𝜆𝑖(𝑝′))𝑝′ — assume for instance that

𝜆𝑖(𝑝′) → 𝜆𝑖 for some 𝜆𝑖 ∈ 𝑘. Such subsequence induces another subsequence (𝑥𝑝′)𝑝′,
for which 𝑥𝑝′ →

∑
𝑖 𝜆𝑖𝑒𝑖 ≔ 𝑥 — but since Ω is closed, we find 𝑥 ∈ Ω. Thus any

sequence in Ω has a convergent subsequence in Ω — this shows that Ω is compact (see

Theorem 14.3.8). ♮

ℓ∞(N) and ℓ 𝑝(N) are Banach Spaces
Lemma 26.2.6. Every Cauchy sequence in a normed 𝑘-vector space is bounded.

Proof. Let (𝑥 𝑗)𝑗∈N be a Cauchy sequence in a normed 𝑘-vector space 𝐸. If 𝜀 = 1,

then there exists 𝑁 ∈ N for which 𝑖 , 𝑗 ⩾ 𝑁 implies ∥𝑥 𝑗 − 𝑥𝑖∥ < 1 and therefore

∥𝑥 𝑗∥ ⩽ ∥𝑥 𝑗 − 𝑥𝑁∥ + ∥𝑥𝑁∥ < 1 + ∥𝑥𝑁∥. We conclude that the sequence is bounded:

∥𝑥 𝑗∥ ⩽ 1 + max

0⩽𝑖⩽𝑁
∥𝑥𝑖∥.

♮
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Proposition 26.2.7. The space ℓ∞(N) is Banach.

Proof. Let 𝑥 ≔ (𝑥𝑝)𝑝∈N denote any Cauchy sequence of points 𝑥𝑝 ∈ ℓ∞(N) — that is,

𝑥𝑝 ≔ (𝑥 𝑗(𝑝))𝑗∈N is itself a sequence — therefore for all 𝜀 > 0 there exists 𝑁 ∈ N such

that for all 𝑝, 𝑞 ⩾ 𝑁 we have

∥𝑥𝑝 − 𝑥𝑞∥ = sup

𝑗∈N
|𝑥 𝑗(𝑝) − 𝑥 𝑗(𝑞)| < 𝜀 (26.5)

We first construct a candidate for the limit of 𝑥. Let 𝑗0 ∈ N be any fixed index —

we’ll show that the sequence (𝑥 𝑗0(𝑝))𝑝∈N forms a Cauchy sequence in 𝑘. Notice that

from Eq. (26.5) it is clear that sup𝑗∈N |𝑥 𝑗(𝑝) − 𝑥 𝑗(𝑞)| < 𝜀 implies in |𝑥 𝑗0(𝑝) − 𝑥 𝑗0(𝑞)| < 𝜀

for all 𝑝, 𝑞 > 𝑁 — therefore (𝑥 𝑗0(𝑝))𝑝∈N is indeed Cauchy, and since 𝑘 (either R or C)

is complete, there exists 𝑦 𝑗0 ∈ 𝑘 for which 𝑥 𝑗0(𝑝) → 𝑦 𝑗0 . Our candidate sequence will

thus be formed by 𝑦 ≔ (𝑦 𝑗)𝑗∈N — where each 𝑦 𝑗 is constructed just as above. Indeed,

𝑦 ∈ ℓ∞(N), since for every 𝑗 ∈ N we have |𝑦 𝑗| = lim𝑝→∞ |𝑥 𝑗(𝑝)| ⩽ lim𝑝→∞ ∥𝑥𝑝∥∞
and since 𝑥 is Cauchy, from Lemma 26.2.6, we find that there exists 𝐶 > 0 such that

|𝑦 𝑗| ⩽ ∥𝑥𝑝∥∞ < 𝐶 — hence ∥𝑦∥∞ = sup𝑗∈N |𝑦 𝑗| < ∞.

We now show that (𝑦 𝑗)𝑗∈N is the limit of (𝑥𝑝)𝑝∈N. Let 𝜀 > 0 be any bound and𝑁 ∈ N
be such that 𝑝, 𝑞 > 𝑁 implies ∥𝑥𝑝 − 𝑥𝑞∥∞ < 𝜀 — that is, for any fixed 𝑗0 ∈ N we have

|𝑥𝑝
𝑗0
− 𝑥𝑞

𝑗0
| < 𝜀. Moreover, if we let 𝑞 →∞ we’ll find that |𝑥𝑝

𝑗0
− 𝑥𝑞

𝑗0
| → |𝑥𝑝

𝑗0
− 𝑦 𝑗0| < 𝜀 —

hence, since this must be true for any 𝑗0 ∈ N, we obtain that ∥𝑥∥∞ = sup𝑗∈N |𝑥
𝑞

𝑗
−𝑦 𝑗| < 𝜀.

This proves that 𝑥 𝑗(𝑝) → 𝑦 𝑗 as 𝑝 → ∞ and therefore 𝑥𝑝 → 𝑦 as wanted. Thus any

Cauchy sequence converges and the limit is given by the sequence of the limit of the

components. ♮

Proposition 26.2.8. The space ℓ 𝑝(N) is Banach for all 1 ⩽ 𝑝 < ∞.

prove

Common Properties Disregarding the Dimension of the Space
Proposition 26.2.9. Let 𝑓 :𝑋 → 𝑌 be an R-linear map between normed R-vector spaces

𝑋 and 𝑌. Then, 𝑓 is contiguous if and only if there exists a scalar 𝐶 > 0, called bound,

for which ∥ 𝑓 (𝑥)∥𝑌 ⩽ 𝐶∥𝑥∥𝑋 for all 𝑥 ∈ 𝑋.

Proof. If 𝑓 is bounded by 𝐶, let 𝐵 be a basis for 𝑋 and consider any element 𝑥 ≔∑
𝑣∈𝐵 𝑎𝑣𝑣. From linearity we have 𝑓 (𝑥) = ∑

𝑣∈𝐵 𝑎𝑣 𝑓 (𝑣), thus

∥ 𝑓 (𝑥)∥𝑌 =

∑
𝑣∈𝐵

𝑎𝑣 𝑓 (𝑣)

𝑌

⩽
∑
𝑣∈𝐵
∥𝑎𝑣∥R∥ 𝑓 (𝑣)∥𝑌 ⩽ 𝐶∥𝑥∥𝑋

∑
𝑣∈𝐵
∥𝑎𝑣∥R.

This boils down to 𝑓 = 𝑂(id𝑋) — which implies in 𝑓 (𝑥 − 𝑥0) = 𝑓 (𝑥) − 𝑓 (𝑥0) → 0 as

𝑥 → 𝑥0, where 𝑥0 ∈ 𝑋 is any point, that is, 𝑓 is continuous at any point of 𝑋. Even

better than that, we can show that 𝑓 is uniformly continuous (I won’t carry it out since

it’s equivalent to what we wrote in Proposition A.2.37).
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For the opposite, suppose 𝑓 is continuous at 0, then there will surely exist 𝛿 > 0 for

which ∥𝑥∥𝑋 < 𝛿 implies in ∥ 𝑓 (𝑥)∥𝑌 < 1. Therefore, for any choice of non-zero 𝑥 ∈ 𝑋,

we find  𝑓 (
𝛿

∥𝑥∥𝑋
𝑥

) 
𝑌

=
𝛿

∥𝑥∥𝑋
∥ 𝑓 (𝑥)∥𝑌 < 1,

therefore ∥ 𝑓 (𝑥)∥ < ∥𝑥∥𝑋𝛿 , thus 𝑓 is indeed bounded. ♮

Proposition 26.2.10. Let 𝐸, 𝐹 and 𝐺 be normed vector spaces, and let 𝑢:𝐸 → 𝐹 and

𝑣: 𝐹→ 𝐺 be continuous linear maps. Then, 𝑣𝑢:𝐸→ 𝐺 is also a continuous linear map,

and

∥𝑣𝑢∥ ⩽ ∥𝑣∥ ∥𝑢∥,
where ∥ 𝑓 ∥ ≔ sup𝑥∈𝑋 ∥ 𝑓 (𝑥)∥ for a continuous linear map 𝑓 :𝑋 → 𝑌 between normed

vector spaces
1
.

Proof. The first assertion is trivial, since the composition of continuous maps is con-

tinuous, and the same is true for linear maps. Let 𝑥 ∈ 𝐸 be any element, notice

that

∥𝑣𝑢(𝑥)∥𝐺 ⩽ ∥𝑣∥ ∥𝑢(𝑥)∥𝐹 ⩽ ∥𝑣∥ ∥𝑢∥ ∥𝑥∥𝐸 ,
thus the inequality holds. ♮

Proposition 26.2.11. A multilinear map 𝜙:

∏𝑛
𝑗=1
𝐸 𝑗 → 𝐹 between normed vector spaces

𝐸1, . . . , 𝐸𝑛 , and 𝐹, is continuous if and only if there exists a bound 𝐶 > 0 such that, for

every 𝑥 ∈∏𝑛
𝑗=1
𝐸 𝑗 ,

∥𝜙(𝑥)∥𝐹 ⩽ 𝐶

𝑛∏
𝑗=1

∥𝑥 𝑗∥𝐸𝑗 .

Proposition 26.2.12. Let 𝐸1, . . . , 𝐸𝑟 , and 𝐹 be normed vector spaces. There exists a

canonical map from repeated continuous linear maps to the continuous multilinear

maps, which is a continuous linear isomorphism, and is norm-preserving — that is,

the canonical map

Φ: 𝐿(𝐸1, 𝐿(𝐸2, . . . , 𝐿(𝐸𝑟 , 𝐹), . . . )) ≃−→ 𝐿𝑛(𝐸1, . . . , 𝐸𝑛 ; 𝐹)

is a Banach isomorphism.

Proof. We define Φ by the following: if 𝜆 ∈ 𝐿(𝐸1, 𝐿(𝐸2, . . . , 𝐿(𝐸𝑛 , 𝐹) . . . )) is given by

𝜆(𝑥1) = 𝜆2, where 𝜆2(𝑥2) = 𝜆3, . . . , 𝜆𝑛(𝑥𝑛) = 𝑦 ∈ 𝐹,

we define Φ(𝜆) ≔ 𝜆 ∈ 𝐿(𝐸1, . . . , 𝐸𝑛 ; 𝐹) by the mapping

𝜆(𝑥1, . . . , 𝑥𝑛) ≔ 𝜆(𝑥1)(𝑥2) . . . (𝑥𝑛),
1
Beware! This is not the norm we shall adopt for our studies on banachable topological vector

spaces. For the latter, see Definition 26.3.4
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where 𝜆 𝑗(𝑥 𝑗)(𝑥 𝑗+1) . . . (𝑥𝑛) ≔ 𝜆 𝑗−1(𝑥 𝑗−1) . . . (𝑥𝑛) for every 1 ⩽ 𝑗 ⩽ 𝑛 — where 𝜆1 ≔ 𝜆.

Given 𝜆 ∈ 𝐿(𝐸1, 𝐿(𝐸2, . . . , 𝐿(𝐸𝑛 , 𝐹), . . . )), the map 𝜆 is surely multilinear since each

of the recursive arguments are linear. Moreover, notice that, for any 𝑥 ∈ ∏𝑛
𝑗=1
𝐸 𝑗 , we

have

∥𝜆(𝑥)∥𝐹 ⩽ ∥𝜆(𝑥1)(𝑥2) . . . (𝑥𝑛)∥𝐹 ⩽ ∥𝜆∥
𝑛∏
𝑗=1

∥𝑥 𝑗∥𝐸𝑗 ,

thus ∥𝜆∥ ⩽ ∥𝜆∥.
On the other hand, given 𝜙 ∈ 𝐿(𝐸1, . . . , 𝐸𝑛 ; 𝐹), define the map 𝜙 = Φ−1(𝜙) by

𝜙(𝑥1)(𝑥2) . . . (𝑥𝑛) ≔ 𝜙(𝑥1, . . . , 𝑥𝑛).

Therefore

∥𝜙(𝑥1)(𝑥2) . . . (𝑥𝑛)∥𝐹 ⩽ ∥𝜙∥
𝑛∏
𝑗=1

∥𝑥 𝑗∥𝐸𝑗 ,

which shows that ∥𝜙∥ ⩽ ∥𝜙∥. We conclude that Φ(𝜆) = 𝜆 for all repeating map 𝜆. ♮

Theorem 26.2.13 (Hahn-Banach). Let 𝐸 be a normed R-vector space, and 𝐹 ⊆ 𝐸 be a

subspace. Let 𝜆 ∈ 𝐹∗ be a functional with bound 𝐶 > 0. Then there exist an extension

of 𝜆 to a functional on 𝐸 with the same bound 𝐶 — that is, a map 𝜆:𝐸 → R such that

𝜆|𝐹 = 𝜆 and ∥𝜆(𝑥)∥R ⩽ 𝐶∥𝑥∥𝐸 for all 𝑥 ∈ 𝐸.

Corollary 26.2.14 (Hahn-Banach). Let 𝐸 be a Banach space and 𝑥 ∈ 𝐸 be a non-zero

element. There exists a continuous linear map 𝜙 ∈ 𝐸∗ such that 𝜙(𝑥) ≠ 0.

Properties of Banach Spaces
Definition 26.2.15. We define a Banach isomorphism to be a continuous linear map

𝑢:𝐸 → 𝐹, between Banach spaces 𝐸 and 𝐹, that is both invertible (there exists a

continuous linear map 𝑢−2
: 𝐹 → 𝐸 that is the two-sided inverse of 𝑢), and norm

preserving — that is, given any 𝑥 ∈ 𝐸, we have ∥𝑢(𝑥)∥𝐹 = ∥𝑥∥𝐸. Banach isomorphisms

may also be referenced to isometries in the literature.

Proposition 26.2.16 (Bĳections are isomorphisms). Every continuous bĳective R-linear

map between topological vector spaces is an isomorphism.

Proposition 26.2.17 (Splitting). Let𝐸 be a Banach space, and 𝐹 and𝐺 be complementary

closed subspaces of 𝐸— that is, 𝐸 = 𝐹+𝐺 and 𝐹∩𝐺 = 0. Then the morphism 𝐹×𝐺→ 𝐸

given by ( 𝑓 , 𝑔) ↦→ 𝑓 + 𝑔 is a continuous linear isomorphism.

26.3 Topological Vector Spaces
Definition 26.3.1. A topological vector space is a 𝑘-vector space together with a topol-

ogy such that addition of vectors and the product by scalars are both continuous

𝑘-linear maps.
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We denote byTVectR the category consisting of topological R-vector spaces together

with morphisms, which are continuous R-linear maps (which may also be referenced

to by the term “top-linear”).

Let 𝐸 be a topological vector space. The continuous R-linear maps corresponding

to the dual space 𝐸∗ = MorTVectR(𝐸,R), of a topological R-vector space 𝐸, are called R
forms. The collection of forms of the form 𝐸 → R will be conveniently separated in

classes and denoted:

• 𝐿(𝐸): the collection of continuous linear maps 𝐸→ R.

• 𝐿𝑟(𝐸): the collection of continuous 𝑟-multilinear maps 𝐸𝑟 → R.

• 𝐿𝑟
Sym
(𝐸): the collection of continuous 𝑟-multilinear symmetric maps 𝐸𝑟 → R.

• 𝐿𝑟
Alt
(𝐸): the collection of continuous 𝑟-multilinear alternating maps 𝐸𝑟 → R.

Definition 26.3.2 (Locally convex). A topological vector space 𝐸 is said to be locally

convex if, for every open set𝑈 ⊆ 𝐸, any pair of points 𝑥, 𝑦 ∈ 𝑈 are such that 𝑡𝑥+(1−𝑡)𝑦 ∈
𝑈 for all 𝑡 ∈ [0, 1].

Definition 26.3.3 (Banachable). A topological R-vector space 𝐸 is said to be banachable

if 𝐸 is complete and its topology can be defined by a norm.

As a point of order, every time we mention a topological R-vector space in the course

of this chapter, we shall mean a banachable space.

Definition 26.3.4 (Norm of a morphism). Let 𝐸 and 𝐹 be topological R-vector spaces.

In order to make MorTVectR(𝐸, 𝐹) into a topological R-vector space, we can construct

a norm for which, given a morphism 𝐴:𝐸 → 𝐹, define 𝐾 ≔ {𝑘 ∈ R : ∥𝐴𝑥∥𝐹 ⩽
𝑘∥𝑥∥𝐸, for all 𝑥 ∈ 𝐸}, the norm of 𝐴 is

∥𝐴∥ ≔ sup

𝑘∈𝐾
𝑘.

If MorTVectR(𝐸1, . . . , 𝐸𝑛 ; 𝐹) is the collection of continuous R-multilinear maps, then

we define similarly the norm of a continuous multilinear map 𝐵:

∏𝑛
𝑗=1
𝐸 𝑗 → 𝐹 as

∥𝐵∥ ≔ sup

𝑚∈𝑀
𝑚,

where 𝑀 ≔ {𝑚 ∈ R : ∥𝐵𝑥∥𝐹 ⩽ 𝑚
∏𝑛

𝑗=1
∥𝑥 𝑗∥𝐸𝑗 , for all 𝑥 ∈ 𝐸}.

Remark 26.3.5. From now on, 𝐶𝑝-morphism will refer to a map 𝑓 :𝑈 → 𝑉 between open

subsets of Banach spaces such that 𝑓 is a continuous map of class 𝐶𝑝 , where 𝑝 ⩽ ∞.
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Chapter 27

Introduction to Probability Theory &
Statistics

27.1 Probability
Definition 27.1.1 (Sample space & events). We define the sample space of an experiment

to be the set Ω composed of all possible outcomes.

An event is defined to be any subset 𝐴 ⊆ Ω of the sample space. The event 𝐴 is said

to have occurred whenever the outcome inhabits 𝐴. Two events 𝐴, 𝐵 ⊆ Ω are said to

be mutually exclusive whenever 𝐴 and 𝐵 are disjoint.

Definition 27.1.2 (𝜎-algebra). Let Ω be a set. A family of subsets Σ ⊆ 2
Ω

is called a

𝜎-algebra if it satisfies the following conditions:

(a) The empty set is an element of Σ.

(b) If 𝐴 ∈ Σ, then the complement 𝐴c
is an element of Σ.

(c) If {𝐴 𝑗}𝑗∈𝐽 is a collection of elements of Σ indexed by a countable set 𝐽, then the union⋃
𝑗∈𝐽 𝐴 𝑗 is also contained in Σ.

From condition (b) it follows immediately that Ω ∈ Σ.

Definition 27.1.3 (Probability function). Given a sample space Ω and an associated

𝜎-algebra Σ, we define a probability function on Σ to be a map P:Σ→ R such that

(a) The map P is non-negative.

(b) The probability of the whole sample space is 1, that is, P(Σ) = 1.

(c) Given a countable set of pairwise disjoint events {𝐴 𝑗}𝑗 ⊆ Σ, then

P
(⋃
𝑗∈𝐽
𝐴 𝑗

)
=

∑
𝑗∈𝐽

P(𝐴 𝑗).

559



Lemma 27.1.4. Let Ω = {𝑠 𝑗}𝑗∈𝐽 be a countable sample space and Σ be an associated

𝜎-algebra. If P:Σ→ R is a mapping associated with non-negative real numbers {𝑝 𝑗}𝑗∈𝐽
with

∑
𝑗∈𝐽 𝑝 𝑗 = 1, for which

P(𝐴) ≔
∑
𝑗:𝑠 𝑗∈𝐴

𝑝 𝑗

for each 𝐴 ∈ Σ, then P is a probability function on Σ.

Theorem 27.1.5. Let Σ be a 𝜎-algebra associated to a sample space Ω, and P:Σ→ R be

a probability function. If 𝐴, 𝐵 ∈ Σ are any sets then the following is holds:

(a) P(𝐴c) = 1 − P(𝐴).
(b) P(∅) = 0.

(c) P(𝐴) ⩽ 1, therefore P(Σ) ⊆ [0, 1].
(d) P(𝐵 ∩ 𝐴c) = P(𝐵) − P(𝐴 ∩ 𝐵).
(e) P(𝐴 ∪ 𝐵) = P(𝐴) + P(𝐵) − P(𝐴 ∩ 𝐵), hence P(𝐴 ∪ 𝐵) ⩾ P(𝐴) + P(𝐵) − 1, which is

known as the Bonferroni’s inequality.

(f) If 𝐴 ⊆ 𝐵 then P(𝐴) ⩽ P(𝐵).

Moreover, if {𝐶 𝑗}𝑗∈𝐽 is a countable partition of Σ, and {𝐴𝑖}𝑖∈N is any family of elements

of Σ, we also have

(g) P(𝐴) = ∑
𝑗∈𝐽 P(𝐴 ∩ 𝐶 𝑗).

(h) P(⋃𝑖∈N 𝐴𝑖) ⩽
∑
𝑖∈N P(𝐴𝑖).

Proof. (a) Notice that 𝐴∪𝐴c = Σ, therefore P(𝐴∪𝐴c) = P(𝐴)+P(𝐴c) = 1, which proves

the statement.

(b) Since Σc = ∅, then P(∅) = 1 − P(Σ) = 0.

(c) Since P is a non-negative map, then P(𝐴c) ⩾ 0, hence P(𝐴) = 1 − P(𝐴c) implies in

P(𝐴) ⩽ 1.

(d) Notice that in general 𝐵 = (𝐵∩𝐴) ∪ (𝐵∩𝐴c), therefore P(𝐵) = P(𝐵∩𝐴) +P(𝐵∩𝐴c),
from which the formula follows.

(e) Since 𝐴∪𝐵 = 𝐴∪(𝐵∩𝐴c), and from the fact that the sets 𝐴 and 𝐵∩𝐴c
are disjoint,

then P(𝐴∪𝐵) = P(𝐴)+P(𝐵∩𝐴c). Using the result from the last item for P(𝐵∩𝐴c)we

obtain the required formula. For the inequality, it suffices to see that P(𝐴∩ 𝐵) ⩽ 1.

(f) Since 𝐴 ∩ 𝐵 = 𝐴 then by the result of item (d) we obtain

P(𝐴) = P(𝐴 ∩ 𝐵) = P(𝐵) − P(𝐵 ∩ 𝐴c)
and since P(𝐵 ∩ 𝐴c) ∈ [0, 1], then P(𝐴) ⩽ P(𝐵).

(g) Since

⋃
𝑗∈𝐽 𝐶 𝑗 = Σ we have

𝐴 = 𝐴 ∩ Σ = 𝐴 ∩
(⋃
𝑗∈𝐽
𝐶 𝑗

)
=

⋃
𝑗∈𝐽
𝐴 ∩ 𝐶 𝑗 ,

therefore P(𝐴) = P(⋃𝑗∈𝐽 𝐴 ∩ 𝐶 𝑗) =
∑
𝑗∈𝐽 P(𝐴 ∩ 𝐶 𝑗).
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(h) We shall construct a collection {𝐴′
𝑖
}𝑖∈N of disjoint sets partitioning

⋃
𝑖∈N 𝐴𝑖 . To do

so, define 𝐴′
0
≔ 𝐴0 and for any other 𝑖 ∈ N>0 we take 𝐴′

𝑖
≔ 𝐴𝑖 ∖

⋃𝑖−1

𝑗=0
𝐴 𝑗 . To see

that such collection is indeed a partition, let 𝑖 , 𝑗 ∈ N be any two distinct indices

and notice that

𝐴′𝑖 ∩ 𝐴′𝑗 =
(
𝐴𝑖 ∖

𝑖−1⋃
𝑘=0

𝐴𝑘

)
∩

(
𝐴 𝑗 ∖

𝑗−1⋃
𝑘=0

𝐴𝑘

)
=

(
𝐴𝑖 ∩

( 𝑖−1⋃
𝑘=0

𝐴𝑘

)
c
)
∩

(
𝐴 𝑗 ∩

( 𝑗−1⋃
𝑘=0

𝐴𝑘

)
c
)

=

(
𝐴𝑖 ∩

( 𝑖−1⋂
𝑘=0

𝐴c

𝑘

))
∩

(
𝐴 𝑗 ∩

( 𝑗−1⋂
𝑘=0

𝐴c

𝑘

))
,

from which, if 𝑖 > 𝑗 then 𝐴c

𝑗
⊆ 𝐴𝑖 ∩

⋂𝑖−1

𝑘=0
𝐴𝑘 , thus the first term is disjoint from

the second—the case for 𝑖 < 𝑗 is symmetric. Since our new collection satisfies the

pairwise disjoint condition, we find P(⋃𝑖∈N 𝐴𝑖) =
∑
𝑖∈N P(𝐴′

𝑖
). From our construc-

tion we know that 𝐴′
𝑖
⊆ 𝐴𝑖 thus P(𝐴′

𝑖
) ⩽ P(𝐴𝑖) and hence

∑
𝑖∈N P(𝐴′

𝑖
) ⩽ ∑

𝑖∈N P(𝐴𝑖),
which proves the statement.

♮

Definition 27.1.6 (Conditional probability). Let 𝐴 and 𝐵 be events in a sample space Ω,

with P(𝐵) > 0 —where P is a probability function. We define the conditional probability
of 𝐴 given 𝐵 to be

P(𝐴 | 𝐵) = P(𝐴 ∩ 𝐵)
P(𝐵) .

In this case, the map P(− | 𝐵):Σ→ R is a probability function associated to P.

Moreover, by symmetry we have P(𝐵 | 𝐴) = P(𝐴 ∩ 𝐵)/P(𝐴), therefore one obtains

P(𝐴 | 𝐵) = P(𝐵 | 𝐴)P(𝐴)
P(𝐵) .

When 𝐴 and 𝐵 are unrelated events—that is, 𝐴 ∩ 𝐵 = ∅ —one has both P(𝐴 | 𝐵) =
P(𝐵 | 𝐴) = 0 since P(𝐴 ∩ 𝐵) = 0.

Theorem 27.1.7 (Bayes’ rule). Let {𝐴 𝑗}𝑗∈𝐽 be a countable partition of the sample space,

and let 𝐵 be any event. Then, for each 𝑗 ∈ 𝐽 on has

P(𝐴 𝑗 | 𝐵) =
P(𝐵 | 𝐴 𝑗)P(𝐴 𝑗)∑
𝑗∈𝐽 P(𝐵 | 𝐴 𝑗)P(𝐴 𝑗)

.

Definition 27.1.8 (Statistically independent events). A pair of events 𝐴 and 𝐵 is said to

be statistically independent from each other if it is the case that P(𝐴 ∩ 𝐵) = P(𝐴)P(𝐵).

Theorem 27.1.9. If 𝐴 and 𝐵 are statistically independent events, then the following

pairs of events are also independent:
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(a) 𝐴 and 𝐵c
.

(b) 𝐴c
and 𝐵.

(c) 𝐴c
and 𝐵c

.

Proof. (a) One has

P(𝐴 ∩ 𝐵c) = P(𝐴) − P(𝐴 ∩ 𝐵)
= P(𝐴) − P(𝐴)P(𝐵)
= P(𝐴)(1 − P(𝐵))
= P(𝐴)P(𝐵c).

(b) The symmetric argument can be applied to the case of 𝐴c
and 𝐵.

(c) For both complements, we have

P(𝐴c ∩ 𝐵c) = P((𝐴 ∪ 𝐵)c)
= 1 − P(𝐴 ∪ 𝐵)
= 1 − (P(𝐴) + P(𝐵) − P(𝐴 ∩ 𝐵))
= 1 − P(𝐴) − P(𝐵) + P(𝐴)P(𝐵)
= (1 − P(𝐴))(1 − P(𝐵))
= P(𝐴c)P(𝐵c).

♮

Remark 27.1.10. Let 𝐴, 𝐵 and 𝐶 be three events in our sample space such that

P(𝐴 ∩ 𝐵 ∩ 𝐶) = P(𝐴)P(𝐵)P(𝐶).

It is not necessarily true that 𝐴, 𝐵 and 𝐶 are pairwise disjoint—that is, although the

probability of them occurring simultaneously splits, it does not mean that the events

are pairwise independent! Moreover, one cannot define the independence of the events

𝐴, 𝐵 and 𝐶 by requiring pairwise independence without running into problems—

unfortunately the generalisation of Definition 27.1.8 is not that simple, but here we

come to the rescue.

Definition 27.1.11 (Mutually independent events). Let (𝐴1, . . . , 𝐴𝑛) be a collection of

events. We say that they are mutually independent if for any subcollection (𝐴 𝑗1 , . . . , 𝐴 𝑗𝑘 )
one has

P
( 𝑘⋂
𝑖=1

𝐴 𝑗𝑖

)
=

𝑘∏
𝑖=1

P(𝐴 𝑗𝑖 ).

27.2 Random Variables
Definition 27.2.1 (Random variable). A random variable is a map 𝑋:Ω→ 𝒯 , where Ω

is our ambient sample space and 𝒯 is the target space—for instance, R𝑛
. This random
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variable induces a new sample space 𝒳 = 𝑋(Ω), on which we can define a new

probability function.

Suppose that Ω is countable. If Σ and Σ𝑋 are 𝜎-algebras associated to Ω and 𝒳
respectively, then we define P𝑋 :Σ𝑋 → R given by

P𝑋(𝑋 = 𝑥) ≔ P({𝑦 ∈ Ω : 𝑋(𝑦) = 𝑥}),

where P:Σ→ R is a probability function. To ease the notation, we shall merely write

P(𝑋 = 𝑥) rather than P𝑋(𝑋 = 𝑥).
Now, if Ω is an uncountable sample space, we define P𝑋 as follows: for any 𝐴 ⊆ 𝒳

let

P𝑋(𝑋 ∈ 𝐴) ≔ P({𝑠 ∈ Ω : 𝑋(𝑠) ∈ 𝐴}).

Definition 27.2.2 (Categorical variables). Variables that take a finite set of unordered
values are called categorical variables, and are used widely in machine learning contexts.

27.3 Distribution Functions
Definition 27.3.1 (Cumulative distribution function). Let 𝑋:Ω → R be a random

variable. We define a cumulative distribution function (cdf) associated to 𝑋 to be map

𝐹𝑋 :Ω→ R given by

𝐹𝑋(𝑥) ≔ P𝑋(𝑋 ⩽ 𝑥)
for each 𝑥 ∈ Ω. From its construction, 𝐹𝑋 is a right-continuous mapping. We shall use

the expression 𝑋 ∼ 𝐹𝑋 to encode “𝑋 has a distribution given by 𝐹𝑋”.

Theorem 27.3.2 (Cdf necessary and sufficient properties). A map 𝐹:Ω→ R is a cumu-

lative distribution if and only if all of the following three conditions hold:

(a) We have limits lim𝑥→−∞ 𝐹(𝑥) = 0 and lim𝑥→∞ 𝐹(𝑥) = 1.

(b) The map 𝐹 is non-decreasing.

(c) The map 𝐹 is right-continuous, that is, for any 𝑥0 ∈ Ω we have lim𝑥→+𝑥0
𝐹(𝑥) =

𝐹(𝑥0).

Example 27.3.3. Here we list some of the most important cumulative distribution

functions:

(a) Let 𝑝 be the probability of success and 𝑋 be the number of trials required to obtain

a success. The probability functions associated with 𝑋 is P(𝑋 = 𝑥) = (1 − 𝑝)𝑥−1𝑝

and its corresponding cdf is called a geometric distribution:

𝐹𝑋(𝑥) = 1 − (1 − 𝑝)𝑥 .

Definition 27.3.4. A random variable 𝑋 is said to be continuous if its associated cu-

mulative distribution function 𝐹𝑋 is continuous. On the other hand, we say that 𝑋 is

discrete if 𝐹𝑋 is a step-function.
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Definition 27.3.5. Let Σ1
be the smallest 𝜎-algebra containing all intervals of real

numbers. Two random variables 𝑋 and 𝑌 are said to be identically distributed if for

some 𝐴 ∈ Σ1
, one has P(𝑋 ∈ 𝐴) = P(𝑌 ∈ 𝐴). We denote that 𝑋 and 𝑌 have identical

distributions by 𝑋 ∼ 𝑌.

Theorem 27.3.6. Two random variables 𝑋 and 𝑌 are identically distributed if and only

if 𝐹𝑋 = 𝐹𝑌 .

Density & Mass Functions
Definition 27.3.7 (Probability mass function). The probability mass function (or simply

probability function) of a discrete random variable 𝑋 is a map 𝑓𝑋 :Ω→ R given by

𝑓𝑋(𝑥) = P(𝑋 = 𝑥).

Definition 27.3.8 (Binomial distribution). A random variable 𝑋:Ω→ N is said to have

a binomial probability function 𝑓 with parameters 𝑛 ∈ N and 𝑝 ∈ [0, 1] if

𝑓 (𝑥) =
{(

𝑛
𝑥

)
𝑝𝑥(1 − 𝑝)𝑛−𝑥 , if 0 ⩽ 𝑥 ⩽ 𝑛

0, otherwise

Definition 27.3.9. A random variable 𝑋 is said to have Bernoulli distribution with

parameter 𝑝 if 𝑋 is binary—for instance, with values in {0, 1}—and such that P(𝑋 =

1) = 𝑝.

Definition 27.3.10 (Probability density function). The probability density function (pdf)

of a continuous random variable 𝑋 is a map 𝑓𝑋 :Ω→ R for which

𝐹𝑋(𝑥) =
∫ 𝑥

−∞
𝑓𝑋(𝑡)d𝑡.

Consequently, for any 𝑎 < 𝑏 we have

P(𝑎 ⩽ 𝑋 ⩽ 𝑏) =
∫ 𝑏

𝑎

𝑓𝑋(𝑡)d𝑡.

Remark 27.3.11. In the case of a continuous random variable 𝑋 we have P(𝑋 = 𝑥) = 0

for any 𝑥 of the sample space, therefore one has for any interval:

P(𝑎 < 𝑋 < 𝑏) = P(𝑎 < 𝑋 ⩽ 𝑏) = P(𝑎 ⩽ 𝑋 < 𝑏) = P(𝑎 ⩽ 𝑋 ⩽ 𝑏).

Theorem 27.3.12. A map 𝑓𝑋 is a pdf (or pmf) of a random variable 𝑋 if and only if the

following requirements are met:

(a) The map 𝑓𝑋 is non-negative.

(b) In the case of a pdf,

∫ ∞
−∞ 𝑓𝑋(𝑥)d𝑥 = 1. On the other hand, for a pmf,

∑
𝑥 𝑓𝑋(𝑥) = 1.
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Notation 27.3.13. Distributions do not need to depend on a single random variable,

when they do we call them univariate, otherwise multivariate distributions. For instance,

a multivariate real-valued random variable𝑋 is a map𝑋:Ω→ R𝑛
having an associated

cumulative distribution function and—if existent—probability density functions:

𝐹𝑋(𝑥) = P(𝑋1 ⩽ 𝑥1, . . . , 𝑋𝑛 ⩽ 𝑥𝑛) =
∫ 𝑥1

−∞
· · ·

∫ 𝑥𝑛

−∞
𝑓𝑋(𝑥1, . . . , 𝑥𝑛)d𝑥1 . . . d𝑥𝑛

Definition 27.3.14 (Joint probability). Let (𝑋𝑗 :Ω𝑗 → R)𝑚
𝑗=1

be a collection of discrete

random variables. We define the joint probability of this collection by the probability

mass function 𝑓 :
∏𝑚

𝑗=1
Ω𝑗 → R given by

𝑓 (𝑥1, . . . , 𝑥𝑚) = P(𝑋1 = 𝑥1, . . . , 𝑋𝑚 = 𝑥𝑚) =
𝑛(𝑥1, . . . , 𝑥𝑚)

𝑁

where 𝑛(𝑥1, . . . , 𝑥𝑚) is the number of events with state 𝑥1, . . . , 𝑥𝑚 , and 𝑁 is the total

number of events. The probability of𝑋𝑗 = 𝑥 𝑗 irrespective of the other random variables

as the marginal probability of 𝑋𝑗 and sometimes denote it by 𝑝(𝑥 𝑗). Fixing that 𝑋𝑖 = 𝑥𝑖
for each 𝑖 ≠ 𝑗 we can calculate the conditional probability of 𝑋𝑗 = 𝑥 𝑗 , which we write as

𝑓 (𝑥 𝑗 | 𝑥1, . . . , 𝑥𝑚).

Quantile Function
Definition 27.3.15. Let 𝑋:Ω→ 𝒳 be a random variable with a cumulative distribution

function 𝐹. We define the quantile function of 𝑋1
to be a map Quant: (0, 1) → 𝒳 given

by

Quant(𝑝) ≔ arg min

𝑥∈𝒳
(𝐹(𝑥) ⩾ 𝑝).

We call Quant(𝑝) the 𝑝 quantile of 𝑋 or the 100𝑝 percentile of 𝑋.

27.4 Sum & Product Rules
Lemma 27.4.1 (Sum rule). Let 𝑋:Ω𝑋 → 𝒳 and 𝑌:Ω𝑌 → 𝒴 be multivariate random

variables and consider the joint probability P:Ω𝑋 ×Ω𝑌 → R. The sum rule states that

the marginal probability of 𝑋 = 𝑥 is given by

P(𝑥) =
{∑

𝑦∈𝒴 P(𝑥, 𝑦), if 𝑦 is discrete∫
𝒴 P(𝑥, 𝑦)d𝑦, if 𝑦 is continuous

Lemma 27.4.2 (Product rule). Given a joint probability P:Ω𝑋 ×Ω𝑌 → R, the product

rule states that

P(𝑥, 𝑦) = P(𝑦 | 𝑥)P(𝑥).
1
To be precise, 𝑞 represents the quantile function of the distribution associated with 𝑋—random

variables with equal distribution will have equal quantile functions.
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From the product rule we can obtain Bayes’ theorem by noting the symmetry

P(𝑥, 𝑦) = P(𝑥 | 𝑦)P(𝑦), resulting in

P(𝑥 | 𝑦) = P(𝑦 | 𝑥)P(𝑥)
P(𝑦) .

In the eyes of machine learning and Bayesian statistics, this formula gives a way to

make inferences about the unobserved random variable𝑋 by having a prior knowledge

P(𝑥) and a second random variable 𝑌 of which we can observe and have a marginal
evidence P(𝑦) and a relational likelihood P(𝑦 | 𝑥). This data gives a posterior knowledge

P(𝑥 | 𝑦).

Remark 27.4.3. The value P(𝑦 | 𝑥) can be called either the “likelihood of 𝑥 given 𝑦” or

the “probability of 𝑦 given 𝑥”.

Consider a collection of data𝒟 and model parameters 𝑤. Frequentists commonly

use the maximum likelihood estimator, which aims to find parameters 𝑤 for which the

likelihood function P(𝒟 | 𝑤) is maximised—that is, we maximise the probability that,

having parameters 𝑤, the observed set of events is 𝒟. In the context of machine

learning we normally work with the errors function err(𝑤) = − log(P(𝒟 | 𝑤)), and

the goal of the learning process is to minimise this error. To be able to work in the

frequentist settings, one needs multiple data sets to determine the error bars—one of

the methods to deal with this is the bootstrap.

Definition 27.4.4 (Data set bootstrap). Given a data set 𝑋 = {𝑥1, . . . , 𝑥𝑛}, we construct

a new data set 𝑋𝑗 by drawing 𝑛 points of 𝑋 at random and with replacement. This

procedure can be done ℓ times to generate a new collection {𝑋1, . . . , 𝑋ℓ} each containing

𝑛 data points. The statistical accuracy of the parameter estimates will then be evaluated

by analysing the variability of predictions between the different bootstrap data sets 𝑋𝑗 .

27.5 Functions of Random Variables
Proposition 27.5.1 (The probability function for the discrete case). Let 𝑋:Ω → 𝒳 be

a discrete random variable with probability mass function 𝑓 and define a random

variable𝑌 ≔ 𝑟(𝑋)—where 𝑟:𝒳 → 𝒴 is some function of 𝑋. Then the probability mass

function 𝑔:𝒴 → R of 𝑌 is given by

𝑔(𝑦) = P(𝑟(𝑋) = 𝑦) =
∑
𝑟(𝑥)=𝑦

𝑓 (𝑥).

Proposition 27.5.2 (The probability function for the continuous case). Let 𝑋 be a

continuously distributed random variable with probability density function 𝑓 , and

consider a random variable 𝑌 = 𝑟(𝑋). The cumulative distribution function 𝐺 of 𝑌 is

given by

𝐺(𝑦) =
∫
{𝑥∈𝒳 :𝑟(𝑥)⩽𝑦}

𝑓 (𝑥)d𝑥.
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Moreover, if 𝑌 has a continuous distribution, its probability density function 𝑔 can be

found at a point 𝑦 ∈ 𝒴 as a solution of

𝑔(𝑦) = d𝐺(𝑦)
d𝑦

,

assuming that 𝐺 is differentiable at 𝑦.

Proposition 27.5.3 (Probability integral transformation). Let𝑋 be a continuous random

variable with cumulative distribution 𝐹, and consider a random variable 𝑌 = 𝐹𝑋—

such variable is called the probability integral transformation of 𝑋. Then the cumulative

distribution of 𝑌 is uniform on the interval [0, 1].

Proof. Since im 𝐹 ⊆ [0, 1] then P(𝑌 < 0) = 0 = P(𝑌 > 1). From the fact that 𝐹 is

continuous, given any 𝑦 ∈ (0, 1), we can find a maximum argument

𝑥max ≔ arg max[𝐹(𝑥) = 𝑦],

so that 𝑌 ⩽ 𝑦 if and only if 𝑋 ⩽ 𝑥max. Then the cumulative distribution of 𝑌 at 𝑦 is

given by

P(𝑌 ⩽ 𝑦) = P(𝑋 ⩽ 𝑥max) = 𝐹(𝑥max) = 𝑦.

Therefore we conclude that 𝑌 has a uniform distribution on the open interval (0, 1).
Since 𝑌 has a continuous distribution, then 𝑌 is uniformly distributed in [0, 1]. ♮

Corollary 27.5.4. Let 𝑌 be a uniformly distributed random variable on the interval

[0, 1]. If 𝐹 is a continuous cumulative distribution function with associated quantile

function 𝑞𝐹, then the random variable 𝑋 = 𝑞𝐹𝑌 has 𝐹 as its cdf.

Corollary 27.5.5. Let 𝑋 be a random variable with continuous cdf 𝐹, and let 𝐺 be any

other continuous cdf. Then the random variable 𝑍 = 𝑞𝐺𝐹𝑋 has 𝐺 as its cdf.

Proposition 27.5.6. Let 𝑋 be a random variable with probability distribution 𝑓 such

that P(𝑥 ∈ (𝑎, 𝑏)) = 1. Define a random variable 𝑌 = 𝑟𝑋, where 𝑟 is an injective and

differentiable map on the interval (𝑎, 𝑏). Define (𝛼, 𝛽) ≔ 𝑟((𝑎, 𝑏)) and let 𝑠: (𝛼, 𝛽) →
(𝑎, 𝑏) be the inverse function of 𝑟|(𝑎,𝑏). Then the probability distribution 𝑔 of 𝑌 is given

by

𝑔(𝑦) =
{���d𝑠(𝑦)

d𝑦

��� 𝑓 𝑠(𝑦), for 𝑦 ∈ (𝛼, 𝛽)
0, otherwise

Proof. We have two possibilities:

(i) If 𝑟 is increasing on (𝑎, 𝑏) then 𝑠 is also increasing on (𝛼, 𝛽). With this, if 𝐺 is the

cumulative distribution of 𝑌, we obtain

𝐺(𝑦) = P(𝑌 ⩽ 𝑦) = P(𝑟(𝑋) ⩽ 𝑦) = P(𝑋 ⩽ 𝑠(𝑦)) = 𝐹𝑠(𝑦),
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where 𝐹 is the cumulative distribution for 𝑋. Therefore, for any 𝑦 ∈ (𝛼, 𝛽) such

that 𝑠 is differentiable at 𝑦 and 𝐹 is differentiable at 𝑠(𝑦)we have

𝑔(𝑦) = d𝐺(𝑦)
d𝑦

=
d𝐹𝑠(𝑦)

d𝑦
= 𝑓 𝑠(𝑦)d𝑠

d𝑦
.

Since 𝑠 is increasing in (𝛼, 𝛽), then 𝑠′ is positive.

(ii) If 𝑟 is decreasing on (𝑎, 𝑏), then so is 𝑠 on (𝛼, 𝛽). Then one has

𝐺(𝑦) = P(𝑟(𝑋) ⩽ 𝑦) = P(𝑋 ⩾ 𝑠(𝑦)) = 1 − 𝐹𝑠(𝑦).

Therefore differentiating on each differentiable point we obtain

𝑔(𝑦) = − 𝑓 𝑠(𝑦)d𝑠(𝑦)
d𝑦

.

From the fact that 𝑠 is decreasing, then 𝑠′ is negative.

From this we obtain the said equality. ♮

Corollary 27.5.7 (Linear function of random variable). Let 𝑋 be a random variable

with probability distribution 𝑓 , and consider 𝑌 = 𝑎𝑋 + 𝑏 with 𝑎 ≠ 0. The probability

density function 𝑔 of 𝑌 is then given by

𝑔(𝑦) = 1

|𝑎| 𝑓
( 𝑦 − 𝑏

𝑎

)
.

Proposition 27.5.8. Let (𝑋1, . . . , 𝑋𝑛) be a collection of independent and identically

distributed random variables with Bernoulli distribution with parameter 𝑝. Then the

random variable 𝑌 =
∑𝑛
𝑗=0
𝑋𝑗 has a binomial distribution with parameters 𝑛 and 𝑝.

Proof. Notice that 𝑌 is a random variable taking values in {0, 1, 2, . . . , 𝑛}, therefore if

𝑌 = 𝑦 there are

(
𝑛
𝑦

)
possible combinations of (𝑋1, . . . , 𝑋𝑛) in order to have

∑
𝑗 𝑋𝑗 = 𝑦

since 𝑋𝑗 ∈ {0, 1}—where we are going to have exactly 𝑦 variables evaluating to 1 and

the remaining 𝑛 − 𝑦 evaluating to 0. Therefore if 𝑔 denotes the probability function of

𝑌 we have

𝑔(𝑦) =
(
𝑛

𝑦

)
𝑝𝑦(1 − 𝑝)𝑛−𝑦 .

♮

Proposition 27.5.9. Let 𝑋 and 𝑌 be random variables with joint probability density

function 𝑓 and let 𝑍 = 𝑎1𝑋 + 𝑎2𝑌 + 𝑏 be a random variable with 𝑎1 ≠ 0. Then 𝑍 is

continuously distributed and has a probability density function given by

𝑔(𝑧) =
∫ ∞

−∞

1

|𝑎1|
𝑓
( 𝑧 − 𝑏 − 𝑎2𝑦

𝑎1

, 𝑦
)

d𝑦
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27.6 Expected Value

Expected Value and Its Properties
Definition 27.6.1 (Expected value). The expected value of a function 𝑔: R → R of a

univariate continuous random variable 𝑋:Ω𝑋 → 𝒳 with distribution 𝑓𝑋 is defined as

E𝑋 𝑔 ≔

∫
𝒳
𝑔(𝑥) 𝑓𝑋(𝑥)d𝑥.

Analogously, if 𝑌:Ω𝑌 → 𝒴 is a univariate discrete random variable with 𝑌 ∼ 𝑓𝑌 , the

expected value of 𝑔 is given by

E𝑌 𝑔 =

∑
𝑦∈𝒴

𝑔(𝑦) 𝑓𝑌(𝑦).

As one might “expect”, in the case of an 𝑛-multivariate random variable 𝑍:Ω𝑍 → 𝒵
we have

E𝑍 𝑔 =


E𝑍1

𝑔
...

E𝑍𝑛 𝑔


We can also define conditional expectation with respect to a conditional distribution,

which we shall write as

E[𝑔 | 𝑡0] =
{∑

𝑡∈𝒯 𝑔(𝑡) 𝑓𝑇(𝑡 | 𝑡0), if 𝑇 is discrete∫
𝒯 𝑔(𝑡) 𝑓𝑇(𝑡 | 𝑡0)d𝑡 , if 𝑇 is continuous

for a random variable 𝑇:Ω𝑇 → 𝒯 with distribution 𝑓𝑇 .

Corollary 27.6.2. The expected value is a linear map. That is, given random variables

𝑋, we have

E𝑌 = 𝑎 E𝑋 + 𝑏
for any pair 𝑎, 𝑏 ∈ R.

Proposition 27.6.3. Let 𝑋 be a random variable. If there exists 𝑎 ∈ R such that

P(𝑋 ⩾ 𝑎) = 1 then E𝑋 ⩾ 𝑎, on the other hand, if there exists 𝑏 ∈ R for which

P(𝑋 ⩽ 𝑏) = 1 then E𝑋 ⩽ 𝑏.

Proof. Suppose that 𝑋 is continuously distributed and has a pdf 𝑓 . If we assume that

P(𝑋 ⩾ 𝑎) = 1 then 𝑓 (𝑥) = 0 for all 𝑥 < 𝑎, therefore

E𝑋 =

∫ ∞

𝑎

𝑥 𝑓 (𝑥)d𝑥 ⩾
∫ ∞

𝑎

𝑎 𝑓 (𝑥)d𝑥 = 𝑎 P(𝑋 ⩾ 𝑎) = 𝑎.

The proof for the upper bound is analogous. ♮

Proposition 27.6.4. Let 𝑋 be a random variable with 𝐸(𝑋) = 𝑎, and that either P(𝑋 ⩾
𝑎) = 1 or P(𝑋 ⩽ 𝑎) = 1, then P(𝑋 = 𝑎) = 1.
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Proof. Let 𝑋 be continuously distributed with a pdf 𝑓 , then by assuming that P(𝑋 ⩾
𝑎) = 1 we get

E𝑋 =

∫ ∞

𝑎

𝑥 𝑓 (𝑥)d𝑥 = 𝑎 P(𝑋 = 𝑎) +
∫
𝑥>𝑎

𝑥 𝑓 (𝑥)d𝑥

⩾ 𝑎 P(𝑋 = 𝑎) +
∫
𝑥>𝑎

𝑎 𝑓 (𝑥)d𝑥

= 𝑎.

Notice that if there exists 𝑥 > 𝑎 for which P(𝑋 = 𝑥) > 0 then E𝑋 > 𝑎, which is

a contradiction to the assumption that E𝑋 = 𝑎, therefore P(𝑋 > 𝑎) = 0 and hence

P(𝑋 = 𝑎) = 1. ♮

Proposition 27.6.5 (Additivity of the expected value). Let (𝑋1, . . . , 𝑋𝑛) be a collection

of random variables whose expectation E𝑋𝑗 is finite, then

E(𝑋1 + · · · + 𝑋𝑛) = E𝑋1 + · · · + E𝑋𝑛 .

Proposition 27.6.6 (Mean of a binomial random variable). Let 𝑋:Ω→ N be a binomial

random variable with parameters (𝑛, 𝑝), then the expected value of 𝑋 is

E𝑋 = 𝑛𝑝.

Proof. Let (𝑋𝑗 :Ω→ {0, 1})𝑛𝑗=1
be a collection of independent random variables with a

distribution P(𝑋𝑗 = 1) = 𝑝 and P(𝑋𝑗 = 0) = 1 − 𝑝—therefore one has E𝑋𝑗 = 1 · 𝑝 + 0 ·
(1 − 𝑝) = 𝑝. From construction we have 𝑋 =

∑𝑛
𝑗=1
𝑋𝑗 , therefore by Proposition 27.6.5

we obtain E𝑋 =
∑𝑛
𝑗=1

E𝑋𝑗 = 𝑛𝑝. ♮

Theorem 27.6.7 (Jensen’s inequality). Let 𝑔: R𝑛 → R be a convex map
2
, and 𝑋 be a

random vector with finite expected value E𝑋. Then we have the following inequality:

E(𝑔(𝑋)) ⩾ 𝑔(E𝑋).

Proposition 27.6.8. Let (𝑋1, . . . , 𝑋𝑛) be a collection of independent random variables

with finite expectation E𝑋𝑗 , then

E
( 𝑛∏
𝑗=1

𝑋𝑗

)
=

𝑛∏
𝑗=1

E𝑋𝑗

2
That is, for each 𝑡 ∈ (0, 1) and 𝑥, 𝑦 ∈ R𝑛

we have 𝑔(𝑡𝑥 + (1 − 𝑡)𝑦) ⩾ 𝑡 𝑔(𝑥) + (1 − 𝑡)𝑔(𝑦).
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Proof. Let 𝑓 be the joint pdf of the variables (𝑋1, . . . , 𝑋𝑛) and denote by 𝑓𝑗 the marginal

pdf of 𝑋𝑗 . Since the variables are independent, it follows that 𝑓 =
∏𝑛

𝑗=1
𝑓𝑗 , therefore

E
( 𝑛∏
𝑗=1

𝑋𝑗

)
=

∫ ∞

−∞
· · ·

∫ ∞

−∞
𝑓 (𝑥1, . . . , 𝑥𝑛)

𝑛∏
𝑗=1

𝑥 𝑗 d𝑥1 · · ·d𝑥𝑛

=

∫ ∞

−∞
· · ·

∫ ∞

−∞

𝑛∏
𝑗=1

𝑓𝑗(𝑥 𝑗)𝑥 𝑗 d𝑥1 · · ·d𝑥𝑛

=

𝑛∏
𝑗=1

∫ ∞

−∞
𝑓𝑗(𝑥 𝑗)𝑥 𝑗 d𝑥 𝑗

=

𝑛∏
𝑗=1

E(𝑋𝑗).

♮

Proposition 27.6.9. Let 𝑋 be a non-negative random variable with a cumulative distri-

bution function 𝐹, then

E𝑋 =

∫ ∞

0

(1 − 𝐹(𝑥))d𝑥.

Mean, Median & Mode
Univariate Case

Definition 27.6.10 (Mean, median & mode). We define the mean (or population mean)

of an 𝑛-multivariate random variable 𝑋:Ω→ 𝒳 to be

𝜇𝑋 = E𝑋 id =


E𝑋1

id

...

E𝑋𝑛 id


where, as in Definition 27.6.1 we have for each 1 ⩽ 𝑗 ⩽ 𝑛:

E𝑋𝑗 id =

{∫
𝒳𝑗 𝑥 𝑗 𝑓𝑋(𝑥 𝑗)d𝑥 𝑗 , if 𝑋 is continuous∑
𝑥 𝑗∈𝒳𝑗 𝑥 𝑗 𝑓𝑋(𝑥 𝑗), if 𝑋 is discrete

The median of a univariate discrete random variable is the middle-most value of the

image of the variable. In the case of univariate continuous random variables, we define

the median is defined to be the value where the cumulative density function is 1/2.

The mode of a discrete random variable is the value having the highest frequency

of occurrence. For continuous random variables, we define the mode as the values

corresponding to maximal critical points of the probability density function—which

may admit more than a single mode.
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Definition 27.6.11 (Covariance, variance & standard deviation: univariate case). The

covariance between two univariate real-valued random variables 𝑋 and 𝑌 is given by

Cov(𝑋,𝑌) ≔ E𝑋,𝑌[(𝑥 − 𝜇𝑋)(𝑦 − 𝜇𝑌)]
= E𝑋,𝑌(𝑥𝑦) − 𝜇𝑋𝜇𝑌 .

The variance of the random variable 𝑋 is defined to be

Var𝑋 ≔ Cov(𝑋, 𝑋)
= E𝑋[(𝑥 − 𝜇𝑋)2]
= E𝑋(𝑥2) − 𝜇2

𝑋 ,

which measures how much variability there is in𝑋 around its mean value. The standard
deviation of 𝑋 is defined as

𝜎(𝑋) ≔
√

Var(𝑋).
We also define the precision, which is given by

𝛽 ≔
1

𝜎2

Proposition 27.6.12. Any univariate random variable has a non-negative variance.

Moreover, if 𝑋 is a bounded univariate random variable, then Var𝑋 exists and is finite.

Proof. Let 𝑌 be any univariate random variable. Since (𝑌 − 𝜇𝑌)2 is non-negative, then

P((𝑌 − 𝜇𝑌)2 ⩾ 0) = 1 and by Proposition 27.6.3 we find that Var𝑌 = E((𝑌 − 𝜇𝑌)2) ⩾ 0.

Now if 𝑋 is a bounded univariate random variable it follows that E(𝑋) = 𝜇𝑋 exists

and is finite, therefore (𝑋 − 𝜇𝑋)2 is a bounded random variable—therefore Var(𝑋) =
E((𝑋 − 𝜇𝑋)2) exists and is bounded ♮

Proposition 27.6.13. Let 𝑋 be a univariate random variable. Then Var𝑋 = 0 if and

only if there exists a value 𝑐 for which P(𝑋 = 𝑐) = 1.

Proof. Suppose there exists 𝑐 such that P(𝑋 = 𝑐) = 1, then P((𝑋 − 𝑐)2 = 0) = 1 and

E𝑋 = 𝑐. From this we obtain Var𝑋 = E((𝑋 − 𝑐)2) = 0.

On the other hand, if we assume that Var𝑋 = 0, then P((𝑋 − 𝜇)2 ⩾ 0) = 1 and by

Proposition 27.6.4 we find that P((𝑋 − 𝜇)2 = 0) = 1, therefore P(𝑋 = 𝜇) = 1. ♮

Proposition 27.6.14 (Variance of a linear combination). Let 𝑋 be a univariate random

variable and 𝑌 = 𝑎𝑋 + 𝑏 for constants 𝑎, 𝑏 ∈ R, then

Var𝑌 = 𝑎2

Var𝑋 and 𝜎𝑌 = |𝑎| 𝜎𝑋 .
Proof. From the linearity of the expected value we have 𝜇𝑌 = E(𝑎𝑋 + 𝑏) = 𝑎𝜇𝑋 + 𝑏,
therefore

Var𝑌 = E((𝑌 − 𝜇𝑌)2)
= E((𝑎𝑋 + 𝑏 − 𝑎𝜇𝑋 + 𝑏)2)
= E(𝑎2(𝑋 − 𝜇)2)
= 𝑎2

Var(𝑋).
♮
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Proposition 27.6.15 (Additivity of the variance). Let (𝑋1, . . . , 𝑋𝑛) be a collection of

independent random variables having a finite mean, then

Var

𝑛∑
𝑗=1

𝑋𝑗 =

𝑛∑
𝑗=1

Var𝑋𝑗 .

Therefore, if (𝑎1, . . . , 𝑎𝑛) ∈ R𝑛
then

Var

𝑛∑
𝑗=1

𝑎 𝑗𝑋𝑗 =

𝑛∑
𝑗=1

𝑎2

𝑗 Var𝑋𝑗 .

Proposition 27.6.16 (Variance of a binomial random variable). Let 𝑋:Ω → N be a

univariate binomial random variable with parameters (𝑛, 𝑝), then

Var𝑋 = 𝑛𝑝(1 − 𝑝).

Proof. Let (𝑋𝑗 :Ω → {0, 1})𝑛𝑗=1
be a collection of independent random variables with

the distribution P(𝑋𝑗 = 1) = 𝑝 and P(𝑋𝑗 = 0) = 1 − 𝑝. It follows from construction that

𝑋 =
∑𝑛
𝑗=1
𝑋𝑗 . Notice now that 𝑋𝑗 = 𝑋2

𝑗
, therefore

Var𝑋𝑗 = E𝑋2

𝑗 − (E𝑋𝑗)2 = 𝑝 − 𝑝2 = 𝑝(1 − 𝑝).

From the fact that the variables are independent, using Proposition 27.6.15 we obtain

Var𝑋 =

𝑛∑
𝑗=1

Var𝑋𝑗 = 𝑛𝑝(1 − 𝑝).

♮

Definition 27.6.17 (Interquartile range). Let 𝑋 be a univariate random variable with

quantile function Quant

Definition 27.6.18 (Correlation). The correlation between two random variables 𝑋 and

𝑌 is given by

Corr(𝑋,𝑌) ≔ Cov(𝑋,𝑌)
𝜎(𝑋) 𝜎(𝑌) ∈ [−1, 1].

A positive correlation means that if 𝑥 increases, then 𝑦 also increases. A negative

correlation means that if 𝑥 increases, then 𝑦 decreases.

Definition 27.6.19 (Empirical mean & covariance). Let (𝑥 𝑗)𝑛𝑗=1
be a collection of obser-

vations (empirical data). We define the empirical mean as

𝑥 ≔
1

𝑛

𝑛∑
𝑗=1

𝑥 𝑗 .

Analogously, the empirical covariance is defined as

Cov(𝑥 𝑗)𝑛𝑗=1
=

1

𝑛

𝑛∑
𝑗=1

⟨𝑥 𝑗 − 𝑥, 𝑥 𝑗 − 𝑥⟩.
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Multivariate Case

Definition 27.6.20 (Covariance & variance: multivariate case). Let 𝑋 and 𝑌 be multi-

variate random variables with im𝑋 ⊆ R𝑛
and im𝑌 ⊆ R𝑚

. We define the covariance (or

cross-variance) between 𝑋 and 𝑌 as

Cov(𝑋,𝑌) ≔ E𝑋,𝑌(⟨𝑥, 𝑦⟩) − ⟨𝜇𝑋 , 𝜇𝑌⟩ = Cov(𝑌, 𝑋)⊤ ∈ R𝑛 × R𝑚 ,

where ⟨−,−⟩ is the standard euclidean inner product.

As before, the variance of the multivariate random variable 𝑋 is given by

Var𝑋 = Cov(𝑋, 𝑋)
= E(⟨𝑥 − 𝜇𝑋 , 𝑥 − 𝜇𝑋⟩)
= E(⟨𝑥, 𝑥⟩) − ⟨𝜇𝑋 , 𝜇𝑋⟩

=


Cov(𝑋1, 𝑋1) Cov(𝑋1, 𝑋2) . . . Cov(𝑋1, 𝑋𝑛)

...
... . . .

...

Cov(𝑋𝑛 , 𝑋1) Cov(𝑋𝑛 , 𝑋2) . . . Cov(𝑋𝑛 , 𝑋𝑛)


This matrix is symmetric and positive semi-definite.

Random Variables & Linear Maps
Lemma 27.6.21. Given a pair of random variables 𝑋 and 𝑌 with states in R𝑛

, we can

compute the following means:

𝜇𝑋+𝑌 = 𝜇𝑋 + 𝜇𝑌 ,
𝜇𝑋−𝑌 = 𝜇𝑋 − 𝜇𝑌 ,

and variances:

Var(𝑋 + 𝑌) = Var𝑋 + Var𝑌 + Cov(𝑋,𝑌) + Cov(𝑌, 𝑋),
Var(𝑋 − 𝑌) = Var𝑋 + Var𝑌 − (Cov(𝑋,𝑌) + Cov(𝑌, 𝑋)).

Let 𝑌 = 𝐴𝑋 + 𝑏 be a linear transformation and 𝑋 a random variable, then 𝑌 itself is

a random variable. The following relations hold true for the mean of 𝑌:

𝜇𝑌 = E𝑌 𝑌 = E𝑋[𝐴𝑋 + 𝑏] = 𝐴E𝑋 𝑋 + 𝑏 = 𝐴𝜇𝑋 + 𝑏
Moreover, we also have the following relation with the variance of 𝑌:

Var(𝑌) = Var(𝐴𝑋 + 𝑏)
= Cov(𝐴𝑋 + 𝑏, 𝐴𝑋 + 𝑏)
= E[(𝐴𝑋 + 𝑏)(𝐴𝑋 + 𝑏)⊤] − 𝜇𝐴𝑋+𝑏𝜇⊤𝐴𝑋+𝑏
= E[𝐴𝑋𝑋⊤𝐴⊤ + 𝐴𝑋𝑏⊤ + 𝑏𝑋⊤𝐴⊤ + 𝑏𝑏⊤] − (𝐴𝜇𝑋𝜇⊤𝑋𝐴⊤ + 𝐴𝜇𝑋𝑏⊤ + 𝑏𝜇⊤𝑋𝐴⊤ − 𝑏𝑏⊤)
= 𝐴E[𝑋𝑋⊤]𝐴⊤ − 𝐴𝜇𝑋𝜇⊤𝑋𝐴⊤

= Var(𝐴𝑋)
= 𝐴Var(𝑋)𝐴⊤
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Finally, we can compute the covariance of 𝑋 and 𝑌 as

Cov(𝑋,𝑌) = E[𝑋(𝐴𝑥 + 𝑏)⊤] − 𝜇𝑋𝜇⊤𝐴𝑋+𝑏
= 𝜇𝑋𝑏

⊤ + E[𝑋𝑋⊤]𝐴⊤ − 𝜇𝑋𝑏⊤ − 𝜇𝑋𝜇⊤𝑋𝐴⊤

= E[𝑋𝑋⊤]𝐴⊤ − 𝜇𝑋𝜇⊤𝑋𝐴⊤

= Var(𝑋)𝐴⊤

Lemma 27.6.22. If 𝑋 and 𝑌 are statistically independent random variables, then

(a) Var(𝑋 + 𝑌) = Var𝑋 + Var𝑌.

(b) Cov(𝑋,𝑌) = 0.

It is to be noted that two random variables may have a zero covariance but still be sta-

tistically dependent—this is because covariance merely measures linear dependence.

Definition 27.6.23 (Conditional independence). Two random variables 𝑋 and 𝑌 are

said to be conditionally independent of a given random variable 𝑍 when

P(𝑥, 𝑦 | 𝑧) = P(𝑥 | 𝑧)P(𝑦 | 𝑧)

for all states 𝑧 of 𝑍. If we use Lemma 27.4.2 we obtain P(𝑥, 𝑦 | 𝑧) = P(𝑥 | 𝑦, 𝑧)P(𝑦 | 𝑧)
and hence the conditional independence can be reformulated as

P(𝑥 | 𝑦, 𝑧) = P(𝑥 | 𝑧).

Definition 27.6.24 (Inner product of random variables). Given two random variables

𝑋 and 𝑌, we can define their inner product to be

⟨𝑋,𝑌⟩ ≔ E(𝑋𝑌).

Also if it is the case that 𝜇𝑋 = 0 = 𝜇𝑌 , then in particular ⟨𝑋,𝑌⟩ = Cov(𝑋,𝑌) and we

would have

Corr(𝑋,𝑌) = Cov(𝑋,𝑌)√
Var(𝑋)Var(𝑌)

=
⟨𝑋,𝑌⟩
∥𝑋∥ ∥𝑌∥ = cos𝜃,

where 𝜃 is the angle between the vectors 𝑋 and 𝑌.

Moments
Definition 27.6.25 (Moment). Given a random variable 𝑋 and a positive integer 𝑛, the

𝑛-th moment of 𝑋 is defined to be E(𝑋𝑛).

Corollary 27.6.26. The 𝑛-th moment of a random variable 𝑋 exists if and only if

E |𝑋|𝑛 < ∞. Moreover, if 𝑋 is bounded, then all moments of 𝑋 do exist (which is a

sufficient, but not necessary condition).

Corollary 27.6.27. If the 𝑘-th moment of a random variable 𝑋 exists, then for any

0 < 𝑗 < 𝑘 the 𝑗-th moment of 𝑋 also exists.
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Proof. Let 𝑓 be a probability density function over 𝑋, then

E |𝑋|𝑗 =
∫ ∞

−∞
|𝑥|𝑗 𝑓 (𝑥)d𝑥

=

∫
1

−∞
|𝑥|𝑗 𝑓 (𝑥)d𝑥 +

∫ ∞

1

|𝑥|𝑗 𝑓 (𝑥)d𝑥

⩽
∫

1

−∞
𝑓 (𝑥)d𝑥 +

∫ ∞

1

|𝑥|𝑘 𝑓 (𝑥)d𝑥

= P(|𝑋| ⩽ 1) + E |𝑋|𝑘 .

Now since the 𝑘-th moment is assumed to exist, then E |𝑋|𝑘 < ∞ and since P(|𝑋| ⩽
1) ∈ [0, 1], then E |𝑋|𝑗 < ∞. ♮

Corollary 27.6.28. If the second moment of 𝑋 exists, then 𝑋 has both a mean and a

variance.

Definition 27.6.29 (Central moment). Given a random variable 𝑋 with mean E𝑋 = 𝜇,

the 𝑛-th central moment of 𝑋 is defined to be the expectation E((𝑋 − 𝜇)𝑛).

Corollary 27.6.30. If𝑋 is symmetric with respect to its mean𝜇, then for any odd positive

integer 𝑘 such that the 𝑘-th central moment of 𝑋 exists, then E((𝑋 − 𝜇)𝑘) = 0.

Definition 27.6.31 (Random variable skewness). Let 𝑋 be a random variable having

mean𝜇 and standard deviation 𝜎. If𝑋 has a finite third moment, we define the skewness
of 𝑋 to be the value

E((𝑋 − 𝜇)3)
𝜎

,

measuring the lack of symmetry of 𝑋.

Moment Generating Functions
Definition 27.6.32 (Moment generating function). Let 𝑋 be a random variable. We

define a moment generating function (mgf) of 𝑋 to be the map 𝜓: R→ R given by

𝜓(𝑡) ≔ E 𝑒 𝑡𝑋 .

Since 𝑋 may not be bounded, 𝜓 may not be continuous since the expectation can be

infinite in some points. The mgf depends solely on the distribution underlying 𝑋,

hence if 𝑋 and 𝑌 has the same distribution of 𝑋, their moment generating functions

will coincide.

Proposition 27.6.33. Let 𝑋 be a random variable whose moment generating function

𝜓 is finite in an open interval (−𝜀, 𝜀) around zero. Then for any positive integer 𝑛 the

𝑛-th moment of 𝑋 is finite and equals the 𝑛-th derivative of 𝜓 at zero:

E𝑋𝑛 = 𝜓(𝑛)(0).

In particular, we have 𝜇 = 𝜓′(0) and Var(𝑋) = 𝜓′′(0) − 𝜓′(0)2.
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Proposition 27.6.34. Given a random variable 𝑋 with an associated mgf 𝜓𝑋 . If 𝑌 =

𝑎𝑋 + 𝑏 is another random variable, with an mgf 𝜓𝑌 , then

𝜓𝑌(𝑡) = 𝑒𝑏𝑡 + 𝜓𝑋(𝑎𝑡).
Proposition 27.6.35. Let (𝑋𝑗 ,𝜓 𝑗)𝑛𝑗=1

be a collection of independent random variables

together with their associated mgf. Then if 𝑌 =
∑𝑛
𝑗=1
𝑋𝑗 it follows that the mgf 𝜓 of 𝑌

is given by

𝜓 =

𝑛∏
𝑗=1

𝜓 𝑗 .

Proof. Notice that 𝜓(𝑡) = E 𝑒 𝑡
∑𝑛
𝑗=1

𝑋𝑗 = E(∏𝑛
𝑗=1

𝑒 𝑡𝑋𝑗 ) and since the random variables are

independent, the expected value preserves the product: 𝜓(𝑡) = ∏𝑛
𝑗=1

E 𝑒 𝑡𝑋𝑗 . ♮

Theorem 27.6.36. If 𝑋 and 𝑌 are two random variables whose mgf’s agree in an open

interval (−𝜀, 𝜀) around zero, then the probability distributions of𝑋 and𝑌 are identical.

Proof.
Proof.

♮

Binomial Distribution & MGF’s
Proposition 27.6.37 (Binomial distribution mgf). If 𝑋:Ω → N is a binomial random

variable with parameters (𝑛, 𝑝), then the mgf associated with 𝑋 is

𝜓(𝑡) = (𝑝𝑒 𝑡 + 1 − 𝑝)𝑛 .
Proof. Let (𝑋𝑗 :Ω→ {0, 1})𝑛𝑗=1

be a collection of independent random variables whose

distribution is P(𝑋𝑗 = 1) = 𝑝 and P(𝑋𝑗 = 0) = 1 − 𝑝, so that 𝑋 =
∑𝑛
𝑗=1
𝑋𝑗 . Since each 𝑋𝑗

has the same distribution, their moment generating function is the same 𝜓′:

𝜓′(𝑡) = E(𝑒 𝑡𝑋𝑗 ) = 𝑒 𝑡 · P(𝑋𝑗 = 1) + 1 · P(𝑋𝑗 = 0) = 𝑒 𝑡𝑝 + 1 − 𝑝.
Therefore from Proposition 27.6.35 we obtain

𝜓(𝑡) = 𝜓′(𝑡)𝑛 = (𝑒 𝑡𝑝 + 1 − 𝑝)𝑛

♮

Theorem 27.6.38 (Additivity of binomial random variables). If 𝑋 and 𝑌 are indepen-

dent binomial random variables with parameters (𝑛, 𝑝) and (𝑚, 𝑝) respectively, then

the random variable 𝑋 + 𝑌 is binomial and has parameters (𝑛 + 𝑚, 𝑝).
Proof. Let 𝜓𝑋 and 𝜓𝑌 be the mgf’s of 𝑋 and 𝑌 respectively. From Proposition 27.6.37

and Proposition 27.6.35 we know that the mgf 𝜓 of 𝑋 + 𝑌 is given by

𝜓(𝑡) = 𝜓𝑋(𝑡)𝜓𝑌(𝑡) = (𝑝𝑒 𝑡 + 1 − 𝑝)𝑛+𝑚 ,
which is also the mgf of the binomial random variable whose parameters are (𝑛 +
𝑚, 𝑝)—therefore by Theorem 27.6.36 we can conclude that 𝑋 +𝑌 is in fact the binomial

random variable with parameters (𝑛 + 𝑚, 𝑝). ♮
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27.7 Distributions
Definition 27.7.1 (Gaussian distribution). Let 𝑋 be a univariate random variable with

mean 𝜇 and standard deviation 𝜎. The Gaussian distribution of 𝑋 has a density function

given by

𝒩(𝑥 | 𝜇, 𝜎2) ≔ 1√
2𝜋𝜎2

exp

(
− (𝑥 − 𝜇)

2

2 𝜎2

)
.

Now, if 𝑋 where an 𝑛-multivariate random variable, then the Gaussian distribution of

𝑋 would have a density function defined as

𝒩(𝑥 | 𝜇,Var𝑋) ≔ 1√
(2𝜋)𝑛 det(Var𝑋)

exp

(
− 1

2

(𝑥 − 𝜇)⊤Var(𝑋)−1(𝑥 − 𝜇)
)
.

The special case where 𝜇 = 0 and Var(𝑋) = id is referred to as the standard normal
distribution.

Proposition 27.7.2 (Gaussian distribution properties). The following items are prop-

erties pertaining to the Gaussian distribution 𝒩 :

(a) The Gaussian distribution is normalised.

(b) The maximum of a Gaussian distribution, its mode, coincides with the mean.

(c) The likelihood function associated with a finite dataset of scalar observations𝒟 is

given by

P(𝒟 | 𝜇, 𝜎2) =
∏
𝑥∈𝒟
𝒩(𝑥 | 𝜇, 𝜎2).

Remark 27.7.3 (Finding 𝜇 and 𝜎2
with the maximum likelihood). In order to determine

the unknown parameters 𝜇 and 𝜎2
associated with the dataset 𝒟 we can try to find

the parameters that maximise the likelihood function—or, equivalently, maximising the

function

logP(𝒟 | 𝜇, 𝜎2) = − 1

2 𝜎2

∑
𝑥∈𝒟
(𝑥 − 𝜇)2 − 𝑁

2

(log(𝜎2) + log(2𝜋)), (27.1)

where 𝑁 ≔ |𝒟| is the total number of data points. Maximising Eq. (27.1) with respect

to 𝜇 gives

𝜇ML =
1

𝑁

∑
𝑥∈𝒟

𝑥,

known as the sample mean, while maximising with respect to 𝜎2
we obtain

𝜎2

ML
=

1

𝑁

∑
𝑥∈𝒟
(𝑥 − 𝜇ML)2,

called the sample variance with respect to the sample mean 𝜇ML.
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The problem with this approach, however, is that the obtained sample variance is

underestimated with respect to the true variance 𝜎2
. Indeed, one has

E[𝜎2

ML
] = 𝑁 − 1

𝑁
𝜎2,

while we obtain a correct mean E[𝜇ML] = 𝜇. This effect is called bias. In order to deal

with that, we can calculate an unbiased variance by

�̃�2

=
𝑁

𝑁 − 1

𝜎2

ML
=

1

𝑁 − 1

∑
𝑥∈𝒟
(𝑥 − 𝜇ML)2

Definition 27.7.4 (Hyperparameters). Parameters that control the distribution of model

parameters are called hyperparameters.

Let 𝑋 and 𝑌 be multivariate random variables and consider the Gaussian distribu-

tion

𝑓 (𝑥, 𝑦) = 𝒩
( [

𝜇𝑋
𝜇𝑌

]
,

[
Var𝑋 Cov(𝑋,𝑌)

Cov(𝑌, 𝑋) Var𝑌

] )
27.8 Model Selection
Definition 27.8.1 (𝑆-fold cross-validation). Let𝑁 be the number of data points available

in a given dataset. The 𝑆-fold cross-validation for evaluating model performance

consist in creating 𝑆 ⩽ 𝑁3
distinct groups of the available data—then 𝑆−1 of those are

used as training data for the model, while the remaining group is used as a validation

set. We permute the validation set across all possible 𝑆 groups and finally calculate

the model performance as the average score from the 𝑆 total runs.

Loss Functions
In the case of classification problems, we may analyse the number of misclassifications

via what is called a loss matrix. Let 𝒞 = {𝐶𝑘}𝑛𝑘=1
be the classes associated with a

dataset 𝒟 and define the loss matrix 𝐿 to be an 𝑛 × 𝑛 matrix whose entries 𝐿𝑖 𝑗 are

the number of data points of true class 𝐶𝑖 which where predicted to pertain to class

𝐶 𝑗 . For each input 𝑥 the uncertainty associated with the true class of 𝑥 is given by the

probability distribution P(𝑥, 𝐶𝑘). Our goal in developing classification algorithms will

be to minimise the average loss computed with respect to the associated uncertainty over

the decision spaces
4 {𝑅𝑘}𝑛𝑘=1

associated with each class 𝐶 𝑗 :

E[𝐿] =
𝑛∑
𝑖=1

𝑛∑
𝑗=1

∫
𝑅 𝑗

𝐿𝑖 𝑗 P(𝑥, 𝐶𝑖)d𝑥.

3
When data is scarce, it may be acceptable to use 𝑆 = 𝑁 . This is known as the leave-one-out technique

for dataset manipulations.

4
The algorithm will define disjoint spaces 𝑅𝑘 as a mean of classifying future incoming data points

𝑥 as follows: if 𝑥 ∈ 𝑅𝑘 then predict that 𝑥 pertains to the class 𝐶𝑘 .
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Since P(𝑥, 𝐶𝑘) = P(𝐶𝑘 | 𝑥)P(𝑥) then the decision rule that minimises the expected loss is

the one assigning 𝑥 to the class 𝐶 𝑗0 where

𝑗0 = arg min

𝑗

𝑛∑
𝑖=1

𝐿𝑖 𝑗 P(𝐶𝑖 | 𝑥).

In the case of regression problems, given a dataset 𝒟 one wants to create the best

possible estimate function 𝑔: R𝑑 → R𝑚
for the unknown map 𝑓 : R𝑑 → R𝑚

associated

with the true values of𝒟. To that end, we must choose a loss function

𝐿: 𝑓 (𝒟) × 𝑔(𝒟) → R,

for instance, the squared loss is given by 𝐿( 𝑓 (𝑥), 𝑔(𝑥)) = (𝑔(𝑥) − 𝑓 (𝑥))2. The average of

the expected loss, which we want to minimise, is given by

E[𝐿] =
∬

𝐿(𝑡 , 𝑔(𝑥))P(𝑥, 𝑡)d𝑥d𝑡
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Chapter 28

Learning

28.1 Learnability
Definition 28.1.1 (True error). Consider a target function 𝑓 :𝒳 → 𝒴 and a probability

distribution𝒟 over𝒳 . If ℎ:𝒳 → 𝒴 is a prediction rule for the learning problem (𝒟 , 𝑓 ),
we define the true error of ℎ as

𝐿(𝒟 , 𝑓 )(ℎ) ≔ P𝑥∼𝒟(ℎ(𝑥) ≠ 𝑓 (𝑥)) = 𝒟({𝑥 ∈ 𝒳 : ℎ(𝑥) ≠ 𝑓 (𝑥)}),
which is the probability of sampling a point 𝑥 ∈ 𝒳 , according to the distribution𝒟, on

which the predictor ℎ fails to meet 𝑓 .

Definition 28.1.2 (Training error). Let 𝑆 = (𝑥𝑖 , 𝑦𝑖)𝑚𝑖=1
be a training set, sampled from an

unknown probability distribution𝒟 and labelled by a target function 𝑓 :𝒳 → 𝒴 . Let

ℎ𝑆:𝒳 → 𝒴 be the hypothesis returned by a learning algorithm based on the training

set 𝑆. We define the training error 𝐿𝑆:𝒴 𝒳 → R to be the map

𝐿𝑆(ℎ) ≔
|{𝑖 ∈ [𝑚] : ℎ(𝑥𝑖) ≠ 𝑦𝑖}|

𝑚
.

Definition 28.1.3 (Empirical risk minimisation). The learning paradigm known as

empirical risk minimisation (ERM) is defined to have the goal of minimising the training

error. As this may cause overfitting, we restrict the set of possible predictors to a

hypothesis collectionℋ—this approach induces a bias to the model. Given a training

sample 𝑆, we define the learner ERMℋ : 2
𝒳 → 𝒴 𝒳 to choose a predictor ERMℋ (𝑆) ≔ ℎ𝑆

such that

ℎ𝑆 ∈ arg min

ℎ∈ℋ
𝐿𝑆(ℎ).

Definition 28.1.4 (Realisability assumption). Within the hypothesis collectionℋ there

exists ℎ★ for which the training error is null:

𝐿𝑆(ℎ★) = 0.

Definition 28.1.5 (Independently identically distributed assumption (i.i.d.)). We shall

assume that the training set 𝑆 has points which are independently and identically

distributed (i.i.d.) with respect to the probability distribution𝒟, shortly we write that

𝑆 ∼ 𝒟|𝑆|.
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Since 𝑆 is chosen by a randomised procedure, the predictor ℎ𝑆 and risk 𝐿(𝒟 , 𝑓 )(ℎ𝑆)
are both random variables. This allows us to talk about the probability of 𝐿(𝒟 , 𝑓 )(ℎ𝑆)
not being large.

Definition 28.1.6 (Confidence parameter). We shall denote by 𝛿 the probability of 𝑆

being a non-representative sample of 𝒳 with respect to the distribution𝒟, and 1− 𝛿 the

confidence parameter of the predictor ℎ𝑆.

Definition 28.1.7 (Accuracy parameter). We denote by 𝜀 the accuracy parameter, which

measures how large is 𝐿(𝒟 , 𝑓 )(ℎ𝑆) as follows: if 𝐿(𝒟 , 𝑓 )(ℎ𝑆) > 𝜀 we interpret the result of

the algorithm as a failure, while 𝐿(𝒟 , 𝑓 )(ℎ𝑆) ⩽ 𝜀 as a approximately correct predictor.

Proposition 28.1.8 (Failure bound). Consider a learner with a finite hypothesis class

ℋ . The probability of obtaining a sample 𝑆, of size 𝑚, on which the learner fails the

accuracy parameter is bound by

𝒟𝑚({𝜋𝒳𝑆 : 𝐿(𝒟 , 𝑓 )(ℎ𝑆) > 𝜀}) ⩽ |ℋ |𝑒−𝜀𝑚

where 𝜋𝒳 is the projection of the first coordinate.

Proof. Letℋ
bad

≔ {ℎ ∈ ℋ : 𝐿(𝒟 , 𝑓 ) > 𝜀} be the collection of all hypothesis which fail to

meet the expected accuracy of the learner, and define

𝑀 ≔ {𝜋𝒳𝑆 : ∃ℎ ∈ ℋ
bad
, 𝐿𝑆(ℎ) = 0} =

⋃
ℎ∈ℋ

bad

{𝜋𝒳𝑆 : 𝐿𝑆(ℎ) = 0},

the collection of all possible misleading non-representative samples for which the

training error can be nullified by the learner.

The realisability assumption says that 𝐿𝑆(ℎ𝑆) = 0, therefore 𝐿(𝒟 , 𝑓 )(ℎ𝑆) > 𝜀 is only

possible in the situation where there exists a predictor ℎ ∈ ℋ
bad

such that 𝐿𝑆(ℎ) = 0,

that is

{𝜋𝒳𝑆 : 𝐿(𝒟 , 𝑓 )(ℎ𝑆) > 𝜀} ⊆ 𝑀.

Therefore, by the union bound applied to the distribution𝒟𝑚
we have

𝒟𝑚({𝜋𝒳𝑆 : 𝐿(𝒟 , 𝑓 )(ℎ𝑆) > 𝜀}) ⩽ 𝒟𝑚(𝑀)

= 𝒟𝑚
( ⋃
ℎ∈ℋ

bad

{𝜋𝒳𝑆 : 𝐿𝑆(ℎ) = 0}
)

⩽
∑

ℎ∈ℋ
bad

𝒟𝑚({𝜋𝒳𝑆 : 𝐿𝑆(ℎ) = 0}).

Now notice that for any ℎ ∈ ℋ
bad

we have

{𝜋𝒳𝑆 : 𝐿𝑆(ℎ) = 0} = {𝜋𝒳𝑆 : ∀𝑗 ∈ [𝑚], ℎ(𝑥 𝑗) = 𝑓 (𝑥 𝑗)},
where 𝜋𝒳𝑆 = (𝑥 𝑗)𝑚𝑗=1

. Since each point 𝑥 𝑗 ∈ 𝒳 composing 𝑆 is chosen in an indepen-

dently and identically distributed fashion, it follows that

𝒟𝑚({𝜋𝒳𝑆 : 𝐿𝑆(ℎ) = 0}) = 𝒟𝑚({𝜋𝒳𝑆 : ∀𝑗 ∈ [𝑚], ℎ(𝑥 𝑗) = 𝑓 (𝑥 𝑗)})

=

𝑚∏
𝑗=1

𝒟({𝑥 𝑗 ∈ 𝒳 : ℎ(𝑥 𝑗) = 𝑓 (𝑥 𝑗)}).
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Moreover, since we define 𝐿(𝒟 , 𝑓 ) = 𝒟({𝑥 : ℎ(𝑥) ≠ 𝑓 (𝑥)})we obtain for each 𝑗 ∈ [𝑚] the

bound

𝒟({𝑥 𝑗 : ℎ(𝑥 𝑗) = 𝑓 (𝑥 𝑗)}) = 1 − 𝐿(𝒟 , 𝑓 )(ℎ) ⩽ 1 − 𝜀,

since 𝐿(𝒟 , 𝑓 )(ℎ) > 𝜀 for any ℎ ∈ ℋ
bad

. Now if we use the inequality 1 − 𝜀 ⩽ 𝑒−𝜀 we

obtain

𝒟𝑚({𝜋𝒳𝑆 : 𝐿𝑆(ℎ) = 0}) ⩽ (1 − 𝜀)𝑚 ⩽ 𝑒−𝑚𝜀.

From this analysis we can conclude that

𝒟𝑚({𝜋𝒳𝑆 : 𝐿(𝒟 , 𝑓 )(ℎ) > 𝜀}) ⩽ |ℋ
bad
|𝑒−𝑚𝜀 ⩽ |ℋ |𝑒−𝑚𝜀 ,

which is the bound that we settled to prove. ♮

Corollary 28.1.9. Let ℋ be a finite hypothesis collection, and consider parameters

0 < 𝛿 < 1 and 𝜀 > 0. If 𝑚 ∈ N is such that

𝑚 ⩾
log(|ℋ |/𝛿)

𝜀
,

then for any labelling map 𝑓 :𝒳 → 𝒴 together with a distribution𝒟 following the real-

isability assumption, we have a probability of at least 1− 𝛿 of choosing an i.i.d. sample

𝑆 with size 𝑚 for which every ERM hypothesis ℎ𝑆 satisfies

𝐿(𝒟 , 𝑓 )(ℎ𝑆) ⩽ 𝜀.

In other words, for a sufficiently large 𝑚, the learner ERMℋ will be probably (with

a confidence of at least 1 − 𝛿) approximately (up to an error of 𝜀) correct (PAC).

28.2 PAC Learning Model
Definition 28.2.1 (PAC learning). A hypothesis class ℋ is said to be PAC learnable if

there exists a map

𝑚ℋ : (0, 1)2 −→ N,

and a learning algorithm 𝐴 such that for every tuple (𝜀, 𝛿, 𝑓 ,𝒟 , 𝑆)where

• 𝜀, 𝛿 ∈ (0, 1) are the accuracy and confidence parameters, respectively.

• 𝑓 :𝒳 → {0, 1} is a binary labelling map on 𝒳 .

• 𝒟 is a probability distribution on 𝒳 .

• The realisability assumption holds with respect to the triple (ℋ ,𝒟 , 𝑓 ).
• The set 𝑆 = (𝑥 𝑗 , 𝑓 (𝑥 𝑗))𝑚𝑗=1

with 𝑚 ⩾ 𝑚ℋ (𝜀, 𝛿) is composed of i.i.d. samples of 𝒳
generated by𝒟 and labelled by 𝑓 .

The algorithm 𝐴 returns a predictor 𝐴(𝑆) = ℎ with a probability of at least 1 − 𝛿, over

the choice of 𝑆, such that

𝐿(𝒟 , 𝑓 )(ℎ) ⩽ 𝜀.
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The map𝑚ℋ : (0, 1)2 → N determines the sample complexity necessary to ensure that

the learning algorithm will result in a PAC solution. We shall impose 𝑚ℋ to return

the minimal sample complexity such that ℋ is PAC learnable with accuracy 𝜀 and

confidence 𝛿.

Rephrasing Corollary 28.1.9 with our new jargon:

Corollary 28.2.2. Every finite hypothesis class ℋ is PAC learnable with sample com-

plexity

𝑚ℋ (𝜀, 𝛿) ⩽
⌈
log(|ℋ |/𝛿)

𝜀

⌉
.

Agnostic PAC Learning Model
Let 𝒳 be our domain space of features and 𝒴 be the space of labels. We shall now

consider 𝒟 to be the joint distribution over the product space 𝒳 × 𝒴 . This allows

for two samples corresponding to the same point 𝑥 ∈ 𝒳 to assume different labels

𝑦1, 𝑦2 ∈ 𝒴 . With this in mind, we need to revise the true error to be in accordance with

this new distribution𝒟.

Definition 28.2.3 (Revising the true error). Given a probability distribution 𝒟 over

𝒳 × 𝒴 , and a predictor ℎ:𝒳 → 𝒴 , the true error of ℎ is given by

𝐿𝒟(ℎ) ≔ P(𝑥,𝑦)∼𝒟(ℎ(𝑥) ≠ 𝑦) = 𝒟({(𝑥, 𝑦) ∈ 𝒳 × 𝒴 : ℎ(𝑥) ≠ 𝑦}).

Proposition 28.2.4 (Bayes optimal predictor). Let𝒟 be any distribution on 𝒳 × {0, 1}.
The best predictor 𝑓𝒟 :𝒳 → {0, 1}, called the Bayes optimal predictor1

, will be given by

𝑓𝒟(𝑥) ≔
{

1, if P(𝑥,𝑦)∼𝒟(𝑦 = 1 | 𝑥) ⩾ 1/2
0, otherwise.

That is, for any predictor ℎ:𝒳 → {0, 1}we have 𝐿𝒟( 𝑓𝒟) ⩽ 𝐿𝒟(ℎ).

Definition 28.2.5 (Agnostic PAC learning model). A hypothesis class ℋ is said to

be agnostic PAC learnable if there exists a minimal map 𝑚ℋ : (0, 1)2 → N and leaning

algorithm 𝐴 such that for every tuple (𝜀, 𝛿,𝒟 , 𝑆)where

• 𝜀, 𝛿 ∈ (0, 1) are the accuracy and confidence parameters, respectively.

• 𝒟 is a probability distribution over 𝒳 × 𝒴 .

• 𝑆 ∈ (𝒳 × 𝒴 )𝑚 is an i.i.d. sample of size 𝑚 ⩾ 𝑚ℋ (𝜀, 𝛿) generated by𝒟.

The algorithm 𝐴 returns a predictor 𝐴(𝑆) ≔ 𝑔 ∈ ℋ with a probability of at least 1 − 𝛿
over the choice of 𝑆, such that

𝐿𝒟(𝑔) ⩽ min

ℎ∈ℋ
𝐿𝒟(ℎ) + 𝜀.

1
In reality, this predictor cannot be used since the learner does not have access to the probability

distribution𝒟.
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28.3 Extending The PAC Model
Definition 28.3.1 (Generalised loss function). Letℋ be a collection of hypothesis, and

𝒵 a domain of interest. Any map of the type

ℓ :ℋ ×𝒵 → R⩾0

is a loss function.

Definition 28.3.2 (Generalised error functions). Consider a hypothesis class ℋ , a do-

main 𝒵 with associated distribution 𝒟, and a loss function ℓ :ℋ × 𝒵 → R⩾0. We

define the following:

(a) The true error of a predictor ℎ ∈ ℋ is given by

𝐿𝒟(ℎ) ≔ E𝑧∼𝒟[ℓ (ℎ, 𝑧)].

(b) Given an i.i.d. sample 𝑆 ∈ 𝒵𝑚
, we define the empirical error of a predictor ℎ ∈ ℋ to

be

𝐿𝑆(ℎ) ≔
1

𝑚

∑
𝑧∈𝑆

ℓ (ℎ, 𝑧)

Example 28.3.3. The following are extensively used loss functions:

(a) (Classifier loss) Given a domain𝒵 = 𝒳×𝒴 and a predictor ℎ, we define the classifier

loss function

ℓ
class
(ℎ, (𝑥, 𝑦)) ≔

{
0, if ℎ(𝑥) = 𝑦

1, if ℎ(𝑥) ≠ 𝑦.

(b) (Square loss) Consider a domain𝒵 = 𝒳 ×𝒴 and a predictor ℎ, we define the square

loss function as

ℓsq(ℎ, (𝑥, 𝑦)) ≔ (ℎ(𝑥) − 𝑦)2,
which is commonly used in regression learning problems.

Definition 28.3.4 (Agnostic PAC learning model for generalised loss functions). A

hypothesis class ℋ is said to be agnostic PAC learnable with respect to a domain 𝒵
and loss function ℓ :ℋ ×𝒵 → R⩾0 if there exists a minimal map 𝑚ℋ : (0, 1)2 → N and

leaning algorithm 𝐴 such that for every tuple (𝜀, 𝛿,𝒟 , 𝑆)where

• 𝜀, 𝛿 ∈ (0, 1) are the accuracy and confidence parameters, respectively.

• 𝒟 is a probability distribution over𝒵 .

• 𝑆 ∈ 𝒵𝑚
is an i.i.d. sample of size 𝑚 ⩾ 𝑚ℋ (𝜀, 𝛿) generated by𝒟.

The algorithm 𝐴 returns a predictor 𝐴(𝑆) ≔ 𝑔 ∈ ℋ with a probability of at least 1 − 𝛿
over the choice of 𝑆, such that

𝐿𝒟(𝑔) ⩽ min

ℎ∈ℋ
𝐿𝒟(ℎ) + 𝜀,

where the true error function 𝐿𝒟 is given by 𝐿𝒟(ℎ) = E𝑧∼𝒟[ℓ (ℎ, 𝑧)].
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28.4 Learning via Uniform Convergence
Definition 28.4.1 (𝜀-representative sample). Let 𝒵 be a domain with distribution 𝒟,

and associated hypothesis class ℋ and loss function ℓ . We say that a sample 𝑆 is

𝜀-representative if for every predictor ℎ ∈ ℋ we have

|𝐿𝑆(ℎ) − 𝐿𝒟(ℎ)| ⩽ 𝜀.

Lemma 28.4.2. Consider a context (𝒵 ,𝒟 ,ℋ , ℓ ), and an (𝜀/2)-representative sample 𝑆.

Any output of the ERM learner

ERMℋ (𝑆) = ℎ𝑆 ∈ arg min

ℎ∈ℋ
𝐿𝑆(ℎ)

will be such that

𝐿𝒟(ℎ𝑆) ⩽ min

ℎ∈ℋ
𝐿𝒟(ℎ) + 𝜀.

Proof. Let ℎ ∈ ℋ be any predictor, then |𝐿𝑆(ℎ) − 𝐿𝒟(ℎ)| ⩽ 𝜀/2 therefore

𝐿𝒟(ℎ) ⩽ 𝐿𝑆(ℎ) + 𝜀/2 and 𝐿𝑆(ℎ) ⩽ 𝐿𝒟(ℎ) + 𝜀/2

In particular, since ℎ𝑆 minimises the empirical error we have

𝐿𝒟(ℎ𝑆) ⩽ 𝐿𝑆(ℎ𝑆) + 𝜀/2
⩽ 𝐿𝑆(ℎ) + 𝜀/2
⩽ (𝐿𝒟(ℎ) + 𝜀/2) + 𝜀/2
= 𝐿𝒟(ℎ) + 𝜀,

which proves the proposition. ♮

Corollary 28.4.3. The ERMℋ learner is an agnostic PAC learner if with a probability of

at least 1−𝛿 over the random choice of a sample 𝑆, the training set 𝑆 is 𝜀-representative.

Definition 28.4.4 (Uniform convergence property). A hypothesis class ℋ is said to

satisfy the uniform convergence property—with respect to a domain𝒵 and a loss function

ℓ—if there exists a minimal function

𝑚UC

ℋ : (0, 1)2 −→ N

such that: for every distribution 𝒟 over 𝒵 , and parameters 𝜀, 𝛿 ∈ (0, 1), if 𝑆 ∈ 𝒵𝑚
is

an i.i.d. sample with size 𝑚 ⩾ 𝑚UC

ℋ (𝜀, 𝛿), then with a probability of at least 1 − 𝛿 the

sample 𝑆 is 𝜀-representative.

Corollary 28.4.5. If a hypothesis classℋ has the uniform convergence property—with

respect to (𝒵 , ℓ )—with a function 𝑚UC

ℋ then ℋ is agnostically PAC learnable with a

sample complexity

𝑚ℋ (𝜀, 𝛿) ⩽ 𝑚UC

ℋ (𝜀/2, 𝛿).
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28.5 Finite Hypothesis Classes are Uniform Convergent

Important Measure Concentration Inequalities
Proposition 28.5.1 (Strong law of large numbers). Let (𝑍1, . . . , 𝑍𝑚) be a sequence of

i.i.d. random variables with equal mean 𝜇. The strong law of large numbers states that

when 𝑚 →∞ the empirical average 𝑍 ≔ 1

𝑚

∑𝑚
𝑗=1
𝑍 𝑗 converges to the expected value 𝜇

with a probability of 1.

Lemma 28.5.2 (Markov’s inequality). Let 𝑍 be a non-negative random variable. Then

for any 𝑎 ⩾ 0 we have

P(𝑍 ⩾ 𝑎) ⩽ E[𝑍]/𝑎,
known as the Markov’s inequality.

Proof. Since P(𝑍 ⩾ 𝑥) is monotonically non-increasing as a function of 𝑥, for any 𝑎 ⩾ 0

we have

E[𝑍] =
∫ ∞

0

P(𝑍 ⩾ 𝑥)d𝑥

⩾
∫ 𝑎

0

P(𝑍 ⩾ 𝑥)d𝑥

⩾
∫ 𝑎

0

P(𝑍 ⩾ 𝑎)d𝑥

= 𝑎 P(𝑍 ⩾ 𝑎),

therefore P(𝑍 ⩾ 𝑎) ⩽ E[𝑍]/𝑎 as wanted. ♮

Lemma 28.5.3. Given a random variable 𝑍with values in [0, 1], denote 𝜇 ≔ E[𝑍]. Then

for any 𝑎 ∈ (0, 1)we have the following two upper-bounds

P(𝑍 > 1 − 𝑎) ⩾ 𝜇 − (1 − 𝑎)
𝑎

, (28.1)

P(𝑍 > 𝑎) ⩾ 𝜇 − 𝑎
1 − 𝑎 ⩾ 𝜇 − 𝑎. (28.2)

Proof. Define a random variable 𝑋 ≔ 1 − 𝑍. Since 𝑍 ∈ [0, 1] then 𝑌 is non-negative

and has E[𝑌] = 1 − 𝜇. By the Markov’s inequality on 𝑌 we have

P(𝑍 ⩽ 1 − 𝑎) = P(1 − 𝑍 ⩾ 𝑎) = P(𝑌 ⩾ 𝑎) ⩽ E[𝑌]
𝑎

=
1 − 𝜇
𝑎

.

Therefore

P(𝑍 > 1 − 𝑎) ⩾ 1 − 1 − 𝜇
𝑎

=
𝜇 − (1 − 𝑎)

𝑎
.

♮

Lemma 28.5.4 (Hoeffding’s lemma). Let 𝑋 be a random variable taking values in the

interval [𝑎, 𝑏], and such that E[𝑋] = 0. Then for every 𝜆 > 0 we have

E[𝑒𝜆𝑋] ⩽ exp

(𝜆2(𝑏 − 𝑎)2
8

)
.
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Proof. Notice that the exponential map 𝑓 (𝑥) ≔ 𝑒𝜆𝑥 is convex, therefore by definition it

follows that for any 𝑡 ∈ (0, 1) and 𝑥 ∈ [𝑎, 𝑏]we have

𝑓 (𝑥) ⩽ 𝑡 𝑓 (𝑎) + (1 − 𝑡) 𝑓 (𝑏).

Letting 𝑡 ≔ 𝑏−𝑥
𝑏−𝑎 ∈ [0, 1]we find

𝑒𝜆𝑥 ⩽
𝑏 − 𝑥
𝑏 − 𝑎 𝑒

𝜆𝑎 + 𝑥 − 𝑎
𝑏 − 𝑎 𝑒

𝜆𝑏 .

If we now consider the expectation of 𝑓 with respect to the random variable 𝑋 we find

the following inequality:

E[𝑒𝜆𝑋] ⩽ 𝑏 − E[𝑋]
𝑏 − 𝑎 𝑒𝜆𝑎 + E[𝑋] − 𝑎

𝑏 − 𝑎 𝑒𝜆𝑏

=
𝑏

𝑏 − 𝑎 𝑒
𝜆𝑎 − 𝑎

𝑏 − 𝑎 𝑒
𝜆𝑏

(28.3)

since the expected value of 𝑋 is null. Given 𝑝 ≔ − 𝑎
𝑏−𝑎 define a map

𝐿(ℎ) ≔ −ℎ𝑝 + log(1 − 𝑝 + 𝑝𝑒 ℎ)

so that, for ℎ0 ≔ 𝜆(𝑏 − 𝑎)we have that 𝑒𝐿(ℎ0)
is exactly the right-hand side of Eq. (28.3).

Using the fact that 𝐿(0) = 𝐿′(0) = 0 and that 𝐿′′(ℎ) ⩽ 1/4 for any ℎ, we find by the

Taylor expansion of 𝐿 about 0 that

𝐿(ℎ0) ≈ 𝐿(0) + 𝐿′(0)ℎ0 +
𝐿′′(ℎ)

2

ℎ2

0
=
𝐿′′(ℎ0)

2

⩽
ℎ2

0

8

.

With this we have

E[𝑒𝜆𝑋] ⩽ 𝑒𝐿(ℎ0) ⩽ 𝑒 ℎ
2

0
/8 = 𝑒

𝜆2(𝑏−𝑎)2
8 ,

which is the bound we wanted to prove. ♮

Lemma 28.5.5 (Hoeffding’s inequality). Let (𝑍1, . . . , 𝑍𝑚) be a collection of i.i.d. random

variables, and let 𝑍 ≔ 1

𝑚

∑𝑚
𝑗=1
𝑍 𝑗 . If for all 1 ⩽ 𝑗 ⩽ 𝑚 we have E[𝑍 𝑗] = 𝜇 and

P[𝑎 ⩽ 𝑍 𝑗 ⩽ 𝑏] = 1, then for any 𝜀 > 0 we have an upper-bound

P
(��𝑍 − 𝜇�� > 𝜀

)
⩽ 2 exp

(
− 2𝑚𝜀2

(𝑏 − 𝑎)2
)
.

Proof. For each 𝑗, let 𝑋𝑗 ≔ 𝑍 𝑗 −E[𝑍 𝑗] and define 𝑋 ≔ 1

𝑚

∑𝑚
𝑗=1
𝑋𝑗 . Since the exponential

function is monotonically increasing, we have that for every pair 𝜆, 𝜀 > 0:

P
(
𝑋 ⩾ 𝜀

)
= P(𝑒𝜆𝑋 ⩾ 𝑒𝜆𝜀) ⩽ 𝑒−𝜆𝜀 E[𝑒𝜆𝑋],

where we used the Markov’s inequality Lemma 28.5.2. Since the random variables are

i.i.d. we have

E[𝑒𝜆𝑋] = E[𝑒𝜆 1

𝑚

∑
𝑗 𝑋𝑗 ] = E

[ 𝑚∏
𝑗=1

𝑒𝜆𝑋𝑗/𝑚
]
=

𝑚∏
𝑗=1

E[𝑒𝜆𝑋𝑗/𝑚].
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Via Lemma 28.5.4, for each index 𝑗 we have an upper-bound

E[𝑒𝜆𝑋𝑗/𝑚] ⩽ exp

(𝜆2(𝑏 − 𝑎)2
8𝑚2

)
.

With this bound in hands we obtain

E[𝑒𝜆𝑋] =
𝑚∏
𝑗=1

exp

(𝜆2(𝑏 − 𝑎)2
8𝑚2

)
= exp

(𝜆2(𝑏 − 𝑎)2
8𝑚

)
.

Therefore it follows that

P
(
𝑋 ⩾ 𝜀

)
⩽ exp

(
− 𝜆𝜀 + 𝜆2(𝑏 − 𝑎)2

8𝑚

)
.

If we let 𝜆 ≔ 4𝑚𝜀
(𝑏−𝑎)

2

we obtain

P
(
𝑋 ⩾ 𝜀

)
⩽ exp

(
− 2𝑚𝜀

(𝑏 − 𝑎)2
)
.

If we now consider the case for the random variable −𝑋 we shall find

P(𝑋 ⩽ −𝜀) ⩽ exp

(
− 2𝑚𝜀2

(𝑏 − 𝑎)2
)
.

Using the union bound P(|𝑋| ⩾ 𝜀) ⩽ P(𝑋 ⩾ 𝜀) + P(𝑋 ⩽ −𝜀) we obtain the wanted

inequality. ♮

28.6 Uniform Convergence for Finite Hypothesis
Classes

Proposition 28.6.1. Letℋ be a finite hypothesis class with respect to a domain𝒵 , and

let ℓ :ℋ ×𝒵 → [0, 1] be a loss function. Thenℋ has the uniform convergence property

with a sample complexity of

𝑚UC

ℋ (𝜀, 𝛿) ⩽
⌈
log(2|ℋ |/𝛿)

2𝜀2

⌉
.

Moreover, ℋ is agnostically PAC learnable with respect to the ERM algorithm with a

sample complexity

𝑚ℋ (𝜀) ⩽ 𝑚UC

ℋ (𝜀/2, 𝛿) ⩽
⌈
2 log(2|ℋ |/𝛿)

𝜀2

⌉
Proof. Fix parameters 𝜀, 𝛿 ∈ (0, 1). Lets consider the set

𝒮
bad

≔ {𝑆 : ∃ℎ ∈ ℋ , |𝐿𝑆(ℎ) − 𝐿𝒟(ℎ)| > 𝜀} =
⋃
ℎ∈ℋ
{𝑆 : |𝐿𝑆(ℎ) − 𝐿𝒟(ℎ)| > 𝜀}
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and for the sake of brevity define the notation 𝒮 ℎ
bad

≔ {𝑆 : |𝐿𝑆(ℎ) − 𝐿𝒟(ℎ)| > 𝜀} for

each ℎ ∈ ℋ . Via the union bound we find

𝒟𝑚(𝒮
bad
) ⩽

∑
ℎ∈ℋ
𝒟𝑚(𝒮 ℎ

bad
)

Fix a predictor ℎ ∈ ℋ , chosen prior to the sampling of the training set. Let

𝑆 = (𝑧 𝑗 , 𝑓 (𝑧 𝑗))𝑚𝑗=1
be an i.i.d. sampled training set. Since each 𝑧 𝑗 is sampled i.i.d. it

follows that E[ℓ (ℎ, 𝑧 𝑗)] = 𝐿𝒟(ℎ) from the definition of the true error. By the linearity

of the expected value, we also have

E[𝐿𝑆(ℎ)] = E
[

1

𝑚

𝑚∑
𝑗=1

ℓ (ℎ, 𝑧 𝑗)
]
=

1

𝑚

𝑚∑
𝑗=1

E[ℓ (ℎ, 𝑧 𝑗)] = 𝐿𝒟(ℎ).

It follows that |𝐿𝒟(ℎ) − 𝐿𝑆(ℎ)| = |E[𝐿𝑆(ℎ)] − 𝐿𝑆(ℎ)| and we would wish to show that

𝐿𝑆(ℎ) is concentrated around its expected value.

Since 𝐿𝑆(ℎ) is composed of the sum of 𝑚 i.i.d. random variables, we can apply

the law of large numbers to conclude that when 𝑚 → ∞ the empirical average 𝐿𝑆(ℎ)
converges to its true expected value 𝐿𝒟(ℎ). We would like to quantify this for finite

𝑚, and for that we shall make use of the Hoeffding’s inequality. For that, consider the

sequence of random variables (ℓ (ℎ, 𝑧1), . . . , ℓ (ℎ, 𝑧𝑚)), which are sampled i.i.d. since ℎ

is a fixed hypothesis and (𝑧1, . . . , 𝑧𝑚) are i.i.d. random variables. Since im ℓ ⊆ [0, 1]
and that 𝑧 𝑗 ∈ [0, 1] for all indices 𝑗. We have satisfied every condition of Lemma 28.5.5

and thus we may apply the Hoeffding’s inequality as follows:

𝒟𝑚(𝒮 ℎ
bad
) = P(|𝐿𝑆(ℎ) − 𝐿𝒟(ℎ)| > 𝜀) ⩽ 2𝑒−2𝑚𝜀.

Therefore going back to 𝒮
bad

we find

𝒟𝑚(𝒮
bad
) ⩽

∑
ℎ∈ℋ
𝒟𝑚(𝒮 ℎ

bad
) = 2|ℋ |𝑒−2𝑚𝜀.

Therefore, by choosing an integer 𝑚 ∈ N

𝑚 ⩾
log(2|ℋ |/𝛿)

2𝜀2

we ensure that𝒟𝑚(𝒮
bad
) ⩽ 𝛿, therefore

𝒟𝑚({𝑆 : ∀ℎ ∈ ℋ , |𝐿𝑆(ℎ) − 𝐿𝒟(ℎ)| ⩽ 𝜀}) ⩾ 1 − 𝛿.

♮

28.7 Universal Learners are Impossible
Theorem 28.7.1 (No-free-lunch). Let 𝐴 be a learning algorithm assigned for the binary

classification of a domain𝒳 with respect to the {0, 1}-loss function ℓ
class

. Let𝑚 < |𝒳|/2
be the size of a training set. There exists a distribution 𝒟 over the domain 𝒳 × {0, 1}
for which
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(a) There exists a labelling map 𝑓 :𝒳 → {0, 1} for which 𝐿𝒟( 𝑓 ) = 0.

(b) With a probability of at least 1/7 over the choice of the training set 𝑆 ∼ 𝒟𝑚
we have

𝐿𝒟(𝐴(𝑆)) ⩾
1

8

.

In other words, there exists a true labelling map 𝑓 , with respect to the distribution𝒟,

underlying the learning problem, and the algorithm fails to output a predictor with a

good approximation of 𝑓 .

Proof. Let 𝐶 ⊆ 𝒳 be a subset of size 2𝑚. We’ll prove that if a learner has access to only

half of 𝐶, then it has no information on how to correctly label the remaining half of

𝐶. The number of maps 𝐶 → {0, 1} is given by 𝑇 ≔ |{0, 1}||𝐶| = 2
2𝑚

: let ( 𝑓1, . . . , 𝑓𝑇)
denote all such maps. For each 1 ⩽ 𝑗 ⩽ 𝑇 define a distribution𝒟𝑗 over 𝐶×{0, 1}where

𝒟𝑗({(𝑥, 𝑦)}) =
{

1

|𝐶| , if 𝑦 = 𝑓𝑖(𝑥)
0, otherwise.

That is,𝒟𝑗 makes 𝑓𝑗 the true labelling function on 𝐶—so that 𝐿𝒟𝑗 ( 𝑓𝑗) = 0.

Let 𝐾 = (2𝑚)𝑚 denote the number of possible sequences consisting of 𝑚 i.i.d. sam-

pled instances from 𝐶, and let (𝑆1, . . . , 𝑆𝐾)denote all such sequences. Given a sequence

𝑆 𝑗 = (𝑥1, . . . , 𝑥𝑚), define 𝑆𝑖
𝑗
≔ (𝑥 𝑗 , 𝑓𝑗)𝑚𝑗=1

to be the labelling of 𝑆 𝑗 by the map 𝑓𝑖 . Given a

distribution 𝐷𝑖 , the available training sets for the algorithm 𝐴 are (𝑆𝑖
1
, . . . , 𝑆𝑖

𝐾
), which

are i.i.d. and labelled by the same map 𝑓𝑖 . Therefore one has

E𝑆∼𝒟𝑚
𝑖
[𝐿𝒟𝑖 (𝐴(𝑆))] =

1

𝐾

𝐾∑
𝑗=1

𝐿𝒟𝑖 (𝐴(𝑆𝑖𝑗)). (28.4)

Considering all 𝑇 pairs ( 𝑓𝑗 ,𝒟𝑗)we have the following relations:

max

1⩽𝑖⩽𝑇
E𝑆∼𝒟𝑚

𝑖
[𝐿𝒟𝑖 (𝐴(𝑆))] ⩾

1

𝑇

𝑇∑
𝑖=𝑖

E𝑆∼𝒟𝑚
𝑖
[𝐿𝒟𝑖 (𝐴(𝑆))]

=
1

𝑇

𝑇∑
𝑖=𝑖

(
1

𝐾

𝐾∑
𝑗=1

𝐿𝒟𝑖 (𝐴(𝑆𝑖𝑗))
)

=
1

𝐾

𝐾∑
𝑗=1

(
1

𝑇

𝑇∑
𝑖=1

𝐿𝒟𝑖 (𝐴(𝑆𝑖𝑗))
)

⩾ min

1⩽ 𝑗⩽𝐾

1

𝑇

𝑇∑
𝑖=1

𝐿𝒟𝑖 (𝐴(𝑆𝑖𝑗)). (28.5)

Fix any 1 ⩽ 𝑗 ⩽ 𝐾 and let 𝑆 𝑗 ≔ (𝑥1, . . . , 𝑥𝑚) and let (𝑣1, . . . , 𝑣𝑝) be a sequence containing

all instances of 𝐶 not appearing in 𝑆 𝑗—which certainly has 𝑝 ⩾ 𝑚. Hence, for any
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labelling ℎ:𝐶 → {0, 1} and any 1 ⩽ 𝑖 ⩽ 𝑇 we have a true error

𝐿𝒟𝑖 (ℎ) =
1

2𝑚

∑
𝑥∈𝐶

ℓ
class
(ℎ, (𝑥, 𝑓𝑖(𝑥)))

⩾
1

2𝑚

𝑝∑
𝑘=1

ℓ
class
(ℎ, (𝑣𝑘 , 𝑓𝑖(𝑣𝑘)))

⩾
1

2𝑝

𝑝∑
𝑘=1

ℓ
class
(ℎ, (𝑣𝑘 , 𝑓𝑖(𝑣𝑘))).

From this we obtain that

1

𝑇

𝑇∑
𝑖=1

𝐿𝒟𝑖 (𝐴(𝑆𝑖𝑗)) ⩾
1

𝑇

𝑇∑
𝑖=1

(
1

2𝑝

𝑝∑
𝑘=1

ℓ
class
(𝐴(𝑆𝑖𝑗), (𝑣𝑘 , 𝑓𝑖(𝑣𝑘)))

)
=

1

2𝑝

𝑝∑
𝑘=1

(
1

𝑇

𝑇∑
𝑖=1

ℓ
class
(𝐴(𝑆𝑖𝑗), (𝑣𝑘 , 𝑓𝑖(𝑣𝑘)))

)
⩾

1

2

min

1⩽𝑘⩽𝑝

1

𝑇

𝑇∑
𝑖=1

ℓ
class
(𝐴(𝑆𝑖𝑗), (𝑣𝑘 , 𝑓𝑖(𝑣𝑘))). (28.6)

For the last time, fix an index 1 ⩽ 𝑘 ⩽ 𝑝. Partition ( 𝑓1, . . . , 𝑓𝑇) into a collection of 𝑇/2
disjoint pairs of the form ( 𝑓𝑖 , 𝑓𝑖′) for which 𝑓𝑖(𝑐) ≠ 𝑓𝑖′(𝑐) if and only if 𝑐 = 𝑣𝑘 . From

construction, such pairs satisfy 𝑆𝑖
𝑗
= 𝑆𝑖

′
𝑗

for any 1 ⩽ 𝑗 ⩽ 𝐾, therefore

ℓ
class
(𝐴(𝑆𝑖𝑗), (𝑣𝑘 , 𝑓𝑖(𝑣𝑘))) + ℓclass

(𝐴(𝑆𝑖′𝑗 ), (𝑣𝑘 , 𝑓𝑖′(𝑣𝑘))) = 1,

which in turn implies in

1

𝑇

𝑇∑
𝑖=1

ℓ
class
(𝐴(𝑆𝑖𝑗), (𝑣𝑘 , 𝑓𝑖(𝑣𝑘)) =

1

2

. (28.7)

Now substituting Eq. (28.7) in Eq. (28.6) results in

1

𝑇

𝑇∑
𝑖=1

𝐿𝒟𝑖 (𝐴(𝑆𝑖𝑗)) ⩾
1

4

.

If we now substitute this into Eq. (28.5) we get

max

1⩽𝑖⩽𝑇
E𝑆∼𝒟𝑚

𝑖
[𝐿𝒟𝑖 (𝐴(𝑆))] ⩾

1

4

,

and say this maximum is attained at an index 1 ⩽ 𝑖0 ⩽ 𝑇. Denote ( 𝑓𝑖0 ,𝒟𝑖0) ≔ ( 𝑓 ,𝒟)
for short. Using the Lemma 28.5.3 we have

P(𝐿𝒟(𝐴(𝑆)) ⩾ 1/8) ⩾ E𝑆∼𝒟𝑚 [𝐿𝒟(𝐴(𝑆))] − 1/8
1 − 1/8 =

1

7

♮
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Corollary 28.7.2. Let 𝒳 be an infinite domain and define ℋ ≔ {0, 1}𝒳 to be our

hypothesis class—that is, the collection of all possible binary classifiers of 𝒳 . Thenℋ
is not PAC learnable.

Proof. Suppose, for the sake of contradiction, that ℋ is PAC learnable. Take 𝜀 < 1/8
and 𝛿 < 1/7. From assumption, there exists an algorithm 𝐴 and a number 𝑚 ∈ N,

depending on the choice of 𝜀 and 𝛿, such that for any distribution𝒟 over𝒳×{0, 1} and

labelling function 𝑓 :𝒳 → {0, 1} with 𝐿𝒟( 𝑓 ) = 0—then, with a probability of at least

1−𝛿 over a sample 𝑆 ∼ 𝒟𝑚
, the algorithm 𝐴will output a classifier with 𝐿𝒟(𝐴(𝑆)) ⩽ 𝜀.

Since 𝒳 is infinite, then certainly its cardinality overcomes 2𝑚 and by Theorem 28.7.1

the algorithm 𝐴 fails for some distribution𝒟0 with a probability greater than 1/7—in

this case the failure of 𝐴 means 𝐿𝒟0
(𝐴(𝑆)) > 1/8. This is a contradiction and therefore

proves thatℋ is not PAC learnable. ♮

Definition 28.7.3 (Threshold function). Let 𝑃 be a proposition taking values in the set

{false, true}. We define a map 1𝑃 : {false, true} → {0, 1} as

1𝑃(𝑥) =
{

1, if 𝑃(𝑥) = true
0, if 𝑃(𝑥) = false.

A common use of such maps are threshold functions: for each 𝑎 ∈ R we define a map

1<𝑎 assuming 1 if the argument is less than 𝑎 and 0 otherwise.

Lemma 28.7.4. Let ℋ denote the infinite collection of all threshold functions as in

Definition 28.7.3. Then ℋ is PAC learnable with the ERM algorithm with a sample

complexity of

𝑚ℋ (𝜀, 𝛿) ⩽
⌈
log(2/𝛿)

𝜀

⌉
.

Proof. Via the realisability assumption, let 𝑎★ ∈ R be such that 𝐿𝒟(1𝑎★) = 0. Consider

the marginal distribution𝒟𝒳 and take points 𝑎0 < 𝑎★ < 𝑎1 such that
2

P𝑥∼𝒟𝒳 (𝑎0 < 𝑥 < 𝑎★) = P𝑥∼𝒟𝒳 (𝑎★ < 𝑥 < 𝑎1) = 𝜀.

Let 𝑆 ∼ 𝒟𝑚
be a training set, and define constants

3

𝑏0 ≔ max

(𝑥,1)∈𝑆
𝑥 and 𝑏1 ≔ min

(𝑥,0)∈𝑆
𝑥

Let 𝑏𝑆 ∈ R be a threshold obtained by ERMℋ , giving 𝑏0 < 𝑏𝑆 < 𝑏1. Notice that in order

to have a true error 𝐿𝒟(1<𝑏𝑆) ⩽ 𝜀 it is sufficient to ensure that 𝑎0 ⩽ 𝑏0 and 𝑏1 ⩽ 𝑎1 so

that 𝑏𝑆 ∈ (𝑎0, 𝑎1). Notice that

P𝑆∼𝒟𝑚 (𝐿𝒟(1<𝑏𝑆) > 𝜀) ⩽ P𝑆∼𝒟𝑚 (𝑏0 < 𝑎0 and 𝑏1 > 𝑎1)
⩽ P𝑆∼𝒟𝑚 (𝑏0 < 𝑎0) + P(𝑏1 > 𝑎1)

2
If such points do not exist, we can set 𝑎0 ≔ −∞ and 𝑎1 ≔ ∞.

3
If the first set is empty, we instead set 𝑏0 ≔ ∞, and if the latter is empty then 𝑏1 ≔ −∞.
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Notice that in order to have the event 𝑏0 < 𝑎0 one has to sample every point (𝑥, 𝑦) ∈ 𝑆
with 𝑥 < 𝑎0, since the probability of having a sample 𝑥 ∈ (𝑎0, 𝑎

★) is 𝜀 it follows that

P𝑆∼𝒟𝑚 (𝑏0 < 𝑎0) = P𝑆∼𝒟𝑚 (∀(𝑥, 𝑦) ∈ 𝑆, 𝑥 ∉ (𝑎0, 𝑎
★))

= (1 − 𝜀)𝑚

⩽ 𝑒−𝑚𝜀

⩽ 𝑒−
log(2/𝛿)

𝜀 𝜀

= 𝛿/2,

since 𝑚 > log(2/𝛿)/𝜀. Analogously, 𝑏1 > 𝑎1 only if each point (𝑥, 𝑦) of 𝑆 has 𝑥 > 𝑎1,

therefore P𝑆∼𝒟𝑚 (𝑏1 > 𝑎1) ⩽ 𝛿/2. This shows that

P𝑆∼𝒟𝑚 (𝐿𝒟(1<𝑏𝑆 > 𝜀)) ⩽ 𝛿.

♮

Definition 28.7.5 (Restricting the hypothesis class). Letℋ be a hypothesis class of maps

𝒳 → 𝒴 and take a finite set 𝐶 ⊆ 𝒳 . We defineℋ|𝐶 ≔ (ℎ|𝐶)ℎ∈ℋ to be the restriction of

the hypothesis class to 𝐶. We say thatℋ shatters 𝐶 if it is the case thatℋ|𝐶 = 𝒴 𝐶
.

Corollary 28.7.6. Letℋ be a hypothesis class of maps𝒳 → {0, 1}, and𝑚 be the training

set size. Assume the existence of a subset 𝐶 ⊆ 𝒳 with cardinality 2𝑚 such that ℋ|𝐶
shatters 𝐶. It follows that for any learning algorithm 𝐴 there exists a distribution 𝒟
over 𝒳 × {0, 1} and a predictor ℎ ∈ ℋ for which 𝐿𝒟(ℎ) = 0 and having a probability of

at least 1/7 over the choice of samples 𝑆 ∼ 𝒟𝑚
that 𝐿𝒟𝐴(𝑆) ⩾ 1/8.

Definition 28.7.7 (VC-dimension). Let ℋ be a hypothesis class. We define the VC-
dimension ofℋ to be:

VCdimℋ ≔ max{|𝐶| : 𝐶 ⊆ 𝒳 is shattered byℋ|𝐶}.

Theorem 28.7.8. Ifℋ is a class with infinite VC-dimension, thenℋ is not PAC learnable.

Proof. Let 𝑆 be a training set with size 𝑚. Since VCdimℋ = ∞ then there exists a set

with size 2𝑚 that is shattered byℋ—thus by Corollary 28.7.6ℋ isn’t PAC learnable. ♮

28.8 Fundamental Theorem of PAC Learning
Definition 28.8.1 (Growth function). Letℋ be a hypothesis class. We define the growth

function ofℋ to be the map Growthℋ : N→ N given by

Growthℋ (𝑚) ≔ max{|ℋ𝐶| : 𝐶 ⊆ 𝒳 with |𝐶| = 𝑚}.

Corollary 28.8.2. If VCdimℋ = 𝑑 then for any 𝑚 ⩽ 𝑑 we have Growthℋ (𝑚) = 2
𝑚

.
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Lemma 28.8.3 (Sauer-Shelah-Perles). Let ℋ be a hypothesis class with VCdimℋ ⩽ 𝑑

finite. Then for any 𝑚 ∈ N one has

Growthℋ (𝑚) ⩽
𝑑∑
𝑗=0

(
𝑚

𝑗

)
.

In particular, if 𝑚 > 𝑑 + 1 then our bound becomes

Growthℋ (𝑚) ⩽
(
𝑒𝑚

𝑑

)𝑑
Theorem 28.8.4 (Fundamental theorem of statistical learning). Letℋ be a hypothesis

class of maps 𝒳 → {0, 1} together with the binary loss function. The following

conditions are equivalent:

(a) The collectionℋ has the uniform convergence property.

(b) Any ERM rule succeeds at PAC learningℋ agnostically.

(c) The collectionℋ is agnostic PAC learnable.

(d) The collectionℋ is PAC learnable.

(e) Any ERM rule succeeds at PAC learningℋ .

(f) The collectionℋ has a finite VC-dimension.

Theorem 28.8.5 (Sample complexity estimation). Letℋ be a hypothesis class of maps

𝒳 → {0, 1} together with the binary loss function, and having a finite VCdimℋ = 𝑑.

There exists constants 𝑐1, 𝑐2 ∈ R such that:

(a) ℋ has the uniform convergence property and sample complexity:

𝑐1

𝑑 + log(1/𝛿)
𝜀2

⩽ 𝑚UC

ℋ (𝜀, 𝛿) ⩽ 𝑐2

𝑑 + log(1/𝛿)
𝜀2

.

(b) ℋ is agnostic PAC learnable and has sample complexity:

𝑐1

𝑑 + log(1/𝛿)
𝜀2

⩽ 𝑚UC

ℋ (𝜀, 𝛿) ⩽ 𝑐2

𝑑 + log(1/𝛿)
𝜀2

.

(c) ℋ is PAC learnable with sample complexity of:

𝑐1

𝑑 + log(1/𝛿)
𝜀

⩽ 𝑚ℋ (𝜀, 𝛿) ⩽ 𝑐2

𝑑 log(1/𝜀) + log(1/𝛿)
𝜀

.

Write proof
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28.9 Non-Uniform Learnability
Definition 28.9.1 (Competitive hypothesis). Letℋ be a hypothesis class, and let ℎ, ℎ′ ∈
ℋ be a pair of predictors, and consider parameters 𝜀, 𝛿 ∈ (0, 1). We say that ℎ is

(𝜀, 𝛿)-competitive with respect to ℎ′ if with a probability of at least 1 − 𝛿 we have

𝐿𝒟(ℎ) ⩽ 𝐿𝒟(ℎ′) + 𝜀.

Definition 28.9.2. We say that a hypothesis class ℋ is non-uniformly learnable if there

exists an algorithm 𝐴 and a map

𝑚NUL

ℋ : (0, 1)2 ×ℋ −→ N

such that, for every triple (𝜀, 𝛿, ℎ) ∈ (0, 1)2 × ℋ the resulting predictor 𝐴(𝑆) is (𝜀, 𝛿)-
competitive with respect to ℎ. That is, with a probability of at least 1−𝛿 over the choice

of sample set 𝑆 ∼ 𝒟𝑚
we have

𝐿𝒟𝐴(𝑆) ⩽ 𝐿𝒟(ℎ) + 𝜀.

Lemma 28.9.3. Let ℋ =
⋃
𝑛∈Nℋ𝑛 be a hypothesis class. If each ℋ𝑛 has the uniform

convergence property, thenℋ is non-uniformly learnable.

Theorem 28.9.4. Letℋ be a hypothesis class of maps of the form𝒳 → {0, 1}. The class

ℋ is non-uniformly learnable if and only if it consists of a countable union of agnostic

PAC learnable hypothesis classes.
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Chapter 29

Geometric Deep Learning

Geometric Deep Learning
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Chapter 30

Topological Deep Learning

30.1 Combinatorial Complex

First Characterisations
Definition 30.1.1 (Combinatorial complex). A combinatorial complex (CC) consists of a

triple 𝒳 = (𝑉, 𝐶, rank) where we have a set of vertices 𝑉 , a set of cells 𝐶 ⊆ 2
𝑉 ∖ ∅

(endowed with the inclusion preorder) and a map rank:𝐶 → Z⩾0 such that:

(a) For all 𝑣 ∈ 𝑉 we have {𝑣} ∈ 𝐶.

(b) The map rank is order preserving with respect to inclusions: if 𝑥, 𝑦 ⊆ 𝐶 are such

that 𝑥 ⊆ 𝑦 then rank 𝑥 ⩽ rank 𝑦.

The dimension of 𝒳 is defined to be

dim𝒳 ≔ max

𝑥∈𝐶
rank 𝑥.

A cell 𝑥 ∈ 𝐶 is said to be of rank 𝑘 ∈ Z⩾0 if rank 𝑥 = 𝑘, which we summarise by saying

that 𝑥 is a 𝑘-cell. The 𝑘-skeleton of 𝒳 is defined as

sk𝑘 𝒳 ≔ {𝑥 ∈ 𝐶 : rank 𝑥 ⩽ 𝑘}.

The collection of all cells of rank 𝑘 will be denoted by 𝒳 𝑘 ≔ rank
−1 𝑘.

Notation 30.1.2. Let 𝒳 = (𝑉, 𝐶, rank) be a combinatorial complex. For the sake of

clearness we shall also adopt the following notation: vertices of 𝒳 are denoted by

Vert𝒳 ≔ 𝑉 , while cells of 𝒳 are Cell𝒳 ≔ 𝐶, and when needed we’ll also write

rank𝒳 = rank.

Example 30.1.3. The particular class of combinatorial complexes whose 1-cells (edges)

are composed of exactly 2 vertices are called graph-based combinatorial complexes.

Definition 30.1.4 (Morphism of combinatorial complexes). Let 𝒳 and 𝒴 be combina-

torial complexes. We define a CC-morphism 𝜙:𝒳 → 𝒴 to be a map 𝜙: Cell𝒳 → Cell𝒴
satisfying:

599



(a) Given a pair 𝑥, 𝑥′ ∈ Cell𝒳 such that 𝑥 ⊆ 𝑥′, then 𝜙𝑥 ⊆ 𝜙𝑥′—that is, 𝜙 is order

preserving.

(b) For any 𝑥 ∈ Cell𝒳 we have rank𝒳 𝑥 ⩾ rank𝒴 (𝜙𝑥)—that is, for any 𝑘 ∈ Z⩾0 we have

𝜙(sk𝑘 𝒳) ⊆ sk𝑘 𝒴 .

Definition 30.1.5. A CC-morphism 𝜙:𝒳 → 𝒴 is said to be a CC-embedding if 𝜙 is an

injective set function on the cells, and rank𝒳 𝑥 = rank𝒴 (𝜙𝑥) for every cell 𝑥 ∈ Cell𝒳 .

Definition 30.1.6 (Sub-combinatorial complex). Let𝒳 be a combinatorial complex. We

say that 𝒴 is a sub-combinatorial complex (or sub-CC) if there exists a CC-embedding

𝒴 ↩→ 𝒳 . We shall denote by Sub𝒳 the collection of all sub-combinatorial complexes

of 𝒳 .

Example 30.1.7. For any subset 𝑉 ⊆ Vert𝒳 , we can induce a sub-CC given by

𝒳𝑉 ≔ (𝑉, 𝐶, rank𝒳 |𝐶)

where 𝐶 ≔ {𝑥 ∈ Cell𝒳 : 𝑥 ⊆ 𝑉}. In particular, for 𝑘 ∈ Z⩾0, the skeleton sk𝑘 𝒳 is a

sub-CC of 𝒳 . A cell 𝑥 ∈ Cell𝒳 also induces a sub-CC whose vertices are the nodes

contained in 𝑥 and whose cells are {𝑦 ∈ Cell𝒳 : 𝑦 ⊆ 𝑥}—we shall abuse the notation

and say that 𝑥 is a sub-CC of 𝒳 .

Neighbourhood Functions
Definition 30.1.8 (Neighbourhood functions & matrices). A neighbourhood function

on a combinatorial complex 𝒳 is a map 𝑁 : Sub𝒳 → 2
Vert𝒳 ∖ ∅, assigning to each

sub-CC of 𝒳 a non-empty subset of nodes of 𝒳 .

Let 𝐶 = {𝑐1, . . . , 𝑐𝑛} and 𝐶′ = {𝑐′
1
, . . . , 𝑐′𝑚} be two finite subsets of the cells of 𝒳 for

which 𝑁𝑐 𝑗 ⊆ 𝐶′ for any 1 ⩽ 𝑗 ⩽ 𝑛. We define the neighbourhood matrix of 𝑁 with respect
to 𝐶 and 𝐶′ to be the 𝑚 × 𝑛 binary matrix Mat𝑁 = [𝑎𝑖 𝑗] given by

𝑎𝑖 𝑗 =

{
1, if 𝑐′

𝑖
∈ 𝑁𝑐 𝑗

0, otherwise

Important Examples of Neighbourhood Functions

Now we shall define some of the most important neighbourhood functions for appli-

cations in topological neural networks.

Definition 30.1.9 (Down & up incidence neighbourhood function). Let 𝒳 be a combi-

natorial complex. Given a pair of distinct cells 𝑥, 𝑦 ∈ Cell𝒳 , we say that 𝑥 and 𝑦 are

incident if either 𝑥 ⊊ 𝑦 or 𝑦 ⊊ 𝑥. We define the following:

(a) The down-incidence neighbourhood function 𝑁↘: Sub𝒳 → 2
Vert𝒳 ∖ ∅ is the map

𝑁↗𝑥 ≔ {𝑦 ∈ Cell𝒳 : 𝑦 ⊊ 𝑥}.

600



(b) The up-incidence neighbourhood function 𝑁↗: Sub𝒳 → 2
Vert𝒳 ∖ ∅ is the map

𝑁↗𝑥 ≔ {𝑦 ∈ Cell𝒳 : 𝑥 ⊊ 𝑦}.

(c) Let 𝑘 ∈ Z⩾0 be any non-negative integer. We define the 𝑘-down incidence neighbour-
hood function 𝑁↘,𝑘 : Sub𝒳 → 2

Vert𝒳 ∖ ∅ to be the map

𝑁↘,𝑘𝑥 ≔ {𝑦 ∈ Cell𝒳 : 𝑦 ⊊ 𝑥 such that rank 𝑦 = rank(𝑥) − 𝑘}.

(d) Let 𝑘 ∈ Z⩾0 be any non-negative integer. We define the 𝑘-up incidence neighbourhood
function 𝑁↘,𝑘 : Sub𝒳 → 2

Vert𝒳 ∖ ∅ to be the map

𝑁↗,𝑘𝑥 ≔ {𝑦 ∈ Cell𝒳 : 𝑥 ⊊ 𝑦 such that rank 𝑦 = rank(𝑥) + 𝑘}.

Corollary 30.1.10. If 𝒳 is a CC, then 𝑁↘𝑥 =
⋃
𝑘⩾0

𝑁↘,𝑘𝑥 and 𝑁↗𝑥 =
⋃
𝑘⩾0

𝑁↗,𝑘𝑥 for

every 𝑥 ∈ Cell𝒳 .

Definition 30.1.11. Given a CC 𝒳 we define, for each cell 𝑥 ∈ Cell𝒳 the following:

(a) The faces of 𝑥 is defined to be 𝑁↘,1𝑥.

(b) The cofaces of 𝑥 is defined to be 𝑁↗,1𝑥.

Definition 30.1.12 (Incidence matrix). Let 𝒳 be a CC with finitely many vertices and

take non-negative integers 0 ⩽ 𝑟 < 𝑘 ⩽ dim𝒳 . We define the (𝑟, 𝑘)-incidence matrix
𝐵𝑟,𝑘 = [𝑏𝑖 𝑗] between 𝒳 𝑟 = {𝑥1, . . . , 𝑥𝑚} and 𝒳 𝑘 = {𝑥′

1
, . . . , 𝑥′𝑛} to be the binary 𝑚 × 𝑛

matrix such that

𝑏𝑖 𝑗 =

{
1, if 𝑥𝑖 is incident to 𝑥′

𝑗

0, otherwise

Definition 30.1.13 ((Co)adjacency neighbourhood function). Let 𝒳 be a CC. We shall

define the following neighbourhood functions on 𝒳 :

(a) The adjacency neighbourhood function𝑁
ad

: Cell𝒳 → 2
Vert𝒳∖∅ to be the map sending

a cell 𝑥 ∈ Cell𝒳 to the collection of all 𝑦 ∈ Cell𝒳 having rank 𝑦 = rank 𝑥 for which

there exists 𝑧 ∈ Cell𝒳 such that rank 𝑧 > rank 𝑥 and 𝑥, 𝑦 ⊊ 𝑧.

(b) The coadjacency neighbourhood function 𝑁
coad

: Cell𝒳 → 2
Vert𝒳 ∖ ∅ to be the map

sending a cell 𝑥 ∈ Cell𝒳 to the collection of all 𝑦 ∈ Cell𝒳 having rank 𝑦 = rank 𝑥

for which there exists 𝑧 ∈ Cell𝒳 such that rank 𝑧 < rank 𝑥, and having both 𝑧 ⊊ 𝑦

and 𝑧 ⊊ 𝑥.

A cell 𝑧 ∈ Cell𝒳 that satisfies either of the conditions imposed by the sets 𝑁
ad
𝑥 or

𝑁
coad

𝑥 is said to be a bridge cell.
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Appendix A

Calculus on Several Variables

A.1 Prelude

Sequences

Add important facts about sequences as they come up, just as a way to collect

important results

Behaviour of Maps
Before we start our journey through differential calculus on several variables, I would

like to point out some really important definitions for classifying the behaviour of

maps — of which we’ll use extensively.

Definition A.1.1 (Ultimately). We say that a property 𝑃 is ultimately satisfied by a

function 𝑓 over a filter base ℬ if there exists a 𝐵 ∈ ℬ such that 𝑃( 𝑓 |𝐵).

Definition A.1.2 (Little-oh). A function 𝑓 is said to be little-oh (or infinitesimal) of

another function 𝑔, which we write as 𝑓 =ℬ 𝑜(𝑔), if there exists a function 𝛼 such that

𝑓 (𝑥) = 𝛼(𝑥)𝑔(𝑥) holds ultimately over ℬ, and 𝛼 is infinitesimal over ℬ.

Definition A.1.3 (Big-oh). Given functions 𝑓 and 𝑔, we say that 𝑓 is big-oh of 𝑔, and

write 𝑓 =ℬ 𝑂(𝑔), if there exists a function 𝛽 such that ultimately over ℬ we have

𝑓 (𝑥) = 𝛽(𝑥)𝑔(𝑥), and 𝛽 is ultimately bounded over ℬ.

Definition A.1.4 (Order over base). We say that functions 𝑓 and 𝑔 have the same order

overℬ, and write 𝑓 ≍ℬ 𝑔, if 𝑓 =ℬ 𝑂(𝑔) and 𝑔 =ℬ 𝑂( 𝑓 ), or equivalently, if exists 𝑎, 𝑏 > 0

such that for some 𝐵 ∈ ℬ we have 𝑎|𝑔(𝑥)| ⩽ | 𝑓 (𝑥)| ⩽ 𝑏|𝑔(𝑥)|.

Definition A.1.5. Given functions 𝑓 , 𝑔, we say that 𝑓 behaves asymptotically like 𝑔

over ℬ, and write 𝑓 ∼ℬ 𝑔, if there exists a function 𝛾 such that limℬ 𝛾(𝑥) = 1 and

𝑓 (𝑥) = 𝛾(𝑥)𝑔(𝑥) ultimately over ℬ.
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Fundamental Inequalities
Now we take a look at some fundamental inequalities that are used in some of the

proofs of Appendix A.3.

Lemma A.1.6. For 𝑥 > 0 we have

𝑥𝛼 − 𝛼𝑥 + 𝛼 − 1 ⩽ 0, for 0 < 𝛼 < 1, (A.1)

𝑥𝛼 − 𝛼𝑥 + 𝛼 − 1 ⩾ 0, for 𝛼 < 0 or 1 < 𝛼. (A.2)

Proof. Let 𝑓 (𝑥) = 𝑥𝛼 − 𝛼𝑥 + 𝛼 − 1, then 𝑓 ′(𝑥) = 𝛼(𝑥𝛼−1 − 1). Notice that 𝑓 ′(1) = 0 and

that for 𝛼 ∈ (0, 1) we have that for some 𝛿 > 0, 𝑓 ′(1 − 𝛿) > 0 and 𝑓 ′(1 + 𝛿) < 0, which

shows that 𝑥 = 1 is a strict maximum. In the case where 𝛼 < 0 or 𝛼 > 1, 𝑓 ′(1 − 𝛿) < 0

and 𝑓 ′(1 + 𝛿) > 0, showing that 𝑥 = 1 is a strict minimum. The strictness comes from

the fact that 𝑓 is monotone in the intervals 𝑥 ∈ (0, 1) and 𝑥 > 1. Since 𝑓 (1) = 0, then

for 𝛼 ∈ (0, 1) the function is non-positive, and for 𝛼 < 0 or 𝛼 > 1 the function is

non-negative. ♮

Proposition A.1.7 (Young’s inequalities). Let 𝑎, 𝑏 > 0 and 𝑝, 𝑞 ∉ {0, 1} such that

𝑝−1 + 𝑞−1 = 1. Then

𝑎𝑝
−1

𝑏𝑞
−1

⩽
𝑎

𝑝
+ 𝑏
𝑞
, if 𝑝 > 1, (A.3)

𝑎𝑝
−1

𝑏𝑞
−1

⩾
𝑎

𝑝
+ 𝑏
𝑞
, if 𝑝 < 1. (A.4)

The equality of such relations hold only when 𝑎 = 𝑏.

Proof. Let 𝛼 = 𝑝−1
and set 𝑥 = 𝑎

𝑏 . From Eq. (A.1) we have

0 ⩾
(
𝑎

𝑏

) 1

𝑝 − 1

𝑝

𝑎

𝑏
+ 1

𝑝
− 1 =

(
𝑎

𝑏

) 1

𝑝 − 1

𝑝

𝑎

𝑏
− 1

𝑞

1

𝑝

𝑎

𝑏
+ 1

𝑞
⩾

(
𝑎

𝑏

) 1

𝑝

𝑎

𝑝
+ 𝑏
𝑞
⩾ 𝑎

1

𝑝 𝑏
1− 1

𝑝 = 𝑎𝑝
−1

𝑏𝑞
−1

.

Now, from Eq. (A.1) we have equivalently that

𝑎

𝑝
+ 𝑏
𝑞
⩾ 𝑎𝑝

−1

𝑏𝑞
−1

.

♮

Proposition A.1.8 (Hőlder’s inequalities). Let 𝑥 𝑗 , 𝑦𝑗 ⩾ 0 for 1 ⩽ 𝑗 ⩽ 𝑛 and 𝑝−1+𝑞−1 = 1.

Then ∑
1⩽ 𝑗⩽𝑛

𝑥 𝑗𝑦 𝑗 ⩽
( ∑

1⩽ 𝑗⩽𝑛

𝑥
𝑝

𝑗

) 1

𝑝
( ∑

1⩽ 𝑗⩽𝑛

𝑦
𝑞

𝑗

) 1

𝑞

for 𝑝 > 1, (A.5)

∑
1⩽ 𝑗⩽𝑛

𝑥 𝑗𝑦 𝑗 ⩾
( ∑

1⩽ 𝑗⩽𝑛

𝑥
𝑝

𝑗

) 1

𝑝
( ∑

1⩽ 𝑗⩽𝑛

𝑦
𝑞

𝑗

) 1

𝑞

for 𝑝 < 1 and 𝑝 ≠ 0. (A.6)
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If 𝑝 < 0, then we need the strictness 𝑥 𝑗 > 0 for all 1 ⩽ 𝑗 ⩽ 𝑛. Equality is obtained for

the case where (𝑥𝑝
𝑗
)𝑛
𝑗=1

and (𝑦𝑞
𝑗
)𝑛
𝑗=1

are linearly dependent.

Proof. Define 𝑥 =
∑𝑛
𝑗=1

𝑥 𝑗 > 0 and 𝑦 =
∑𝑛
𝑗=1

𝑦 𝑗 > 0. We can use Eq. (A.3) with 𝑎 =
𝑥
𝑝

𝑗

𝑥

and 𝑏 =
𝑦
𝑞

𝑗

𝑦 , for which we find that

𝑥 𝑗

𝑥𝑝
−1

𝑦 𝑗

𝑦𝑞
−1

⩽
1

𝑝

𝑥
𝑝

𝑗

𝑥
+ 1

𝑞

𝑦
𝑞

𝑗

𝑦

hence, summing such inequality over 1 ⩽ 𝑗 ⩽ 𝑛 we find∑𝑛
𝑗=1

𝑥 𝑗𝑦 𝑗

𝑥𝑝
−1

𝑦𝑞
−1

⩽
1

𝑝

∑𝑛
𝑗=1

𝑥
𝑝

𝑗

𝑥
+ 1

𝑞

∑𝑛
𝑗=1

𝑦
𝑝

𝑗

𝑦
=

1

𝑝
+ 1

𝑞
= 1

and finally Eq. (A.5) is shown

𝑛∑
𝑗=1

𝑥 𝑗𝑦 𝑗 ⩽ 𝑥𝑝
−1

𝑦𝑞
−1

=

( 𝑛∑
𝑗=1

𝑥
𝑝

𝑗

) 1

𝑝
( 𝑛∑
𝑗=1

𝑦
𝑞

𝑗

) 1

𝑞

.

The same equivalent proof can be made with Eq. (A.4) for Eq. (A.6). Since the equality

of the Young’s inequalities occurs only for 𝑎 = 𝑏, we find that the linear dependence

𝑥
𝑝

𝑗
= 𝑥

𝑦 𝑦
𝑞

𝑗
implies in the equality of Hőlder’s inequalities. ♮

Proposition A.1.9 (Minkowski’s inequalities). Let 𝑥 𝑗 , 𝑦𝑗 ⩾ 0 for 1 ⩽ 𝑗 ⩽ 𝑛. Then( ∑
1⩽ 𝑗⩽𝑛

(𝑥 𝑗 + 𝑦 𝑗)𝑝
) 1

𝑝

⩽
( ∑

1⩽ 𝑗⩽𝑛

𝑥
𝑝

𝑗

) 1

𝑝 +
( ∑

1⩽ 𝑗⩽𝑛

𝑦
𝑝

𝑗

) 1

𝑝

for 𝑝 > 1, (A.7)( ∑
1⩽ 𝑗⩽𝑛

(𝑥 𝑗 + 𝑦 𝑗)𝑝
) 1

𝑝

⩾
( ∑

1⩽ 𝑗⩽𝑛

𝑥
𝑝

𝑗

) 1

𝑝 +
( ∑

1⩽ 𝑗⩽𝑛

𝑦
𝑝

𝑗

) 1

𝑝

for 𝑝 < 1, and 𝑝 ≠ 0 (A.8)

The equality occurs when (𝑥 𝑗)1⩽ 𝑗⩽𝑛 and (𝑦 𝑗)1⩽ 𝑗⩽𝑛 are linearly dependent.

Proof. Notice that

𝑛∑
𝑗=1

(𝑥 𝑗 + 𝑦 𝑗)𝑝 =
𝑛∑
𝑗=1

(𝑥 𝑗 + 𝑦 𝑗)(𝑥 𝑗 + 𝑦 𝑗)𝑝−1 =

𝑛∑
𝑗=1

𝑥 𝑗(𝑥 𝑗 + 𝑦 𝑗)𝑝−1

𝑛∑
𝑗=1

𝑦 𝑗(𝑥 𝑗 + 𝑦 𝑗)𝑝−1

If 𝑝 > 0, then applying Eq. (A.5) we find (noting that 𝑞 =
𝑝

𝑝−1
)

𝑛∑
𝑗=1

(𝑥 𝑗 + 𝑦 𝑗)𝑝 ⩽
[( 𝑛∑

𝑗=1

𝑥
𝑝

𝑗

) 1

𝑝 +
( 𝑛∑
𝑗=1

𝑦
𝑝

𝑗

) 1

𝑝
] ( 𝑛∑

𝑗=1

(𝑥 𝑗 + 𝑦 𝑗)𝑝
) 1

𝑞

.
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For 𝑝 < 1 with 𝑝 ≠ 0, from Eq. (A.6) we get

𝑛∑
𝑗=1

(𝑥 𝑗 + 𝑦 𝑗)𝑝 ⩾
[( 𝑛∑

𝑗=1

𝑥
𝑝

𝑗

) 1

𝑝 +
( 𝑛∑
𝑗=1

𝑦
𝑝

𝑗

) 1

𝑝
] ( 𝑛∑

𝑗=1

(𝑥 𝑗 + 𝑦 𝑗)𝑝
) 1

𝑞

.

Now, dividing both inequalities by the term

( ∑
𝑗=1
(𝑥 𝑗 + 𝑦 𝑗)𝑝

) 1

𝑞

we find respectively

Eq. (A.7) and Eq. (A.8). The equality occurs the same as with Hőlder inequalities. ♮

Fixed Points and Banach Spaces
Definition A.1.10 (Fixed point). Let 𝑓 :𝑋 → 𝑋 be any map. A fixed point of 𝑓 is an

element 𝑥 ∈ 𝑋 such that 𝑓 (𝑥) = 𝑥.

Theorem A.1.11 (Fixed point theorem). Let 𝐼 ⊆ R be a closed set and 𝑓 : 𝐼 → R a

function such that 𝑓 (𝐼) ⊆ R and for some fixed 𝜃 ∈ [0, 1)we have, for all 𝑥, 𝑦 ∈ R:

| 𝑓 (𝑥) − 𝑓 (𝑦)| ⩽ 𝜃|𝑥 − 𝑦|.

Then there exists a unique fixed point 𝑐 ∈ 𝐼, that is 𝑓 (𝑐) = 𝑐.

Proof. Let 𝑥0 ∈ 𝐼 and define the sequence 𝑥𝑛 ≔ 𝑓 (𝑥𝑛−1) for all 𝑛 ⩾ 1. We first show that

(𝑥𝑛)𝑛∈N is Cauchy. Let 𝑛 > 𝑚 ⩾ 1, then

|𝑥𝑛 − 𝑥𝑚| =
��� 𝑛∑
𝑘=𝑚

𝑥𝑘+1 − 𝑥𝑘
��� ⩽ 𝑛∑

𝑘=𝑚

|𝑥𝑘+1 − 𝑥𝑘| =
𝑛∑

𝑘=𝑚

| 𝑓 (𝑥𝑘) − 𝑓 (𝑥𝑘−1)| (A.9)

Since | 𝑓 (𝑥𝑘) − 𝑓 (𝑥𝑘−1)| ⩽ 𝜃|𝑥𝑘 − 𝑥𝑘−1| and 𝑓 (𝑥𝑘) = 𝑥𝑘+1, we can make

∏𝑘
𝑖=1
| 𝑓 (𝑥𝑖) −

𝑓 (𝑥𝑖−1)| ⩽ 𝜃𝑘
∏𝑛

𝑖=1
|𝑥𝑖 − 𝑥𝑖−1| and divide both the inequality by

∏𝑘
𝑖=1
| 𝑓 (𝑥𝑖) − 𝑓 (𝑥𝑖−1)| =∏𝑘

𝑖=1
|𝑥𝑖 − 𝑥𝑖−1| in order to obtain

| 𝑓 (𝑥𝑘) − 𝑓 (𝑥𝑘−1)| ⩽ 𝜃𝑘|𝑥1 − 𝑥0|. (A.10)

Now we can substitute Eq. (A.10) in Eq. (A.9), then

|𝑥𝑛 − 𝑥𝑚| ⩽
𝑛−1∑
𝑘=𝑚

𝜃𝑘|𝑥1 − 𝑥0|

Moreover, since 𝜃 ∈ [0, 1)we have from the geometric series that

∑∞
𝑘=0

𝜃𝑘 = 1

1−𝜃 , so we

can conclude that

|𝑥𝑛 − 𝑥𝑚| ⩽
𝜃𝑚

1 − 𝜃
|𝑥1 − 𝑥0|.

and thus (𝑥𝑛)𝑛∈N is indeed a Cauchy sequence.

Let 𝑥𝑛 → 𝑐 ∈ 𝐼, since 𝐼 is closed and thus Cl 𝐼 = 𝐼. Since | 𝑓 (𝑥) − 𝑓 (𝑦)| ⩽ 𝜃|𝑥 − 𝑦| the

function is Lipschitz continuous, hence

lim

𝑛→∞
𝑓 (𝑥𝑛) = 𝑓 (𝑐) = lim

𝑛→∞
𝑥𝑛+1 = 𝑐
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and therefore 𝑐 is a fixed point of 𝑓 .

For the uniqueness of the fixed point, let 𝑐1, 𝑐2 be fixed points of 𝑓 , then | 𝑓 (𝑐1) −
𝑓 (𝑐2)| = |𝑐1−𝑐2| ⩽ 𝜃|𝑐1−𝑐2| and thus (1−𝜃)|𝑐1−𝑐2| ⩽ 0, but 𝜃 ∈ [0, 1), hence 𝑐1 = 𝑐2. ♮

Corollary A.1.12. Let 𝐼 ⊆ R be closed and 𝑓 : 𝐼 → 𝐼 be a differentiable function such

that exists 𝜃 ∈ [0, 1) for which | 𝑓 ′(𝑥)| ⩽ 𝜃, for all 𝑥 ∈ 𝐼. Then there exists a unique

fixed point of 𝑓 .

Proof. Choose any distinct points 𝑥, 𝑦 ∈ 𝐼, from the mean value theorem, there exists

𝑥0 ∈ (𝑥, 𝑦) such that 𝑓 (𝑥) − 𝑓 (𝑦) = 𝑓 ′(𝑥0)(𝑥 − 𝑦), then | 𝑓 (𝑥) − 𝑓 (𝑦)| ⩽ 𝜃|𝑥 − 𝑦|, which

satisfies the condition of Theorem A.1.11, hence the proposition holds. ♮

Definition A.1.13. Let (𝑉, ∥·∥) be a normed vector space. We say that a sequence

(𝑥𝑛)𝑛∈N ⊆ 𝑉 is Cauchy with respect to the norm ∥·∥ if for all 𝜀 > 0 there exists an index

𝑁 ∈ N such that, for all 𝑛, 𝑚 ⩾ 𝑁 , we have ∥𝑥𝑛 − 𝑥𝑚∥ < 𝜀.

Definition A.1.14 (Banach space). A normed vector space (𝑉, ∥·∥) is a Banach space if

every Cauchy sequence converges with respect to ∥·∥.

Definition A.1.15. Let 𝐵 be a Banach space. A subset 𝐴 ⊆ 𝐵 is said to be closed if the

limit of every convergent sequence in 𝐴 belongs to 𝐴.

Definition A.1.16 (Contraction). Let 𝐵 be a Banach space and 0 < 𝜃 < 1, then a map

𝑓 : 𝐵→ 𝐵 is said to be a 𝜃-contraction if for all 𝑣, 𝑤 ∈ 𝐵 we have

∥ 𝑓 (𝑣) − 𝑓 (𝑤)∥ ⩽ 𝜃∥𝑣 − 𝑤∥.

Theorem A.1.17 (Banach fixed point). Let 𝐵 be a Banach space and 𝐴 ⊆ 𝐵 be a closed

subset. Let 𝑓 :𝐴→ 𝐴 be a 𝜃-contraction. Then 𝑓 has a unique fixed point.

Proof. The proof of the Banach fixed point is merely the same analogous proof as the

one developed in Theorem A.1.11. ♮

Proposition A.1.18 (Fixed point stability). Let 𝐴 ⊆ 𝐵 be a closed subspace of the

Banach space 𝐵. Let Ω ⊆ 𝐵 e an open subspace of 𝐵. Consider the collection { 𝑓𝑥 ∈
𝐵(𝐴, 𝐴) : 𝑥 ∈ Ω} of 𝜃-contractions such that the map 𝑥 ↦→ 𝑓𝑥(𝑦) is continuous — that

is, lim𝑥→𝑥0
𝑓𝑥(𝑦) = 𝑓𝑥0

(𝑦). Then the solution map 𝑠:Ω→ 𝐴 defined as

𝑠(𝑥) = 𝑦 if and only if 𝑓𝑥(𝑦) = 𝑦

is continuous at 𝑥0 — that is, lim𝑥→𝑥0
𝑠(𝑥) = 𝑠(𝑥0).

Proof. We know from Theorem A.1.17 that — given any 𝑥 ∈ Ω — the fixed point

(unique) solution can be obtained as the limit of a sequence recursively defined as

𝑦 𝑗 = 𝑓𝑥(𝑦 𝑗−1) and 𝑦0 ∈ 𝐴 being any element. This way, consider such sequence (𝑦 𝑗)∞𝑗=1

but define 𝑦0 = 𝑠(𝑥0). Notice that since

∑𝑛
𝑗=1

𝑦 𝑗 − 𝑦 𝑗−1 = 𝑦𝑛 − 𝑦0, then we can write 𝑦𝑛
in the following form

𝑦𝑛 =

𝑛∑
𝑗=1

(𝑦 𝑗 − 𝑦 𝑗−1) + 𝑦0 =

𝑛∑
𝑗=2

( 𝑓𝑥(𝑦 𝑗−1) − 𝑓𝑥(𝑦 𝑗−2)) + 𝑦0 =

𝑛∑
𝑗=1

(
𝑓
𝑗−1

𝑥 (𝑦1) − 𝑓 𝑗−1

𝑥 (𝑦0)
)
+ 𝑦0.
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Now observe that

𝑛∑
𝑗=1

∥ 𝑓 𝑗−1

𝑥 (𝑦1) − 𝑓 𝑗−1

𝑥 (𝑦0)∥ ⩽
𝑛∑
𝑗=1

𝜃 𝑗−1∥𝑦1 − 𝑦0∥ =
∥𝑦1 − 𝑦0∥

1 − 𝑞 .

That is, ∥𝑦𝑛 − 𝑦0∥ ⩽ ∥𝑦1−𝑦0∥
1−𝑞 , hence — since (𝑦 𝑗)∞𝑗=1

converges to the fixed point of 𝑓𝑥 , we

have

∥𝑠(𝑥) − 𝑠(𝑥0)∥ = ∥ 𝑓 (𝑠(𝑥)) − 𝑓 (𝑠(𝑥0))∥ ⩽
∥𝑦1 − 𝑦0∥

1 − 𝑞 =
∥ 𝑓𝑥(𝑠(𝑥0)) − 𝑓𝑥0

(𝑠(𝑥0))∥
1 − 𝑞 .

On the other hand we also know that lim𝑥→𝑥0
𝑓𝑥(𝑦) = 𝑓𝑥0

(𝑦) thus

lim

𝑥→𝑥0

∥ 𝑓𝑥(𝑠(𝑥0)) − 𝑓𝑥0
(𝑠(𝑥0))∥ = 0.

This shows that lim𝑥→𝑥0
∥𝑠(𝑥) − 𝑠(𝑥0)∥ = 0 and therefore

lim

𝑥→𝑥0

𝑠(𝑥) = 𝑠(𝑥0).

♮

Definition A.1.19. Let 𝑉 and 𝑊 be Banach spaces. We define the set 𝐵(𝑉,𝑊) as the

collection of all linear maps 𝑓 :𝑉 →𝑊 .

A.2 Continuity
Remark A.2.1. This part will be mainly concerned with the euclidean metric space

given by R𝑛
and the metric

𝑑(𝑥, 𝑦) =

√√√ 𝑛∑
𝑗=1

(𝑥 𝑗 − 𝑦 𝑗)2

where 𝑥 = (𝑥 𝑗)𝑛𝑗=1
, 𝑦 = (𝑦 𝑗)𝑛𝑗=1

∈ R.

Compact sets in R𝑛

Definition A.2.2. A set 𝐾 ⊆ R𝑛
is compact if for every open cover 𝒞 of 𝐾 there exists a

finite subcover𝒰 ⊆ 𝒞 .

Definition A.2.3 (General closed interval). We define a closed interval 𝐼 in R𝑛
to be the

set

𝐼 = {𝑥 ∈ 𝑅𝑛 : 𝑥 𝑗 ∈ [𝑎 𝑗 , 𝑏 𝑗], 1 ⩽ 𝑗 ⩽ 𝑛}.
where 𝑎, 𝑏 ∈ R𝑛

are the boundaries of the interval 𝐼.

Proposition A.2.4. A closed interval in R𝑛
is compact.
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Proof. Suppose for the sake of contradiction that 𝒰 is a cover of 𝐼, closed interval

in R𝑛
, such that 𝒰 doesn’t admit a finite subcover. Consider the set of bisections

of 𝐼 in which for each component of the vectors 𝑥 ∈ 𝐼, that is, we create the sets

𝐼1
𝑗
= {𝑥 ∈ 𝐼 : 𝑥 𝑗 ∈ [𝑎 𝑗 , (𝑎 𝑗 + 𝑏 𝑗)/2]} and 𝐼2

𝑗
= {𝑥 ∈ 𝐼 : 𝑥 𝑗 ∈ [(𝑎 𝑗 + 𝑏 𝑗)/2, 𝑏 𝑗]} for each

1 ⩽ 𝑗 ⩽ 𝑛, generating 2
𝑛

subsets of 𝐼. Notice that since these sets are contained in 𝐼,

at least one of those should not admit a finite subcover from𝒰 , otherwise 𝐼 would be

compact. Hence define such set as 𝐼1. Now recursively do the same bisection process

for 𝐼1. We end up with a chain of nested intervals

𝐼 ⊃ 𝐼1 ⊃ 𝐼2 ⊃ . . .
each of which does not admit a finite subcover from𝒰 . Consider the interval 𝐼𝑚 = {𝑥 ∈
R𝑛

: 𝑥 𝑗 ∈ [𝑎𝑚𝑗 , 𝑏𝑚𝑗 ], 1 ⩽ 𝑗 ⩽ 𝑛} from the nested chain. Notice that for each 1 ⩽ 𝑗 ⩽ 𝑛 we

have that the coordinate closed intervals form again a chain of nested intervals

[𝑎 𝑗 , 𝑏 𝑗] ⊇ [𝑎1

𝑗 , 𝑏
1

𝑗 ] ⊇ [𝑎2

𝑗 , 𝑏
2

𝑗 ] ⊇ . . .

hence lim𝑡→∞ 𝑑(𝑎𝑡𝑗 , 𝑏𝑡𝑗) = 0. Since they form a nested chain, their intersection is non-

empty and therefore there exists a point 𝜁 𝑗 ∈ [𝑎𝑚𝑗 , 𝑏𝑚𝑗 ] common to all such intervals. In

doing so for 1 ⩽ 𝑗 ⩽ 𝑛 we find a point 𝜁 = (𝜁 𝑗)𝑛𝑗=1
∈ R𝑛

such that 𝜁 ∈ 𝐼𝑖 for all 𝑖 ⩾ 1

and 𝜁 ∈ 𝐼. From the last assertion one sees that there must exist 𝑈 ∈ 𝒰 with 𝜁 ∈ 𝑈 ,

hence exists 𝜀 > 0 such that 𝐵𝜁(𝜀) ⊆ 𝑈 . Now, since lim𝑡→∞ 𝑑(𝑎𝑡𝑗 , 𝑏𝑡𝑗) = 0, it must be

true that there exists 𝑀 > 0 such that for all 𝑚 > 𝑀 we have 𝐼𝑚 ⊆ 𝐵𝜁(𝜀) ⊆ 𝑈 , which

clearly covers finitely 𝐼𝑚 . This contradicts the assumption that all 𝐼𝑚 couldn’t be finitely

covered by a subcover of 𝒰 . This shows that we cannot pick a subset of 𝐼 with such

property, implying that 𝐼 itself should be compact. ♮

Proposition A.2.5. Let 𝐾 be a compact set of R𝑛
, then

(a) 𝐾 is closed in R𝑛
.

(b) Any closed subset of 𝐾 is compact.

Proof. (a) Let 𝑦 ∈ R𝑛
be any limit point of 𝐾. Suppose that 𝑦 ∉ 𝐾. For each point in

𝐾, say 𝑥, denote 𝑈𝑥 a neighbourhood. Consider the collection 𝒰 = {𝑈𝑥 : 𝑥 ∈ 𝐾},
which covers the set 𝐾. Since 𝐾 is said to be compact, there exists a finite subcover

𝒰 ′ = {𝑈𝑥1
, . . . , 𝑈𝑥𝑚} ⊆ 𝒰 . From the hypothesis 𝑦 does not belong to 𝐾, we can

find a neighbourhood 𝑉𝑗 of 𝑦 for 1 ⩽ 𝑗 ⩽ 𝑚 such that 𝑈𝑥 𝑗 ∩ 𝑉𝑗 = ∅. Consider

now the neighbourhood 𝑉 =
⋂

1⩽ 𝑗⩽𝑚 𝑉𝑗 of 𝑦. Since 𝐾 =
⋃𝒰 ′, we have 𝐾 ∩𝑉 = ∅,

therefore 𝑦 cannot be a limit point of 𝐾, which is a contradiction. This implies that

𝑦 ∈ 𝐾, if not, problematic neighbourhoods 𝑉𝑗 can be chosen.

(b) Let 𝐶 ⊆ R𝑛
be a closed set and 𝐶 ⊆ 𝐾. Let 𝒢 be an open cover of 𝐶 in R𝑛

. Notice

that 𝒰 = 𝒢 ∪ (R𝑛 ∖ 𝐶) is an open cover of R𝑛
, which clearly covers 𝐾. Therefore

there exists a finite subcover of 𝐾, 𝒰 ′ ⊆ 𝒰 , but since 𝐶 ⊆ 𝐾, then 𝒰 ′ also covers

𝐶. Since (R𝑛 ∖ 𝐶) ∩ 𝐶 = ∅, then 𝒰 ′ ∖ {R𝑛 ∖ 𝐶} is a finite subcover of 𝐶 from 𝒢 ,

therefore 𝐶 is a compact set.

♮
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Definition A.2.6. The diameter of a set 𝐴 ⊆ R𝑛
is defined to be

𝑑(𝐴) = sup

𝑥,𝑦∈𝐴
𝑑(𝑥, 𝑦).

Definition A.2.7. A set 𝐴 ⊆ R𝑛
is said to be bounded if 𝑑(𝐴) is finite.

Proposition A.2.8. If 𝐾 ⊆ R𝑛
is compact, then 𝐾 is also bounded in R𝑛

.

Proof. Let ℬ be the collection of all open balls around a given point 𝑥 ∈ R𝑛
, the set

ℬ covers R𝑛
and therefore also covers 𝐾. Notice that since 𝐾 is compact, there exists

a finite number of open balls ℬ′ ⊆ ℬ that cover 𝐾, hence the distance between any

elements of 𝐾 must be finite. ♮

Theorem A.2.9 (Heine-Borel). Let 𝐾 ⊆ R𝑛
be any set. The following statements are

equivalent:

(a) 𝐾 is closed and bounded.

(b) 𝐾 is compact.

Proof. Notice that the implication (b)⇒ (a) is already proven by the last two proposi-

tions (Proposition A.2.5 and Proposition A.2.8). Suppose now that 𝐾 is a closed and

bounded set. Since 𝐾 is bounded, there exists a closed interval 𝐼 ⊃ 𝐾. Since 𝐼 is

compact (Proposition A.2.4) and 𝐾 is closed we find that 𝐾 itself is compact (Proposi-

tion A.2.5). ♮

Limits
Remark A.2.10. In this subsection we shall denote a general set as 𝑋.

Definition A.2.11 (Limit). Let 𝑓 :𝑋 → R𝑛
be a map. We say that 𝑥 ∈ R𝑛

is the limit of

𝑓 over a filter base ℬ ⊆ 2
𝑋

if for every neighbourhood 𝑉 of 𝑥 there exists 𝐵 ∈ ℬ for

which 𝑓 (𝐵) ⊆ 𝑉 .

Definition A.2.12 (Bounded). A map 𝑓 :𝑋 → R𝑛
is said to be bounded if 𝑓 (𝑋) ⊆ R𝑛

is

bounded.

Definition A.2.13 (Ultimately bounded). Given a filter base ℬ ⊆ 2
𝑋

, a map 𝑓 :𝑋 → R𝑛

is ultimately bounded over the base ℬ if there exists 𝐵 ∈ ℬ for which 𝑓 is bounded.

Proposition A.2.14 (Unique limit). A map can have at most one limit over a filter base.

Proof. Let 𝑓 :𝑋 → R𝑛
be a map and suppose that limℬ 𝑓 (𝑥) = 𝑎 and limℬ 𝑓 (𝑥) = 𝑏,

where 𝑎 ≠ 𝑏. Since they are distinct points, there must exist neighbourhoods 𝑉𝑎 and

𝑉𝑏 for which 𝑉𝑎 ∩ 𝑉𝑏 = ∅. Now, remember from the definition that there must exist

𝐵𝑎 , 𝐵𝑏 ∈ ℬ such that 𝑓 (𝐵𝑎) ⊆ 𝑉𝑎 and 𝑓 (𝐵𝑏) ⊆ 𝑉𝑏 . From the downward direction

property of filter bases, there exists 𝐵 ⊆ 𝐵𝑎 ∩ 𝐵𝑏 in ℬ. Since ∅ ∉ ℬ, then 𝐵 ≠ ∅, hence

𝑓 (𝐵) ⊆ 𝑉𝑎 ∩𝑉𝑏 is non-empty, contradicting the assumption that there could be chosen

non-intersecting neighbourhoods of 𝑎 and 𝑏, which implies that 𝑎 = 𝑏 in R𝑛
. ♮
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Proposition A.2.15. If a map has a limit over a given filter base, then the map is

ultimately bounded over that filter base.

Proof. Let 𝑓 :𝑋 → R𝑛
be a map and ℬ ⊆ 2

𝑋
be a filter base. Assume that limℬ 𝑓 (𝑥) =

ℓ ∈ R𝑛
. For the sake of contradiction, suppose that 𝑓 is not ultimately bounded overℬ.

Let 𝐵ℓ (𝜀) be an open ball centred at ℓ with radius 𝜀 > 0. From the definition of a limit

over a filter, there exists 𝐵 ∈ ℬ for which 𝑓 (𝐵) ⊆ 𝐵ℓ (𝜀), but sup𝑥,𝑦∈𝐵ℓ (𝜀) 𝑑(𝑥, 𝑦) = 2𝜀,

which contradicts the fact that 𝑑( 𝑓 (𝐵)) is not bounded in R. Therefore, 𝑓 needs to be

ultimately bounded over ℬ. ♮

Corollary A.2.16. Let 𝑓 :𝑋 → R𝑛
and ℬ be a filter base over 𝑋. The map has a limit 𝑦

over ℬ if and only if each of the projection functions 𝜋 𝑗 𝑓 have limit 𝑦 𝑗 . That is,

lim

ℬ
𝑓 (𝑥) = 𝑦 ⇔ lim

ℬ
𝜋 𝑗 𝑓 (𝑥) = 𝑦 𝑗 , for 1 ⩽ 𝑗 ⩽ 𝑛

Definition A.2.17 (Cauchy sequence). A sequence (𝑥 𝑗)𝑗∈N of points in R𝑛
is a Cauchy

sequence if for every 𝜀 > 0 there exists an index 𝑁 ∈ N for which 𝑑(𝑥𝑖 , 𝑥 𝑗) < 𝜀 for all

𝑖 , 𝑗 > 𝑁 .

Proposition A.2.18. A sequence (𝑥 𝑗)𝑗∈N of points in R𝑛
is Cauchy if and only if (𝑥 𝑖

𝑗
)𝑗∈N

is Cauchy for all 1 ⩽ 𝑖 ⩽ 𝑛, where 𝑥 𝑗 = (𝑥 𝑖𝑗)𝑛𝑖=1
.

Proof. Notice that since

𝑑(𝑥 𝑖𝑗 , 𝑥 𝑖𝑘) ⩽ 𝑑(𝑥 𝑗 , 𝑥𝑘) ⩽
√
𝑛 max

1⩽𝑖⩽𝑛
𝑑(𝑥 𝑖𝑗 , 𝑥 𝑖𝑘)

then, if (𝑥 𝑗)𝑗∈N is Cauchy, we have that the inequality 𝑑(𝑥 𝑖
𝑗
, 𝑥𝑘

𝑘
) ⩽ 𝑑(𝑥 𝑗 , 𝑥𝑘) implies that

(𝑥 𝑖
𝑗
)𝑗∈N is Cauchy for each 1 ⩽ 𝑖 ⩽ 𝑛. Now, if in turn we have that for each component

the sequence (𝑥 𝑖
𝑗
)𝑗∈N is Cauchy, then since 𝑑(𝑥 𝑗 , 𝑥𝑘) ⩽

√
𝑛max1⩽𝑖⩽𝑛 𝑑(𝑥 𝑖𝑗 , 𝑥 𝑖𝑘) we find

that (𝑥 𝑗)𝑗∈N is Cauchy. ♮

Proposition A.2.19. A sequence in R𝑛
is convergent if and only if the sequence is

Cauchy.

Proof. Suppose that (𝑥 𝑗)𝑗∈N is a convergent sequence in R𝑛
with 𝑥 𝑗 → 𝑥. Let 𝜀 > 0,

choose any neighbourhood 𝑈 of 𝑥 such that 𝑑(𝑈) = 𝜀. Since the sequence converges,

there exists 𝑁 ∈ N for which 𝑥 𝑗 ∈ 𝑈 for all 𝑗 ⩾ 𝑁 , that is, for all 𝑗 , 𝑘 ⩾ 𝑁 we have

𝑑(𝑥 𝑗 , 𝑥𝑘) < 𝜀. Hence we conclude that (𝑥 𝑗)𝑗∈N is Cauchy. For the opposite case, let

(𝑥 𝑗)𝑗∈N be a Cauchy sequence. Then clearly there exists an element 𝑥 for which every

neighbourhood contains infinitely many points of (𝑥 𝑗)𝑗∈N. ♮

Definition A.2.20 (Oscillation). The oscillation of 𝑓 :𝑋 → R𝑛
on 𝐸 ⊆ 𝑋 is given by

𝜔( 𝑓 , 𝐸) = 𝑑( 𝑓 (𝐸)).

Theorem A.2.21 (Cauchy criterion for several variables). Let 𝑓 :𝑋 → R𝑛
be a map and

ℬ be a filter base over 𝑋. The map 𝑓 has a limit over ℬ if and only if for all 𝜀 > 0 there

exist 𝐵 ∈ ℬ such that 𝜔( 𝑓 , 𝐵) < 𝜀.
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Proof. Apply the Cauchy criterion for single variable maps on each of𝜋 𝑗 𝑓 for 1 ⩽ 𝑗 ⩽ 𝑛,

now, using Corollary A.2.16, we see that theorem is true for 𝑓 . ♮

Theorem A.2.22. Let 𝑔:𝑌 → 𝑅𝑛 and 𝑓 :𝑋 → 𝑌 be mappings. Let filter basis ℬ𝑌 on 𝑌

— such that 𝑔 has a limit overℬ𝑌 — andℬ𝑋 on 𝑋 such that for all 𝐵𝑌 ∈ ℬ𝑌 there exists

𝐵𝑋 ∈ ℬ𝑋 for which 𝑓 (𝐵𝑋) ⊆ 𝐵𝑌 . Then the composition 𝑔 𝑓 :𝑋 → R𝑛
has a limit over

ℬ𝑋 and we have the relation

lim

ℬ𝑋
𝑔 𝑓 (𝑥) = lim

ℬ𝑌
𝑔(𝑦).

Proof. Apply the property of the limit of the composition of single variable maps to

each of the 𝜋 𝑗𝑔 and 𝜋 𝑗 𝑓 . From Corollary A.2.16 we see that the theorem is true for 𝑔

and 𝑓 . ♮

Definition A.2.23 (Limit at infinity). Let 𝑓 :𝐸 → R𝑛
, where 𝐸 ⊆ R𝑚

. The filter base

that yields the limit 𝑥 → ∞ is given by ℬ∞ = {R𝑚 ∖ 𝐵𝑎(𝑟) : 𝑟 ∈ R} for any fixed point

𝑎 ∈ R𝑚
.

Definition A.2.24 (Limit to infinity). Let 𝑓 :𝐸 → R𝑛
, where 𝐸 ⊆ R𝑚

, and a filter base

ℬ on 𝐸. We say that 𝑓 (𝑥) →ℬ ∞ if — given any fixed point 𝑦 ∈ R𝑛
— any open ball

𝐵𝑦(𝑟) ⊆ R𝑛
is such that there exists 𝐵 ∈ ℬ for which 𝑓 (𝐵) ⊆ R𝑛 ∖ 𝐵𝑦(𝑟).

Continuity
Remark A.2.25. Throughout this subsection we shall assume that 𝐸 is a subset of R𝑚

.

Definition A.2.26 (Continuous). A map 𝑓 :𝐸 → R𝑛
is said to be continuous at a point

𝑥 ∈ 𝐸 if for every neighbourhood 𝑉 of 𝑓 (𝑥) there exists a neighbourhood 𝑈 ⊆ 𝐸 of 𝑥

such that 𝑓 (𝑈) ⊆ 𝑉 .

Corollary A.2.27. A map 𝑓 :𝐸 → R𝑛
is continuous at a point 𝑥 if and only if 𝜋 𝑗 𝑓 is

continuous at 𝑥 for each 1 ⩽ 𝑗 ⩽ 𝑛.

Definition A.2.28 (Path). We define a path in R𝑛
to be a continuous map between an

interval 𝐼 ⊆ R and R𝑛
.

Definition A.2.29 (Support). We define the support of a path 𝛾: 𝐼 → R𝑛
to be the image

𝛾(𝐼).

Definition A.2.30 (Oscillation at a point). Let 𝑓 :𝐸 → R𝑛
be a map and 𝑥 ∈ 𝐸. We

define the oscillation of 𝑓 at the point 𝑥 as the limit

𝜔( 𝑓 , 𝑥) = lim

𝑟→+0

𝜔( 𝑓 , 𝐵𝑎(𝑟) ∩ 𝐸).

Proposition A.2.31 (Local properties). Let 𝑓 :𝐸→ R𝑛
be a map.

(a) 𝑓 is continuous at 𝑥 ∈ 𝐸 if and only if 𝜔( 𝑓 , 𝑥) = 0.
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(b) If 𝑓 is continuous at a point 𝑥 ∈ 𝐸, then 𝑓 is bounded in some neighbourhood

𝑈𝑥 ∩ 𝐸 of 𝑥.

(c) Let set 𝑋 ⊆ R𝑚
and 𝑌 ∈ R𝑛

. Let 𝑔:𝑌 → R𝑘
be a continuous map at 𝑦 ∈ 𝑌. Let

𝑓 :𝑋 → 𝑌 be continuous at 𝑥 ∈ 𝑋 and 𝑓 (𝑥) = 𝑦. Then the map 𝑔 𝑓 :𝑋 → 𝑅𝑘 is

continuous at 𝑥.

If the map is real valued, we also have more properties. Let 𝑓 , 𝑔:𝐸→ R, then

(a) If 𝑓 is continuous at a point �̄� ∈ 𝐸, there exists a neighbourhood 𝑈 ∩ 𝐸 of �̄� such

that 𝑓 (𝑥) 𝑓 (�̄�) > 0 for all 𝑥 ∈ 𝑈 ∩ 𝐸.

(b) If 𝑓 and 𝑔 are continuous at a point 𝑥 ∈ 𝐸, then for any 𝛼, 𝛽 ∈ R we have that the

linear combination 𝛼 𝑓 + 𝛽𝑔:𝐸 → R, their product 𝑓 · 𝑔:𝐸 → R and — if 𝑔(𝑥) ≠ 0

— the quotient

𝑓

𝑔 :𝐸→ R are all continuous at the point 𝑥.

Proof.
Write proofs: local properties

♮

Definition A.2.32 (Uniformly continuous). Let 𝑓 :𝑋 → 𝑌 be a map between metric

spaces. We say that 𝑓 is uniformly continuous on 𝑋 if for every 𝜀 > 0 there exists

𝛿 > 0 such that, for every subset 𝐸 ⊆ 𝑋 of diameter 𝑑(𝐸) < 𝛿, we have an oscillation

𝜔( 𝑓 , 𝐸) < 𝜀.

Theorem A.2.33 (Heine-Cantor theorem). Let 𝑓 :𝑋 → 𝑌 be a continuous map between

metric spaces 𝑋 and 𝑌. If 𝑋 is compact, then 𝑓 is uniformly continuous.

Proof. Let any 𝜀 > 0. Since 𝑓 is continuous, there exists, for any 𝑥 ∈ 𝑋 a 𝛿𝑥 > 0 for

which, if 𝑑𝑋(𝑥, 𝑦) < 𝛿𝑥 , then 𝑑𝑌( 𝑓 (𝑥), 𝑓 (𝑦)) < 𝜀/2. Lets consider the open cover 𝒰 of

𝑋 consisting of the neighbourhoods 𝑈𝑥 ≔ {𝑦 ∈ 𝑋 : 𝑑𝑋(𝑥, 𝑦) < 𝛿𝑥
2
} for each 𝑥 ∈ 𝑋.

From definition, if 𝑋 is compact, then there exists a finite subcover {𝑈𝑥 𝑗}𝑛𝑗=1
⊆ 𝒰 of 𝑋.

Define the minimum radius of the given neighbourhoods as 𝛿 ≔ min1⩽ 𝑗⩽𝑛 𝛿𝑥 𝑗/2.

Let 𝑥, 𝑦 ∈ 𝑋 be any points such that 𝑑𝑋(𝑥, 𝑦) < 𝛿. From the finite subcover, we have

that there exists 1 ⩽ 𝑗0 ⩽ 𝑛 such that 𝑥 ∈ 𝑈𝑥 𝑗
0

, which implies that 𝑑𝑋(𝑥, 𝑥 𝑗0) < 𝛿𝑥 𝑗
0

/2,

thus 𝑑𝑌( 𝑓 (𝑥), 𝑓 (𝑥 𝑗0)) < 𝜀/2, from construction. Notice however that

𝑑𝑋(𝑦, 𝑥 𝑗0) ⩽ 𝑑𝑋(𝑦, 𝑥) + 𝑑𝑋(𝑥, 𝑥 𝑗0) < 𝛿 + 𝛿𝑥 𝑗
0

⩽ 𝛿𝑥 𝑗
0

,

therefore it follows that 𝑑𝑌( 𝑓 (𝑥 𝑗0), 𝑓 (𝑦)) < 𝜀/2. Using again the triangle inequality we

observe that

𝑑𝑌( 𝑓 (𝑥), 𝑓 (𝑦)) ⩽ 𝑑𝑌( 𝑓 (𝑥), 𝑓 (𝑥 𝑗0)) + 𝑑𝑌( 𝑓 (𝑥 𝑗0), 𝑓 (𝑦)) < 𝜀.

Therefore, 𝑓 is indeed uniformly continuous with constant 𝛿. ♮

Definition A.2.34 (Pathwise connected). A set 𝑋 ⊆ R𝑛
is pathwise connected if for all

𝑥, 𝑦 ∈ 𝐸 there exists a path 𝛾: 𝐼 → 𝐸 with endpoints at 𝑥 and 𝑦 and support in 𝐸.
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Definition A.2.35 (Domain). A domain in R𝑛
is an open pathwise connected subset of

R𝑛
.

Proposition A.2.36 (Global properties). The following are global properties on contin-

uous maps of several variables. Let 𝐾 ⊆ R𝑚
be a compact set and 𝐸 ⊆ R𝑚

be pathwise

connected.

(a) A continuous map 𝑓 :𝐾 → R𝑛
is uniformly continuous.

(b) A continuous map 𝑓 :𝐾 → R𝑛
is bounded on 𝐾.

(c) A continuous map 𝑓 :𝐾 → R assumes its maximal and minimal values at least once

in 𝐾.

(d) Let 𝑓 :𝐸 → R be a continuous map and assume 𝑓 (𝑎) = 𝐴 and 𝑓 (𝑏) = 𝐵 at 𝑎, 𝑏 ∈ 𝐸.

For any 𝐶 ∈ [𝐴, 𝐵] ⊆ R there exists 𝑐 ∈ 𝐸 such that 𝑓 (𝑐) = 𝐶.

Proof.
Write proofs: global properties

(d) From the connectedness of 𝐸, let 𝛾: [𝑥, 𝑦] → 𝐸 be a continuous path such that

𝛾(𝑥) = 𝑎 and 𝛾(𝑦) = 𝑏. Consider the composition of continuous maps 𝑓 𝛾: 𝐼 → R.

Since 𝑓 𝛾(𝑎) = 𝐴 and 𝑓 𝛾(𝑏) = 𝐵, for any given 𝐶 ∈ [𝐴, 𝐵], there exists 𝑧 ∈ [𝑥, 𝑦] such

that 𝑓 𝛾(𝑧) = 𝐶, hence there exists 𝑐 = 𝛾(𝑧) ∈ 𝐸 for which 𝑓 (𝑐) = 𝐶. ♮

Proposition A.2.37. Every linear map of the form 𝐿: R𝑚 → R𝑛
is continuous. Moreover,

it is uniformly continuous.

Proof. Let 𝑓 :𝐸→ R𝑛
be any map, then for all 1 ⩽ 𝑗 ⩽ 𝑛 we have

∥𝜋 𝑗 𝑓 (𝑥)∥R ⩽ ∥ 𝑓 (𝑥)∥R𝑛 ⩽
𝑛∑
𝑗=1

∥𝜋 𝑗 𝑓 (𝑥)∥R

In particular, for the linear map 𝐿 we have that — given any 𝑥 ∈ R𝑚

∥𝐿(𝑥)∥R𝑛 = ∥
𝑚∑
𝑗=1

𝑥 𝑗𝐿(𝑒 𝑗)∥R𝑛 ⩽
𝑚∑
𝑗=1

∥𝑥 𝑗∥R∥𝐿(𝑒 𝑗)∥R𝑛 ⩽ ∥𝑥∥R𝑚
©«
𝑚∑
𝑗=1

∥𝐿(𝑒 𝑗)∥R𝑛
ª®¬ .

Hence 𝐿 = 𝑂(id)— where id: R𝑚 → R𝑚
mapping 𝑥 ↦→ 𝑥. It follows from this that as

𝑥 → 𝑥0, we have 𝐿(𝑥 − 𝑥0) = 𝐿(𝑥) − 𝐿(𝑥0) → 0. This shows that 𝐿 is continuous at any

point of R𝑚
. Notice that given any 𝜀 > 0 if ∥𝑥 − 𝑦∥R𝑚 < 𝜀

ℓ — where ℓ ≔
∑𝑚
𝑗=1
𝐿(𝑒 𝑗)—

then

∥𝐿(𝑥)−𝐿(𝑦)∥R𝑛 = ∥
𝑚∑
𝑗=1

(𝑥 𝑗−𝑦 𝑗)𝐿(𝑒 𝑗)∥R𝑛 ⩽
𝑚∑
𝑗=1

∥𝐿(𝑒 𝑗)∥R𝑛∥𝑥 𝑗−𝑦 𝑗∥R ⩽ ℓ∥𝑥−𝑦∥R𝑚 < ℓ
𝜀
ℓ
= 𝜀

where we conclude that 𝐿 is uniformly continuous. ♮
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A.3 Differentiable Maps
Remark A.3.1. Throughout this chapter, we’ll denote by ∥∥: R𝑛 → R the standard

norm in R𝑛
, given by

∥𝑥∥ =

√√√ 𝑛∑
𝑗=1

𝑥2

𝑗
.

Moreover, the set 𝐸 is a any subset of R𝑚
.

Definition A.3.2 (Little-Oh). Given maps 𝑓 :𝑋 → R𝑛
and 𝑔:𝑋 → R𝑚

, we say that

𝑓 is little-Oh of 𝑔 over a filter base ℬ ⊆ 2
𝑋

— and write 𝑓 = 𝑜(𝑔) — if ∥ 𝑓 (𝑥)∥R𝑛 =

𝑜(∥𝑔(𝑥)∥R𝑚 ) over ℬ.

Proposition A.3.3. Let 𝐿: R𝑚 → R𝑛
be a linear map, then for ℎ ∈ R𝑚

, as ℎ → 0 we have

𝐿(𝑜(ℎ)) = 𝑜(ℎ).

Proof. Define 𝑓 (ℎ) = 𝛼(ℎ)ℎ = 𝑜(ℎ) — that is 𝛼: R𝑛 → R, where 𝛼(ℎ) → 0 as ℎ → 0.

This yields 𝐿( 𝑓 (ℎ)) = 𝐿(𝛼(ℎ)ℎ) = 𝛼(ℎ)∑𝑛
𝑗=1

ℎ 𝑗𝐿(𝑒 𝑗), therefore

∥𝐿( 𝑓 (ℎ))∥R𝑛 = ∥𝛼(ℎ)∥R∥
𝑛∑
𝑗=1

ℎ 𝑗𝐿(𝑒 𝑗)∥R𝑛

⩽ ∥𝛼(ℎ)∥R

𝑛∑
𝑗=1

∥𝐿(𝑒 𝑗)∥R𝑛∥ℎ 𝑗∥R

⩽ ©«∥𝛼(ℎ)∥R

𝑛∑
𝑗=1

∥𝐿(𝑒 𝑗)∥R𝑛
ª®¬ ∥ℎ∥R𝑚

and since ∥𝛼(ℎ)∥R
∑𝑛
𝑗=1
∥𝐿(𝑒 𝑗)∥R𝑛 → 0 as ℎ → 0, we find that 𝐿(𝑜(ℎ)) = 𝑜(ℎ). ♮

Definition A.3.4 (Big-Oh). Let maps 𝑓 :𝑋 → R𝑛
and 𝑔:𝑋 → R𝑚

. 𝑓 is said to be big-Oh

of 𝑔 over a filter base ℬ ⊆ 2
𝑋

— and denote by 𝑓 = 𝑂(𝑔)— if ∥ 𝑓 (𝑥)∥R𝑛 = 𝑂(∥𝑔(𝑥)∥R𝑚 )
over ℬ.

Proposition A.3.5. Let 𝐿: R𝑚 → R𝑛
be a linear map. For any ℎ ∈ R𝑚

we have that —

as ℎ → 0

𝐿(ℎ) = 𝑂(ℎ).

Proof. Consider ℎ =
∑𝑚
𝑗=1

ℎ 𝑗𝑒 𝑗 , then 𝐿(ℎ) = ∑𝑚
𝑗=1

ℎ 𝑗𝐿(𝑒 𝑗). From Minkowski’s inequalities

(see Proposition A.1.9) we have

∥𝐿(ℎ)∥R𝑛 = ∥
𝑚∑
𝑗=1

ℎ 𝑗𝐿(𝑒 𝑗)∥R𝑛 ⩽
𝑚∑
𝑗=1

∥𝐿(𝑒 𝑗)∥R𝑛∥ℎ 𝑗∥R ⩽ ©«
𝑚∑
𝑗=1

∥𝐿(𝑒 𝑗)∥R𝑛
ª®¬ ∥ℎ∥R𝑚 = 𝑀∥ℎ∥R𝑚

Thus, as ℎ → 0 that 𝐿(ℎ) = 𝑂(ℎ). ♮
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Definition A.3.6 (Tangent space). Let 𝑥 ∈ R𝑛
. We define the tangent space of 𝑥 —

denoted by 𝑇𝑥R𝑛
— to be the 𝑅-vector space spanned by 𝑥.

Definition A.3.7 (Differentiable). A map 𝑓 :𝐸 → R𝑛
is differentiable at a point 𝑥 ∈ 𝐸

— where 𝑥 is a limit point of 𝐸 — if

𝑓 (𝑥 + 𝑡) − 𝑓 (𝑥) = 𝐿(𝑥)(𝑡) + 𝛼(𝑥, 𝑡) (A.11)

where 𝐿(𝑥): R𝑚 → R𝑛
is a linear map — on the variable 𝑡 — and 𝛼(𝑥, 𝑡) = 𝑜(𝑡) as 𝑡 → 0.

We call the linear map 𝐿(𝑥) the differential (or tangent map) of 𝑓 at the point 𝑥 ∈ 𝐸— we

shall normally denote 𝐿(𝑥) by d 𝑓 (𝑥):𝑇𝑥R𝑚 → 𝑇𝑓 (𝑥)R𝑛
. We can clarify the last equation

by writing it equivalently as

𝑓 (𝑥 + 𝑡) − 𝑓 (𝑥) = d 𝑓 (𝑥)(𝑡) + 𝑜(𝑡). (A.12)

Proposition A.3.8. A map 𝑓 :𝐸→ R𝑛
is differentiable at a limit point 𝑥 ∈ 𝐸 if and only

if, for all 1 ⩽ 𝑗 ⩽ 𝑛, the maps 𝜋 𝑗 ◦ 𝑓 :𝐸→ R are differentiable at 𝑥.

Proof. Notice that Eq. (A.12) can be rewritten coordinate-wise — as 𝑡 → 0

𝜋 𝑗 ◦ 𝑓 (𝑥 + 𝑡) − 𝜋 𝑗 ◦ 𝑓 (𝑥) = (𝜋 𝑗 ◦ d 𝑓 (𝑥))(𝑡) + 𝑜(𝑡). (A.13)

Assume that 𝜋 𝑗 ◦ d 𝑓 (𝑥) has the general form of (𝜋 𝑗 ◦ d 𝑓 (𝑥))(𝑡) ≔ ∑𝑚
𝑗=1

𝑎
𝑗
𝑥𝑡 𝑗 , where

𝑎
𝑗
𝑥 ∈ R are scalars dependent on 𝑥 ∈ 𝐸 for all 1 ⩽ 𝑗 ⩽ 𝑚. Consider, for each 1 ⩽ 𝑗 ⩽ 𝑚,

the displacements 𝑡 = 𝑡 𝑗𝑒 𝑗 so that ∥𝑡∥R𝑚 = ∥𝑡 𝑗∥R. For such displacements, we find —

as 𝑡 𝑗 → 0

𝜋 𝑗 ◦ 𝑓 (𝑥 + 𝑡 𝑗𝑒 𝑗) − 𝜋 𝑗 ◦ 𝑓 (𝑥) = 𝑎
𝑗
𝑥𝑡 𝑗 + 𝑜(𝑡 𝑗)

therefore we find that each of the scalar corresponding to displacements on the 𝑗th

coordinate — of the 𝑗th differential 𝜋 𝑗 ◦ 𝑓 of 𝑓 — can be written as

𝑎
𝑗
𝑥 = lim

𝑡 𝑗→0

𝜋 𝑗 ◦ 𝑓 (𝑥 + 𝑡 𝑗𝑒 𝑗) − 𝜋 𝑗 ◦ 𝑓 (𝑥)
𝑡 𝑗

. (A.14)

The equivalence between Eq. (A.12) and Eq. (A.13) shows that the map 𝑓 is differen-

tiable at 𝑥 if and only if each of its coordinate decompositions are differentiable at

𝑥. ♮

Partial Derivative and Differential of Real Valued Maps
Definition A.3.9 (Partial derivative). Let 𝑓 :𝐸 → R, where 𝐸 ⊆ R𝑚

. We define the

partial derivative of 𝑓 at the point 𝑥 ∈ Int𝐸, with respect to its 𝑗th coordinate, to be the

real value (if existent)

𝜕𝑗 𝑓 (𝑥) = lim

𝑡→0

𝑓 (𝑥 + 𝑡𝑒 𝑗) − 𝑓 (𝑥)
𝑡
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Notice that, given a map 𝑓 :𝐸→ R𝑛
, the partial derivative of each of its coordinate-

wise maps 𝜋 𝑗 ◦ 𝑓 is the real value

𝜕𝑗(𝜋 𝑗 ◦ 𝑓 )(𝑥) = lim

R∋𝑡→0

𝜋 𝑗 ◦ 𝑓 (𝑥 + 𝑡𝑒 𝑗) − 𝜋 𝑗 ◦ 𝑓 (𝑥)
𝑡

.

Consider the 𝑗th projection map 𝜋 𝑗 : R𝑚 → R. From the definition Definition A.3.7,

the differential of 𝜋 𝑗 at a point 𝑥 ∈ R𝑚
is given by d𝜋 𝑗(𝑥)(𝑡) = 𝜋 𝑗(𝑥 + 𝑡) − 𝜋 𝑗(𝑥) = 𝑡 𝑗 ,

which is independent of 𝑥. We can define now the following operator, that will stand

as a clever notation for the differential of the projection maps.

Notation A.3.10. Given a point 𝑥 ∈ R𝑚
, we denote the linear map d𝑥 𝑗 :𝑇𝑥R𝑚 → 𝑇𝜋𝑗(𝑥)R

as

d𝑥 𝑗(𝑡) = 𝑡 𝑗 .

Proposition A.3.11 (Real valued differential). Let 𝑓 :𝐸 → R be a differentiable map at

an interior point 𝑥 ∈ Int𝐸. Then 𝑓 has a partial derivative at 𝑥 for each of its variables.

The differential of 𝑓 at the point 𝑥 — the map d 𝑓 (𝑥):𝑇𝑥R𝑚 → 𝑇𝑓 (𝑥)R𝑛
— is uniquely

defined as the sum of the partial derivatives of 𝑓 at 𝑥 — that is, for any 𝑡 ∈ 𝑇𝑥R𝑚
, we

have

d 𝑓 (𝑥)(𝑡) =
∑

1⩽ 𝑗⩽𝑚

𝜕𝑗 𝑓 (𝑥)𝑡 𝑗 .

In view of the introduced Notation A.3.10, we can rewrite the differential as the map

d 𝑓 (𝑥) =
∑

1⩽ 𝑗⩽𝑚

𝜕𝑗 𝑓 (𝑥)d𝑥 𝑗 .

Notation A.3.12. For the sake of brevity — given a function 𝑓 :𝐸 → 𝑅𝑛 — we define

𝑓𝑗 ≔ 𝜋 𝑗 ◦ 𝑓 for each 1 ⩽ 𝑗 ⩽ 𝑛.

Differential of a Map R𝑚 → R𝑛

Now we can generalize the results for real valued functions 𝐸→ R to functions of the

type 𝐸→ R𝑛
.

Corollary A.3.13 (Several variables differential). Let 𝑓 :𝐸→ R𝑛
be differentiable at the

interior point 𝑥 ∈ Int𝐸. The differential of 𝑓 at 𝑥, d 𝑓 (𝑥):𝑇𝑥R𝑚 → 𝑇𝑓 (𝑥)R𝑚
, exists and is

uniquely given by — for any given 𝑡 ∈ 𝑇𝑥R𝑚

d 𝑓 (𝑥)(𝑡) =

d 𝑓1(𝑥)(𝑡)

...

d 𝑓𝑛(𝑥)

 =


∑𝑚
𝑗=1

𝜕𝑗 𝑓1(𝑥)𝑡 𝑗
...∑𝑚

𝑗=1
𝜕𝑗 𝑓𝑛(𝑥)𝑡 𝑗

 =


𝜕1 𝑓1(𝑥) . . . 𝜕𝑚 𝑓1(𝑥)

...
. . .

...

𝜕1 𝑓𝑛(𝑥) . . . 𝜕𝑚 𝑓𝑛(𝑥)



𝑡1
...

𝑡𝑚

 (A.15)

Definition A.3.14 (Jacobi matrix). The matrix given by the partial derivatives of the

projections of 𝑓 :𝐸 → R𝑛
— [𝜕𝑖 𝑓𝑗(𝑥)]𝑖 , 𝑗 , with 1 ⩽ 𝑖 ⩽ 𝑚 and 1 ⩽ 𝑗 ⩽ 𝑛 — is called the

Jacobi matrix 𝑓 at 𝑥.
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Notation A.3.15 (Jacobi matrix). We’ll denote the Jacobi matrix of a map 𝑓 :𝐸→ R𝑛
at

an interior point 𝑥 — where 𝑓 is differentiable — as 𝑓 ′(𝑥).

Definition A.3.16 (Jacobian). Let 𝐸 ⊆ R𝑛
and a map 𝑓 :𝐸 → R𝑛

— where 𝑓 is differ-

entiable at an interior point 𝑥 ∈ Int𝐸. The Jacobi matrix of 𝑓 at the point 𝑥 is a 𝑛 × 𝑛
square matrix and its determinant det[𝜕𝑖 𝑓𝑗(𝑥)]𝑖 , 𝑗 is called the Jacobian of 𝑓 at 𝑥.

Connections Between Differentiability and Continuity
Corollary A.3.17 (Differentiable implies continuous). Let 𝑓 :𝐸→ R𝑛

be a differentiable

map at a point 𝑥 ∈ 𝐸. Then 𝑓 is continuous at 𝑥.

Proof. By definition, the differential of 𝑓 at 𝑥 exists and is a linear map. By Proposi-

tion A.2.37 we find that d 𝑓 (𝑥) is continuous and hence d 𝑓 (𝑥)(𝑡) → 0 as 𝑡 → 0. Then

as 𝑡 → 0 we have 𝑓 (𝑥 + 𝑡) − 𝑓 (𝑥) = d 𝑓 (𝑥)(𝑡) + 𝑜(𝑡) → 0 so lim𝑡→0 𝑓 (𝑥 + 𝑡) = 𝑓 (𝑥)— the

map is continuous at 𝑥. ♮

Remark A.3.18 (Differential and partial derivatives). The Proposition A.3.11 shows that

if a map is differentiable at an interior point of its domain, then the partial derivatives

exist at the given point. However, the converse does not hold. For instance, consider

the map 𝑔: R2 → R given by

𝑔(𝑥, 𝑦) ≔
{

𝑥𝑦

𝑥2+𝑦2
, 𝑥2 + 𝑦2 ≠ 0

0, 𝑥2 + 𝑦2 = 0

Notice that 𝑔(0, 𝑦) = 𝑔(𝑥, 0) = 0 but 𝑔(𝑥, 𝑥) = 1

2
when 𝑥 ≠ 0, therefore 𝑔 has no limit as

(𝑥, 𝑦) → 0. On the other hand, 𝑔 has partial derivatives for all points over the plane

𝜕1𝑔(𝑥, 𝑦) =
𝑦(𝑦2 − 𝑥2)
(𝑥2 + 𝑦2)2 and 𝜕2𝑔(𝑥, 𝑦) =

𝑥(𝑥2 − 𝑦2)
(𝑥2 + 𝑦2)2 .

Laws of Differentiability
Theorem A.3.19. Let 𝑓 , 𝑔:𝐸 → R𝑛

be differentiable maps at the point 𝑥 ∈ 𝐸, then the

linear combination 𝜆 𝑓 + 𝛾𝑔:𝐸 → R𝑛
, where 𝜆, 𝛾 ∈ R are scalars, is differentiable at 𝑥

and the differential d(𝜆 𝑓 + 𝛾𝑔):𝑇𝑥R𝑚 → 𝑇𝜆 𝑓 (𝑥)+𝛾𝑔(𝑥)R𝑛
is given by

d(𝜆 𝑓 + 𝛾𝑔)(𝑥) = (𝜆d 𝑓 + 𝛾d𝑔)(𝑥).

Proof. Note that

(𝜆 𝑓 + 𝛾𝑔)(𝑥 + 𝑡) − (𝜆 𝑓 + 𝛾𝑔)(𝑥) = 𝜆( 𝑓 (𝑥 + 𝑡) − 𝑓 (𝑥)) + 𝛾(𝑔(𝑥 + 𝑡) + 𝑔(𝑥))
= 𝜆(d 𝑓 (𝑥)(𝑡) + 𝑜(𝑡)) + 𝛾(d𝑔(𝑥)(𝑡) + 𝑜(𝑡))
= (𝜆d 𝑓 (𝑥) + 𝛾d𝑔(𝑥))(𝑡) + 𝑜(𝑡)

thus 𝜆 𝑓 + 𝛾𝑔 is differentiable at 𝑥. Taking the limit as 𝑡 → 0, we find

d(𝜆 𝑓 + 𝛾𝑔)(𝑥)(𝑡) = 𝜆d 𝑓 (𝑥)(𝑡) + 𝛾d𝑔(𝑥)(𝑡).
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If we also assume that 𝑥 ∈ Int𝐸, then we can rewrite the last relation as
𝜕1(𝜆 𝑓 + 𝛾𝑔)1(𝑥) . . . 𝜕𝑚(𝜆 𝑓 + 𝛾𝑔)1(𝑥)

...
. . .

...

𝜕1(𝜆 𝑓 + 𝛾𝑔)𝑛(𝑥) . . . 𝜕𝑚(𝜆 𝑓 + 𝛾𝑔)𝑛(𝑥)

 =


𝜆𝜕1 𝑓1(𝑥) + 𝛾𝜕1𝑔1(𝑥) . . . 𝜆𝜕𝑚 𝑓1(𝑥) + 𝛾𝜕𝑚 𝑔1(𝑥)

...
. . .

...

𝜆𝜕1 𝑓𝑛(𝑥) + 𝛾𝜕1𝑔𝑛(𝑥) . . . 𝜆𝜕𝑚 𝑓𝑛(𝑥) + 𝛾𝜕𝑚 𝑔𝑛(𝑥)


thus the following equality is obtained

𝜕𝑖(𝜆 𝑓 + 𝛾𝑔)𝑗(𝑥) = 𝜆𝜕𝑖 𝑓𝑗(𝑥) + 𝛾𝜕𝑖𝑔𝑗(𝑥)

♮

Theorem A.3.20. Let ℎ, ℓ :𝐸→ R be differentiable maps at 𝑥 ∈ 𝐸. Then

(a) The product ℎ · ℓ :𝐸→ R is differentiable at 𝑥 and the differential d(ℎ · ℓ ):𝑇𝑥R𝑚 →
𝑇(ℎ·ℓ )(𝑥)R is given by

d(ℎ · ℓ )(𝑥) = ℎ(𝑥)dℓ (𝑥) + ℓ (𝑥)dℎ(𝑥). (A.16)

If we also assume 𝑥 ∈ Int𝐸, then the relation can be rewritten matricially as[
𝜕1(ℎ · ℓ )(𝑥) · · · 𝜕𝑚(ℎ · ℓ )(𝑥)

]
=

[
ℎ(𝑥)𝜕1ℓ (𝑥) + ℓ𝜕1ℎ(𝑥) · · · ℎ(𝑥)𝜕𝑚ℓ (𝑥)

]
thus the following relation is obtained

𝜕𝑖(ℎ · ℓ )(𝑥) = ℎ(𝑥)𝜕𝑖ℓ (𝑥) + ℓ (𝑥)𝜕𝑖ℎ(𝑥) for 1 ⩽ 𝑖 ⩽ 𝑚 (A.17)

(b) If ℓ (𝑥) ≠ 0, the quotient
ℎ
ℓ :𝐸 → R is differentiable at 𝑥 and the differential of such

quotient at 𝑥, d
ℎ
ℓ :𝑇𝑥R𝑚 → 𝑇ℎ

ℓ (𝑥)
R, is given by

d

ℎ

ℓ
(𝑥) = ℓ (𝑥)dℎ(𝑥) − ℎ(𝑥)dℓ (𝑥)

ℓ2(𝑥) . (A.18)

If we also assume 𝑥 ∈ Int𝐸, then the relation can be rewritten matricially as[
𝜕1

ℎ
ℓ (𝑥) · · · 𝜕𝑚 ℎ

ℓ (𝑥)
]
=

1

ℓ 2(𝑥)
[
ℓ (𝑥)𝜕1ℎ(𝑥) − ℎ(𝑥)𝜕1ℓ (𝑥) · · · ℓ (𝑥)𝜕𝑚ℎ(𝑥) − ℎ(𝑥)𝜕𝑚ℓ (𝑥)

]
thus we obtain

𝜕𝑖
ℎ

ℓ
(𝑥) = ℓ (𝑥)𝜕𝑖ℎ(𝑥) − ℎ(𝑥)𝜕𝑖ℓ (𝑥)

ℓ2(𝑥) (A.19)

Theorem A.3.21 (Composition). Let 𝐴 ⊆ R𝑚
and 𝐵 ⊆ R𝑛

be any sets and define maps

𝑓 :𝐴 → 𝐵 and 𝑔: 𝐵 → 𝑅𝑘 . Let 𝑓 and 𝑔 be such that 𝑓 is differentiable at 𝑥 ∈ 𝐴 and 𝑔

is differentiable at 𝑓 (𝑥) ∈ 𝐵. Then the map 𝑔 ◦ 𝑓 :𝐴 → R𝑘
is differentiable at 𝑥 ∈ 𝐴.

Moreover, the differential d(𝑔 ◦ 𝑓 )(𝑥):𝑇R𝑚
𝑥 → 𝑇R𝑘 𝑔( 𝑓 (𝑥)) is

d(𝑔 ◦ 𝑓 )(𝑥) = d𝑔( 𝑓 (𝑥)) ◦ d 𝑓 (𝑥). (A.20)
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Also, if 𝑥 ∈ Int𝐴 and 𝑓 (𝑥) ∈ Int 𝐵, then the theorem can be rewritten in terms of the

Jacobian matrix
𝜕1(𝑔1 ◦ 𝑓 )(𝑥) . . . 𝜕𝑚(𝑔1 ◦ 𝑓 )(𝑥)

...
. . .

...

𝜕1(𝑔𝑘 ◦ 𝑓 )(𝑥) . . . 𝜕𝑚(𝑔𝑘 ◦ 𝑓 )(𝑥)

 =


𝜕1𝑔1( 𝑓 (𝑥)) . . . 𝜕𝑛 𝑔1( 𝑓 (𝑥))

...
. . .

...

𝜕1𝑔𝑘( 𝑓 (𝑥)) . . . 𝜕𝑛 𝑔𝑘( 𝑓 (𝑥))



𝜕1 𝑓1(𝑥) . . . 𝜕𝑚 𝑓1(𝑥)

...
. . .

...

𝜕1 𝑓𝑛(𝑥) . . . 𝜕𝑚 𝑓𝑛(𝑥)


hence we find the relation — for 1 ⩽ 𝑖 ⩽ 𝑚 and 1 ⩽ 𝑗 ⩽ 𝑘

𝜕𝑖(𝑔𝑗 ◦ 𝑓 )(𝑥) =
∑

1⩽𝑟⩽𝑛

(𝜕𝑟 𝑔𝑗( 𝑓 (𝑥))) · (𝜕𝑖 𝑓𝑟(𝑥)) (A.21)

Proof. Consider the filter base given by ℎ → 0, where 𝑓 (𝑥+ ℎ)− 𝑓 (𝑥) = d 𝑓 (𝑥)(ℎ)+ 𝑜(ℎ),
and as 𝑡 → 0 we find 𝑔( 𝑓 (𝑥) + 𝑡) − 𝑔( 𝑓 (𝑥)) = d𝑔( 𝑓 (𝑥)) + 𝑜(𝑡). Therefore by defining

𝑡 ≔ 𝑓 (𝑥 + ℎ) − 𝑓 (𝑥)we can write — as ℎ, 𝑡 → 0

𝑔( 𝑓 (𝑥 + ℎ)) − 𝑔( 𝑓 (𝑥)) = 𝑔( 𝑓 (𝑥) + 𝑡) − 𝑔( 𝑓 (𝑥))
= d𝑔( 𝑓 (𝑥))(𝑡) + 𝑜(𝑡)
= d𝑔( 𝑓 (𝑥))( 𝑓 (𝑥 + ℎ) − 𝑓 (𝑥)) + 𝑜( 𝑓 (𝑥 + ℎ) − 𝑓 (𝑥))
= d𝑔( 𝑓 (𝑥))(d 𝑓 (𝑥)(ℎ) + 𝑜(ℎ)) + 𝑜( 𝑓 (𝑥 + ℎ) − 𝑓 (𝑥))
= d𝑔( 𝑓 (𝑥))(d 𝑓 (𝑥)(ℎ)) + d𝑔( 𝑓 (𝑥))(𝑜(ℎ)) + 𝑜( 𝑓 (𝑥 + ℎ) − 𝑓 (𝑥))

From definition we have that — as ℎ → 0

d𝑔( 𝑓 (𝑥))(𝑜(ℎ)) = 𝑔( 𝑓 (𝑥) + 𝑜(ℎ)) − 𝑔( 𝑓 (𝑥)) − 𝑜(ℎ),

thus d𝑔( 𝑓 (𝑥))(𝑜(ℎ)) → 0 as ℎ → 0, that is, d𝑔( 𝑓 (𝑥))(𝑜(ℎ)) = 𝑜(ℎ). Also, as ℎ → 0, we

have — recalling Proposition A.3.5

𝑡 = 𝑓 (𝑥 + ℎ) − 𝑓 (𝑥) = d 𝑓 (𝑥)(ℎ) + 𝑜(ℎ) = 𝑂(ℎ) + 𝑜(ℎ) = 𝑂(ℎ).

Notice that 𝑜(𝑂(ℎ)) = 𝑜(ℎ), thus 𝑜( 𝑓 (𝑥+ℎ)− 𝑓 (𝑥)) = 𝑜(ℎ), and hence we finally conclude

that

𝑔( 𝑓 (𝑥 + ℎ)) − 𝑔( 𝑓 (𝑥)) = d𝑔( 𝑓 (𝑥))(d 𝑓 (𝑥)(ℎ)) + d𝑔( 𝑓 (𝑥))(𝑜(ℎ)) + 𝑜( 𝑓 (𝑥 + ℎ) − 𝑓 (𝑥))
= d𝑔( 𝑓 (𝑥))(d 𝑓 (𝑥)(ℎ)) + 𝑜(ℎ) + 𝑜(ℎ)
= d𝑔( 𝑓 (𝑥))(d 𝑓 (𝑥)(ℎ)) + 𝑜(ℎ)

which from definition implies that 𝑔 ◦ 𝑓 is differentiable at 𝑥 and d(𝑔 ◦ 𝑓 )(𝑥) =

d𝑔( 𝑓 (𝑥))(d 𝑓 (𝑥)). ♮

Definition A.3.22 (Directional derivative). Let 𝑓 :𝐸 → R and 𝑥 ∈ Int𝐸, and 𝑣 ∈ 𝑇R𝑚
𝑥 .

If the following limit exists

D𝑣 𝑓 (𝑥) ≔ lim

𝑡→0

𝑓 (𝑥 + 𝑣𝑡) − 𝑓 (𝑥)
𝑡

(A.22)

then the real quantity D𝑣 𝑓 (𝑥) ∈ 𝑇R 𝑓 (𝑥) is called the directional derivative of 𝑓 at the

point 𝑥 evaluated at the vector 𝑣.
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Definition A.3.23 (Gradient). Let 𝐸 ⊆ R𝑚
and 𝑓 :𝐸 → R be a real map. We define the

gradient of 𝑓 as the vector field grad 𝑓 : R𝑚 → R𝑚
written as

grad 𝑓 =
(
𝜕1 𝑓 , . . . , 𝜕𝑚 𝑓

)
.

Corollary A.3.24. Let 𝐸 ⊆ R𝑚
. If 𝑓 :𝐸→ R is differentiable at 𝑥 ∈ Int𝐸, then

D𝑣 𝑓 (𝑥) = d 𝑓 (𝑥)(𝑣) =
∑

1⩽ 𝑗⩽𝑚

𝜕𝑗 𝑓 (𝑥)𝑣 𝑗 .

Written in terms of the euclidean inner product in R𝑚
:

D𝑣 𝑓 (𝑥) = ⟨grad 𝑓 , 𝑣⟩.

Proof. Let ℓ : R → 𝐸 be a map ℓ (𝑡) = 𝑥 + 𝑣𝑡. Then the composition 𝑓 ◦ ℓ is such that

the differential at the point 𝑡 = 0 — that is d( 𝑓 ◦ ℓ )(0):𝑇R0 → 𝑇R𝑥 — is given by

d( 𝑓 ◦ ℓ )(0) = d 𝑓 (𝑥) ◦ dℓ (0), from the composition theorem. Thus, if 𝑥 ∈ Int𝐸, then

𝜕( 𝑓 ◦ ℓ )(0) =
∑

1⩽𝑟⩽𝑚

(𝜕𝑟 𝑓 (𝑥)) · (𝜕ℓ𝑟(0)).

Moreover, 𝜕ℓ𝑟(0) = limR∋ℎ→0

ℓ𝑟(0+ℎ)−ℓ𝑟(0)
ℎ = limℎ→0

(𝑥𝑟+𝑣𝑟 ℎ)−𝑥𝑟
ℎ = 𝑣𝑟 , which implies that

𝜕( 𝑓 ◦ ℓ )(0) =
∑

1⩽𝑟⩽𝑚

𝜕𝑟 𝑓 (𝑥)𝑣𝑟 = d 𝑓 (𝑥)(𝑣).

In order to make the connection to the directional derivative, it suffices to observe that

since 𝑓 ◦ ℓ : R → R then 𝜕( 𝑓 ◦ ℓ ) is just the single variable derivative of the composite

map — that is

𝜕( 𝑓 ◦ ℓ )(0) = lim

R∋𝑡→0

( 𝑓 ◦ ℓ )(0 + 𝑡) − 𝑓 (ℓ (0))
𝑡

= lim

R∋𝑡→0

𝑓 (𝑥 + 𝑣𝑡) − 𝑓 (𝑥)
𝑡

= D𝑣 𝑓 (𝑥).

♮

Let 𝑓 :𝐸 → R be a differentiable map at 𝑥 ∈ 𝐸. Define 𝜙 to be the angle between

grad 𝑓 (𝑥) and a given unit vector 𝑢 ∈ 𝑇R𝑚
𝑥 . Lets analyse the implication of certain

choices of 𝑢:

• If 𝑢 =
grad 𝑓 (𝑥)
∥grad 𝑓 (𝑥)∥ then 𝜙 = 0 and hence

D𝑢 𝑓 (𝑥) = ⟨grad 𝑓 (𝑥), 𝑢⟩ = ∥grad 𝑓 (𝑥)∥∥𝑢∥ cos(𝜙) = ∥grad 𝑓 (𝑥)∥,

which indicates that for this choice of 𝑢 the value D 𝑓 (𝑥) ∈ R is maximized.

• If 𝑢 is any vector perpendicular to grad 𝑓 (𝑥) then D𝑢 𝑓 (𝑥) = 0.

• If 𝑢 = − grad 𝑓 (𝑥)
∥grad 𝑓 (𝑥)∥ , then 𝜙 = 𝜋

2
and thus

D𝑢 𝑓 (𝑥) = −∥grad 𝑓 (𝑥)∥,

which is the minimum value for the directional derivative over a unit vector.
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Theorem A.3.25 (Inverse mapping differential). Let 𝑥, 𝑦 ∈ R𝑛
be any points and con-

sider the map 𝑓 :𝑈𝑥 → 𝑉𝑦 , where 𝑈𝑥 ⊆ R𝑛
is a neighbourhood of 𝑥 and 𝑉𝑦 ⊆ R𝑛

is

a neighbourhood of 𝑦 — and define 𝑓 (𝑥) = 𝑦. Let 𝑓 be continuous at 𝑥 and have a

continuous inverse mapping 𝑓 −1
:𝑉𝑦 → 𝑈𝑥 at the point 𝑦. If the map 𝑓 is differentiable

at 𝑥 and d 𝑓 (𝑥):𝑇R𝑛
𝑥 → 𝑇R𝑛

𝑦 has an inverse d 𝑓 (𝑥)−1
:𝑇R𝑛

𝑦 → 𝑇R𝑛
𝑥 , then the map 𝑓 −1

is

differentiable at 𝑦 and the differential d 𝑓 −1(𝑦):𝑇R𝑛
𝑦 → 𝑇R𝑛

𝑥 is such that

d 𝑓 −1(𝑦) = (d 𝑓 (𝑥))−1.

Proof. From the continuity of 𝑓 , for any neighbourhood 𝑉 ⊆ 𝑉𝑦 of 𝑦, the preimage

𝑓 −1(𝑉) ⊆ 𝑈𝑥 is open. Let 𝑦 + 𝑡 ∈ 𝑉 be some element, then there exists 𝑥 + ℎ ∈ 𝑈𝑥

for which 𝑓 (𝑥 + ℎ) = 𝑦 + 𝑡. Moreover, since 𝑓 is continuous at 𝑥, — as ℎ → 0 — we

have 𝑡 = 𝑓 (𝑥 + ℎ) − 𝑦 → 0 and since 𝑓 −1
is continuous at 𝑦, — as 𝑡 → 0 — we have

ℎ = 𝑓 −1(𝑦 + 𝑡) − 𝑥.

From the differentiability of 𝑓 at 𝑥 we have that — as ℎ → 0, from Proposition A.3.5

𝑡 = d 𝑓 (𝑥)(ℎ) + 𝑜(ℎ) = 𝑂(ℎ) + 𝑜(ℎ) = 𝑂(ℎ). (A.23)

Since d 𝑓 (𝑥) is invertible, from Eq. (A.23) we find — as ℎ → 0

(d 𝑓 (𝑥))−1(𝑡) =
(
d 𝑓 (𝑥))−1 ◦ d 𝑓 (𝑥)

)
(ℎ) + (d 𝑓 (𝑥))−1(𝑜(ℎ)) = ℎ + 𝑜(ℎ) (A.24)

Where (d 𝑓 (𝑥))−1(𝑜(ℎ)) = 𝑜(ℎ) comes from Proposition A.3.3. Now let 𝛿 > 0 be such

that, if ∥ℎ∥ < 𝛿, then ∥𝑜(ℎ)∥ ⩽ 1

2
∥ℎ∥. For such 𝛿 we find that — since (d 𝑓 (𝑥))−1(𝑡) ⩾

ℎ − 𝑜(ℎ)

∥(d 𝑓 (𝑥))−1(𝑡)∥ = ∥ℎ − 𝑜(ℎ)∥ ⩾ ∥ℎ∥ − ∥𝑜(ℎ)∥ ⩾ 1

2

∥ℎ∥

Hence, using the fact that ℎ = 𝑓 −1(𝑦+ 𝑡)+ 𝑥 → 0 as 𝑡 → 0, then the inequality obtained

above — that is

∥ℎ∥ ⩽ 2∥(d 𝑓 (𝑥))−1(𝑡)∥
together with the fact that (d 𝑓 (𝑥))−1(𝑡) → 0 as 𝑡 → 0 — since linear maps are continu-

ous (see Proposition A.2.37) and vanish at 0 — we conclude that ℎ = 𝑂(𝑡). Therefore

ℎ and 𝑡 have the same order over ℎ, 𝑡 → 0, that is ℎ ≍ 𝑡 and, equivalently, there

exists 𝑎, 𝑏 > 0 constants for which exists a neighbourhood 𝑈 ⊆ R𝑛
of 0 such that

𝑎∥𝑡∥ ⩽ ∥ℎ∥ ⩽ 𝑏∥𝑡∥— see Definition A.1.4. This shows that 𝑜(ℎ) = 𝑜(𝑡). Henceforth,

by the use of Eq. (A.24) we find

𝑓 −1(𝑦 + 𝑡) + 𝑓 −1(𝑦) = (d 𝑓 (𝑥))−1(𝑡) + 𝑜(𝑡).

Thus indeed 𝑓 −1
is differentiable at 𝑦 and d 𝑓 −1(𝑥) = (d 𝑓 (𝑥))−1

. ♮

Mean Value Theorem
Remark A.3.26. In what remains of this chapter we’ll denote a general domain by

𝐺 ⊆ R𝑚
. Moreover, if 𝑥, 𝑦 ∈ R𝑛

, we’ll denote by [𝑥, 𝑦] the line segment 𝛾([0, 1]) —

where 𝛾: [0, 1] → R𝑛
maps 𝑡

𝛾
↦−→ (𝑡−1)𝑥+ 𝑡𝑦. On the other hand, (𝑥, 𝑦) denotes 𝛾((0, 1)).
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Theorem A.3.27 (Mean Value Theorem for real valued maps). Let 𝑓 :𝐸→ R be a map.

If 𝑓 is continuous on the line segment [𝑥, 𝑦] and differentiable on (𝑥, 𝑦) — where

𝑥, 𝑦 ∈ 𝐸 — then there exists 𝑧 ∈ (𝑥, 𝑦) such that

𝑓 (𝑦) − 𝑓 (𝑥) = d 𝑓 (𝑧)(𝑦 − 𝑥).

Proof. Define ℎ(𝑡) = (1− 𝑡)𝑥 + 𝑡𝑦. Let 𝑔: [0, 1] → R defined by 𝑔 = 𝑓 ◦ ℎ. Since ℎ and 𝑓

are both continuous maps on, respectively, [0, 1] and ℎ([0, 1]) = [𝑥, 𝑦]— together with

the fact that the composition of continuous maps yield a continuous map — we find

that 𝑔 is continuous on [0, 1]. Since ℎ and 𝑓 are differentiable at, respectively (0, 1)
and ℎ((0, 1)) = (𝑥, 𝑦)— by the composition of differentiable maps — we get that 𝑔 is

differentiable on (0, 1).
We can now apply the Mean Value Theorem on 𝑔 to ensure that there exists 𝑡 ∈ [0, 1]

such that

𝑔(1) − 𝑔(0) = 𝑔′(𝑡).
Since 𝑔′(𝑡) = [d 𝑓 (ℎ(𝑡))](ℎ′(𝑡)) = d 𝑓 ((1−𝑡)𝑥+𝑡𝑦)(𝑦−𝑥), making 𝑧 ≔ (1−𝑡)𝑥+𝑡𝑦 ∈ (𝑥, 𝑦)
and substituting the values for 𝑔 in terms of 𝑓 we prove the theorem. ♮

Corollary A.3.28 (Constant real valued map). Let 𝑓 :𝐺→ R be a map — where𝐺 ⊆ R𝑚

is a domain. If 𝑓 is differentiable at every point of 𝐺 and its differential vanishes at all

points of 𝐺, then 𝑓 is constant on the domain 𝐺.

Proof. Since for all 𝑥 ∈ 𝐺 the differential d 𝑓 (𝑥) vanishes for all 𝑣 ∈ 𝑇R𝑚
𝑥 , then

dim ker(d 𝑓 (𝑥)) = 𝑚 and d 𝑓 (𝑥) is the null mapping. Since 𝐺 is open, the partial

derivatives 𝜕𝑗 𝑓 (𝑥) exist — where 1 ⩽ 𝑗 ⩽ 𝑚 — and 𝜕𝑗 𝑓 (𝑥) = 0.

Let 𝑥 ∈ 𝐺 be any point and consider 𝐵𝑥(𝑟) ⊆ 𝐺 an open ball centred in 𝑥. Let

𝑦 ∈ 𝐵𝑥(𝑟) be any point, then from Theorem A.3.27 — since [𝑥, 𝑦] ⊆ 𝐵𝑥(𝑟)— we have

the existence of 𝑧 ∈ [𝑥, 𝑦] such that

𝑓 (𝑦) − 𝑓 (𝑥) = d 𝑓 (𝑧)(𝑦 − 𝑥) = 0, (A.25)

that is, 𝑓 (𝑦) = 𝑓 (𝑥) for all points of the open ball — the map is constant at any open

ball contained in 𝐺 of every point of 𝐺.

Let 𝑥, 𝑦 ∈ 𝐺 be any points. Since 𝐺 is path-connected, there exists a continuous

map 𝛾: [0, 1] → 𝐺 such that 𝛾(0) = 𝑥 and 𝛾(1) = 𝑦. Consider any open ball 𝐵𝑥(𝑟) ⊆ 𝐺
centred in 𝑥. Let Δ = {𝛿 ∈ [0, 1] : 𝛾([0, 𝛿]) ∈ 𝐵𝑥(𝑟)}. From the continuity of 𝛾 and the

fact that 𝛾(0) = 𝑥 ∈ 𝐵𝑥(𝑟), the collection Δ is non-empty. If 𝛿 ∈ Δ — from Eq. (A.25) —

we find that ( 𝑓 ◦ 𝛾)([0, 𝛿] = 𝑓 (𝑥). Since Δ is limited, we can define 𝜀 = supΔ. From

the continuity of 𝛾 we have that ( 𝑓 ◦ 𝛾)(𝜀) = 𝑓 (𝑥). We now show that, in fact, 𝜀 = 1.

Suppose — for the sake of contradiction — that 𝜀 < 1, then there would exist some

open ball 𝐵𝛾(𝜀)(𝑑) such that 𝑓 (𝐵𝛾(𝜀)(𝑑)) = 𝑓 (𝛾(𝜀)) = 𝑓 (𝑥) and, for instance, 𝜀 + 𝑑 ∈ Δ

and 𝜀 < 𝜀+𝑑, which contradicts the hypothesis that 𝜀 = supΔ. From this, we conclude

that 𝜀 = 1 and hence 𝑓 (𝛾([0, 1])) = 𝑓 (𝑥) = 𝑓 (𝑦)which closes the proof. ♮

Lemma A.3.29. Let [𝑎, 𝑏] ⊆ R be a closed interval and 𝑓 : [𝑎, 𝑏] → R𝑛
be a map. If 𝑓 is

continuous on [𝑎, 𝑏] and differentiable on (𝑎, 𝑏), then there exists 𝑥 ∈ [𝑎, 𝑏] such that

∥ 𝑓 (𝑏) − 𝑓 (𝑎)∥R𝑛 ⩽ (𝑏 − 𝑎)∥d 𝑓 (𝑥)∥R𝑛 .

625



Proof. Let𝜙: [𝑎, 𝑏] → R be defined as𝜙(𝑡) = ⟨ 𝑓 (𝑏)− 𝑓 (𝑎), 𝑓 (𝑡)⟩R𝑛 — thus𝜙 is continuous

on [𝑎, 𝑏] and differentiable on (𝑎, 𝑏). Applying the Mean Value Theorem we ensure the

existence of some 𝑥 ∈ (𝑎, 𝑏) such that

𝜙(𝑏) − 𝜙(𝑎) = (𝑏 − 𝑎)𝜙′(𝑥) = (𝑏 − 𝑎)⟨ 𝑓 (𝑏) − 𝑓 (𝑎), d 𝑓 (𝑥)⟩R𝑛 . (A.26)

Since

𝜙(𝑏) − 𝜙(𝑎) = ⟨ 𝑓 (𝑏) − 𝑓 (𝑎), 𝑓 (𝑏)⟩R𝑛 − ⟨ 𝑓 (𝑏) − 𝑓 (𝑎), 𝑓 (𝑎)⟩R𝑛

= ⟨ 𝑓 (𝑏) − 𝑓 (𝑎), 𝑓 (𝑏) − 𝑓 (𝑎)⟩R𝑛

= ∥ 𝑓 (𝑏) − 𝑓 (𝑎)∥2

R𝑛 (A.27)

We can substitute Eq. (A.27) into Eq. (A.26) to find

∥ 𝑓 (𝑏) − 𝑓 (𝑎)∥2

R𝑛 = (𝑏 − 𝑎)⟨ 𝑓 (𝑏) − 𝑓 (𝑎), d 𝑓 (𝑥)⟩R𝑛 .

From Hőlder’s inequalities (see Proposition A.1.8) we know that ⟨𝑣, 𝑢⟩R𝑛 ⩽ ∥𝑣∥R𝑛∥𝑢∥R𝑛 .

Using such fact and assuming 𝑓 (𝑎) ≠ 𝑓 (𝑏), we find that

∥ 𝑓 (𝑏) − 𝑓 (𝑎)∥2

R𝑛 = (𝑏 − 𝑎)⟨ 𝑓 (𝑏) − 𝑓 (𝑎), d 𝑓 (𝑥)⟩R𝑛 ⩽ (𝑏 − 𝑎)∥ 𝑓 (𝑏) − 𝑓 (𝑎)∥R𝑛∥d 𝑓 (𝑥)∥R𝑛

implies ∥ 𝑓 (𝑏) − 𝑓 (𝑎)∥R𝑛 ⩽ (𝑏 − 𝑎)∥d 𝑓 (𝑥)∥R𝑛 . ♮

Theorem A.3.30 (Mean Value Theorem for R𝑛
valued maps). Let 𝑓 :𝐸 → R𝑛

be a

continuous map on the line segment [𝑥, 𝑦] and differentiable on (𝑥, 𝑦)— with 𝑥, 𝑦 ∈ 𝐸.

If for all 𝑧 ∈ (𝑥, 𝑦) and all 𝑣 ∈ 𝑇R𝑛
𝑧 we have ∥d 𝑓 (𝑧)(𝑣)∥R𝑛 ⩽ 𝑀∥𝑣∥R𝑛 — for some fixed

𝑀 ∈ R — then

∥ 𝑓 (𝑦) − 𝑓 (𝑥)∥R𝑛 ⩽ 𝑀∥𝑦 − 𝑥∥R𝑛 .

Proof. Let ℎ: [0, 1] → 𝐸 be defined as ℎ(𝑡) = (1 − 𝑡)𝑥 + 𝑡𝑦, and 𝑔: [0, 1] → R𝑛
defined

by 𝑔 = 𝑓 ◦ ℎ. Notice that 𝑔 is the composition of continuous maps on [0, 1] and

differentiable maps on (0, 1), so 𝑔 inherits both properties. By applying Lemma A.3.29

we ensure the existence of some 𝑡 ∈ [0, 1] such that

∥𝑔(1) − 𝑔(0)∥ ⩽ ∥d𝑔(𝑡)∥ (A.28)

From the composition theorem we have that — for any 𝑡 ∈ (0, 1)
d𝑔(𝑡) = [d 𝑓 (ℎ(𝑡))](dℎ(𝑡)) = [d 𝑓 (ℎ(𝑡))](𝑦 − 𝑥).

Since ∥d 𝑓 (𝑧)(𝑣)∥ ⩽ 𝑀∥𝑣∥, we get

∥d𝑔(𝑡)∥ = ∥d 𝑓 (ℎ(𝑡))(𝑦 − 𝑥)∥ ⩽ 𝑀∥𝑦 − 𝑥∥. (A.29)

By substituting Eq. (A.29) into Eq. (A.28) and noting that 𝑔(1) = 𝑓 (𝑦) and 𝑔(0) = 𝑓 (𝑥)
we can finally conclude that

∥ 𝑓 (𝑦) − 𝑓 (𝑥)∥ ⩽ 𝑀∥𝑦 − 𝑥∥.
♮

Corollary A.3.31. Let 𝑓 :𝐺→ R𝑛
be a differentiable map in 𝐺. If d 𝑓 (𝑥) is the zero-map

— that is, d 𝑓 (𝑥)(𝑦) = 0 for all 𝑦 ∈ 𝑇R𝑚
𝑥 — for all 𝑥 ∈ 𝐺, then 𝑓 is constant.

Proof. Let 𝑀 = 0 and use Theorem A.3.30. ♮
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Sufficient Condition for Differentiability
Theorem A.3.32. Let 𝑥 ∈ R𝑚

be any point and let 𝑈 ⊆ R𝑚
be a neighbourhood of 𝑥.

Let 𝑓 :𝑈 → R be a map. If for all 1 ⩽ 𝑗 ⩽ 𝑚 the partial derivatives 𝜕𝑗 𝑓 exist for each

point of𝑈 , and 𝜕𝑗 𝑓 is continuous at 𝑥, then 𝑓 is differentiable at 𝑥.

Proof. Since the collection of open balls in R𝑚
forms a base for the standard real

topology, we may assume that𝑈 = 𝐵𝑥(𝑟) for some 𝑟 > 0. Consider a point 𝑥+ℎ ∈ 𝐵𝑥(𝑟),
then for all 0 ⩽ 𝑘 ⩽ 𝑚 we have that 𝑦𝑘 = 𝑥+∑𝑘

𝑗=1
ℎ 𝑗𝑒 𝑗 ∈ 𝐵𝑥(𝑟). Moreover, if 0 ⩽ ℓ , 𝑘 ⩽ 𝑚

then the line segment [𝑦ℓ , 𝑦𝑘] ⊆ 𝑈 . Notice that

𝑓 (𝑥 + ℎ) − 𝑓 (𝑥) = 𝑓 (𝑥 + ℎ) +

𝑚−1∑
𝑘=1

𝑓

(
𝑥 +

𝑘∑
𝑗=1

ℎ𝑖𝑒 𝑗

)
− 𝑓

(
𝑥 +

𝑘∑
𝑗=1

ℎ𝑖𝑒 𝑗

) − 𝑓 (𝑥)
=

𝑚∑
𝑘=1

 𝑓
(
𝑥 +

𝑘∑
𝑗=1

ℎ 𝑗𝑒 𝑗

)
− 𝑓

(
𝑥 +

𝑘−1∑
𝑗=1

ℎ 𝑗𝑒 𝑗

)
=

𝑚∑
𝑘=1

𝑓 (𝑦𝑘) − 𝑓 (𝑦𝑘−1) (A.30)

Since 𝑓 has partial derivatives for every point of 𝑈 , for each 1 ⩽ 𝑘 ⩽ 𝑚, we can apply

the Mean Value Theorem A.3.27 for the pair of points points 𝑦𝑘 and 𝑦𝑘−1, to find a

point 𝑧𝑘 = 𝑥 + 𝜃𝑘ℎ𝑘𝑒𝑘 belonging to the segment line [𝑦𝑘−1, 𝑦𝑘] ⊆ 𝑈 — with 𝜃𝑗 ∈ [0, 1]
— such that

𝑓 (𝑦𝑘) − 𝑓 (𝑦𝑘−1) = 𝜕𝑘 𝑓 (𝑧𝑘)ℎ𝑘 (A.31)

Substituting Eq. (A.31) into Eq. (A.30) we get

𝑓 (𝑥 + ℎ) − 𝑓 (𝑥) =
𝑚∑
𝑘=1

𝜕𝑘 𝑓 (𝑧𝑘)ℎ𝑘 (A.32)

Since all partial derivatives are continuous at 𝑥, for all 1 ⩽ 𝑘 ⩽ 𝑚 there exists a map

𝛼𝑘 :𝑈 → R such that 𝛼𝑘(ℎ𝑘) → 0 as ℎ𝑘 → 0 and we can write

𝜕𝑘 𝑓 (𝑧𝑘) = 𝜕𝑘 𝑓 (𝑥 + 𝜃𝑘ℎ𝑘𝑒𝑘) = 𝜕𝑘 𝑓 (𝑥) + 𝛼𝑘(ℎ𝑘) (A.33)

Substituting Eq. (A.33) into Eq. (A.32) we get the following relation

𝑓 (𝑥 + ℎ) − 𝑓 (𝑥) =
𝑚∑
𝑘=1

𝜕𝑘 𝑓 (𝑥)ℎ𝑘 + 𝛼𝑘(ℎ𝑘)ℎ𝑘 =
𝑚∑
𝑘=1

𝜕𝑘 𝑓 (𝑥)ℎ𝑘 +
𝑚∑
𝑘=1

𝛼𝑘(ℎ𝑘)ℎ𝑘

Notice that as ℎ → 0 we have that 𝛼𝑘(ℎ𝑘)ℎ𝑘 → 0 for all 1 ⩽ 𝑘 ⩽ 𝑚, hence 𝛼𝑘(ℎ𝑘)ℎ𝑘 =
𝑜(ℎ) and thus

𝑓 (𝑥 + ℎ) − 𝑓 (𝑥) =
𝑚∑
𝑘=1

𝜕𝑘 𝑓 (𝑥)ℎ𝑘 + 𝑜(ℎ)

From Definition A.3.7 the map 𝑓 is differentiable at 𝑥 — and d 𝑓 (𝑥)(ℎ) = ∑𝑚
𝑘=1

𝜕𝑘 𝑓 (𝑥)ℎ𝑘 .
♮
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Definition A.3.33 (Continuously differentiable map). We denote by𝐶1(𝐺,R) the vector

space of real valued continuously differentiable maps R𝑚 ⊇ 𝐺 → R — that is, with

continuous partial derivatives in 𝐺.

Higher Order Partial Derivatives
Definition A.3.34 (𝑘-th partial derivative). Let 𝑓 :𝐺 → R be a map — over a domain

𝐺 ⊆ R𝑚
— partially differentiable over its 𝑗1-th variable. If in turn 𝜕𝑗1 𝑓 :𝐺 → R is

partially differentiable over its 𝑗2-th variable, we say that 𝜕𝑗2(𝜕𝑗1 𝑓 ) = 𝜕𝑗2 𝑗1 𝑓 :𝐺 → R is

said to be the second partial derivative of 𝑓 with respect to (𝑗1, 𝑗2) variables. If such

property holds 𝑘 times over variables the (𝑗1, 𝑗2, . . . , 𝑗𝑘), we say that

𝜕𝑗𝑘 𝑗𝑘−1
... 𝑗2 𝑗1 𝑓 :𝐺→ R

is the 𝑘-th partial derivative of 𝑓 with respect to variables (𝑗𝑖)1⩽𝑖⩽𝑘 .

Definition A.3.35 (𝑘-continuously differentiable). A map 𝑓 :𝐺 → R is said to be 𝑘-

continuously differentiable if for all tuples of indices 𝐼𝑖 = (𝑗1, . . . , 𝑗𝑖) and for all 1 ⩽ 𝑖 ⩽ 𝑘

the map 𝜕𝐼𝑖 𝑓 exists and is continuous at 𝐺.

Lemma A.3.36. Let 𝐸 ⊆ R𝑚
be an open set and 𝑓 :𝐸→ R be a map with existing partial

derivatives 𝜕𝑖 𝑓 and 𝜕𝑗𝑖 𝑓 at every point of 𝐸. Let 𝑦 ∈ 𝐸 and a map 𝜙 𝑗𝑖 :𝑉 → R — where

𝑉 = {(𝑡 , ℎ) ∈ R2
: 𝑦 + 𝑡𝑒𝑖 + ℎ𝑒 𝑗 ∈ 𝐸}— being defined by

𝜙 𝑗𝑖(𝑡 , ℎ) = 𝑓 (𝑦 + 𝑡𝑒𝑖 + ℎ𝑒 𝑗) − 𝑓 (𝑦 + 𝑡𝑒𝑖) + 𝑓 (𝑦 + ℎ𝑒 𝑗) − 𝑓 (𝑦).

Then for all pairs (𝑡 , ℎ) ∈ 𝑉 — 𝑡 , ℎ ≠ 0 — there exists a point 𝑥 = 𝑦 + 𝜃𝑖𝑡𝑒𝑖 + 𝜃𝑗ℎ𝑒 𝑗 ∈ 𝐸,

where 𝜃𝑖 , 𝜃𝑗 ∈ (0, 1), such that

𝜙(𝑡 , ℎ) = 𝑡ℎ[𝜕21 𝑓 (𝑥)].

Proof. Since 𝐸 is open, 𝑉 is non-empty. Choose any non-zero tuple (𝑡 , ℎ) ∈ 𝑉 . Let the

map 𝜔: [0, 1] → R be defined by

𝜔(𝜃) = 𝑓 (𝑦 + 𝜃𝑡𝑒𝑖 + ℎ𝑒 𝑗) − 𝑓 (𝑦 + 𝜃𝑡𝑒𝑖).

Notice that 𝜔 is continuous on [0, 1] and differentiable on (0, 1)— since 𝑓 has partial

derivative 𝜕𝑖 𝑓 . We can use the Mean Value Theorem to find 𝜃𝑖 ∈ (0, 1) such that

𝜔(1) − 𝜔(0) = 𝜔′(𝜃𝑖)

=

[
𝜕

𝜕𝜃

(
𝑓 (𝑦 + 𝜃𝑡𝑒𝑖 + ℎ𝑒 𝑗) − 𝑓 (𝑦 + 𝜃𝑡𝑒𝑖)

) ]
𝜃=𝑥1

=
[
𝜃𝜕𝑖 𝑓 (𝑦 + 𝜃𝑡𝑒𝑖 + ℎ𝑒 𝑗) − 𝜃𝜕𝑖 𝑓 (𝑦 + 𝜃𝑡𝑒𝑖)

]
𝜃=𝜃1

(A.34)

= 𝑡(𝜕1 𝑓 (𝑦 + 𝜃𝑖𝑡𝑒𝑖 + ℎ𝑒 𝑗) − 𝜕1 𝑓 (𝑦 + 𝜃𝑖𝑡𝑒𝑖)) (A.35)

Since 𝜕𝑖 𝑓 is partially differentiable — with respect to its 𝑗-th variable — on every point

of 𝐸, we conclude that 𝜕1 𝑓 continuous on the line segment [𝑦, 𝑦 + 𝑡𝑒𝑖 + ℎ𝑒 𝑗] ⊆ 𝐸 and
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is differentiable on the line segment (𝑦, 𝑦 + 𝑡𝑒𝑖 + ℎ𝑒 𝑗) ⊆ 𝐸. Let a map 𝛾: [0, 1] → R
defined by

𝛾(𝜃) = 𝜕1 𝑓 (𝑦 + 𝜃𝑖𝑡𝑒𝑖 + 𝜃𝑒 𝑗)
which, from 𝜕𝑖 𝑓 properties, is continuous on [0, 1] and differentiable on (0, 1). We can

apply the Mean Value Theorem on 𝛾 to find an element 𝜃𝑗 ∈ (0, 1) for which

𝛾(1) − 𝛾(0) = 𝛾′(𝜃𝑗)

=

[
𝜕

𝜕𝜃
𝜕1 𝑓 (𝑦 + 𝜃𝑖𝑡𝑒𝑖 + 𝜃𝑒 𝑗)

]
𝜃=𝜃𝑗

=
[
ℎ𝜕21 𝑓 (𝑦 + 𝜃𝑖𝑡𝑒𝑖 + 𝜃ℎ𝑒 𝑗)

]
𝜃=𝜃𝑗

= ℎ𝜕21 𝑓 (𝑦 + 𝜃𝑖𝑡𝑒𝑖 + 𝜃𝑗ℎ𝑒 𝑗) (A.36)

Therefore, substituting Eq. (A.36) into Eq. (A.34) we get

𝜙(𝑡 , ℎ) = 𝜔(1) − 𝜔(0) = 𝑡ℎ[𝜕21 𝑓 (𝑦 + 𝜃𝑖𝑡𝑒𝑖 + 𝜃𝑗ℎ𝑒 𝑗)].

♮

Theorem A.3.37 (Order of the partial derivative variables). Let 𝑓 :𝐺→ R be a map with

partial derivatives 𝜕𝑖 𝑗 𝑓 :𝐺 → R and 𝜕𝑗𝑖 𝑓 :𝐺 → R. If 𝜕𝑖 𝑗 𝑓 and 𝜕𝑗𝑖 𝑓 are both continuous

over the point 𝑥 ∈ 𝐺, then

𝜕𝑖 𝑗 𝑓 (𝑥) = 𝜕𝑗𝑖 𝑓 (𝑥).

Proof. Since 𝐺 is open, there exists ℎ ∈ R𝑚
such that 𝑥 + ℎ ∈ 𝐺 — where we impose

that ℎ𝑖 , ℎ 𝑗 ≠ 0. Define the map

Δ( 𝑓 , ℎ) = [ 𝑓 (𝑥 + ℎ𝑖𝑒𝑖 + ℎ 𝑗𝑒 𝑗) − 𝑓 (𝑥 + ℎ𝑖𝑒𝑖)] − [ 𝑓 (𝑥 + ℎ 𝑗𝑒 𝑗) − 𝑓 (𝑥)] (A.37)

Define maps 𝜙 𝑗𝑖 , 𝜙𝑖 𝑗 : [0, 1] → R by

𝜙 𝑗𝑖(𝜃) = 𝑓 (𝑥 + 𝜃ℎ𝑖𝑒𝑖 + ℎ 𝑗𝑒 𝑗) − 𝑓 (𝑥 + 𝜃ℎ𝑖𝑒𝑖) (A.38)

𝜙𝑖 𝑗(𝜃) = 𝑓 (𝑥 + ℎ𝑖𝑒𝑖 + 𝜃ℎ 𝑗𝑒 𝑗) − 𝑓 (𝑥 + 𝜃ℎ 𝑗𝑒 𝑗) (A.39)

Applying Lemma A.3.36 on Eq. (A.38) we find 𝜃𝑖 , 𝜃𝑗 ∈ (0, 1) such that

Δ( 𝑓 , ℎ) = 𝜙 𝑗𝑖(1) − 𝜙 𝑗𝑖(0) = ℎ 𝑗ℎ𝑖[𝜕𝑗𝑖 𝑓 (𝑥 + 𝜃𝑖ℎ𝑖𝑒𝑖 + 𝜃𝑗ℎ 𝑗𝑒 𝑗)] (A.40)

Analogously, we can apply Lemma A.3.36 on Eq. (A.39) to find 𝜃𝑖 , 𝜃 𝑗 ∈ (0, 1) such that

Δ( 𝑓 , ℎ) = 𝜙𝑖 𝑗(1) − 𝜙𝑖 𝑗(0) = ℎ𝑖ℎ 𝑗[𝜕𝑖 𝑗 𝑓 (𝑥 + 𝜃𝑖ℎ𝑖𝑒𝑖 + 𝜃 𝑗ℎ 𝑗𝑒 𝑗)] (A.41)

Equating both Eq. (A.40) and Eq. (A.41) we get

ℎ 𝑗ℎ𝑖[𝜕𝑗𝑖 𝑓 (𝑥 + 𝜃𝑖ℎ𝑖𝑒𝑖 + 𝜃𝑗ℎ 𝑗𝑒 𝑗)] = ℎ𝑖ℎ 𝑗[𝜕𝑖 𝑗 𝑓 (𝑥 + 𝜃𝑖ℎ𝑖𝑒𝑖 + 𝜃 𝑗ℎ 𝑗𝑒 𝑗)]

Since ℎ𝑖 , ℎ 𝑗 ≠ 0, we have

𝜕𝑗𝑖 𝑓 (𝑥 + 𝜃𝑖ℎ𝑖𝑒𝑖 + 𝜃𝑗ℎ 𝑗𝑒 𝑗) = 𝜕𝑖 𝑗 𝑓 (𝑥 + 𝜃𝑖ℎ𝑖𝑒𝑖 + 𝜃 𝑗ℎ 𝑗𝑒 𝑗).
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Since 𝜕𝑗𝑖 𝑓 and 𝜕𝑖 𝑗 𝑓 are continuous at 𝑥, as ℎ → 0 we get

𝜕𝑗𝑖 𝑓 (𝑥) = 𝜕𝑖 𝑗 𝑓 (𝑥).

♮

Corollary A.3.38. If 𝑓 ∈ 𝐶𝑘(𝐺,R), then the maps 𝜕𝑖𝑘 ...𝑖1 𝑓 for any 𝑘-tuple 𝐼𝑘 = (𝑖1, . . . , 𝑖𝑘)
— where 1 ⩽ 𝑖 𝑗 ⩽ 𝑚 for all 1 ⩽ 𝑗 ⩽ 𝑘 — are the same for any permutation of 𝐼𝑘 .

Proof. We proceed by induction on 𝑘. If 𝑘 = 2 then the proposition is true, from

Theorem A.3.37. Assume the proposition is true for some 𝑘 > 2. Let 𝜎 be any permu-

tation on 𝐼𝑘 , since any permutation can be written as the composition of finitely many

elementary transpositions, it suffices to observe that — from the inductive hypothesis

𝜕𝐼𝑘+1
𝑓 = 𝜕𝑖𝑘+1

(
𝜕𝐼𝑘 𝑓

)
= 𝜕𝑖𝑘+1

(
𝜕𝜎(𝐼𝑘) 𝑓

)
. (A.42)

From Theorem A.3.37 following relation is verified

𝜕𝐼𝑘+1
𝑓 = 𝜕𝑖𝑘+1

𝑖𝑘

(
𝜕𝐼𝑘−1

𝑓
)
= 𝜕𝑖𝑘 𝑖𝑘+1

(
𝜕𝐼𝑘−1

𝑓
)
= 𝜕𝑖𝑘 𝑖𝑘+1

𝑖𝑘−1
...𝑖1 𝑓 . (A.43)

Thus, with Eq. (A.42) and Eq. (A.43) we find that the the proposition is true for 𝑘 + 1.

This finishes the induction proof. ♮

Example A.3.39. Let 𝑓 ∈ 𝐶𝑘(𝐺,R) and, for some given 𝑥 ∈ 𝐺, let ℎ ∈ R𝑚
be such that

𝑥 + ℎ ∈ 𝐺. Consider the map 𝜙: [0, 1] → R, defined as

𝜙(𝑡) = 𝑓 (𝑥 + 𝑡ℎ).

Then 𝜙 ∈ 𝐶𝑘([0, 1],R) and its 𝑘-th derivative is given by

𝜙(𝑘)(𝑡) = (ℎ1𝜕1 + · · · + ℎ𝑚𝜕𝑚)𝑘 𝑓 (𝑥 + 𝑡ℎ).

More generally, for all 1 ⩽ 𝑗 ⩽ 𝑘 we have

𝜙(𝑗)(𝑡) = (ℎ1𝜕1 + · · · + ℎ𝑚𝜕𝑚)𝑗 𝑓 (𝑥 + 𝑡ℎ).

Definition A.3.40 (Hessian matrix). Let 𝑓 :𝐸→ R be twice partially differentiable with

respect to all variables at the point 𝑥 ∈ Int𝐸. The Hessian of 𝑓 is defined to be the

matrix

Hess 𝑓 (𝑥) =

𝜕11 𝑓 (𝑥) . . . 𝜕1𝑚 𝑓 (𝑥)

...
. . .

...

𝜕𝑚1 𝑓 (𝑥) . . . 𝜕𝑚𝑚 𝑓 (𝑥)


Definition A.3.41. The Hessian of 𝑓 is defined to be the second order differential of 𝑓

at the interior point 𝑥 that is, the multilinear map

d
2 𝑓 (𝑥):𝑇R𝑚

𝑥 × 𝑇R𝑚
𝑥 → R, mapping (𝑦, 𝑧)

𝑓
↦−→

𝑚∑
𝑖 , 𝑗=1

𝜕𝑖 𝑗 𝑓 (𝑥)𝑦𝑖𝑧𝑖
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Taylor’s Formula
Theorem A.3.42 (Taylor’s formula). Let 𝑥 ∈ R𝑚

be a point and let 𝑈 ⊆ R𝑚
be a

neighbourhood of 𝑥. Consider a point ℎ ∈ R𝑚
such that the line segment [𝑥, 𝑥 + ℎ] is

contained in 𝑈 . Let 𝑓 :𝑈 → R be a map 𝑓 ∈ 𝐶𝑘+1(𝑈,R). Then the following equality

holds

𝑓 (𝑥 + ℎ) − 𝑓 (𝑥) =
𝑘∑
ℓ=1

1

ℓ !
(ℎ1𝜕1 + · · · + ℎ𝑚𝜕𝑚)ℓ 𝑓 (𝑥) + 𝑟𝑘(𝑥, ℎ)

Where the polynomial term is called Taylor polynomial of order 𝑘 of 𝑓 on 𝑥, and 𝑟𝑘 is

the 𝑘-th order remainder of 𝑓 on 𝑥 — which can be written in the following forms:

(i) Integral form

𝑟𝑘(𝑥, ℎ) =
∫

1

0

(1 − 𝑡)𝑘
𝑘!

(ℎ1𝜕1 + · · · + ℎ𝑚𝜕𝑚)𝑘+1 𝑓 (𝑥 + 𝑡ℎ) d𝑡.

(ii) Lagrange form — for some 𝜃 ∈ (0, 1)

𝑟𝑘(𝑥, ℎ) =
1

(𝑘 + 1)!(ℎ1𝜕1 + · · · + ℎ𝑚𝜕𝑚)𝑘+1 𝑓 (𝑥 + 𝜃ℎ).

(iii) Peano form — as ℎ → 0

𝑟𝑘(𝑥, ℎ) =
1

(𝑘 + 1)!(ℎ1𝜕1 + · · · + ℎ𝑚𝜕𝑚)𝑘+1 𝑓 (𝑥) + 𝑜(∥ℎ∥𝑘+1

R𝑚 ).

and we rewrite the Taylor formula as

𝑓 (𝑥 + ℎ) − 𝑓 (𝑥) =
𝑘+1∑
ℓ=1

1

ℓ !
(ℎ1𝜕1 + · · · + ℎ𝑚𝜕𝑚)ℓ 𝑓 (𝑥) + 𝑜(∥ℎ∥𝑘+1

R𝑚 ).

Proof. Let 𝜙: [0, 1] → R be defined by 𝜙(𝑡) = 𝑓 (𝑥 + 𝑡ℎ). Notice that this implies in 𝜙 ∈
𝐶𝑘+1([0, 1],R) and — using the Taylor’s formula for one variable and Example A.3.39

— we find, for 𝜏 ∈ [0, 1]

𝜙(𝜏) = 𝑓 (𝑥 + 𝜏ℎ) =
𝑘∑
ℓ=1

𝜙(ℓ )(0)
ℓ !

𝜏ℓ + 𝑅𝑘(𝜏)

Notice that 𝜙(1) − 𝜙(0) = 𝑓 (𝑥 + ℎ) − 𝑓 (𝑥), hence

𝑓 (𝑥 + ℎ) − 𝑓 (𝑥) =
𝑘∑
ℓ=1

1

ℓ !
(ℎ1𝜕1 + · · · + ℎ𝑚𝜕𝑚)ℓ 𝑓 (𝑥) + 𝑟𝑘(𝑥, ℎ).

We can now analyse the possible forms for the remainders.
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(i) (Integral form) We have 𝑅𝑘 given by

𝑅𝑘(𝜏) =
∫

1

0

(1 − 𝑡)𝑘
𝑘!

𝜙(𝑘+1)(𝑡𝜏)𝑡𝑘+1

d𝑡.

Hence

𝑟𝑘(𝑥, ℎ) =
∫

1

0

(1 − 𝑡)𝑘
𝑘!

(ℎ1𝜕1 + · · · + ℎ𝑚𝜕𝑚)𝑘+1 𝑓 (𝑥 + 𝑡𝜏ℎ)𝜏𝑘+1

d𝑡.

(ii) (Lagrange form) For some 𝜃 ∈ (0, 1), 𝑅𝑘 is given by

𝑅𝑘(𝜏) =
1

(𝑘 + 1)!𝜙
(𝑘+1)(𝜃).

Hence

𝑟𝑘(𝑥, ℎ) =
1

(𝑘 + 1)!(ℎ1𝜕1 + · · · + ℎ𝑚𝜕𝑚)𝑘+1 𝑓 (𝑥 + 𝜃ℎ).

(iii) (Peano form) From the Lagrange form and as ℎ → 0

𝑟𝑘(𝑥, ℎ) =
1

(𝑘 + 1)!(ℎ1𝜕1 + · · · + ℎ𝑚𝜕𝑚)𝑘+1 𝑓 (𝑥 + 𝜃ℎ)

=
1

(𝑘 + 1)!(ℎ1𝜕1 + · · · + ℎ𝑚𝜕𝑚)𝑘+1 𝑓 (𝑥) + 𝑜(∥ℎ∥𝑘+1

R𝑚 ).

This finishes the proof. ♮

A.4 Extrema on Several Variables
Definition A.4.1 (Extrema points). Let 𝑓 :𝐸→ R be a map. The map 𝑓 is said to have a

local maximum (or local minimum) at𝑥0 ∈ Int𝐸 if there exists a neighbourhood𝑈 ⊆ 𝐸
of 𝑥0 for which 𝑓 (𝑥) ⩽ 𝑓 (𝑥0) (or 𝑓 (𝑥) ⩾ 𝑓 (𝑥0)) for all 𝑥 ∈ 𝑈 . The local maximum (or

minimum) is said to be strict if the strict inequality holds for all 𝑥 ∈ 𝑈 ∖ 𝑥0. A local

maximum (or minimum) is said to be a local extrema of 𝑓 .

Theorem A.4.2 (Necessary condition for local extrema). Let 𝑓 :𝑈 → R be a map defined

on the neighbourhood 𝑈 ⊆ R𝑚
of a point 𝑥0. Assume that 𝑓 is partially differentiable

at 𝑥0. For 𝑥0 to be a local extrema of 𝑓 it is necessary that for all 1 ⩽ 𝑗 ⩽ 𝑚 we have

𝜕𝑗 𝑓 (𝑥0) = 0, that is

grad 𝑓 (𝑥0) = 0.

Proof. Let 1 ⩽ 𝑗 ⩽ 𝑚 be any index and consider the map 𝑔𝑗 : R→ R given by

𝑥
𝑔𝑗↦−→ 𝑓 (𝑥1

0
, . . . , 𝑥

𝑗−1

0
, 𝑥, 𝑥

𝑗

0
, . . . , 𝑥𝑚

0
).

A necessary condition for 𝑥
𝑗

0
to be an extrema of 𝑔𝑗 is that its derivative at 𝑥

𝑗

0
needs to

be zero. Moreover 𝑔′
𝑗
= 𝜕𝑗 𝑓 , thus the necessary condition for 𝑔𝑗 implies 𝜕𝑗 𝑓 (𝑥0) = 0. ♮
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Definition A.4.3. Let 𝐴 be a (𝑛 × 𝑛)-symmetric matrix. We define the following:

• 𝐴 is said to be positive definite if for all 𝑣 ∈ R𝑛 ∖ 0

⟨𝑣, 𝐴𝑣⟩ > 0.

On the other hand, 𝐴 is negative definite if for all 𝑣 ∈ R𝑛 ∖ 0

⟨𝑣, 𝐴𝑣⟩ < 0.

• 𝐴 is positive semidefinite if for all 𝑣 ∈ R𝑛

⟨𝑣, 𝐴𝑣⟩ ⩾ 0.

On the other hand, 𝐴 is negative semidefinite if for all 𝑣 ∈ R𝑛
we have

⟨𝑣, 𝐴𝑣⟩ ⩽ 0.

Lemma A.4.4. Let 𝐴 be a symmetric 𝑛 × 𝑛 matrix. 𝐴 is positive definite if and only if

there exists 𝜆 > 0 such that for all 𝑣 ∈ R𝑛 ∖ 0

⟨𝑣, 𝐴𝑣⟩ ⩾ 𝜆∥𝑣∥2.

On the other hand, 𝐴 is negative definite if and only if there exists 𝜆 > 0 such that for

all 𝑣 ∈ R𝑛 ∖ 0

⟨𝑣, 𝐴𝑣⟩ ⩽ −𝜆∥𝑣∥2.

Proof. Lets treat only the case for positive definite, the other is analogous and would

be boring to repeat myself. Suppose there exists such 𝜆 > 0 for which all 𝑣 ∈ R𝑛
satisfy

⟨𝑣, 𝐴𝑣⟩ ⩾ 𝜆∥𝑣∥2
. Then since 𝑣 ≠ 0 and hence ∥𝑣∥ > 0, it follows immediately that 𝐴 is

positive definite.

Suppose 𝐴 is positive definite. Consider the unitary 𝑛 − 1-sphere 𝑆𝑛−1 = {𝑣 ∈ R𝑛
:

∥𝑣∥ = 1}. Since 𝑆𝑛−1
is closed and bounded, we conclude that 𝑆𝑛−1

is compact by The-

orem A.2.9. Consider the map 𝑓 : 𝑆𝑛−1 → R given by the mapping 𝑣 ↦→ ⟨𝑣, 𝐴𝑣⟩ which

is continuous. Therefore, from the global properties enunciated at Proposition A.2.36

we find that there exists 𝑣0 ∈ 𝑆𝑛−1
where 𝑓 assumes a minimum value. Let 𝑓 (𝑣0) = 𝜆

and since 𝐴 is positive definite, we have that 𝜆 is necessarily positive. Let 𝑣 ∈ R𝑛 ∖ 0

be any element, then from the definition of a minimum, we find 𝑓 ( 𝑣∥𝑣∥) ⩾ 𝜆. Therefore

we conclude that ⟨𝑣, 𝐴𝑣⟩ ⩾ 𝜆∥𝑣∥2
, which finishes the proof. ♮

Definition A.4.5 (Critical point). Let 𝑓 :𝑈 → R𝑛
be a map defined on a neighbourhood

𝑈 ⊆ R𝑚
of a point 𝑥0. Assume that 𝑓 is differentiable at 𝑥0. We say that 𝑥0 is a critical

point of 𝑓 if the rank of the Jacobi matrix 𝑓 ′(𝑥0) has a rank less than min(𝑚, 𝑛)— where

min(𝑚, 𝑛) is the maximum possible value of the rank.

Theorem A.4.6 (Classification of critical points of real valued maps). Let 𝑓 :𝑈 → R be

twice continuously differentiable and let 𝑥0 ∈ 𝑈 ⊆ R𝑚
be an internal point such that

grad 𝑓 (𝑥0) = 0. If the matrix Hess 𝑓 (𝑥0):
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1. is positive definite, then 𝑥0 is a local minimum of 𝑓 .

2. is negative definite, then 𝑥0 is a local maximum of 𝑓 .

3. is indefinite, then 𝑥0 is not an extremum point of 𝑓 .

Proof. Let ℎ ∈ 𝑇𝑥0
R𝑚

and consider the Taylor polynomial of 𝑓 of order 2 at the point 𝑥0

in the Peano form:

𝑓 (𝑥0 + ℎ) − 𝑓 (𝑥0) =
2∑
ℓ=1

1

ℓ !
(ℎ1𝜕1 + · · · + ℎ𝑚𝜕𝑚)ℓ 𝑓 (𝑥0) + 𝑜(∥ℎ∥2).

Notice however that for 𝑥0 to be an extremum point candidate of 𝑓 we have from

Theorem A.4.2 that grad 𝑓 (𝑥0) = 0 thus the Taylor polynomial only has its second

order factor. Moreover, we can rewrite the second order term as an inner product of

Hess 𝑓 (𝑥0) and ℎ in the following manner

𝑚∑
𝑖 , 𝑗=1

𝜕𝑖 𝑗 𝑓 (𝑥0)ℎ𝑖ℎ 𝑗 =
〈
ℎ,Hess( 𝑓 (𝑥0))ℎ

〉
.

Thus we can now rewrite the Taylor polynomial in a way that lets us analyse the hessian

of the map

𝑓 (𝑥0 + ℎ) − 𝑓 (𝑥0) =
〈
ℎ,Hess( 𝑓 (𝑥0))ℎ

〉
+ 𝑜(∥ℎ∥2).

Suppose Hess 𝑓 (𝑥0) is positive definite, then using Lemma A.4.4 we find some

𝜆 > 0 such that for all 𝑣 ∈ R𝑛
we have

〈
𝑣,Hess( 𝑓 (𝑥0))𝑣

〉
⩾ 𝜆∥𝑣∥2

. In particular, we can

choose 𝛿 > 0 for which |𝑜(∥ℎ∥2)| ⩽ 𝜆
4
∥ℎ∥2

for all ℎ ∈ 𝑇𝑥0
R𝑛

such that ∥ℎ∥ ⩽ 𝛿. Then for

all ∥ℎ∥ ⩽ 𝛿 we have

𝑓 (𝑥0 + ℎ) − 𝑓 (𝑥0) =
1

2

〈
ℎ,Hess( 𝑓 (𝑥0))ℎ

〉
+ 𝑜(∥ℎ∥2) ⩾ 1

2

𝜆∥ℎ∥2 − 𝜆
4

∥ℎ∥2 ⩾
𝜆
4

∥ℎ∥2

And since
𝜆
4
∥ℎ∥2 > 0 then 𝑓 (𝑥0 + ℎ) − 𝑓 (𝑥0) > 0 and therefore — at least in the

neighbourhood 𝐵𝑥0
(𝛿)— we are ensured that 𝑥0 is a local minimum of 𝑓 .

If on the other hand we have Hess 𝑓 (𝑥0) negative definite, then Hess(− 𝑓 (𝑥0)) is

positive definite and the proposition follows.

Suppose Hess 𝑓 (𝑥0) is indefinite and let 𝑢 ∈ 𝑆𝑛−1
be the point where the mapping

given by ℓ ↦→
〈
ℓ ,Hess( 𝑓 (𝑥0))ℓ

〉
assumes its minimum 𝑚 < 0 and 𝑣 ∈ 𝑆𝑛−1

be the point

where the map assumes it maximum 𝑀 > 0. Define 𝑡 > 0 so that 𝑥0 + 𝑢𝑡 ∈ 𝑈 , then

𝑓 (𝑥0 + 𝑢𝑡) − 𝑓 (𝑥0) =
〈
𝑢𝑡,Hess( 𝑓 (𝑥0))𝑢𝑡

〉
+ 𝑜(∥𝑢𝑡∥2) = 1

2!

𝑚𝑡2 + 𝑜(𝑡2)

Then, for 𝑡 → 0 we’ll have 𝑓 (𝑥0 + 𝑡𝑢) − 𝑓 (𝑥0) < 0 in some neighbourhood of 𝑥0, since

𝑚 < 0 — this implies that 𝑥0 is a local minimum of such neighbourhood. Moreover, if

we now set 𝑡 > 0 so that 𝑥0 + 𝑣𝑡 ∈ 𝑈 , it follows that

𝑓 (𝑥0 + 𝑣𝑡) − 𝑓 (𝑥0) =
1

2!

〈
𝑣𝑡,Hess( 𝑓 (𝑥0))𝑣𝑡

〉
+ 𝑜(∥𝑣𝑡∥2) = 1

2!

𝑀𝑡2 + 𝑜(𝑡2)

so that, as 𝑡 → 0 we have 𝑓 (𝑥0 + 𝑡𝑣) − 𝑓 (𝑥0) > 0 for some neighbourhood of 𝑥0, since

𝑀 > 0 — which now implies that 𝑥0 is in fact a local maximum in some neighbourhood,

which is a direct contradiction to the assertion that 𝑥0 was a local minimum. This shows

us that for Hess 𝑓 (𝑥0) indefinite, 𝑥0 is not an extremum of 𝑓 . ♮
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A.5 Implicit Map Theorem
Definition A.5.1 (Level curve). Let 𝑓 :Ω→ R, where Ω ⊆ R𝑛

, be any map. For every

𝑐 ∈ R we define the set 𝑁 𝑓 (𝑐) = {𝑥 ∈ Ω : 𝑓 (𝑥) = 𝑐} to be the 𝑐-level curve of 𝑓 .

Moreover, if 𝑛 = 2, we can call 𝑁 𝑓 (𝑐) the 𝑐-contour line of 𝑓 with value 𝑐.

Theorem A.5.2 (Implicit Theorem). Let 𝑉 and 𝐿 be normed vector spaces and 𝑊 be

a Banach space. Define Ω ⊆ 𝑉 ×𝑊 to be an open set and (𝑥0, 𝑦0) ∈ Ω. Consider

𝐹:Ω→ 𝐿 to be a mapping such that

• 𝐹(𝑥0, 𝑦0) = 𝑐 for some 𝑐 ∈ 𝐿.

• 𝐹 is continuous at (𝑥0, 𝑦0).

• 𝐹 is differentiable and its differential d𝐹:Ω→ 𝐿 is continuous at (𝑥0, 𝑦0).

• 𝜕2𝐹(𝑥0, 𝑦0):𝑊 → 𝐿 is an isomorphism, that is, it is invertible.

Then there exists neighbourhoods𝑈𝑥0
⊆ 𝑉 and𝑈𝑦0

⊆ 𝑊 such that𝑈𝑥0
×𝑈𝑦0

⊆ Ω, and

a map 𝑓 :𝑈𝑥0
→ 𝑈𝑦0

such that

• 𝑓 (𝑥0) = 𝑦0.

• 𝑓 is continuous at 𝑥0.

• 𝐹(𝑥, 𝑦) = 0 if and only if 𝑓 (𝑥) = 𝑦, for 𝑥, 𝑦 ∈ 𝑈𝑥0
×𝑈𝑦0

.

Proof. To ease our lives, lets assume that Ω has the following form

Ω = {(𝑥, 𝑦) ∈ 𝑉 ×𝑊 : ∥𝑥 − 𝑥0∥𝑉 < 𝛼 and ∥𝑦 − 𝑦0∥𝑊 < 𝛽}.

If that is not the case, since Ω is open — and hence (𝑥0, 𝑦0) is an internal point — we

can merely choose an open set contained in Ω that satisfies the above form.

Define a collection {𝑔𝑥 : 𝑥 ∈ 𝐵𝑥0
(𝛼)} of maps

𝑔𝑥(𝑦) = 𝑦 − [𝜕2𝐹(𝑥0, 𝑦0)]−1(𝐹(𝑥, 𝑦))

The domain of each 𝑔𝑥 is defined to be the collection 𝐵𝑦0
(𝛽) = {𝑦 ∈𝑊 : ∥𝑦− 𝑦0∥𝑊 < 𝛽}.

The maps 𝑔𝑥 are well defined since [𝜕2𝐹(𝑥0, 𝑦0)]−1
exists and is a continuous linear map

— moreover, the domain of 𝑔𝑥 is the normed vector space𝑊 — that is 𝑔𝑥 : 𝐵𝑦0
(𝛽) →𝑊 .

Suppose 𝑦𝑥 is a fixed point of 𝑔𝑥 , then 𝑔𝑥(𝑦𝑥) = 𝑦𝑥 − [𝜕2𝐹(𝑥0, 𝑦0)]−1(𝐹(𝑥, 𝑦𝑥)) = 𝑦𝑥
hence clearly 𝑦𝑥 is indeed a fixed point of 𝑔𝑥 if and only if [𝜕2𝐹(𝑥0, 𝑦0)]−1(𝐹(𝑥, 𝑦𝑥)) = 0,

that is, 𝐹(𝑥, 𝑦𝑥) ∈ ker[𝜕2𝐹(𝑥0, 𝑦0)]−1
— but 𝜕2𝐹(𝑥0, 𝑦0) is an isomorphism, so clearly

𝐹(𝑥, 𝑦𝑥) = 0.

Let 𝑥 ∈ 𝐵𝑥0
(𝛼) be any element and consider the map 𝑔𝑥 . Notice that since 𝐹 is

differentiable and 𝑔𝑥 is therefore a composition of differentiable maps, it follows that
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𝑔𝑥 is differentiable and since 𝜕2𝐹(𝑥0, 𝑦0) is continuous and linear we get

𝜕2

(
[𝜕2𝐹(𝑥0 , 𝑦0)]−1(𝐹(𝑥, 𝑦))

)
= lim

𝑡→0

[𝜕2𝐹(𝑥0 , 𝑦0)]−1(𝐹(𝑥, 𝑦 + 𝑡)) − [𝜕2𝐹(𝑥0 , 𝑦0)]−1(𝐹(𝑥, 𝑦))
𝑡

= lim

𝑡→0

[𝜕2𝐹(𝑥0 , 𝑦0)]−1(𝐹(𝑥, 𝑦 + 𝑡) − 𝐹(𝑥, 𝑦))
𝑡

= lim

𝑡→0

[𝜕2𝐹(𝑥0 , 𝑦0)]−1

(
𝐹(𝑥, 𝑦 + 𝑡) − 𝐹(𝑥, 𝑦)

𝑡

)
= [𝜕2𝐹(𝑥0 , 𝑦0)]−1

(
lim

𝑡→0

𝐹(𝑥, 𝑦 + 𝑡) − 𝐹(𝑥, 𝑦)
𝑡

)
= [𝜕2𝐹(𝑥0 , 𝑦0)]−1(𝜕2𝐹(𝑥, 𝑦))

Therefore we can write the differential of 𝑔𝑥 as

d𝑔𝑥(𝑦) = 1𝑊 − 𝜕2

(
[𝜕2𝐹(𝑥0, 𝑦0)]−1(𝐹(𝑥, 𝑦))

)
= [𝜕2𝐹(𝑥0, 𝑦0)]−1(𝜕2𝐹(𝑥0, 𝑦0) − 𝜕2𝐹(𝑥, 𝑦)).

By the continuity of the map 𝜕2𝐹(𝑥0, 𝑦0) at the point (𝑥0, 𝑦0), we find that there exists

0 < 𝛾 < min(𝛼, 𝛽) such that in the neighbourhood 𝐵𝑥0
(𝛾) × 𝐵𝑦0

(𝛾) ⊆ Ω we have

∥d𝑔𝑥(𝑦)∥ ⩽ ∥[𝜕2𝐹(𝑥0, 𝑦0)]−1∥ · ∥𝜕2𝐹(𝑥0, 𝑦0) − 𝜕2𝐹(𝑥, 𝑦)∥ <
1

2

.

Let 𝑥 ∈ 𝐵𝑥0
(𝛾) be any element and take any two 𝑦1, 𝑦2 ∈ 𝐵𝑦0

(𝛾). Then we have by

the generalization of the mean value theorem that

∥𝑔𝑥(𝑦1) − 𝑔𝑥(𝑦2)∥𝑊 ⩽ sup

𝑡∈(𝑦1 ,𝑦2)
∥d𝑔(𝑡)∥∥𝑦1 − 𝑦2∥𝑊 <

1

2

∥𝑦1 − 𝑦2∥.

That is, 𝑔𝑥 is Lipschitz continuous.

From the definition of 𝑔𝑥 and the fact that 𝑔𝑥0
(𝑦0) = 𝑦0 — since 𝐹(𝑥0, 𝑦0) = 0 — we

have

∥𝑔𝑥(𝑦) − 𝑦0∥𝑊 = ∥𝑔𝑥(𝑦) − 𝑔𝑥0
(𝑦0)∥𝑊

⩽ ∥𝑔𝑥(𝑦) − 𝑔𝑥(𝑦0)∥𝑊 + ∥𝑔𝑥(𝑦0) − 𝑔𝑥0
(𝑦0)∥𝑊

⩽
1

2

∥𝑦 − 𝑦0∥𝑊 + ∥[𝜕2𝐹(𝑥0, 𝑦0)]−1(𝐹(𝑥, 𝑦0) − 𝐹(𝑥0, 𝑦0))∥𝑊

=
1

2

∥𝑦 − 𝑦0∥𝑊 + ∥[𝜕2𝐹(𝑥0, 𝑦0)]−1(𝐹(𝑥, 𝑦0))∥𝑊

Since 𝐹 is continuous at (𝑥0, 𝑦0)— so is the projection map 𝑥 ↦→ 𝐹(𝑥, 𝑦0)— then for all

𝜀′ ∈ (0, 𝛾) there exists 𝛿 ∈ (0, 𝛾) such that ∥𝑥−𝑥0∥𝑉 < 𝛿 implies ∥𝐹(𝑥, 𝑦0)−𝐹(𝑥0, 𝑦0)∥𝐿 =
∥𝐹(𝑥, 𝑦0)∥𝐿 < 𝜀′. In particular, choose 𝜀′ = 𝜀

2∥[𝜕2𝐹(𝑥0 ,𝑦0)]−1∥ for any given 𝜀 > 0, then for

all ∥𝑥 − 𝑥0∥𝑉 < 𝛿 and for all ∥𝑦 − 𝑦0∥𝑊 ⩽ 𝜀 we have — using the property that the
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norm of linear maps is sub-multiplicative

∥𝑔𝑥(𝑦) − 𝑦0∥𝑊 ⩽
1

2

∥𝑦 − 𝑦0∥𝑊 + ∥[𝜕2𝐹(𝑥0, 𝑦0)]−1(𝐹(𝑥, 𝑦0))∥𝑊

⩽
1

2

𝜀 + ∥[𝜕2𝐹(𝑥0, 𝑦0)]−1∥ · ∥𝐹(𝑥, 𝑦0)∥𝑊

⩽
1

2

𝜀 + ∥[𝜕2𝐹(𝑥0, 𝑦0)]−1∥ 𝜀

2∥[𝜕2𝐹(𝑥0, 𝑦0)]−1∥

=
1

2

𝜀 + 1

2

𝜀 = 𝜀

The relation above is equivalent to: for all ∥𝑥 − 𝑥0∥𝑉 < 𝛿 we have

𝑔𝑥(Cl(𝐵𝑦0
(𝜀))) ⊆ 𝐵𝑦0

(𝜀)

Since 𝐵𝑦0
(𝜀) ⊆ 𝑊 is a closed set, it follows from Theorem A.1.17 that there exists a

unique fixed point 𝑦𝑥 ∈ Cl(𝐵𝑦0
(𝜀)) of 𝑔𝑥 . Define now the map 𝑓 : 𝐵𝑥0

(𝛿) → 𝐵𝑦0
(𝜀)where

𝑓 (𝑥) = 𝑦𝑥 and 𝑦𝑥 is the corresponding fixed point of each 𝑔𝑥 .

From construction 𝐵𝑥0
(𝛿) × 𝐵𝑦0

(𝜀) ⊆ Ω. Clearly, for all 𝑥 ∈ 𝐵𝑥0
(𝛿) and 𝑦 ∈ 𝐵𝑦0

(𝜀),
𝐹(𝑥, 𝑦) = 0 if and only if 𝑓 (𝑥) = 𝑦. Moreover, we have immediately that 𝑓 (𝑥0) = 𝑦0.

For the continuity of 𝑓 at the point 𝑥0, we can observe that for all 𝜀 ∈ (0, 𝛾) there exists

a 𝛿 ∈ (0, 𝛾) such that ∥𝑔𝑥(𝑦𝑥) − 𝑦0∥ = ∥ 𝑓 (𝑥) − 𝑦0∥ < 𝜀, thus we are finally done. ♮

We’ll now extend the Implicit Map Theorem for cases 3 where we have more special

conditions, allowing for additional properties for the implicit map 𝑓 .

Lemma A.5.3 (Continuity of the implicit map). Let 𝐹 satisfy the properties described in

Theorem A.5.2 and additionally suppose that there exists a neighbourhood of (𝑥0, 𝑦0)
where the map 𝜕2𝐹(𝑥0, 𝑦0):𝑊 → 𝐿 is continuous. Then the implicit map 𝑓 :𝑈 → 𝑉 is

such that there exists a neighbourhood of 𝑥0 such that 𝑓 is continuous.

Proof. ♮

Lemma A.5.4 (Differentiability of the implicit map). Let 𝐹 satisfy the properties de-

scribed in Theorem A.5.2 and additionally suppose that the partial derivative 𝜕1𝐹(𝑥, 𝑦):𝑉 →
𝐿 exists in some neighbourhood of the point (𝑥0, 𝑦0) and is continuous at (𝑥0, 𝑦0). Then

the implicit map 𝑓 is differentiable at 𝑥0 and

d 𝑓 (𝑥0) = −[𝜕2𝐹(𝑥0, 𝑦0)]−1𝜕1𝐹(𝑥0, 𝑦0).

Proof. ♮

Lemma A.5.5 (Continuous differentiability of the implicit map). Let 𝐹 satisfy the prop-

erties described in Theorem A.5.2 and additionally suppose that the partial derivatives

of 𝐹 are continuous in some neighbourhood of (𝑥0, 𝑦0). Then the map 𝑓 is continuously

differentiable in some neighbourhood of 𝑥0 and its differential in this neighbourhood

is given by

d 𝑓 (𝑥) = −[𝜕1𝐹(𝑥, 𝑓 (𝑥))]−1𝜕1𝐹(𝑥, 𝑓 (𝑥)).
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Proof. ♮

Lemma A.5.6 (𝐶𝑘 implicit map). Let 𝐹 satisfy the properties described in Theorem A.5.2

and additionally suppose that 𝐹 ∈ 𝐶𝑘(Ω, 𝐿). Then the implicit map 𝑓 is a member of

the class 𝐶𝑘(𝑈,𝑊) in some neighbourhood𝑈 ⊆ 𝑉 of 𝑥0.

Proof. ♮

Write down the proof of the extensions of the basic Implicit Map Theorem

Corollaries of the Implicit Map Theorem

Inverse Map Theorem
Definition A.5.7 (Diffeomorphisms). Let 𝑈 and 𝑉 be open subsets of R𝑚

. A map

𝑓 :𝑈 → 𝑉 is said to be a isomorphism of manifolds of class 𝐶𝑝 (or diffeomorphism) —

for 𝑝 ∈ N ∪ {∞}— if the following conditions are satisfied

• 𝑓 ∈ 𝐶𝑝(𝑈,𝑉).
• 𝑓 is bĳective and 𝑓 −1 ∈ 𝐶𝑝(𝑉,𝑈).

Theorem A.5.8 (Inverse Map Theorem). Let 𝑉 and𝑊 be Banach spaces and Ω ⊆ 𝑉 be

an open set. Consider a point 𝑥0 ∈ Ω and a map 𝑓 :Ω → 𝑊 such that the following

conditions are satisfied

• 𝑓 ∈ 𝐶1(Ω,𝑊).
• d 𝑓 (𝑥0) is invertible and [d 𝑓 (𝑥0)]−1

is a continuous map.

Then there exists an open neighbourhood 𝑋 ⊆ Ω of 𝑥0 and an open neighbourhood

𝑌 ⊆ 𝑊 of the point 𝑦0 = 𝑓 (𝑥0), for which the restriction 𝑓 :𝑋 → 𝑌 is bĳective. The

inverse map 𝑓 −1
:𝑌 → 𝑋 is differentiable and its differential is given by

d 𝑓 −1(𝑦0) = [d 𝑓 (𝑥0)]−1.

Proof. Let 𝐹:𝑁 →𝑊 be a map defined on 𝑁 ⊆ 𝑉 ×𝑊 where 𝑁 is a neighbourhood of

(𝑥0, 𝑦0) and let 𝐹(𝑥, 𝑦) = 𝑓 (𝑥) − 𝑦. Since 𝐹 is the composition of the restriction of maps

that are continuously differentiable, it follows that 𝐹 is continuously differentiable,

moreover, 𝜕1𝐹(𝑥0, 𝑦0) = d 𝑓 (𝑥0). Moreover, since d 𝑓 (𝑥0) is invertible then 𝜕1𝐹(𝑥0, 𝑦0) is
also invertible. We have 𝐹(𝑥0, 𝑦0) = 0 by construction, since 𝑓 (𝑥0) = 𝑦0.

We can now see that 𝐹 satisfies the requirements for the Implicit Map Theorem, thus

there exists a neighbourhood 𝑌 of 𝑦0 and a continuously differentiable map 𝑔:𝑌 → 𝑉

(where we use extension Lemma A.5.6) for which 𝑔(𝑌) is contained in a neighbourhood

𝑋′ ⊆ 𝑉 of 𝑥0. Moreover, 𝐹(𝑥, 𝑦) = 0 if and only if 𝑔(𝑦) = 𝑥, that is, 𝐹(𝑔(𝑦), 𝑦) = 0 and

therefore 𝑓 𝑔(𝑦) = 𝑦 for any 𝑦 ∈ 𝑌, that is, 𝑔 is injective on 𝑌 — also 𝑔(𝑦0) = 𝑥0. The

map 𝑔 has a differential given by (using the extension Lemma A.5.4)

d𝑔(𝑦) = [𝜕1𝐹(𝑥, 𝑦)]−1[𝜕2𝐹(𝑥, 𝑦)], for all (𝑥, 𝑦) ∈ 𝑋′ × 𝑌.
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From the definition of 𝐹 we find that

d𝑔(𝑦) = [d 𝑓 (𝑥)]−1

, for all (𝑥, 𝑦) ∈ 𝑋′ × 𝑌.
Lets consider the restriction 𝑓 : 𝑔(𝑌) → 𝑊 . Since 𝑔 is injective, the restriction

𝑔:𝑌 → 𝑔(𝑌) is a bĳection. Since 𝑓 is continuous and 𝑌 is open, then 𝑓 −1(𝑌) = 𝑔(𝑌) is
open. Define 𝑋 = 𝑔(𝑌), so that 𝑓 :𝑋 → 𝑌 is a bĳection and clearly 𝑔 = 𝑓 −1

for such

restriction. Hence we conclude that

d 𝑓 −1(𝑦) = [d 𝑓 (𝑥)]−1

, for all (𝑥, 𝑦) ∈ 𝑋 × 𝑌.
♮

Theorem A.5.9 (Open Map Theorem). Let Ω ⊆ R𝑛
be an open set and 𝑓 :Ω→ R𝑛

be a

continuously differentiable map. If d 𝑓 (𝑥) is invertible for all 𝑥 ∈ Ω, then the map 𝑓 is

an open mapping — that is, maps open subsets of Ω to open subsets of R𝑛
.

Proof. Let 𝑥 ∈ Ω be any point. From hypothesis, d 𝑓 (𝑥) is invertible, hence we can

apply Theorem A.5.8 in order to obtain an open neighbourhood 𝑉𝑥 ⊆ Ω of 𝑥 and

𝑉𝑓 (𝑥) ⊆ R𝑛
such that the map 𝑓 :𝑉𝑥 → 𝑉𝑓 (𝑥) is a local bĳection and hence 𝑓 (𝑉𝑥) is open.

With this in our hands, we can create an open cover 𝒰 = {𝑉𝑥 ⊆ Ω : 𝑥 ∈ Ω} of such

neighbourhoods — that is, given any open set𝑈 ⊆ Ω, there exists a collection of open

sets 𝒱 ⊆ 𝒰 such that 𝑈 =
⋃
𝑉∈𝒱 𝑉 and since 𝑓 (𝑈) = ⋃

𝑉∈𝒱 𝑓 (𝑉) is the union of open

sets, then 𝑓 (𝑈) is open. ♮

Theorem A.5.10 (Maximal Rank Theorem). Let Ω ⊆ R𝑛
be an open set and 𝑥0 ∈ Ω. Let

𝑓 :Ω → R𝑚
be a continuously differentiable map. Define 𝑦0 ∈ R𝑚

so that 𝑓 (𝑥0) = 𝑦0.

The following holds

(a). Suppose 𝑛 ⩽ 𝑚 and that d 𝑓 (𝑥0) has maximal rank(d 𝑓 (𝑥0)) = 𝑛. Then there exists

open sets Ω𝑦0
⊆ R𝑚

and Ω𝑥0
⊆ Ω ⊆ R𝑛

, respectively neighbourhoods of the points

𝑦0 and 𝑥0 with 𝑓 (Ω𝑥0
) ⊆ Ω𝑦0

, and a differentiable map 𝑔:Ω𝑦0
→ R𝑚

such that the

following diagram commutes

Ω𝑥0
Ω𝑦0

R𝑚

𝑓

𝜄 𝑔

Where 𝜄: R𝑛 ↩→ R𝑚
is the canonical inclusion map.

(b). Suppose 𝑛 ⩾ 𝑚 and that d 𝑓 (𝑥0) has maximal rank(d 𝑓 (𝑥0)) = 𝑚. Then there exists

Ω𝑥0
⊆ Ω ⊆ R𝑛

, neighbourhood of 𝑥0, and a differentiable map 𝑔:Ω𝑥0
→ Ω such

that the following diagram commutes

Ω𝑥0

Ω R𝑚

𝜋𝑔

𝑓

Where 𝜋: R𝑛 ↠ R𝑚
is the canonical projection map.
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Proof. 1. Since rank(d 𝑓 (𝑥0)) = 𝑛, then, from the rank plus nullity theorem we

find that ker(d 𝑓 (𝑥0)) = 0 and therefore d 𝑓 (𝑥0) is injective. Consider the matrix

representation 𝑓 ′(𝑥0) of the differential d 𝑓 (𝑥0). From the injective property of

𝑓 , there must exist 𝑛 linearly independent rows in 𝑓 ′(𝑥0). Let 𝐴 be the (𝑛 × 𝑛)-
matrix containing these linearly independent rows and 𝐶 the ((𝑚−𝑛)×𝑛)-matrix

containing the remaining rows of 𝑓 ′(𝑥0). Do row operations on 𝑓 ′(𝑥0) so that we

see it as equivalent to the matrix [
𝐴

𝐶

]
Notice that the collection of rows of 𝐴 form a basis for R𝑛

, thus 𝐴 is invertible

and hence det𝐴 ≠ 0. Define a map 𝐹:Ω × R𝑚−𝑛 → R𝑚
given by the mapping

(𝑥, 𝑦) ↦→ 𝑓 (𝑥) + (0, 𝑦), then we obtain

𝐹′(𝑥0, 0) =
[
𝐴 0

𝐶 𝐼𝑚−𝑛

]
which in particular makes the, otherwise dependent, rows of 𝐶 into a collec-

tion of linearly independent vectors, by attaching the canonical base of the space

R𝑚−𝑛
into each of them. This makes 𝐹′(𝑥0, 0) an invertible matrix. By apply-

ing Theorem A.5.8 we obtain a neighbourhood 𝑈 ⊆ Ω × R𝑚−𝑛
of (𝑥0, 0) and a

neighbourhood Ω𝑦0
⊆ R𝑚

of 𝐹(𝑥0, 0) = 𝑓 (𝑥0) = 𝑦0 for which the restriction map

𝐹:𝑈 → Ω𝑦0
is an isomorphism of manifolds. Let 𝑔:Ω𝑦0

→ 𝑈 be the continuously

differentiable inverse of 𝐹, and defineΩ𝑥0
= 𝑓 −1(Ω𝑦0

)∩Ω, which is clearly a neigh-

bourhood of 𝑥0. Notice that the composition 𝑔 𝑓 (𝑥) = 𝑔𝐹(𝑥, 0) = (𝑥, 0) = 𝜄(𝑥),
thus we are done.

2. Since rank(d 𝑓 (𝑥0)) equals the dimension of its codomain, it follows that d 𝑓 (𝑥0) is
a surjective linear map. Since d 𝑓 (𝑥0) has rank 𝑚, then its matrix representation

𝑓 ′(𝑥0) has 𝑚 linearly independent columns. Let 𝐷 be the (𝑚 × 𝑚)-matrix whose

columns are those of 𝑓 ′(𝑥0) that are linearly independent and 𝐶 be the (𝑚 × (𝑛 −
𝑚))-matrix composed of the remaining columns of 𝑓 ′(𝑥0). Operate on the matrix

𝑓 ′(𝑥0) via column operations so that its final equivalent matrix is[
𝐷 𝐶

]
Since 𝐷 is composed of linearly independent vectors, 𝐷 is invertible. Define the

map 𝐹:Ω → R𝑚 × R𝑛−𝑚
by (𝑥, 𝑦) ↦→ ( 𝑓 (𝑥), 𝑦). Clearly, 𝐹 is differentiable at 𝑥0

and its matrix representation is

𝐹′(𝑥0) =
[

0 𝐼𝑛−𝑚
𝐷 𝐶

]
which is invertible since the attachment of the canonical basis of R𝑛−𝑚

into the

column vectors of 𝐶 transforms the collection of the last 𝑛 − 𝑚 column vectors

of 𝐹′(𝑥0) into a linearly independent set. Applying Theorem A.5.8 we are able to

obtain a neighbourhood Ω𝑥0
⊆ Ω such that the restriction map 𝐹:Ω𝑥0

→ R𝑚 ×
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R𝑛−𝑚
is an isomorphism of manifolds. Let 𝑔: R𝑚×R𝑛−𝑚 → Ω𝑥0

be its continuously

differentiable inverse map, then the composition 𝑓 𝑔(𝑥, 𝑦) = 𝑥 = 𝜋(𝑥, 𝑦) is merely

the canonical projection map, as we expected.

♮

Theorem A.5.11 (Constant rank). Let 𝑈 ⊆ R𝑛
be an open set, and 𝑓 :𝑈 → R𝑚

be a

𝐶∞-map with a locally constant rank 𝑘 at a neighbourhood 𝑉 ⊆ 𝑈 of a point 𝑝 ∈ 𝑈 .

Then after a possible permutation of coordinates near 𝑝 and 𝑓 𝑝, the map 𝑓 assumes

the form

𝑓 |𝑈 = ( 𝑓1, . . . , 𝑓𝑘 , 0, . . . , 0).
In other words, there exists a 𝐶∞-isomorphism 𝜙:𝑄 → R𝑛

centred at 𝑝 (that is, with

𝜙𝑝 = 0), and a 𝐶∞-isomorphism 𝜓:𝑊 → R𝑚
—for some neighbourhood 𝑊 ⊆ R𝑚

of

𝑓 𝑝—centred at 𝑓 𝑝 such that

𝜓 𝑓 𝜙−1(𝑥1, . . . , 𝑥𝑛) = (𝑥1, . . . , 𝑥𝑘 , 0, . . . , 0) ∈ R𝑚 . (A.44)

Proof. Since 𝑓 has a locally constant rank 𝑘 at 𝑝, the local representation of the Jacobian

matrix of 𝑓 at 𝑉 can be rearranged so that

det

[
𝜕𝑗 𝑓𝑖𝑥

]
1⩽𝑖 , 𝑗⩽𝑘

≠ 0

for any 𝑥 ∈ 𝑉 . Define 𝜙:𝑈 → R𝑛
to be the map 𝜙 ≔ ( 𝑓1, . . . , 𝑓𝑘 ,𝜋𝑘+1, . . . ,𝜋𝑛), so that

one has a local Jacobian matrix at 𝑉 given by

Jac 𝜙 =



𝜕1 𝑓1 . . . 𝜕𝑘 𝑓1 𝜕𝑘+1 𝑓1 . . . 𝜕𝑛 𝑓1
...

. . .
...

...
. . .

...

𝜕1 𝑓𝑘 . . . 𝜕𝑘 𝑓𝑘 𝜕𝑘+1 𝑓𝑘 . . . 𝜕𝑛 𝑓𝑘
0 . . . 0 1 . . . 0

...
. . .

...
...

. . .
...

0 . . . 0 0 . . . 1


Then det(Jac 𝜙𝑥) = det

[
𝜕𝑗 𝑓𝑖𝑥

]
1⩽𝑖 , 𝑗⩽𝑘 is non-zero for every 𝑥 ∈ 𝑉 . Using the inverse

map theorem, 𝜙 is a 𝐶∞-isomorphism 𝜙:𝑈𝑝 → 𝑈𝜙𝑝 for some neighbourhoods𝑈𝑝 ⊆ 𝑉
of 𝑝 and𝑈𝜙𝑝 ⊆ R𝑛

of 𝜙𝑝, respectively.

Consider the map 𝑔 ≔ 𝑓 𝜙−1
:𝑈𝜙𝑝 → R𝑚

. Since 𝜙−1
has a constant maximal rank 𝑛

at 𝑈𝜙𝑝 , and 𝑓 :𝑈𝑝 → R𝑚
has constant rank 𝑘 at 𝑈𝑝 , it follows that 𝑔 has constant rank

𝑘 at𝑈𝜙𝑝 . By construction, the Jacobian matrix of 𝑔 is

Jac 𝑔 =



1 . . . 0 0 . . . 0

...
. . .

...
...

. . .
...

0 . . . 1 0 . . . 0

𝜕1𝑔𝑘+1 . . . 𝜕𝑘 𝑔𝑘+1 𝜕𝑘+1𝑔𝑘+1 . . . 𝜕𝑛𝑔𝑘+1

...
. . .

...
...

. . .
...

𝜕1𝑔𝑚 . . . 𝜕𝑘 𝑔𝑚 𝜕𝑘+1𝑔𝑚 . . . 𝜕𝑛𝑔𝑚
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Therefore in the open set𝑈𝜙𝑝 one has 𝜕𝑗𝑔𝑖 = 0 for every 𝑘+1 ⩽ 𝑖 ⩽ 𝑚 and 𝑘+1 ⩽ 𝑗 ⩽ 𝑛.

Restricting the neighbourhood 𝑈𝜙𝑝 to some inner open ball about 𝜙𝑝—so that the

neighbourhood is a convex set—we see that 𝑔𝑖 is independent of the last𝑚−𝑘 variables,

for each 𝑘 + 1 ⩽ 𝑖 ⩽ 𝑚.

Define a 𝐶∞-morphism 𝜓:𝑈𝜙𝑝 → R𝑚
by making 𝜓𝑖 ≔ 𝜋𝑖 for each 1 ⩽ 𝑖 ⩽ 𝑘, and

𝜓𝑖 ≔ 𝜋𝑖 − 𝑔𝑖 for each 𝑘 + 1 ⩽ 𝑖 ⩽ 𝑚. The Jacobi matrix of 𝜓 has the form

Jac𝜓 =



1 . . . 0 0 . . . 0

...
. . .

...
...
. . .

...

0 . . . 1 0 . . . 0

−𝜕1𝑔𝑘+1 . . . −𝜕𝑘 𝑔𝑘+1 1 . . . 0

...
. . .

...
...
. . .

...

−𝜕1𝑔𝑚 . . . −𝜕𝑘 𝑔𝑚 0 . . . 1


Which has det(Jac𝜓) = 1—hence 𝜓 is a 𝐶∞-isomorphism 𝜓:𝑈 𝑓 𝑝 → 𝑈𝜓 𝑓 𝑝 for some

neighbourhoods𝑈 𝑓 𝑝 , 𝑈𝜓 𝑓 𝑝 ⊆ R𝑚
of 𝑓 𝑝 and 𝜓 𝑓 𝑝, respectively. Considering the neigh-

bourhood 𝑔−1𝑈 𝑓 𝑝 we find that the map

𝜓 𝑓 𝜙−1

: 𝑔−1𝑈 𝑓 𝑝 −→ R𝑚

is a 𝐶∞-morphism. Defining 𝑄 ≔ 𝜙−1𝑈𝜙𝑝 and 𝑊 ≔ 𝜓−1𝑈𝜓 𝑓 𝑝 we obtain induced 𝐶∞-

isomorphisms 𝜙:𝑄 → 𝜙𝑄 and 𝜓:𝑊 → 𝜓𝑊 such that 𝜓 𝑓 𝜙−1
satisfies the required

Eq. (A.44). ♮

A.6 Extrema With Constraints
Theorem A.6.1 (Existence of Lagrange multipliers). Let 𝑓 :Ω → R be a map, where

Ω ⊆ R𝑑
, and a map 𝐹:Ω → R𝑚

, where 𝑚 < 𝑑 — which will be called constraint

map. Suppose 𝑥0 is a local extremum of 𝑓 in the surface 𝑆 ⊆ Ω defined by the

constraint 𝑆 = {𝑥 ∈ Ω : 𝐹(𝑥) = 0}. Suppose additionally that rank 𝐹′(𝑥) = 𝑚 for every

𝑥 ∈ Ω. Then, there exists a vector 𝜆 ∈ R𝑚
— whose components are called Lagrange

multipliers — such that

𝑓 ′(𝑥0) = 𝐹′(𝑥0)𝜆.
In the particular case where 𝑚 = 1, the constraint map generates a 1 dimensional

surface and therefore grad 𝑓 (𝑥0) = 𝜆 grad 𝐹(𝑥0), where 𝜆 ∈ R.

Proof. Since 𝐹′(𝑥0) has rank 𝑚, let 𝐷 be the (𝑚 × 𝑚)-matrix whose columns are the 𝑚

linearly independent columns of 𝐹′(𝑥0). Define 𝐶 to be the (𝑚 × 𝑑 − 𝑚)-matrix whose

columns are the remaining columns of 𝐹′(𝑥0). By means of column operations, arrange

𝐹′(𝑥0) into an equivalent matrix of the form[
𝐶 𝐷

]
That is, the equivalent matrix has an invertible principal minor 𝐷 defined on its last 𝑚

columns. If we now identify points 𝑥 ∈ R𝑑
with points (𝑥1, 𝑥2) = 𝑥 ∈ R𝑑−𝑚 × R𝑚

, we

find that 𝜕2𝐹(𝑥1

0
, 𝑥2

0
) is an invertible map (it corresponds to the matrix 𝐷).
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We can now apply the Implicit Map Theorem to find neighbourhoods Ω𝑥1

0

⊆ R𝑑−𝑚

andΩ𝑥2

0

⊆ R𝑚
of 𝑥1

0
and 𝑥2

0
, respectively, and a map 𝑔:Ω𝑥1

0

→ Ω𝑥2

0

for which 𝐹(𝑥1, 𝑥2) = 0

if and only if 𝑔(𝑥1) = 𝑥2. In particular, the mapping 𝑥1 ↦→ 𝐹(𝑥1, 𝑔(𝑥1)) is identically

zero and therefore Ω𝑥1

0

× 𝑔(Ω𝑥1

0

) ⊆ 𝑆. From the fact that 𝑥0 = (𝑥1

0
, 𝑥2

0
) = (𝑥1

0
, 𝑔(𝑥1

0
)) is a

local extremum of 𝑓 , defining 𝜙:Ω𝑥1

0

→ R by 𝜙(𝑥1) = 𝑓 (𝑥1, 𝑔(𝑥1)), we conclude that 𝑥1

0

is a local maximum of 𝜙. In particular, it is necessary that d𝜙(𝑥1

0
) = 0 and therefore

d𝜙(𝑥1

0
) =

𝑑−𝑚∑
𝑗=1

𝜕𝑗 𝑓 (𝑥1

0
, 𝑔(𝑥1

0
)) +

𝑚∑
𝑖=𝑑−𝑚+1

𝜕𝑖 𝑓 (𝑥1

0
, 𝑔(𝑥1

0
))𝜕𝑖𝑔(𝑥1

0
) = 0.

If we now regard 𝑓 as map of the form R𝑑−𝑚 × R𝑚 → R𝑚
, then we see that

d𝜙(𝑥1

0
) = 𝜕1 𝑓 (𝑥1

0
, 𝑔(𝑥1

0
)) + 𝜕2 𝑓 (𝑥1

0
, 𝑔(𝑥1

0
))d𝑔(𝑥1

0
) = 0.

From the Implicit Map Theorem, 𝑔 was constructed so that

d𝑔(𝑥1

0
) = −[𝜕2𝐹(𝑥1

0
, 𝑔(𝑥1

0
))]−1𝜕1𝐹(𝑥1

0
, 𝑔(𝑥1

0
)).

Hence, substituting into the above equation we find

𝜕1 𝑓 (𝑥1

0
, 𝑔(𝑥1

0
)) − 𝜕2 𝑓 (𝑥1

0
, 𝑔(𝑥1

0
))[𝜕2𝐹(𝑥1

0
, 𝑔(𝑥1

0
))]−1𝜕1𝐹(𝑥1

0
, 𝑔(𝑥1

0
)) = 0

Now, if we define 𝜆 ∈ R𝑚
by 𝜆 = 𝜕2 𝑓 (𝑥1

0
, 𝑔(𝑥1

0
))[𝜕2𝐹(𝑥1

0
, 𝑔(𝑥1

0
))]−1

, we find that

𝜕1 𝑓 (𝑥1

0
, 𝑔(𝑥1

0
)) = 𝜕1𝐹(𝑥1

0
, 𝑔(𝑥1

0
))𝜆

𝜕2 𝑓 (𝑥1

0
, 𝑔(𝑥1

0
)) = 𝜕2𝐹(𝑥1

0
, 𝑔(𝑥1

0
))𝜆

So that we can conclude

d 𝑓 (𝑥0) = d𝐹(𝑥0)𝜆.
♮

Theorem A.6.2 (Sufficient condition for a constraint extremum). Let Ω ⊆ R𝑑
and maps

𝑓 :Ω → R, and 𝐹:Ω → R𝑚
, both of which are 𝐶2(Ω,R). Let 𝑆 ⊆ Ω be the surface

defined by 𝑆 = {𝑥 ∈ Ω : 𝐹(𝑥) = 0}. Consider 𝑥0 ∈ 𝑆 as a possible candidate of local

extremum of 𝑓 in the surface 𝑆. Suppose additionally that rank 𝐹′(𝑥) = 𝑚 for every

𝑥 ∈ Ω. Define the Lagrange multipliers 𝜆 ∈ R𝑚
so that the map 𝐿: 𝑆→ R given by

𝐿(𝑥) = 𝑓 (𝑥) − ⟨𝜆, 𝐹(𝑥)⟩ ,

satisfy grad 𝐿(𝑥) = 0 for all 𝑥 ∈ 𝑆 and 𝜕𝜆𝐿(𝑥) = 0.

It’s sufficient for 𝑥0 ∈ 𝑆 to be a local extremum in 𝑆 if Hess 𝐿(𝑥0) is either positive

definite or negative definite. If Hess 𝐿(𝑥0) is not definite, then 𝑥0 cannot be an extremum

point. Moreover, if Hess 𝐿(𝑥0) is positive definite, then 𝑥0 is a local minimum on 𝑆, on

the other hand, if Hess 𝐿(𝑥0) is negative definite, then 𝑥0 is a local maximum on 𝑆.
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Proof. Since 𝑥0 ∈ 𝑆, then in particular grad 𝐿(𝑥0) = 0, thus, as 𝑆 ∋ 𝑥 → 𝑥0 we have the

polynomial approximation

𝐿(𝑥) − 𝐿(𝑥0) =
1

2!

𝑑∑
𝑖 , 𝑗=1

𝜕𝑖 𝑗𝐿(𝑥0)(𝑥𝑖 − 𝑥 𝑖
0
)(𝑥 𝑗 − 𝑥 𝑗

0
) + 𝑜(∥𝑥 − 𝑥0∥2)

=
1

2!

⟨𝑥 − 𝑥0,Hess(𝐿(𝑥0))(𝑥 − 𝑥0)⟩ + 𝑜(∥𝑥 − 𝑥0∥2

R𝑑).

We’ll assume that 𝑆 — which is a (𝑑 −𝑚)-dimensional surface, since rank 𝐹(𝑥) = 𝑚

— can be parametrically defined in some neighbourhood of 𝑥0 ∈ 𝑆 by a smooth map

R𝑑−𝑚 ∋ 𝑡 ↦→ 𝑥(𝑡) ∈ R𝑑
such that 𝑥(0) = 𝑥0 and that exists a neighbourhood of 0 ∈ R𝑑−𝑚

for which the parametrization is bĳective. Since the mapping is smooth, as 𝑡 → 0 we

have

𝑥(𝑡) − 𝑥(0) = d𝑥(0)(𝑡) + 𝑜(∥𝑡∥R𝑑−𝑚 ).
Which implies that as 𝑡 → 0 we have ∥𝑥(𝑡) − 𝑥(0)∥R𝑑 = 𝑂(∥𝑡∥R𝑑).

We can now exploit the parametrization of the surface 𝑆 so that, as 𝑡 → 0 we have

𝐿(𝑥(𝑡)) − 𝐿(𝑥0) =
1

2!

⟨𝑡 ,Hess(𝐿(𝑥(0)))𝑡⟩ + 𝑜(𝑂(∥𝑡∥R𝑑))

=
1

2!

⟨𝑡 ,Hess(𝐿(𝑥(0)))𝑡⟩ + 𝑜(∥𝑡∥R𝑑).

Where the entries of the Hessian are of the form 𝜕𝑖 𝑗𝐿(𝑥(0)) = 𝜕𝑖 𝑗𝐿(𝑥(0))𝜕𝑖𝑥(0)𝜕𝑗𝑥(0).
Then, if Hess 𝐿(𝑥(0)) is positive or negative definite, by Theorem A.4.6, we obtain that

𝑡 = 0 is an extremum of 𝐿(𝑥(𝑡)). On the other hand, since there exists a neighbourhood

of 𝑡 = 0 for which 𝑥(𝑡) is a bĳective parametrization, it follows that 𝐿 has an extremum

at 𝑥0 — and hence 𝑥0 is an extremum of 𝑓 in 𝑆 and the classifications of maximum

or minimum come again from the same theorem. If Hess 𝐿(𝑥(0)) is indefinite, by

Theorem A.4.6 we conclude that 𝐿(𝑥(𝑡)) has no extremum at 𝑡 = 0 — and with the

same analogous arguments as before, we argue that 𝐿 has no extrema at 𝑥0 and neither

does 𝑓 . ♮

A.7 Riemann Integration of Real Valued Maps

Primary Definitions
The main setting we are going to be working in this section, which will encompass

the study of multiple Riemann integrals, is the standard euclidean space R𝑛
and the

𝑛-dimensional closed intervals 𝐼 = [𝑎, 𝑏] = {𝑥 ∈ R𝑛
: 𝑎 𝑗 ⩽ 𝑥 𝑗 ⩽ 𝑏 𝑗 for 1 ⩽ 𝑗 ⩽ 𝑛}. If

it seems fit, we can denote that a point 𝑥 ∈ R𝑛
lies in the interval generated by given

points 𝑎, 𝑏 ∈ R𝑛
by simply saying that 𝑎 ⩽ 𝑥 ⩽ 𝑏. Another terminology we are going

to adopt is that, the interval 𝐼 is non-degenerate if 𝑎 𝑗 < 𝑏 𝑗 for all 1 ⩽ 𝑗 ⩽ 𝑛.

Notation A.7.1. In this section we denote by ℐ 𝑛 the collection of all closed intervals of

R𝑛
.
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Definition A.7.2 (Interval measure). We define the map vol: ℐ 𝑛 → R as the measure
(or volume) of the 𝑛-dimensional closed intervals of R𝑛

, it’s defined as the product of

the interval sides, that is

vol 𝐼 ≔

𝑛∏
𝑗=1

𝑏 𝑗 − 𝑎 𝑗 , for 𝐼 = [𝑎, 𝑏] ∈ ℐ 𝑛 .

Corollary A.7.3 (Measure of intervals in R𝑛
). Let 𝐼 ≔ [𝑎, 𝑏] ⊆ R𝑛

be an 𝑛-dimensional

closed interval, then the following properties are satisfied concerning the measure vol:

(a) (Homogeneity) Let 𝛾 ⩾ 0 be a scalar and define the multiplication of the interval

by 𝛾 as 𝛾𝐼 ≔ [𝛾𝑎, 𝛾𝑏]. Then we have that

vol(𝜆𝐼) = 𝜆𝑛 vol 𝐼.

(b) (Additivity) Given a finite collection of closed intervals {𝐼 𝑗 ⊆ R𝑛}𝑝
𝑗=1

, we have that

vol

𝑝⋃
𝑗=1

𝐼 𝑗 =

𝑝∑
𝑗=1

vol 𝐼 𝑗 .

(c) (Cover inequality) Given a finite closed cover {𝐼 𝑗}𝑝 , by 𝑛-dimensional closed inter-

vals, of 𝐼 — that is 𝐼 ⊆ ⋃𝑝

𝑗=1
𝐼 𝑗 — then

vol 𝐼 ⩽
𝑝∑
𝑗=1

vol 𝐼 𝑗 .

Definition A.7.4 (Partition). Let 𝐼 ⊆ R𝑛
be a closed interval. A partition on 𝐼 is a finite

collection of closed intervals {𝐼 𝑗}𝑝𝑗=1
such that 𝐼 =

⋃𝑝

𝑗=1
𝐼 𝑗 . The intervals pertaining to

the partition are said to be finer than 𝐼.

Definition A.7.5 (Partition mesh). Given a partition 𝑃 ∈ 2
ℐ 𝑛

, we define the mesh of 𝑃 as

the maximum diameter (recall Definition A.2.6) of the elements of the partition. That

is, mesh: 2
ℐ 𝑛 → R is a map defined by

mesh(𝑃) ≔ max

𝐼∈𝑃
𝑑(𝐼).

Definition A.7.6 (Distinguished points). Given a partition 𝑃 = {𝐼 𝑗}𝑝𝑗=1
∈ 2
ℐ 𝑛

, we define

a collection of distinguished points of the partition as a collection of points 𝜉 ≔ {𝜉𝑗 ∈
𝐼 𝑗}𝑝𝑗=1

. The partition 𝑃 together with the distinguished points 𝜉 will be denoted as the

pair (𝑃, 𝜉)— the collection of pairs (𝑃, 𝜉)will be denoted by 𝒫 .

An important filter base ℬ ⊆ 2
𝒫

is defined as the collection of sets 𝐵𝑑, where 𝑑 > 0

is a scalar, such that 𝐵𝑑 ≔ {(𝑃, 𝜉) ∈ 𝒫 : mesh(𝑃) < 𝑑}. We’ll commonly denote ℬ by

mesh(𝑃) → 0.
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Riemann Sums and Integrals
Definition A.7.7 (Riemann sum). Let 𝑓 : 𝐼 → R be a map where 𝐼 ∈ ℐ 𝑛 . Consider the

partition together with distinguished points (𝑃, 𝜉) ∈ 𝒫 , then, we define the Riemann
sum 𝜎: R𝐼 × 𝒫 → R by

𝜎( 𝑓 , 𝑃, 𝜉) ≔
𝑝∑
𝑗=1

𝑓 (𝜉𝑗)vol(𝐼 𝑗),

where 𝑃 ≔ {𝐼 𝑗}𝑝𝑗=1
. We say that 𝜎( 𝑓 , 𝑃, 𝜉) is the Riemann sum of the map 𝑓 with

respect to the partition 𝑃 and distinguished points 𝜉.

Definition A.7.8 (Riemann integrable maps). A map 𝑓 : 𝐼 → R is said to be Riemann
integrable if the limit

lim

mesh(𝑃)→0

𝜎( 𝑓 , 𝑃, 𝜉)

exists in R. We’ll denote the R-vector space of Riemann integrable maps with a given

domain 𝐸 ⊆ R𝑛
by ℛ(𝐸)1.

Proposition A.7.9 (Boundness of Riemann integrable maps). Let 𝑓 : 𝐼 → R be a Rie-

mann integrable map. Then, 𝑓 is bounded on 𝐼.

Proof. We prove the contrapositive proposition. Suppose that 𝑓 is unbounded on

𝐼 and let 𝑃 be any partition of the interval 𝐼. In particular, since 𝑃 covers 𝐼, then

there exists an interval 𝐼𝑘 ∈ 𝑃 for which 𝑓 is unbounded. Let 𝜉 be any collection of

distinguished points of 𝑃 and define 𝜉′ as the collection of distinguished points 𝜉′
𝑗
≔ 𝜉𝑗

for 𝑗 ≠ 𝑚, and 𝜉′
𝑘
∈ 𝐼𝑘 to be such that 𝜉′

𝑘
≠ 𝜉𝑘 . Then, from construction, it follows that

𝜎( 𝑓 , 𝑃, 𝜉) − 𝜎( 𝑓 , 𝑃, 𝜉′) = ( 𝑓 (𝜉𝑘) − 𝑓 (𝜉′𝑘))vol(𝐼𝑘). Since from hypothesis 𝑓 is unbounded

in 𝜉𝑘 , for every 𝑀 > 0, there exists 𝜉′
𝑘
∈ 𝐼𝑘 such that ∥ 𝑓 (𝜉𝑘) − 𝑓 (𝜉′

𝑘
)∥ > 𝑀 — that

is, ∥ 𝑓 (𝜉𝑘) − 𝑓 (𝜉′𝑘)∥ is obviously unbounded, which implies in the divergence of the

Riemann sums, hence 𝑓 is non-Riemann integrable. ♮

Definition A.7.10 (Riemann integral). The Riemann integral of real valued maps is an

R-linear map

∫
:ℛ → R defined by mapping any 𝑓 ∈ ℛ(𝐼) to∫

𝐼

𝑓 (𝑥)d𝑥 ≔ lim

mesh(𝑃)→0

𝜎( 𝑓 , 𝑃, 𝜉).

Sets of Lebesgue Measure Zero
Definition A.7.11 (Set of Lebesgue measure zero). A set 𝐸 ⊆ R𝑛

is said be of Lebesgue

measure zero if for every 𝜀 > 0 there exists a countable open cover𝒰 of 𝐸 by 𝑛-dimensional

open intervals whose total volume

∑
𝐼∈𝒰 vol Cl 𝐼 does not exceed 𝜀.

Corollary A.7.12. A compact subset 𝐸 ⊆ R𝑛
is of measure zero if and only if, for all

𝜀, there exists a finite open cover 𝒰 of 𝐸 by open 𝑛-dimensional intervals such that∑
𝐼∈𝒰 vol Cl 𝐼 ⩽ 𝜀.

1
For the time being, we have only defined the case where𝐸 is an interval, but I’m already generalizing

the notation for its uses in the following subsections.
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Proof. If 𝐸 satisfies the last property, then clearly 𝐸 is a set of measure zero. On the

other hand, if we assume that 𝐸 is of measure zero, given any 𝜀 > 0, let 𝒞 be a countable
cover of 𝐸 for which

∑
𝐼∈𝒞 vol Cl 𝐼 ⩽ 𝜀. Since 𝐸 is compact, there exists a finite subcover

𝒰 ⊆ 𝒞 of 𝐸, and since

∑
𝐼∈𝒰 vol Cl 𝐼 ⩽

∑
𝐼∈𝒞 vol Cl 𝐼 ⩽ 𝜀, thus 𝒰 is the wanted finite

cover. ♮

Lemma A.7.13. The following are properties of sets of measure zero:

(a) A subset of a set of measure zero is of measure zero.

(b) The countable union of sets of measure zero is of measure zero.

(c) A countable set is of measure zero.

(d) A non-degenerate interval is not a set of measure zero.

Proof. (a) Let 𝐸 ⊆ R𝑛
be a set of measure zero and 𝐴 ⊆ 𝐸 be a subset. If 𝒰 is a

closed cover by intervals satisfying the measure zero condition, then in particular

𝒰 covers 𝐴 therefore 𝐴 is of zero measure.

(b) Let {𝐸 𝑗 ⊆ R𝑛}𝑗∈𝐽 be a countable collection of sets of measure zero, and let {𝒰𝑗}𝑗∈𝐽
be a collection where 𝒰𝑗 is the corresponding closed cover by intervals for 𝐸 𝑗 .

Notice that the countable union 𝐸 ≔
⋃
𝑗∈𝐽 𝐸 𝑗 can be covered by 𝒰 ≔

⋃
𝑗∈𝐽𝒰𝑗 ,

therefore, since the union of countable collections is countable, it follows that𝒰 is

a countable cover for 𝐸 which satisfies the wanted property.

(c) We initially consider a single point in space. Notice that, for any given 𝜀, there

exists a closed interval (for instance, one could choose an interval of equal sides

containing the point, whose sides have length less than 𝜀1/𝑛
), whose volume is less

than 𝜀, containing the given point — that is, this one interval is sufficient to cover

the point. We conclude that a singleton is of measure zero. Using the last item, we

find that a countable set is of measure zero.

(d) Let 𝐼 = [𝑎, 𝑏] ⊆ R𝑛
be a non-degenerate interval. Since R𝑛

is Lindelöf, every cover

of 𝐼 has a finite subcover so, we can proceed by induction on the cardinality 𝑚 ∈ N
of the open cover. For 𝑚 = 1, let (𝛼, 𝛽) ⊆ R𝑛

be an open interval covering 𝐼. Notice

that every 𝑥 ∈ 𝐼 is such that 𝑎 𝑗 ⩽ 𝑥 𝑗 ⩽ 𝑏 𝑗 , for all 1 ⩽ 𝑗 ⩽ 𝑛, then, since 𝑥 must lie at

(𝛼, 𝛽), we necessarily have 𝛼 𝑗 < 𝑎 ⩽ 𝑥 𝑗 ⩽ 𝑏 < 𝛽 𝑗 so that 𝑏 𝑗 − 𝑎 𝑗 < 𝛽 𝑗 − 𝛼 𝑗 and hence

vol 𝐼 < vol[𝛼, 𝛽]. For the hypothesis of induction, suppose the proposition holds

for a cover of cardinality 𝑛 − 1 ∈ N>1. Let {(𝛼𝑖 , 𝛽𝑖) ⊆ R𝑛}𝑚
𝑖=1

be a cover of 𝐼 by open

intervals. Let 1 ⩽ 𝑘 ⩽ 𝑛 be such that 𝑎 ∈ (𝛼𝑘 , 𝛽𝑘), that is, 𝛼𝑘 < 𝑎 𝑗 < 𝛽𝑘
𝑗
. If for some

index 1 ⩽ 𝑗0 ⩽ 𝑛 we have 𝑏 𝑗0 > 𝛽𝑘
𝑗0

, we define the point 𝛽′ to be such that, if 𝛽𝑘
𝑗
< 𝑏 𝑗

then 𝛽′
𝑗
= 𝛽𝑘

𝑗
, otherwise, if 𝛽𝑘

𝑗
⩾ 𝑏 𝑗 , we let 𝑎 𝑗 < 𝛽′

𝑗
< 𝑏 𝑗 — that is, we constructed

a point so that the closed interval [𝛽′, 𝑏] is non-degenerate. From the hypothesis

of induction, every cover of [𝛽′, 𝑏] with cardinality 𝑚 − 1 has total volume strictly

greater than vol[𝛽′, 𝑏]. In particular, since [𝛽′, 𝑏] ⊂ [𝑎, 𝑏] then {(𝛼𝑖 , 𝛽𝑖)}𝑚
𝑖=1

is a cover

of [𝛽′, 𝑏], notice that [𝛽′, 𝑏] ∩ (𝛼𝑘 , 𝛽𝑘) = ∅, thus the cover {(𝛼𝑖 , 𝛽𝑖)}𝑚
𝑖=1,𝑖≠𝑘

is a cover

of [𝛽′, 𝑏]with cardinality 𝑛 − 1, hence vol[𝛽′, 𝑏] < ∑𝑚
𝑖=1,𝑖≠𝑘 vol[𝛼𝑖 , 𝛽𝑖]. Then we find
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that

𝑏 𝑗 − 𝑎 𝑗 < (𝑏 𝑗 − 𝛽′𝑗) + (𝛽′𝑗 − 𝑎 𝑗)
⩽ (𝑏 𝑗 − 𝛽′𝑗) + (𝛽𝑘𝑗 − 𝑎 𝑗)
< (𝑏 𝑗 − 𝛽′𝑗) + (𝛽𝑘𝑗 − 𝛼𝑘𝑗 ).

Therefore we conclude that

vol[𝑎, 𝑏] < vol[𝛽′, 𝑏] + vol[𝛼𝑘 , 𝛽𝑘]

<
𝑚∑

𝑖=1,𝑖≠𝑘

vol[𝛼𝑖 , 𝛽𝑖] + vol[𝛼𝑘 , 𝛽𝑘]

=

𝑚∑
𝑖=1

vol[𝛼𝑖 , 𝛽𝑖],

which proves that the proposition is true for all 𝑚 ∈ N.

♮

Example A.7.14. Let 𝑓 : 𝐼 → R be a continuous map on the interval 𝐼 ⊆ R𝑛−1
. The

graph of 𝑓 is a 𝑛-dimensional set of Lebesgue measure zero.

Proof. Let Γ denote the graph of 𝑓 over 𝐼. To see this, notice that since 𝐼 is closed, then 𝑓

is uniformly continuous on 𝐼. For any 𝜀 > 0, let 𝛿 > 0 be such that ∥ 𝑓 (𝑥)− 𝑓 (𝑦)∥R < 𝜀 for

every 𝑥, 𝑦 ∈ 𝐼 such that ∥𝑥 − 𝑦∥R𝑛−1 < 𝛿. Let 𝑃 be a partition of 𝐼 with mesh𝑃 < 𝛿. For

any point 𝑥0 ∈ 𝑅 of each𝑅 ∈ 𝑃, we have an induced interval𝑅′ ≔ 𝑅×[ 𝑓 (𝑥0)−𝜀, 𝑓 (𝑥0)+𝜀]
which is such thatΓ ⊆ 𝑅′, since we have an oscillation𝜔( 𝑓 , 𝑅) < 𝜀 from the construction

of 𝑃. Let 𝑃′ be the collection of induced intervals 𝑅′ of the partition 𝑃. From the last

observation we have that 𝑃′ is a closed cover of Γ by closed 𝑛-dimensional intervals.

Moreover,

∑
𝑅′∈𝑃′ vol𝑅′ =

∑
𝑅∈𝑃 2𝜀 vol𝑅 = 2𝜀 vol 𝐼 — therefore Γ indeed is of Lebesgue

measure zero ♮

Notation A.7.15. Given a set 𝑋 and a property 𝑃, we say that 𝑃 holds almost everywhere
on 𝑋 if the subset 𝐴 ⊆ 𝑋, such that 𝑃 is not true, is a set of measure zero.

Theorem A.7.16 (Lebesgue’s criterion). A map 𝑓 : 𝐼 → R is Riemann integrable if and

only if 𝑓 is bounded on 𝐼 and 𝑓 is continuous almost everywhere on 𝐼.

Proof. (Necessity) Let 𝑓 be Riemann integrable, then, from Proposition A.7.9, 𝑓 is

bounded on 𝐼. For the sake of contradiction, let 𝐸 ⊆ 𝐼 be the set composed of the

points of discontinuity of 𝑓 , we’ll suppose that 𝐸 doesn’t have measure zero. Notice

that if 𝑥 ∈ 𝐸, then there exists 𝑛 ∈ N for which 𝜔( 𝑓 , 𝑥) ⩾ 1/𝑛 — that is, 𝑓 does not

converge to a value in 𝑥. We can then define 𝐸𝑛 ≔ {𝑥 ∈ 𝐼 : 𝜔( 𝑓 , 𝑥) ⩾ 1/𝑛} for every

𝑛 ∈ N so that 𝐸𝑛 ⊆ 𝐸 and thus 𝐸 =
⋃
𝑛∈N 𝐸𝑛 . Since 𝐸 isn’t of measure zero from

assumption, it follows that there necessarily exists at least one 𝑛0 ∈ N such that 𝐸𝑛0

isn’t of measure zero.

648



Let 𝑃 be a partition of 𝐼, we’ll consider two subsets of this partition:

𝐴 ≔ {𝑅 ∈ 𝑃 : 𝑅 ∩ 𝐸𝑛0
≠ ∅ and 𝜔( 𝑓 , 𝑅) ⩾ 1/(2𝑛0)},

and 𝐵 ≔ 𝑃 ∖𝐴. Since 𝑃 partitions the interval, for any 𝑥 ∈ 𝐸𝑛0
, there exists 𝑅 ∈ 𝑃 such

that 𝑥 ∈ Int𝑅 or 𝑥 ∈ 𝜕𝑅 — we now analyse both cases:

• In the case where 𝑥 is an interior point, since 𝜔( 𝑓 , 𝑥) ⩾ 1/𝑛0, it follows that 𝑅 ∈ 𝐴.

• Otherwise, if 𝑥 is a boundary point, then there actually exists at least another

𝑅′ ∈ 𝑃 such that 𝑥 ∈ 𝜕𝑅 ∩ 𝜕𝑅′. Suppose, for the sake of contradiction, that every

interval 𝑅′ ∈ 𝑃 containing 𝑥 as a boundary point is such that 𝑓 has an oscillation

𝜔( 𝑓 , 𝑅′) < 1/(2𝑛0), then, if we take any ball 𝐵𝑥(𝑟) ∩ 𝐼, neighbourhood of 𝑥, we

find that, 𝜔( 𝑓 , 𝐵𝑥(𝑟)) < 1/(2𝑛0) + 1/(2𝑛0) = 1/𝑛0, that is, the limit 𝜔( 𝑓 , 𝑥) < 1/𝑛0,

which is a contradiction to the assumption that 𝑥 ∈ 𝐸𝑛 — thus there must exist

𝑅′ ∈ 𝑃 with 𝑥 ∈ 𝜕𝑅′ such that 𝜔( 𝑓 , 𝑅′) ⩾ 1/(2𝑛0) so that 𝑅′ ∈ 𝐴.

This implies that 𝐴 covers the interval 𝐸𝑛0
by closed intervals and, by assumption,∑

𝑅∈𝐴 vol𝑅 > vol𝐸𝑛0
.

We are now going to consider any two distinct choices of distinguished points 𝜉
and 𝜉′ of 𝑃 such that, if 𝜉𝑗 and𝜉′

𝑗
are elements of a common interval of 𝐵 then 𝜉𝑗 = 𝜉′

𝑗
,

and if 𝜉𝑗 and 𝜉′
𝑗

are elements common to an interval of 𝐴, we choose 𝜉𝑗 and 𝜉𝑗 to

be any points such that 𝑓 (𝜉𝑗) − 𝑓 (𝜉′𝑗) > 1/(3𝑛0) — which is always possible from the

construction of 𝐴. Notice that we have

∥𝜎( 𝑓 , 𝑃, 𝜉) − 𝜎( 𝑓 , 𝑃, 𝜉′)∥ = ∥
∑
𝑅 𝑗∈𝐴
( 𝑓 (𝜉𝑗) − 𝑓 (𝜉′𝑗))vol𝑅 𝑗∥

>
1

3𝑛0

∑
𝑅 𝑗∈𝐴

vol𝑅 𝑗

>
1

3𝑛0

vol𝐸𝑛0
> 0,

and therefore the limit lim
mesh(𝑃)→0

𝜎( 𝑓 , 𝑃, 𝜉) does not converge whenever 𝐸𝑛0
is of

measure zero — that is, if the set of discontinuities of 𝑓 isn’t of measure zero, then 𝑓 is

non-Riemann integrable.

(Sufficiency) Suppose that 𝑓 is bounded and continuous almost everywhere on 𝐼.

Let 𝜀 > 0 be any constant and consider the subset 𝐸𝜀 ≔ {𝑥 ∈ 𝐼 : 𝜔( 𝑓 , 𝑥) ⩾ 𝜀} of

discontinuous points of 𝑓 . If 𝐸 is the set of points of discontinuity of 𝑓 , then by

hypothesis 𝐸 is of measure zero — since 𝐸𝜀 ⊆ 𝐸, then 𝐸𝜀 is also of measure zero.

Moreover, 𝐸𝜀 is necessarily closed, which implies in 𝐸𝜀 compact. Let {𝐼 𝑗}𝑘𝑗=1
be a finite

open cover of 𝐸𝜀 by open intervals 𝐼 𝑗 ⊆ R𝑛
such that

∑𝑘
𝑖=1

vol Cl 𝐼 < 𝜀 (recall that this

is possible because of Corollary A.7.12).

We now define the 𝜆-dilations of intervals of the cover {𝐼 𝑗}𝑘𝑗=1
but with centre

unchanged — that is, if 𝐼 𝑗 = (𝑥, 𝑦), then the dilation 𝐼𝜆
𝑗
≔ (𝑧, 𝑤) must be such that

𝑤𝑖 − 𝑧𝑖 = 𝜆1/𝑛(𝑦𝑖 − 𝑥𝑖) and 𝑤𝑖 + 𝑧𝑖 = 𝑦𝑖 + 𝑥𝑖 , for all 1 ⩽ 𝑖 ⩽ 𝑛. Solving such system we
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obtain 𝑧𝑖 =
1

2
[𝑥𝑖(1 + 𝜆1/𝑛) + 𝑦𝑖(1 − 𝜆1/𝑛)] and 𝑤𝑖 =

1

2
[𝑥𝑖(1 − 𝜆1/𝑛) + 𝑦𝑖(1 + 𝜆1/𝑛)]. This

way we have

𝑘∑
𝑗=1

vol Cl 𝐼𝜆𝑗 = 𝜆𝑛
𝑘∑
𝑗=1

vol Cl 𝐼 𝑗 < 𝜆𝑛𝜀.

We’ll define the sets 𝐶𝜆 ≔ (⋃𝑘
𝑗=1
𝐼𝜆
𝑗
) ∩ 𝐼 — moreover, 𝑑 will be the minimum distance

between the boundaries of 𝐶2 and 𝐶3.

From construction, we have 𝐸𝜀 ⊆ Int𝐶2, now if we consider the compact set 𝐾 ≔

𝐼 ∖ (Int𝐶2), then, for every 𝑥 ∈ 𝐾, we have 𝜔( 𝑓 , 𝑥) < 𝜀. Using Theorem A.2.33, we find

that there exists a 𝛿 > 0 such that ∥ 𝑓 (𝑥) − 𝑓 (𝑦)∥ < 2𝜀, for all 𝑥, 𝑦 ∈ 𝐾 with ∥𝑥 − 𝑦∥ < 𝛿.

We’ll now finally show the convergence of the Riemann sums. Let 𝑃′ ≔ {𝑅′𝛼}𝛼∈𝐴
and 𝑃′′ ≔ {𝑅′′𝛽}𝛽∈𝐵 be any two partitions of 𝐼 with mesh(𝑃′),mesh(𝑃′′) < min(𝑑, 𝛿).
Define 𝑃 ≔ {𝑅(𝛼,𝛽) ≔ 𝑅′𝛼 ∩ 𝑅′′𝛽}(𝛼,𝛽)∈𝐴×𝐵, which clearly is a partition of 𝐼. Since we

are dealing with partitions, for every 𝑅′𝛼 ∈ 𝑃′ we have 𝑅′𝛼 =
⋃

𝛽∈𝐵 𝑅(𝛼,𝛽) — thus

vol𝑅′𝛼 =
∑

𝛽∈𝐵 vol𝑅(𝛼,𝛽). Let 𝜉′ and 𝜉 be any two distinguished points of the partitions

𝑃′ and 𝑃, respectively, then

∥𝜎( 𝑓 , 𝑃′, 𝜉′) − 𝜎( 𝑓 , 𝑃, 𝜉)∥ = ∥
∑

(𝛼,𝛽)∈𝐴×𝐵
( 𝑓 (𝜉′𝛼) − 𝑓 (𝜉(𝛼,𝛽)))vol𝑅(𝛼,𝛽)∥

⩽
∑

(𝛼,𝛽)∈𝐴′×𝐵′
∥ 𝑓 (𝜉′𝛼) − 𝑓 (𝜉(𝛼,𝛽))∥vol𝑅(𝛼,𝛽)

+
∑

(𝛼,𝛽)(𝐴×𝐵)∖(𝐴′×𝐵′)
∥ 𝑓 (𝜉′𝛼) − 𝑓 (𝜉(𝛼,𝛽))∥vol𝑅(𝛼,𝛽),

where we define

𝐴′ × 𝐵′ ≔ {(𝛼, 𝛽) ∈ 𝐴 × 𝐵:𝑅′𝛼 ⊆ 𝐶3}.
Moreover, since the diameter 𝑑(𝑅′𝛼) < 𝑑, then for every 𝑅′𝛼 not entirely contained in 𝐶3,

the intersection with any 𝑅′′𝛽 , namely 𝑅(𝛼,𝛽), cannot lie in the interior of 𝐶2 — that is,

for all (𝛼, 𝛽) ∈ (𝐴 × 𝐵) ∖ (𝐴′ × 𝐵′)we’ll have 𝑅(𝛼,𝛽) ⊆ 𝐾 and surely 𝜉′𝛼 , 𝜉(𝛼,𝛽) ∈ 𝐾, which

satisfy ∥ 𝑓 (𝜉′𝛼) − 𝑓 (𝜉(𝛼,𝛽))∥ < 2𝜀 since mesh𝑃′ < 𝛿. Assuming 𝑓 is bounded by 𝑀 > 0

in 𝐼, that is ∥ 𝑓 ∥ ⩽ 𝑀, then ∥ 𝑓 (𝜉′𝛼) − 𝑓 (𝜉(𝛼,𝛽))∥ < 2𝑀 and thus

∥𝜎( 𝑓 , 𝑃′, 𝜉′) − 𝜎( 𝑓 , 𝑃, 𝜉)∥ ⩽
∑

(𝛼,𝛽)∈𝐴′×𝐵′
2𝑀 vol𝑅(𝛼,𝛽) +

∑
(𝛼,𝛽)∈(𝐴×𝐵)∖(𝐴′×𝐵′)

2𝜀 vol𝑅(𝛼,𝛽)

⩽ 2𝑀(3𝑛𝜀) + 2𝜀 vol 𝐼

= 2𝜀(3𝑛𝑀 + vol 𝐼).

Therefore, since the same construction is applicable for 𝑃′′, that is, ∥𝜎( 𝑓 , 𝑃′′, 𝜉′′′) −
𝜎( 𝑓 , 𝑃, 𝜉)∥ ⩽ 2𝜀(3𝑛𝑀 + vol 𝐼), thus

∥𝜎( 𝑓 , 𝑃′, 𝜉′) − 𝜎( 𝑓 , 𝑃′′, 𝜉′′)∥ ⩽ 4𝜀(3𝑛𝑀 + vol 𝐼).

Since 𝑃′ and 𝑃′′where chosen arbitrarily, it follows that the sequence of Riemann sums

converge by the Cauchy criterion and thus 𝑓 is Riemann integrable from definition. ♮
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Integrating Over Sets
Definition A.7.17. A set 𝐸 ⊆ R𝑛

is said to be admissible if it is bounded and has measure

zero boundary.

Corollary A.7.18 (Operations on admissible sets). The finite union or intersection of

admissible sets is admissible, and the difference of admissible sets is admissible.

Notation A.7.19. We denote the characteristic map of a given set 𝐸 to be 𝜒𝐸:𝐸→ {0, 1},
where 𝜒𝐸(𝑥) ≔ 1 if 𝑥 ∈ 𝐸, and 𝜒𝐸(𝑥) ≔ 0 if 𝑥 ∉ 𝐸. Moreover, given any map 𝑓 :𝐸→ R,

we define the map 𝑓𝜒𝐸 : R𝑛 → R as 𝑓𝜒𝐸 |𝐸 ≔ 𝑓 and 𝑓𝜒𝐸 is zero everywhere else.

Definition A.7.20 (Riemann integral over a set). Let 𝐸 ⊆ R𝑛
be an admissible set and

𝑓 : 𝐼 → R for some 𝐼 ⊇ 𝐸, then we define the integral of 𝑓 over the set 𝐸 as∫
𝐸

𝑓 (𝑥)d𝑥 ≔

∫
𝐼

𝑓𝜒𝐸(𝑥)d𝑥.

Lemma A.7.21 (The integral is well-defined). Let 𝑓 :𝐸 → R be a map. The integral of

𝑓 over 𝐸 is independent of the choice of the interval containing 𝐸.

Proof. Let 𝐼 , 𝐼′ ⊆ R𝑛
be any two intervals containing 𝐸. Define an auxiliary interval

𝐼0 ≔ 𝐼 ∩ 𝐼′. It follows from construction that every point of discontinuity of 𝑓𝜒𝐸
is contained in 𝐼0. From Theorem A.7.16 we see that, if the collection of points of

discontinuity of 𝑓𝜒𝐸 is not of measure zero, then both integrals of 𝑓𝜒𝐸 over 𝐼 and 𝐼′ fail

to exist — while, if the collection is of measure zero, both integrals exist simultaneously.

Suppose that the points of discontinuity form a set of measure zero. Given any

𝜀 > 0, we consider a partition 𝑃0 of 𝐼 with mesh𝑃0 < 𝜀. Define partitions 𝑃 and 𝑃′ of

𝐼 and 𝐼′, respectively, such that 𝑃0 ⊆ 𝑃 ∩ 𝑃′ — that is, inside 𝐼0, they share the exact

same collection of intervals as 𝑃0. Given any distinguished points 𝜉 and 𝜉′ of 𝑃 and

𝑃′, respectively, we have that 𝑓𝜒𝐸(𝑥) = 0 for every 𝑥 ∈ 𝜉 ∪ 𝜉′ such that 𝑥 ∉ 𝐼0, therefore

the Riemann sums of 𝑓𝜒𝐸 under the partitions 𝑃 and 𝑃′ are always reduced to Riemann

sums of 𝑓𝜒𝐸 under the partition 𝑃0 and the corresponding distinguished points. This

implies that the limit of the Riemann sums are equal for both partitions and therefore

we have ∫
𝐼

𝑓𝜒𝐸(𝑥)d𝑥 =

∫
𝐼′
𝑓𝜒𝐸(𝑥)d𝑥.

♮

Corollary A.7.22. Let 𝐸 ⊆ R𝑛
be an admissible set and 𝑓 :𝐸 → R. Then, 𝑓 is Riemann

integrable if and only if is bounded and continuous at almost all points of 𝐸.

Proof. Notice that the discontinuities of the corresponding map 𝑓𝜒𝐸 are those of 𝑓 and

perhaps a collection of points of 𝜕𝐸, where 𝜒𝐸 changes its value. Since 𝜕𝐸 is of measure

zero, it doesn’t interfere in the use of Lebesgue’s criterion and thus the proposition

follows. ♮
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Jordan Measure
Definition A.7.23 (Jordan measure). Given a bounded set 𝐸 ⊆ R, we define the Jordan

measure of 𝐸 as the map

𝜇(𝐸) ≔
∫
𝐸

d𝑥.

Notice that the integral over 𝐸 only exists for admissible sets, thus the Jordan measure

𝜇 is only defined for admissible sets.

Definition A.7.24 (Jordan’s measure zero sets). A set 𝐸 ⊆ R𝑛
is said to be of Jordan

measure zero (or of content zero) if for every 𝜀 > 0 there exists a finite open cover by

intervals whose total volume is less than 𝜀.

Definition A.7.25 (Jordan-measurable sets). A set𝐸 ⊆ R𝑛
is said to be Jordan-measurable

if it is bounded and 𝜕𝐸 is a set of Jordan measure zero.

Riemann Integral Properties
Corollary A.7.26. The collection of Riemann integrable maps 𝐸 → R for an R-vector

space. Moreover, the Riemann integral is an R-linear functional

∫
𝐸

:ℛ(𝐸) → R of the

dual space ℛ(𝐸)∗.

Proposition A.7.27. Let 𝐸, 𝑆 ⊆ R𝑛
be admissible sets and 𝑓 :𝐸 ∪ 𝑆→ R. Then

(a) 𝑓 is Riemann integrable over 𝐸 ∪ 𝑆 if and only if it’s integrable over both 𝐸 and 𝑆

simultaneously. Moreover, if such condition is met, the 𝑓 is also Riemann integrable

over 𝐸 ∩ 𝑆.

(b) If 𝑓 is Riemann integrable over 𝐸 ∪ 𝑆 and 𝜇(𝐸 ∩ 𝑆) = 0, then∫
𝐸∪𝑆

𝑓 (𝑥)d𝑥 =

∫
𝐸

𝑓 (𝑥)d𝑥 +
∫
𝑆

𝑓 (𝑥)d𝑥.

Proof. (a) If 𝑓 is Riemann integrable over 𝐸 ∪ 𝑆, then 𝑓 is bounded and continuous at

almost all points of 𝐸 ∪ 𝑆, which implies that 𝑓 is Riemann integrable over both 𝐸

and 𝑆. Since 𝐸 ∩ 𝑆 ⊆ 𝐸 ∪ 𝑆 then 𝑓 is also Riemann integrable over the intersection.

(b) Notice that 𝜒𝐸∪𝑆(𝑥) = 𝜒𝐸(𝑥)+𝜒𝑆(𝑥)−𝜒𝐸∩𝑆(𝑥), therefore by definition — if 𝐼 ⊇ 𝐸∪𝑆
is an interval, then∫

𝐸∪𝑆
𝑓 (𝑥)d𝑥 =

∫
𝐼

𝑓𝜒𝐸∪𝑆(𝑥)d𝑥

=

∫
𝐼

𝑓𝜒𝐸(𝑥) + 𝑓𝜒𝑆(𝑥) − 𝑓𝜒𝐸∩𝑆(𝑥)d𝑥

=

∫
𝐼

𝑓𝜒𝐸(𝑥)d𝑥 +
∫
𝐼

𝑓𝜒𝑆(𝑥)d𝑥 −
∫
𝐼

𝑓𝜒𝐸∩𝑆(𝑥)d𝑥

=

∫
𝐼

𝑓𝜒𝐸(𝑥)d𝑥 +
∫
𝐼

𝑓𝜒𝑆(𝑥)d𝑥
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where we used the hypothesis that 𝜇(𝐸 ∩ 𝑆) = 0 to conclude that∫
𝐼

𝑓𝜒𝐸∩𝑆(𝑥)d𝑥 =

∫
𝐸∩𝑆

𝑓 (𝑥)d𝑥 = 0.

♮

Proposition A.7.28 (Estimate). Let 𝑓 ∈ ℛ(𝐸), where 𝐸 ⊆ R𝑛
is an admissible set, then

∥ 𝑓 ∥ ∈ ℛ(𝐸) and also

∥
∫
𝐸

𝑓 (𝑥)d𝑥∥ ⩽
∫
𝐸

∥ 𝑓 (𝑥)∥d𝑥.

Proof. Notice that if 𝑓 is Riemann integrable, then 𝑓 is bounded and and continuous at

almost all points of 𝐸, thus surely ∥ 𝑓 ∥ is bounded and continuous — hence Riemann

integrable. Moreover, since 𝑓 (𝑥) ⩽ ∥ 𝑓 (𝑥)∥ for all 𝑥 ∈ 𝐸, it follows that, for any given

partition𝑃 and distinguished points𝜒, we have the inequality 𝜎( 𝑓 , 𝑃, 𝜒) ⩽ 𝜎(∥ 𝑓 ∥, 𝑃, 𝜒),
thus the integral inequality holds by taking the limit mesh𝑃 → 0. ♮

Proposition A.7.29 (Non-negative real valued maps). Let 𝑓 :𝐸 → R be a Riemann

integrable map over the admissible set 𝐸 ⊆ R𝑛
. If 𝑓 is non-negative over 𝐸, that is,

𝑓 (𝑥) ⩾ 0 for all 𝑥 ∈ 𝐸, then ∫
𝐸

𝑓 (𝑥)d𝑥 ⩾ 0.

Proof. Just observe that for any partition 𝑃 and distinguished points 𝜒, we have

𝜎( 𝑓 , 𝑃, 𝜒) ⩾ 0, thus limmesh𝑃→0 𝜎( 𝑓 , 𝑃, 𝜒) ⩾ 0. ♮

Corollary A.7.30. Let 𝐸 ⊆ 𝑅𝑛 be an admissible set and 𝑓 , 𝑔:𝐸→ R be two given maps.

The following are miscellaneous immediate implications of Corollary A.7.30:

(a) If both 𝑓 and 𝑔 are Riemann integrable, and 𝑓 (𝑥) ⩽ 𝑔(𝑥) for all 𝑥 ∈ 𝐸, then∫
𝐸

𝑓 (𝑥)d𝑥 ⩽
∫
𝐸

𝑔(𝑥)d𝑥.

(b) If 𝑓 is Riemann integrable over 𝐸 and, for some constants 𝑚, 𝑀 ∈ R we have

𝑚 ⩽ 𝑓 (𝑥) ⩽ 𝑀 for all 𝑥 ∈ 𝐸, then

𝑚𝜇(𝐸) ⩽
∫
𝐸

𝑓 (𝑥)d𝑥 ⩽ 𝑀𝜇(𝐸).

(c) If 𝑓 is Riemann integrable over 𝐸, define constants 𝑚 ≔ inf𝑥∈𝐸 𝑓 (𝑥) and 𝑀 ≔

sup𝑥∈𝐸 𝑓 (𝑥). Then, there exist a constant 𝑚 ⩽ 𝜔 ⩽ 𝑀 for which∫
𝐸

𝑓 (𝑥)d𝑥 = 𝜃𝜇(𝐸).

(d) If additionally 𝐸 is connected and 𝑓 is continuous, then 𝑓 is Riemann integrable

over 𝐸 and there exists 𝑦 ∈ 𝐸 for which∫
𝐸

𝑓 (𝑥)d𝑥 = 𝑓 (𝑦)𝜇(𝐸).
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(e) If 𝑓 and 𝑔 are Riemann integrable over 𝐸 and, for some constants 𝑚, 𝑀 ∈ R we

have 𝑚 ⩽ 𝑓 (𝑥) ⩽ 𝑀 for all 𝑥 ∈ 𝐸, and 𝑔(𝑥) ⩾ 0 for all 𝑥 ∈ 𝐸, then

𝑚

∫
𝐸

𝑔(𝑥)d𝑥 ⩽
∫
𝐸

𝑓 (𝑥)𝑔(𝑥)d𝑥 ⩽ 𝑀

∫
𝐸

𝑔(𝑥)d𝑥.

Lemma A.7.31. Let 𝑓 :𝐸 → R be a non-negative map that is Riemann integrable over

𝐸, where 𝐸 is an admissible set. If

∫
𝐸
𝑓 (𝑥)d𝑥 = 0, then 𝑓 (𝑥) = 0 at almost all points of

𝐸.

Proof. Let 𝑥0 ∈ 𝐸 be any point of continuity of 𝑓 and, for the sake of contradiction,

assume that 𝑓 (𝑥0) > 0 and consider a constant 𝑐 > 0 with 𝑓 (𝑥0) ⩾ 𝑐 > 0. Let 𝑈 ⊆ 𝐸 be

any neighbourhood of 𝑥0 for which 𝑓 (𝑥) ⩾ 𝑐 > 0 for every 𝑥 ∈ 𝑈 . Then we obtain the

following contradiction — where 𝐼 ⊇ 𝐸 is an interval:∫
𝐸

𝑓 (𝑥)d𝑥 =

∫
𝐼

𝑓𝜒𝐸(𝑥)d𝑥 =

∫
𝑈

𝑓𝜒𝐸(𝑥)d𝑥 +
∫
𝐼∖𝑈

𝑓𝜒𝐸(𝑥)d𝑥 ⩾
∫
𝑈

𝑓𝜒𝐸(𝑥)d𝑥 ⩾ 𝑐𝜇(𝑈) > 0.

This cannot be true, thus 𝑓 (𝑥0) = 0 for every point 𝑥0 ∈ 𝐸 where 𝑓 is continuous. Since

𝑓 is continuous almost everywhere, it follows that 𝑓 is zero almost everywhere. ♮

Corollary A.7.32. Let ∼ be the equivalence relation on ℛ(𝐸) as follows: 𝑓 ∼ 𝑔 if and

only if the collection of points where the map 𝑓 − 𝑔 is non-zero forms a set of Lebesgue

measure zero. Then the map ∥−∥:ℛ(𝐸)/∼ → R defined by

∥ 𝑓 ∥ ≔
∫
𝐸

∥ 𝑓 (𝑥)∥R𝑛 d𝑥

is a norm on the vector space ℛ(𝐸)/∼.

A.8 Fubini’s Theorem
Upper and Lower Darboux Integrals

In order to proceed to the theorem of Fubini type, we first need to define the concept

of Darboux lower and upper integrals.

Definition A.8.1 (Darboux sums). Let 𝑓 : 𝐼 → R be a map defined on the interval

𝐼 ⊆ R𝑛
. If 𝑃 ≔ {𝐼 𝑗}𝑗∈𝐽 is a partition of 𝐼 by intervals, then we define the following

• The lower Darboux sum of 𝑓 over the interval 𝐼 corresponding to the partition 𝑃

is

𝑠( 𝑓 , 𝑃) ≔
∑
𝑗∈𝐽

vol(𝐼 𝑗) inf

𝑥∈𝐼 𝑗
𝑓 (𝑥).

• The upper Darboux sum of 𝑓 over the interval 𝐼 corresponding to the partition 𝑃

is

𝑆( 𝑓 , 𝑃) ≔
∑
𝑗∈𝐽

vol(𝐼 𝑗) sup

𝑥∈𝐼𝑗
𝑓 (𝑥).
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Definition A.8.2 (Upper and lower Darboux integrals). Let 𝑓 : 𝐼 → R be a map over the

interval 𝐼 ⊆ R𝑛
. We define:

• The lower Darboux integral of 𝑓 is 𝒥 ≔ sup𝑃 𝑠( 𝑓 , 𝑃), where the 𝑃 goes through

all partitions of 𝐼.

• The upper Darboux integral of 𝑓 is 𝒥 ≔ inf𝑃 𝑆( 𝑓 , 𝑃), where the 𝑃 goes through

all partitions of 𝐼.

Theorem A.8.3 (Darboux criterion). A map 𝑓 : 𝐼 → R, where 𝐼 ⊆ R𝑛
is an interval, is

integrable over 𝐼 if and only if 𝑓 is bounded on 𝐼 and the upper and lower Darboux

integrals agree over 𝐼.

Add proof of Darboux criterion later

Fubini

Theorem A.8.4. Let 𝑋 × 𝑌 ⊆ R𝑚+𝑛
be an interval, and 𝑓 :𝑋 × 𝑌 → R be a Riemann

integrable map over 𝑋 × 𝑌. Then we have the following equality:

∫
𝑋×𝑌

𝑓 (𝑥, 𝑦)d𝑥 d𝑦 =

∫
𝑋

(∫
𝑌

𝑓 (𝑥, 𝑦)d𝑦
)

d𝑥 =

∫
𝑌

(∫
𝑋

𝑓 (𝑥, 𝑦)d𝑥
)

d𝑦. (A.45)

Proof. In order to prove the theorem, we first construct the following maps:

• 𝐹𝑋 :𝑋 → R is defined as 𝐹𝑋(𝑥0) ≔
∫
𝑌
𝑓 (𝑥0, 𝑦)d𝑥 whenever such integral exists,

in case not, we let 𝒥𝑥0
⩽ 𝐹𝑋(𝑥0) ⩽ 𝒥𝑥0

be any element between the Darboux

integrals of the map 𝑓 (𝑥0,−):𝑌 → R given by 𝑦 ↦→ 𝑓 (𝑥0, 𝑦).

• 𝐹𝑌 :𝑌 → R is defined as 𝐹𝑌(𝑦0) ≔
∫
𝑥
𝑓 (𝑥, 𝑦0)d𝑥 whenever such integral exists, in

case not, we let𝒥𝑦0
⩽ 𝐹𝑌(𝑦0) ⩽ 𝒥𝑦0

be any element between the Darboux integrals

of the map 𝑓 (−, 𝑦0):𝑋 → R given by 𝑥 ↦→ 𝑓 (𝑥, 𝑦0).

We’ll carry the proof for the first equality, but, knowing the construction of 𝐹𝑌 , the

idea for the second equality is the exact analogue.
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Let 𝑃 ≔ {𝑋𝑖}𝑖∈𝐼 × {𝑌𝑗}𝑗∈𝐽 be any partition of the interval 𝑋 × 𝑌. Notice that

𝑠( 𝑓 , 𝑃) =
∑
(𝑖 , 𝑗)∈𝐼×𝐽

inf

(𝑥,𝑦)∈𝑋𝑖×𝑦 𝑗
𝑓 (𝑥, 𝑦)vol(𝑋𝑖 × 𝑌𝑗)

=

∑
(𝑖 , 𝑗)∈𝐼×𝐽

inf

(𝑥,𝑦)∈𝑋𝑖×𝑦 𝑗
𝑓 (𝑥, 𝑦)vol(𝑋𝑖)vol(𝑌𝑗)

⩽
∑
𝑖∈𝐼

inf

𝑥∈𝑋𝑖


∑
𝑗∈𝐽

𝑓 (𝑥, 𝑦)vol(𝑌𝑗)
 vol𝑋𝑖

⩽
∑
𝑖∈𝐼

inf

𝑥∈𝑋𝑖

[∫
𝑌

𝑓 (𝑥, 𝑦)d𝑦
]

vol𝑋𝑖

⩽
∑
𝑖∈𝐼

inf

𝑥∈𝑋𝑖
𝐹𝑋(𝑥)vol𝑋𝑖

⩽
∑
𝑖∈𝐼

sup

𝑥∈𝑋𝑖
𝐹𝑋(𝑥)vol𝑋𝑖

⩽
∑
𝑖∈𝐼

sup

𝑥∈𝑋𝑖

[∫
𝑋

𝑓 (𝑥, 𝑦)d𝑥
]

vol𝑋𝑖

⩽
∑
𝑖∈𝐼

sup

𝑥∈𝑋𝑖


∑
𝑗∈𝐽

𝑓 (𝑥, 𝑦)vol𝑌𝑗

 vol𝑋𝑖

⩽
∑
(𝑖 , 𝑗)∈𝐼×𝐽

𝑓 (𝑥, 𝑦)vol(𝑋𝑖 × 𝑌𝑗)

= 𝑆( 𝑓 , 𝑃).

By hypothesis, 𝑓 is Riemann integrable over 𝑋 × 𝑌, thus

lim

mesh𝑃→0

𝑠( 𝑓 , 𝑃) = lim

mesh𝑃→0

𝑆( 𝑓 , 𝑃) =
∫
𝑋×𝑌

𝑓 (𝑥, 𝑦)d𝑥 d𝑦,

therefore 𝐹𝑋 is Riemann integrable over 𝑋 and∫
𝑋×𝑌

𝑓 (𝑥, 𝑦)d𝑥 d𝑦 =

∫
𝑋

𝐹𝑋(𝑥)d𝑥.

♮

Corollary A.8.5. Let 𝑓 :𝑋 × 𝑌 → R be Riemann integrable. Then for almost all points

𝑥0 ∈ 𝑋 and almost all 𝑦0 ∈ 𝑌 the integrals

∫
𝑌
𝑓 (𝑥0, 𝑦)d𝑦 and

∫
𝑋
𝑓 (𝑥, 𝑦0)d𝑥 exist.

Proof. Since 𝑠( 𝑓 , 𝑃) ⩽ 𝑆( 𝑓 , 𝑃) for all partitions 𝑃 of 𝑋 × 𝑌, then

∫
𝑌
𝑓 (𝑥0, 𝑦)d𝑦 ⩽∫

𝑋
𝑓 (𝑥0, 𝑦)d𝑦 for every 𝑥0 ∈ 𝑋. From Theorem A.8.4 we see that∫

𝑋

(∫
𝑌

𝑓 (𝑥, 𝑦)d𝑦 −
∫
𝑌

𝑓 (𝑥, 𝑦)d𝑦
)

d𝑥 = 0,
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therefore by Lemma A.7.31 we conclude that the map 𝑥0 ↦→
∫
𝑌
𝑓 (𝑥0, 𝑦)d𝑦−

∫
𝑌
𝑓 (𝑥0, 𝑦)d𝑦

equals zero for almost all 𝑥0 ∈ 𝑋 — that is,

∫
𝑌
𝑓 (𝑥0, 𝑦)d𝑦 exists for almost all 𝑥0 ∈ 𝑋.

The exact same argument can be used to show this for

∫
𝑋
𝑓 (𝑥, 𝑦0)d𝑥. ♮

Corollary A.8.6 (Iterated Fubini’s theorem). Let 𝐼 ≔
∏𝑛

𝑗=1
[𝑎 𝑗 , 𝑏 𝑗] ⊆ R𝑛

be an interval

and 𝑓 : 𝐼 → R be a Riemann integrable map over 𝐼. Then∫
𝐼

𝑓 (𝑥)d𝑥 =

∫ 𝑏𝑛

𝑎𝑛

(∫ 𝑏𝑛−1

𝑎𝑛−1

(
. . .

(∫ 𝑏1

𝑎1

𝑓 (𝑥, 𝑦)d𝑥1

)
. . .

)
d𝑥𝑛−1

)
d𝑥𝑛 .

Moreover, the result of the integral is invariant under any permutation of the order of

the sub-intervals [𝑎 𝑗 , 𝑏 𝑗] of integration.

Proof. This is just a direct application of Theorem A.8.4, moreover, the second part

of the proposition can be obtained by seeing that the second equality of Eq. (A.45) is

nothing but a transposition on the set {𝑋,𝑌}— generalizing this for transpositions on

{[𝑎 𝑗 , 𝑏 𝑗]}𝑛𝑗=1
imply that any permutation of the collection satisfies the integral equality.

♮

Measuring Volumes Between Graphs of Maps

Corollary A.8.7. Define𝐷 ⊆ R𝑛−1
to be a bounded set and let maps 𝑔1, 𝑔2:𝐷 → R such

that 𝑔1 ⩽ 𝑔2. Let 𝑓 :𝐸→ R be a Riemann integrable map over 𝐸 ≔ {(𝑥, 𝑦) ∈ R𝑛−1 × R :

𝑥 ∈ 𝐷 and 𝑔1(𝑥) ⩽ 𝑦 ⩽ 𝑔2(𝑥)}. Then∫
𝐸

𝑓 (𝑥, 𝑦)d𝑥 d𝑦 =

∫
𝐷

(∫ 𝑔2(𝑥)

𝑔1(𝑥)
𝑓 (𝑥, 𝑦)d𝑦

)
d𝑥.

Proof. For each 𝑥 ∈ 𝐷 define the set 𝐸𝑥 ≔ {𝑦 ∈ R : 𝑔1(𝑥) ⩽ 𝑦 ⩽ 𝑔2(𝑥)}, and observe

that, from construction, 𝜒𝐸(𝑥, 𝑦) = 𝜒𝐷(𝑥)𝜒𝐸𝑥 (𝑦). Given any interval 𝐼 ≔ 𝐼𝑥 × 𝐼𝑦 ⊇ 𝐸,

we have ∫
𝐸

𝑓 (𝑥, 𝑦)d𝑥 d𝑦 =

∫
𝐼

𝑓𝜒𝐸(𝑥, 𝑦)d𝑥 d𝑦 =

∫
𝐼𝑥

(∫
𝐼𝑦

𝑓𝜒𝐸(𝑥, 𝑦)d𝑦
)

d𝑥

♮

Corollary A.8.8 (Measuring the set between the graph of continuous maps). Let 𝐷 ⊆
R𝑛−1

be a Jordan-measurable set and 𝑔1, 𝑔2:𝐷 → R be continuous maps such that

𝑔1 ⩽ 𝑔2. Then the set 𝐸 ≔ {(𝑥, 𝑦) ∈ R𝑛−1 × R : 𝑥 ∈ 𝐷 and 𝑔1(𝑥) ⩽ 𝑦 ⩽ 𝑔2(𝑥)} ⊆ R𝑛
is

Jordan-measurable and its Jordan measure is

𝜇(𝐸) =
∫
𝐷

𝑔2(𝑥) − 𝑔1(𝑥)d𝑥.
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Proof. Denote by Γ𝑔1
and Γ𝑔2

the graphs of 𝑔1 and 𝑔2, respectively. By Example A.7.14,

Γ𝑔1
and Γ𝑔2

are sets of Lebesgue measure zero. Define a set

𝑍 ≔ 𝜕𝐷 × [ inf

𝑥∈𝐷
𝑔1(𝑥), sup

𝑥∈𝐷
𝑔2(𝑥)] ⊆ R𝑛

and the length ℓ ≔ sup𝑥∈𝑑 𝑔2(𝑥) − inf𝑥∈𝐷 𝑔1(𝑥). Since 𝐷 is a Jordan-measurable set, it

follows that 𝜕𝐷 can be covered by a finite collection of open sets with total volume

arbitrarily small — in particular, smaller than 𝜀/ℓ . In particular, it follows that 𝑍 is

a set of Jordan measure zero. Notice that 𝜕𝐸 ⊆ Γ𝑔1
∪ Γ𝑔2

∪ 𝑍 and thus 𝜕𝐸 is a set

of Jordan measure zero — thus 𝐸 is Jordan-measurable. The measure formula for 𝐸

follows immediately by Corollary A.8.7 ♮

Corollary A.8.9. Let 𝐸 ⊆ R𝑛
be a Jordan-measurable set and 𝐼 ≔ 𝐼𝑥 × 𝐼𝑦 ⊆ R𝑛−1 × R

be an interval containing 𝐸. For each 𝑦0 ∈ 𝐼𝑦 , define the section 𝐸𝑦0
≔ {(𝑥, 𝑦0)} ⊆ 𝐸.

Then, for almost all 𝑦0 ∈ 𝐼𝑦 the set 𝐸𝑦0
is Jordan-measurable, and

𝜇(𝐸) =
∫
𝐼𝑦

𝐹𝜇(𝑦)d𝑦,

where the map 𝐹𝜇: 𝐼𝑦 → R is defined as 𝐹𝜇(𝑦) ≔ 𝜇(𝐸𝑦) if 𝐸𝑦 happens to be Jordan-

measurable, otherwise, we let

∫
𝐸𝑦

d𝑦 ⩽ 𝐹𝜇(𝑦) ⩽
∫
𝐸𝑦

d𝑦 be any value between the lower

and upper Darboux integrals of the measure of 𝐸𝑦 .

Corollary A.8.10 (Cavalieri’s principle). Let 𝐴 and 𝐵 be two Jordan-measurable solids

in R3
. For every 𝑧0 ∈ R, define the sets𝐴𝑧0

≔ {(𝑥, 𝑦, 𝑧0) ∈ 𝐴} and 𝐵𝑧0
≔ {(𝑥, 𝑦, 𝑧0) ∈ 𝐵}.

If for every 𝑧0 ∈ R the sets 𝐴𝑧0
and 𝐵𝑧0

have the same area, that is, 𝜇(𝐴𝑧0
) = 𝜇(𝐵𝑧0

), then

the solids have the same volumes — 𝜇(𝐴) = 𝜇(𝐵).

A.9 Change of Variables
Remark A.9.1. Throughout this section we’ll use always the variable names 𝐷𝑡 and

𝐷𝑥 for domains — recall Definition A.2.35.

Definition A.9.2 (Support of a real valued map). Given a map 𝑓 :𝐷 → R, where𝐷 ⊆ R𝑛

is a domain, the support of 𝑓 , denoted by supp 𝑓 , is the closure of the collection of

points of 𝐷 with non-zero image under 𝑓 , that is

supp 𝑓 ≔ Cl({𝑥 ∈ 𝐷 : 𝑓 (𝑥) ≠ 0}).

The goal of this section will be to prove the theorem on the change of variables in

the context of multiple integrals. Our approach will be to prove that such theorem

holds for elementary 𝐶1
-isomorphisms and also for the compositions of those. We’ll

decompose the general Riemann integrable map 𝑓 :𝐷𝑥 → R into the composition of

such elementary 𝐶1
-isomorphisms and hence prove the theorem. For the proof of the

theorem, head to Appendix A.9.
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Theorem A.9.3 (Change of variables). Let𝐷𝑥 , 𝐷𝑡 ⊆ R𝑛
be bounded open domains, and

𝜙:𝐷𝑡
≃−→ 𝐷𝑥 a 𝐶1

-isomorphism. Let 𝑓 :𝐷𝑥 → R be a Riemann integrable map over 𝐷𝑥

for which supp 𝑓 is compact on 𝐷𝑥 . Then the map given by 𝑡 ↦→ 𝑓 𝜙(𝑡)∥det(Jac 𝜙(𝑡))∥
is Riemann integrable on 𝐷𝑡 and∫

𝐷𝑥

𝑓 (𝑥)d𝑥 =

∫
𝐷𝑡

𝑓 𝜙(𝑡)∥det(Jac 𝜙(𝑡))∥d𝑡.

Measurable Sets and Smooth Mappings
Lemma A.9.4. Let 𝜙:𝐷𝑡

≃−→ 𝐷𝑥 be a 𝐶1
-isomorphism. Then the following is true:

(a) Given any subset 𝐸𝑡 ⊆ 𝐷𝑡 of Lebesgue measure zero, the image 𝜙(𝐸𝑡) ⊆ 𝐷𝑥 is also

a set of Lebesgue measure zero.

(b) Let 𝐸𝑡 ⊆ 𝐷𝑡 be any open subset with closure Cl𝐸𝑡 ⊆ 𝐷𝑡 of Jordan measure zero.

Then its image 𝜙(𝐸𝑡) and the closure Cl(𝜙(𝐸𝑡)) are both contained in 𝐷𝑥 and the

closure is a set of Jordan measure zero.

(c) Let 𝐸𝑡 ⊆ 𝐷𝑡 be a Jordan-measurable set, and Cl𝐸𝑡 ⊆ 𝐷𝑡 . The image 𝜙(𝐸𝑡) is Jordan

measurable and Cl(𝜙(𝐸𝑡)) ⊆ 𝐷𝑥 .

Proof. (a) Let 𝐼 ⊆ 𝐷𝑡 be a closed interval with 𝐸𝑡 ⊆ 𝐼. Since 𝜙 is continuously

differentiable, there exists 𝑀 > 0 such that ∥d𝜙(𝑡)(𝑥)∥ ⩽ 𝑀 for all 𝑥 ∈ 𝐼. Using

Theorem A.3.30, we obtain that for all pairs 𝑥, 𝑦 ∈ 𝐼, we have the relation ∥ 𝑓 (𝑥) −
𝑓 (𝑦)∥R𝑛 ⩽ 𝑀∥𝑥 − 𝑦∥R𝑛 . Given any 𝜀 > 0, since 𝐸𝑡 is of Lebesgue measure zero, let

{𝐼 𝑗}𝑗∈𝐽 be a countable collection of open intervals covering 𝐸𝑡 with

∑
𝑗∈𝐽 vol 𝐼 𝑗 < 𝜀

and we may assume that 𝐼 𝑗 ⊆ 𝐼 for all 𝑗 ∈ 𝐽. Consider the countable collection

{𝜙(𝐼 𝑗)}𝑗∈𝐽 , which forms a cover for 𝜙(𝐸𝑡). Let 𝑡 𝑗 ∈ 𝐼 𝑗 be the centre point of the

interval corresponding to the index 𝑗 ∈ 𝐽 — notice that, since the image of pairs

of points of 𝐷𝑡 under 𝜙 is bounded by the product of their distance and 𝑀 —

defining 𝑥 𝑗 ≔ 𝜙(𝑡 𝑗), we can consider the open interval 𝐼′
𝑗
⊆ 𝐸𝑡 with 𝑥 𝑗 being its

centre point, with dimension𝑀 times of 𝐼 𝑗 , then clearly 𝐼′
𝑗
is able to cover the whole

set 𝜙(𝐼 𝑗). Let {𝐼′
𝑗
}𝑗 be the collection of those intervals we constructed and notice

that the image 𝜙(𝐸𝑡) is completely encompassed by the union

⋃
𝑗∈𝐽 𝐼

′
𝑗
, that is, {𝐼′

𝑗
}𝑗∈𝐽

covers 𝜙(𝐸𝑡). Moreover, we the volume of such collection was constructed so that∑
𝑗∈𝐽 vol 𝐼′

𝑗
=

∑
𝑗∈𝐽 𝑀

𝑛
vol 𝐼 𝑗 < 𝑀𝑛𝜀, that is, 𝜙(𝐸𝑡) can be covered by a collection of

open intervals whose total volume can be chosen to be arbitrarily small volume —

thus 𝜙(𝐸𝑡) is of Lebesgue measure zero.

(b) Since Cl𝐸𝑡 is a set of Jordan measure zero, it follows it follows that Cl𝐸𝑡 is also

of Lebesgue measure zero. Notice that, by the above item, the image 𝜙(Cl𝐸𝑡) will

also be of Lebesgue measure zero. Notice that Cl(𝜙(Cl𝐸𝑡)) is a compact set of R𝑛

and therefore we can apply Corollary A.7.12 to conclude that Cl(𝜙(Cl𝐸𝑡)) is a set

of Jordan measure zero. Since any subset of a set of Jordan measure zero also has

measure zero, it follows that 𝜙(Cl𝐸𝑡) is of measure zero.
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(c) Since 𝐸𝑡 is Jordan-measurable, the boundary 𝜕𝐸𝑡 is of Jordan measure zero, there-

fore so is its image 𝜙(𝜕𝐸𝑡) by the use of the last item. Since 𝜙 is a 𝐶1
-isomorphism,

given any 𝑝 ∈ Int𝐸𝑡 , we have 𝜙(𝑝) ∈ Int 𝜙(𝐸𝑡), therefore 𝜕𝜙(𝐸𝑡) = 𝜙(𝜕𝐸𝑡)— thus

𝜙(𝐸𝑡) has boundary of Jordan measure zero and therefore is Jordan-measurable.

♮

Corollary A.9.5. In the context of Theorem A.9.3, the integral∫
𝐷𝑡

𝑓 𝜙(𝑡)∥det(Jac 𝜙(𝑡))∥d𝑡

exists.

Proof. Since 𝜙 is a 𝐶1
-isomorphism, its Jacobian Jac 𝜙(𝑡) is invertible for every 𝑡 ∈ 𝐷𝑡 ,

thus det(Jac 𝜙(𝑡)) ≠ 0. If 𝑔:𝐷𝑡 → R is defined as 𝑔(𝑡) ≔ 𝑓 𝜙(𝑡)∥det(Jac 𝜙(𝑡))∥, then

for every 𝑡 ∈ 𝐷𝑡 such that 𝜙(𝑡) ∉ supp 𝑓 we have 𝑡 ∉ supp 𝑔 — thus supp 𝑔 =

supp( 𝑓 𝜙𝜙−1(supp 𝑓 )), and supp 𝑔 is a compact subset of 𝐷𝑡 since it is closed. From

this we can conclude that the map 𝑔𝜒𝐷𝑡 has points of discontinuity in the fibers 𝜙−1(𝑥),
where 𝑥 ∈ 𝐷𝑥 is a point of discontinuity of 𝑓 . Since 𝑓 is Riemann integrable in 𝐷𝑥 ,

such points form a Lebesgue measure zero set — thus the points of discontinuity of

𝑔𝜒𝐷𝑡 are also of Lebesgue measure zero since 𝜙 preserves Lebesgue measure zero sets

by Lemma A.9.4. Using the Lebesgue’s criterion, we conclude that 𝑔𝜒𝐷𝑡 is Riemann

integrable over any closed interval 𝐼𝑡 such that 𝐷𝑡 ⊆ 𝐼𝑡 and thus the said integral does

exist. ♮

One-Dimensional Change of Variables
Lemma A.9.6 (Changing variables in one dimension). Let𝜙: 𝐼𝑡

≃−→ 𝐼𝑥 be a𝐶1
-isomorphism

over the 1-dimensional intervals 𝐼𝑡 , 𝐼𝑥 ⊆ R and let 𝑓 : 𝐼𝑥 → R be a Riemann integrable

map over 𝐼𝑥 . Then the map 𝐼𝑡 ∋ 𝑡 ↦→ 𝑓 𝜙(𝑡)∥𝜙′(𝑡)∥ is a Riemann integrable map over 𝐼𝑡
and the following relation holds∫

𝐼𝑥

𝑓 (𝑥)d𝑥 =

∫
𝐼𝑡

𝑓 𝜙(𝑡)∥𝜙′(𝑡)∥d𝑡.

Proof. All maps 𝑓 , 𝜙 and 𝜙′ are bounded, thus the map 𝑔: 𝐼𝑡 → R given by 𝑔(𝑡) ≔
𝑓 𝜙(𝑡)∥𝜙′(𝑡)∥ is bounded. As pointed out in the proof of Corollary A.9.5, the points

of discontinuity of 𝑔 are only those lying in the fibers 𝜙−1(𝑥), where 𝑥 ∈ 𝐼𝑥 is a point

of discontinuity of 𝑓 — since 𝑓 is Riemann integrable and 𝜙−1
is a 𝐶1

-isomorphism,

the points of discontinuity of 𝑔 form a set of Lebesgue measure zero, thus 𝑔 is Rie-

mann integrable over 𝐼𝑡 . Let 𝑃𝑥 ≔ {[𝑥 𝑗−1, 𝑥 𝑗]}𝑗∈𝐽 be a partition of 𝐼𝑥 and define

𝑃𝑡 ≔ {𝜙−1([𝑥 𝑗−1, 𝑥 𝑗])}𝑗∈𝐽 as the partition of 𝐼𝑡 . Since 𝜙 and 𝜙−1
are both continuous

functions over compact sets, it follows that they are both uniformly continuous —

thus, taking a sequence of partitions of 𝐼𝑥 and the induced partitions of 𝐼𝑡 , we have

mesh𝑃𝑥 → 0 if and only if mesh𝑃𝑡 → 0. Let 𝜉 be a collection of distinguished points
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of 𝑃𝑥 and 𝜏 ≔ {𝜙−1(𝜉𝑗)}𝑗∈𝐽 be the corresponding collection of distinguishes points of

𝑃𝑡 . Notice that, from construction, we have the following∑
𝑗∈𝐽

𝑓 (𝜉𝑗)∥𝑥 𝑗 − 𝑥 𝑗−1∥ =
∑
𝑗∈𝐽

𝑓 𝜙(𝜏𝑗)∥𝜙(𝑡 𝑗) − 𝜙(𝑡 𝑗−1)∥.

Since both 𝑓 and 𝑔 are Riemann integrable (over their respective domains), we find

that the choice of distinguished points is arbitrary, thus we may choose 𝜉 so that, when

applying the mean value theorem to 𝜙, we have 𝜙′(𝜏𝑗) =
𝜙(𝑡 𝑗)−𝜙(𝑡 𝑗−1)

𝑡 𝑗−𝑡 𝑗−1

— where, as before,

𝜏𝑗 ≔ 𝜙−1(𝜉𝑗). This way we may rewrite the equation as∑
𝑗∈𝐽

𝑓 (𝜉𝑗)∥𝑥 𝑗 − 𝑥 𝑗−1∥ =
∑
𝑗∈𝐽

𝑓 𝜙(𝜏𝑗)∥𝜙′(𝜏𝑗)∥ ∥𝑡 𝑗 − 𝑡 𝑗−1∥.

Now, taking the limit mesh𝑃𝑥 → 0, which implies mesh𝑃𝑡 → 0, we find the integral

equality just wanted. ♮

Corollary A.9.7. Let 𝜙: 𝐼𝑡
≃−→ 𝐼𝑥 be a 𝐶1

-isomorphism between closed 1-dimensional

intervals 𝐼𝑡 , 𝐼𝑥 ⊆ R, and 𝑓 : 𝐼𝑥 → R be a Riemann integrable map over 𝐼𝑥 . Then we have

the following relations∫
𝐼𝑥

𝑓 (𝑥)d𝑥 =

∫
𝐼𝑡

𝑓 𝜙(𝑡)∥𝜙′(𝑡)∥d𝑡 and

∫
𝐼𝑥

𝑓 (𝑥)d𝑥 =

∫
𝐼𝑡

𝑓 𝜙(𝑡)∥𝜙′(𝑡)∥d𝑡.

Proof. We’ll verify the first relation, the second may be obtained with an analogous

proof. Construct partitions 𝑃𝑥 and 𝑃𝑡 for 𝐼𝑥 and 𝐼𝑡 , respectively, just as we’ve done for

the proof of Lemma A.9.6. Assume for the time being that 𝑓 is a non-negative map

(we’ll take hold of the general case just in a bit) and let 𝑀 > 0 be a constant bounding

𝑓 . Define 𝜀 ≔ sup𝑗∈𝐽 𝜔(𝜙, [𝑡 𝑗−1, 𝑡 𝑗]), that is, the supremum oscillation of 𝜙 over each

of the intervals of the partition 𝑃𝑡 . Notice that we have∑
𝑗∈𝐽

sup

𝑥∈[𝑥 𝑗−1 ,𝑥 𝑗 ]
𝑓 (𝑥)∥𝑥 𝑗 − 𝑥 𝑗−1∥ ⩽

∑
𝑗∈𝐽

sup

𝑡∈[𝑡 𝑗−1 ,𝑡 𝑗 ]
𝑓 𝜙(𝑡) sup

𝑡∈[𝑡 𝑗−1 ,𝑡 𝑗 ]
∥𝜙′(𝑡)∥ ∥𝑡 𝑗 − 𝑡 𝑗−1∥

⩽
∑
𝑗∈𝐽

sup

𝑡∈[𝑡 𝑗−1 ,𝑡 𝑗 ]

[
𝑓 𝜙(𝑡) sup

𝑡∈[𝑡 𝑗−1 ,𝑡 𝑗 ]
∥𝜙′(𝑡)∥

]
∥𝑡 𝑗 − 𝑡 𝑗−1∥

⩽
∑
𝑗∈𝐽

sup

𝑡∈[𝑡 𝑗−1 ,𝑡 𝑗 ]
𝑓 𝜙(𝑡)

(
∥𝜙′(𝑡)∥ + 𝜀

)
∥𝑡 𝑗 − 𝑡 𝑗−1∥

⩽
∑
𝑗∈𝐽

sup

𝑡∈[𝑡 𝑗−1 ,𝑡 𝑗 ]
𝑓 𝜙(𝑡)∥𝜙′(𝑡)∥ ∥𝑡 𝑗 − 𝑡 𝑗−1∥ + 𝜀

∑
𝑗∈𝐽

sup

𝑡∈[𝑡 𝑗−1 ,𝑡 𝑗 ]
𝑓 𝜙(𝑡)∥𝑡 𝑗 − 𝑡 𝑗−1∥

⩽
∑
𝑗∈𝐽

sup

𝑡∈[𝑡 𝑗−1 ,𝑡 𝑗 ]
𝑓 𝜙(𝑡)∥𝜙′(𝑡)∥ ∥𝑡 𝑗 − 𝑡 𝑗−1∥ + 𝜀𝑀 vol 𝐼𝑡

where vol 𝐼𝑡 happens to be the length of the interval, since 𝐼𝑡 ⊆ R. Since 𝜙 is uniformly

continuous, we find, from the last inequalities, that in the limit mesh𝑃𝑡 → 0 (which

implies in mesh𝑃𝑥 → 0): ∫
𝐼𝑥

𝑓 (𝑥)d𝑥 ⩽
∫
𝐼𝑡

𝑓 𝜙(𝑡)∥𝜙′(𝑡)∥d𝑡.
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Notice that we can use the same analogous proof for the 𝐶1
-isomorphism 𝜙−1

and

the map 𝐼𝑡 ∋ 𝑡 ↦→ 𝑓 𝜙(𝑡)∥𝜙′(𝑡)∥, we find that

∫
𝐼𝑡

𝑓 𝜙(𝑡)∥𝜙′(𝑡)∥d𝑡 ⩽
∫
𝐼𝑥

𝑓 (𝑥)d𝑥,

thus the equality for the first relation has been established for non-negative 𝑓 . Notice,

however, that 𝑓 = max( 𝑓 , 0) −max(− 𝑓 , 0), for any map 𝑓 , thus the equality holds for

the general case. ♮

Change of Variables on Elementary 𝐶1-Isomorphisms

Definition A.9.8 (Elementary 𝐶1
-isomorphism in R𝑛

). Let {𝑡 𝑗}𝑛𝑗=1
and {𝑥 𝑗}𝑛𝑗=1

be basis

for the euclidean space R𝑛
. Given any 1 ⩽ 𝑘 ⩽ 𝑛, a 𝐶1

-isomorphism 𝜙:𝐷𝑡
≃−→ 𝐷𝑥

such that 𝜙 𝑗(𝑡 𝑗) = 𝑡 𝑗 for every 𝑗 ≠ 𝑘, and 𝜙𝑘(𝑡𝑘) = 𝑥𝑘 , is said to be a 𝑘-elementary

𝐶1
-isomorphism — that is, the only coordinate of R𝑛

changed under the mapping of

𝜙 is the 𝑘-th.

Lemma A.9.9. In the context of Theorem A.9.3, if 𝜙 is an elementary 𝐶1
-isomorphism,

then the proposition is valid.

Proof. Let 𝜙 be an elementary 𝐶1
-isomorphism on the 𝑘-th coordinate. Given points

𝑥, 𝑡 ∈ R𝑛
, we define 𝑥′ ≔ (𝑥 𝑗)𝑛𝑗=1, 𝑗≠𝑘

∈ R𝑛−1
and 𝑡′ ≔ (𝑡 𝑗)𝑛𝑗=1, 𝑗≠𝑘

∈ R𝑛−1
. Moreover,

for every 𝑥′, 𝑡′ ∈ R𝑛−1
, we define 1-dimensional sections of the domains 𝐷𝑥 and 𝐷𝑡 ,

respectively, as

𝐷𝑥𝑘 (𝑥′) ≔ {𝑝 ∈ 𝐷𝑥 : 𝑝𝑘 = 𝑥𝑘 and 𝑝 𝑗 = 𝑥′𝑗 for 𝑗 ≠ 𝑘},
𝐷𝑡𝑘 (𝑡′) ≔ {𝑝 ∈ 𝐷𝑡 : 𝑝𝑘 = 𝑡𝑘 and 𝑡 𝑗 = 𝑡

′
𝑗 for 𝑗 ≠ 𝑘}.

Let 𝐼𝑥 ⊆ R𝑛
be a closed interval containing 𝐷𝑥 and we let 𝐼0𝑥′ × 𝐼𝑥𝑘 × 𝐼1𝑥′ ≔ 𝐼𝑥 be the

representation of 𝐼𝑥 by closed intervals 𝐼0𝑥′ ⊆ R𝑘−1
, 𝐼𝑥𝑘 ⊆ R and 𝐼1𝑥′ ⊆ R𝑛−𝑘

. Analogously,

let 𝐼𝑡 ⊆ R𝑛
be a closed interval containing 𝐷𝑡 and let 𝐼0𝑡′ × 𝐼𝑡𝑘 × 𝐼1𝑡′ ≔ 𝐼𝑡 where, as before,
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𝐼0𝑡′ ⊆ R𝑘−1
, 𝐼𝑡𝑘 ⊆ R and 𝐼1𝑡′ ⊆ R𝑛−𝑘

are all closed intervals. Thus, we have∫
𝐷𝑥

𝑓 (𝑥)d𝑥 =

∫
𝐼𝑥

𝑓𝜒𝐷𝑥 (𝑥)d𝑥

=

∫
𝐼0
𝑥′×𝐼

1

𝑥′

(∫
𝐼𝑥𝑘

𝑓𝜒𝐷𝑥 (𝑥
′)d𝑥𝑘

)
d𝑥′ (A.46)

=

∫
𝐼0
𝑥′×𝐼

1

𝑥′

(∫
𝐷𝑥𝑘 (𝑥′)

𝑓 (𝑥)d𝑥
)

d𝑥′
0

(A.47)

=

∫
𝐼0
𝑡′×𝐼

1

𝑡′

(∫
𝐼𝑡𝑘

𝑓 𝜙𝜒𝐷𝑡
(𝑡′

1
, . . . , 𝑡𝑘 , . . . , 𝑡

′
𝑛)∥det

(
Jac 𝜙𝜒𝐷𝑡

(𝑡′
1
, . . . , 𝑡𝑘 , . . . , 𝑡

′
𝑛)

)
∥d𝑡𝑘

)
d𝑡′

(A.48)

=

∫
𝐼0
𝑡′×𝐼𝑡𝑘×𝐼

1

𝑡′

𝑓 𝜙𝜒𝐷𝑡
(𝑡)∥det(Jac 𝜙𝜒𝐷𝑡

(𝑡))∥d𝑡 =

∫
𝐼𝑡

𝑓 𝜙𝜒𝐷𝑡
(𝑡)∥det(Jac 𝜙𝜒𝐷𝑡

(𝑡))∥d𝑡

(A.49)

=

∫
𝐷𝑡

𝑓 𝜙(𝑡)∥det(Jac 𝜙(𝑡))∥d𝑡 (A.50)

where we have the following use of theorems and definitions for each of the equa-

tions: Eq. (A.46) used Theorem A.8.4, Eq. (A.47) used Definition A.7.20, Eq. (A.48)

used Lemma A.9.6, Eq. (A.49) used Theorem A.8.4, and, finally, Eq. (A.50) used Defi-

nition A.7.20. This proves the lemma. ♮

Proposition A.9.10. Let 𝑓 :𝐸 → R𝑛
be a 𝐶1

map on the open set 𝐸 ⊆ R𝑛
, with 0 ∈

𝐸 — moreover, we impose that 𝑓 (0) ≔ 0 and d 𝑓 (0):𝑇0R𝑛 → 𝑇0R𝑛
is an R-linear

isomorphism. Then there exists a neighbourhood𝑈 ⊆ 𝐸 of 0 ∈ R𝑛
, with mappings:

• {𝜙 𝑗 :𝑈 → R𝑛}𝑛
𝑗=1

of elementary 𝐶1
-isomorphisms, such that 𝜙 𝑗(0) = 0 and d𝜙(0)

is an R-linear isomorphism.

• We define, for each 1 ⩽ 𝑘 ⩽ 𝑛, the map 𝜏𝑘 : R𝑛 → R𝑛
as 𝜏𝑘(

∑𝑛
𝑗=1

𝑥 𝑗𝑒 𝑗) ≔∑𝑛
𝑗=1

𝑥𝜏(𝑗)𝑒 𝑗 , where 𝜏 ∈ AutGrp([𝑛]) is a transposition.

These maps allow us to write 𝑓 |𝑈 as the composition of elementary 𝐶1
-isomorphisms

and transpositions

𝑓 (𝑥) = 𝜏1 . . . 𝜏𝑛−1𝑔𝑛 . . . 𝑔1(𝑥), for all 𝑥 ∈ 𝑈.

Proof. Define, for every 0 ⩽ 𝑘 ⩽ 𝑛, the map 𝑝𝑘 : R𝑛 → R𝑛
by 𝑝𝑘(

∑𝑛
𝑗=1

𝑥 𝑗𝑒 𝑗) ≔
∑𝑘
𝑗=1

𝑥 𝑗𝑒 𝑗 .

We do induction in the following proposition, where 1 ⩽ 𝑚 ⩽ 𝑛 − 1

• There exists a neighbourhood 𝑉𝑚 ⊆ R𝑛
of zero, a map 𝑓𝑚 ∈ 𝐶1(𝑉𝑚) — with

𝑓𝑚(0) = 0 and d 𝑓𝑚(0) linear isomorphism (we define 𝑓1 ≔ 𝑓 )— for which

𝑝𝑚−1 𝑓𝑚(𝑥) = 𝑝𝑚−1(𝑥), for all 𝑥 ∈ 𝑉𝑚 .
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Notice that the proposition is clearly true for 𝑚 = 1, now, we assume it’s true for

1 < 𝑚 < 𝑛 − 1 as our hypothesis of induction.

Notice that 𝑓𝑚 is a map that does only change the last 𝑥𝑚 , . . . , 𝑥𝑛 variables of its

input, which allows us to write it as

𝑓𝑚(𝑥) = 𝑝𝑚−1(𝑥) +
𝑛∑
𝑗=𝑚

𝛼 𝑗(𝑥)𝑒 𝑗 ,

where 𝛼 𝑗 :𝑉𝑚 → R is a 𝐶1(𝑉𝑚)map for all 𝑚 ⩽ 𝑗 ⩽ 𝑛, moreover, this implies in

d 𝑓𝑚(0)(𝑒𝑚) =
𝑛∑
𝑗=𝑚

𝜕𝑚𝛼 𝑗(0)𝑒 𝑗 .

Since d 𝑓𝑚(0) is an isomorphism, it cannot be the zero-map, thus there must exist some

𝑚 ⩽ 𝑘0 ⩽ 𝑛 for which 𝜕𝑚𝛼𝑘0
(0) ≠ 0. Define 𝜏𝑚 to be the transposition interchanging

the 𝑚-th and 𝑘0-th values of its input. Define a map 𝜙𝑚 :𝑉𝑚 → R𝑛
as

𝜙𝑚(𝑥) ≔ 𝑥 + (𝛼𝑘0
(𝑥) − 𝑥𝑚)𝑒𝑚 ,

so that 𝜙𝑚 ∈ 𝐶1(𝑉𝑚), and only changes the 𝑚-th coordinate of its input. Moreover

d𝜙𝑚(0) is an isomorphism, thus there must exist a neighbourhood 𝑈𝑚 ⊆ 𝑉𝑚 of zero

for which the induced map 𝜙𝑚 :𝑈𝑚 → 𝜙𝑚(𝑈𝑚) is a 𝐶1
-isomorphism (which, in fact, is

elementary). We define 𝑉𝑚+1 ≔ 𝜙𝑚(𝑈𝑚), and also

𝑓𝑚+1(𝑦) ≔ 𝜏𝑚 𝑓𝑚𝜙
−1

𝑚 (𝑦), for all 𝑦 ∈ 𝑉𝑚+1,

which makes 𝑓𝑚+1 ∈ 𝐶1(𝑉𝑚+1), also 𝑓𝑚+1(0) = 0, and d 𝑓𝑚+1(0) is an isomorphism.

Notice that, for all 𝑥 ∈ 𝑈𝑚 we have

𝑝𝑚 𝑓𝑚+1(𝜙𝑚(𝑥)) = 𝑝𝑚𝜏𝑚 𝑓𝑚𝜙
−1

𝑚 (𝜙𝑚(𝑥))
= 𝑝𝑚𝜏𝑚 𝑓 (𝑥)

= 𝑝𝑚𝜏𝑚

𝑝𝑚−1(𝑥) +
𝑛∑
𝑗=𝑚

𝛼 𝑗(𝑥)𝑒 𝑗


= 𝑝𝑚
[
𝑝𝑚−1(𝑥) + 𝛼𝑘0

(𝑥)𝑒𝑚 + · · · + 𝛼𝑚(𝑥)𝑒𝑘0
+ · · · + 𝛼𝑛(𝑥)𝑒𝑛

]
= 𝑝𝑚−1(𝑥) + 𝛼𝑘0

(𝑥)𝑒𝑚
= 𝑝𝑚𝜙𝑚(𝑥).

That is, since 𝜙𝑚 is a bĳection in 𝑉𝑚+1, for any 𝑦 ∈ 𝑉𝑚+1 we have the equality

𝑝𝑚 𝑓𝑚+1(𝑦) = 𝑝𝑚(𝑦).

This concludes the proof by induction of our initial statement. We now must show

that it, in fact, implies the proposition we set out to prove. For that we recall the

definition of 𝑓𝑚+1 and notice that, by taking 𝜏𝑚 from both sides we obtain 𝜏𝑚 𝑓𝑚+1(𝑦) =
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𝜏𝑚𝜏𝑚 𝑓𝑚𝜙−1

𝑚 (𝑦) = 𝑓𝑚𝜙−1

𝑚 (𝑦) for every 𝑦 ∈ 𝑉𝑚+1 — which allow us to write, taking

𝑦 = 𝜙𝑚(𝑥),
𝑓𝑚(𝑥) = 𝜏𝑚 𝑓𝑚+1(𝜙𝑚(𝑥)), for every 𝑥 ∈ 𝑈𝑚 .

This recursive definition implies in (recalling that we set 𝑓1 ≔ 𝑓 ):

𝑓 = 𝜏1 𝑓2𝜙1 = · · · = 𝜏1 . . . 𝜏𝑛−1 𝑓𝑛𝜙𝑛−1 . . . 𝜙1,

which is what we wanted since 𝑓𝑛 is an elementary 𝐶1
-isomorphism for some neigh-

bourhood of zero. ♮

Proof for the Theorem on Change of Variables
We now go for our (finally) last lemma before we can get to the proof of the main

theorem of the section.

Lemma A.9.11. Let 𝐷𝑠

𝜓
−→ 𝐷𝑡

𝜙
−→ 𝐷𝑥 be 𝐶1

-isomorphisms. Moreover, let 𝑓 :𝐷𝑥 → R be

a Riemann integrable map over 𝐷𝑥 . If Theorem A.9.3 holds for both 𝜓, and for 𝜙, then

it is also valid for the composition 𝜙𝜓:𝐷𝑠
≃−→ 𝐷𝑥 .

Proof. Notice that, for every 𝑠 ∈ 𝐷𝑠 , Jac(𝜙𝜓)(𝑠) = Jac 𝜙(𝜓(𝑠)) Jac𝜓(𝑠), then

det(Jac (𝜙𝜓)(𝑠)) = det(Jac 𝜙(𝜓(𝑠)))det(Jac𝜓(𝑠)).

Therefore we can write∫
𝐷𝑥

𝑓 (𝑥)d𝑥 =

∫
𝐷𝑡

𝑓 𝜙(𝑡)∥det(Jac 𝜙(𝑡))∥d𝑡 =

∫
𝐷𝑠

𝑓 𝜙𝜓(𝑠)∥det(Jac 𝜙(𝜓(𝑠)))∥∥det(Jac𝜓(𝑠))∥d𝑠

=

∫
𝐷𝑠

𝑓 𝜙𝜓(𝑠)∥det(Jac (𝜙𝜓)(𝑠))∥d𝑠,

which proves the proposition. ♮

Now we are ready for the proof of Theorem A.9.3.

Proof. Define the compact set 𝐾𝑡 ≔ supp(𝑡 ↦→ 𝑓 𝜙(𝑡)∥det(Jac 𝜙(𝑡))∥), and, for every

𝑡 ∈ 𝐾𝑡 , let 𝑈(𝑡) ⊆ 𝐷𝑡 be a neighbourhood of 𝑡 with diameter less than 𝛿(𝑡), for some

𝛿(𝑡) > 0 — for which 𝜙|𝑈(𝑡) can be decomposed into elementary 𝐶1
-isomorphisms. For

each 𝑡 ∈ 𝐾𝑡 , let 𝑈 ′(𝑡) ⊆ 𝑈(𝑡) be a neighbourhood of 𝑡 with diameter less than 𝛿(𝑡)/2
— with this, the collection {𝑈 ′(𝑡)}𝑡∈𝐾𝑡 is a cover for 𝐾𝑡 , more than that, since 𝐾𝑡 is

compact, there exists a finite collection of points {𝑡 𝑗}𝑘𝑗=1
such that {𝑈 ′(𝑡 𝑗)}𝑘𝑗=1

is a cover

for 𝐾𝑡 . Define 𝛿 ≔ 1

2
min(𝛿(𝑡 𝑗)𝑘𝑗=1

) so that, for any set 𝐴 ⊆ 𝐷𝑡 with closure of diameter

less than 𝛿 and non-empty intersection with the support, 𝐴 ∩ 𝐾𝑡 ≠ ∅, the given set

must be contained in some𝑈 ′(𝑡𝑚) for some 1 ⩽ 𝑚 ⩽ 𝑘.

Let 𝐼 ⊆ R𝑛
be an interval containing 𝐷𝑡 , and 𝑃 ≔ {𝐼𝑠}𝑠∈𝑆 a partition of 𝐼 with

mesh𝑃 < min(𝛿, 𝑑)— where 𝑑 ≔ inf(𝑎,𝑏)∈𝜕𝐾𝑡×𝜕𝐷𝑡∥𝑏−𝑎∥ is the minimal distance between

the boundaries of 𝐾𝑡 and 𝐷𝑡 . Let 𝑆′ be the index set such that 𝐼𝑠 ∩ 𝐾𝑡 ≠ ∅ if and only
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if 𝑠 ∈ 𝑆′ — the set indices of intervals of the partition 𝑃 with non-empty intersection

with the support. Then∫
𝐷𝑡

𝑓 𝜙(𝑡)∥det(Jac 𝜙(𝑡))∥d𝑡 =

∫
𝐼

𝑓 𝜙𝜒𝐷𝑡
(𝑡)∥det(Jac 𝜙𝜒𝐷𝑡

(𝑡))∥d𝑡

=

∑
𝑠′∈𝑆′

∫
𝐼𝑠′
𝑓 𝜙(𝑡)∥det(Jac 𝜙(𝑡))∥d𝑡.

Since 𝐼𝑠 ∈ 𝑃 are Jordan-measurable sets, so is their image 𝜙(𝐼𝑠) ⊆ 𝐷𝑥 — this follows

from Lemma A.9.4. Define the Jordan-measurable set 𝐸 ≔
⋃
𝑠′∈𝑆′ 𝐼𝑠′ so that, by our

construction, given any 𝑥 ∈ supp 𝑓 , let 𝑡 ≔ 𝜙−1(𝑥), then 𝑓 𝜙(𝑡)∥det(Jac 𝜙(𝑡))∥ ≠ 0 thus

𝑡 ∈ 𝐾𝑡 — therefore, 𝑡 ∈ ⋃
𝑠′∈𝑆′ 𝐼𝑠′, which implies in 𝑥 ∈ 𝐸, that is, supp 𝑓 ⊆ 𝐸. Notice

that, if 𝐼𝑥 ⊆ R𝑛
is an interval containing 𝐷𝑥 , then∫

𝐷𝑥

𝑓 (𝑥)d𝑥 =

∫
𝐼𝑥

𝑓𝜒𝐷𝑥 (𝑥)d𝑥 =

∫
𝐼𝑥∖𝐸

𝑓𝜒𝐷𝑥 (𝑥)d𝑥︸              ︷︷              ︸
0

+
∫
𝐸

𝑓𝜒𝐷𝑥 (𝑥)d𝑥

=

∫
𝐸

𝑓 (𝑥)d𝑥 =

∑
𝑠′∈𝑆′

∫
𝜙(𝐼𝑠′)

𝑓 (𝑥)d𝑥. (A.51)

Since 𝜙 is decomposed into elementary 𝐶1
-isomorphisms in any neighbourhood𝑈 ′(𝑡),

for 𝑡 ∈ 𝐾𝑡 , it follows that 𝜙 decomposes into elementary 𝐶1
-isomorphisms in every

interval 𝐼𝑠′ for 𝑠′ ∈ 𝑆′ — hence, by means of Lemma A.9.9 we conclude that, for every

𝑠′ ∈ 𝑆′ ∫
𝜙(𝐼𝑠′)

𝑓 (𝑥)d𝑥 =

∫
𝐼𝑠′
𝑓 𝜙(𝑡)∥det(Jac 𝜙(𝑡))∥d𝑡. (A.52)

Thus, merging both Eq. (A.51) and Eq. (A.52), we obtain the desired equality. ♮

A.10 An Elementary Construction of Differential Forms
Definition A.10.1 (𝑘-surface). Let 𝐸 ⊆ R𝑛

be an open set. We define a 𝑘-surface in
𝐸 to be a 𝐶1 map Φ:𝐷 → 𝐸, where 𝐷 ⊆ R𝑘

is a compact set — this set is commonly

referenced to as the parameter domain of Φ.

Definition A.10.2 (Differential 𝑘-form). Let 𝐸 ⊆ R𝑛
be an open set. A differential 𝑘-form

in 𝐸, for 𝑘 > 0, is a multilinear map 𝜔 given by

𝜔 ≔

∑
𝑓𝑗1... 𝑗𝑘 d𝑥 𝑗1 ∧ · · · ∧ d𝑥 𝑗𝑘 ,

where the sum runs over the sequence of indices (𝑗1, . . . , 𝑗𝑘), where 1 ⩽ 𝑗𝑟 ⩽ 𝑛 for each

1 ⩽ 𝑟 ⩽ 𝑘, and 𝑓𝑗1... 𝑗𝑘 :𝐸 → R are continuous maps — that is, 0-forms. A differential

𝑘-form is said to be of class 𝐶𝑝 if each map 𝑓𝑗1... 𝑗𝑘 is of class 𝐶𝑝 .

The form 𝜔 is said to be a basic 𝑘-form if we have the ordering 1 ⩽ 𝑗1 < · · · < 𝑗𝑘 ⩽ 𝑛

for its indices — in this case we commonly denote each sequence of indexes as 𝐼 ≔

(𝑗1, . . . , 𝑗𝑘) and write

𝜔 =

∑
𝐼

𝑓𝐼 d𝑥𝐼 .
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Definition A.10.3 (Line integral). The integrals of 1-forms are called line integrals.

Example A.10.4. Lets calculate a line integral on the 1-surface (𝐶1
curve) 𝛾: [0, 2𝜋] →

R2
defined by 𝑡 ↦→ (𝑎 cos(𝑡), 𝑏 sin(𝑡)), for constants 𝑎, 𝑏 > 0. Let 𝜔 = 𝑥 d𝑦 be a 1-form

on R2
. Measuring this curve with respect to 𝜔 yields∫

𝛾
𝜔 =

∫
2𝜋

0

𝑎 cos(𝑡)[𝑏 cos(𝑡)]d𝑡 = 𝑎𝑏

∫
2𝜋

0

cos(2𝑡) − 1

2

d𝑡 = −𝑎𝑏𝜋.

Definition A.10.5 (Surface area). Let Φ:𝐷 → 𝐸 be a 𝑘-surface on the open set 𝐸 ⊆ R𝑛
,

and 𝜔 ≔
∑
𝐼 𝑓𝑖1...𝑖𝑘 d𝑥𝑖1...𝑖𝑘 . We define the area of the surface Φ on 𝜔 to be given by∫

Φ

𝜔 ≔

∫
𝐷

∑
𝐼

𝑓𝑖1...𝑖𝑘 (Φ(𝑡))det

[
𝜕𝑗Φ𝑖𝑟 (𝑡)

]
1⩽𝑟, 𝑗⩽𝑘 d𝑡

Definition A.10.6 (Piecewise smooth). We define the concept of a piecewise smooth

surface in an inductive manner. A point is a zero dimensional surface of any smooth-

ness class. A surface 𝑆 ⊆ R𝑛
of dimension 𝑘 is piecewise smooth if, after a countable

collection of at most (𝑘 − 1)-dimensional piecewise smooth surfaces can be removed

from 𝑆, the resulting surface can be decomposed into a countable collection of 𝑘-

dimensional smooth surfaces.

Theorem A.10.7 (A zero form has null coefficients). Let 𝜔 ≔
∑
𝐽 𝑓𝐽 d𝑥𝐽 be a 𝑘-form in

an open set 𝐸 ⊆ R𝑛
, in its standard representation. If 𝜔 = 0 in 𝐸 (that is 𝜔(Φ) = 0 for

all 𝑘-surface Φ in 𝐸), then 𝑓𝐽(𝑥) = 0 for all 𝑥 ∈ 𝐸.

Proof. Suppose, for the sake of contradiction, that there exists an index sequence 𝑆 ≔

(𝑠1, . . . , 𝑠𝑘) such that 𝑓𝑆(𝑦) ≠ 0 for some 𝑦 ∈ 𝐸. Since 𝑓𝑆 is continuous, let 𝛿 > 0 be such

that 𝑓𝐽(𝑥) > 0 whenever ∥𝑥𝑖 − 𝑦𝑖∥ ⩽ 𝛿, for all 1 ⩽ 𝑖 ⩽ 𝑛. Let 𝐷 ⊆ R𝑘
be the compact set

given by

𝐷 ≔ {𝑡 ∈ R𝑘
: ∥𝑡 𝑗∥ ⩽ 𝛿 for all 1 ⩽ 𝑗 ⩽ 𝑘}.

Define a 𝑘-surface Φ:𝐷 → 𝐸 to be given by

Φ(𝑡) ≔ 𝑣 +
𝑘∑
𝑗=1

𝑡 𝑗𝑒𝑠 𝑗 , for all 𝑡 ∈ 𝐷.

Notice that 𝐷 was chosen so that 𝑓𝑆(Φ(𝑡)) > 0 for all 𝑡 ∈ 𝐷. Notice that∫
Φ

𝜔 =

∫
𝐷

∑
𝐽

𝑓𝐽(Φ(𝑡))det[𝜕𝑖Φ𝑗𝑟 (𝑡)]1⩽𝑖 ,𝑟⩽𝑘 d𝑡 =

∫
𝐷

𝑓𝑆(Φ(𝑡))det[𝜕𝑖Φ𝑠𝑟 ]1⩽𝑖 ,𝑟⩽𝑘 d𝑡

since for all indexing sequence 𝐽 ≔ (𝑗1, . . . , 𝑗𝑘) ≠ 𝑆 the matrix [𝜕𝑖Φ𝑗𝑟 (𝑡)]1⩽𝑖 ,𝑟⩽𝑘 has at

least one column equal to zero — since there must exists at least one 𝑗𝑟0 ∈ 𝐽 ∖ 𝑆, thus

Φ𝑗0(𝑡) = 𝑦 𝑗0 for all 𝑡 ∈ 𝐷 and thus the column [𝜕𝑖Φ𝑗0(𝑡)]1⩽𝑖⩽𝑘 = 0, which implies in
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det[𝜕𝑖Φ𝑗𝑟 (𝑡)]1⩽𝑖 ,𝑟⩽𝑘 = 0. On the other hand, notice that 𝜕𝑖Φ𝑠𝑟 (𝑡) = 𝛿𝑖𝑟 for all 1 ⩽ 𝑖 , 𝑟 ⩽ 𝑘,

thus det[𝜕𝑖Φ𝑠𝑟 (𝑡)]1⩽𝑖 ,𝑟⩽𝑘 = 1. We conclude that∫
Φ

𝜔 =

∫
𝐷

𝑓𝑆(𝑡)d𝑡 ,

which is strictly positive since 𝑓𝑆(𝑦) > 0. Therefore 𝜔(Φ) ≠ 0, which is a contradiction

— thus there must exist no indexing sequence 𝑆 and therefore every coefficient is the

zero-map. ♮

Differential Operator
Definition A.10.8. Let 𝑓 :𝐸 → R be a map of class 𝐶1

, we define an operator d which

transforms any 0-form 𝑓 into

d 𝑓 ≔

𝑛∑
𝑗=1

𝜕𝑗 𝑓 d𝑥 𝑗 .

Now, for any 𝑘-form 𝜔 ≔
∑
𝐽 𝑓𝐽 d𝑥𝐽 , where 𝑘 ⩾ 1 and 𝑓𝐽 :𝐸→ R is again a map of class

𝐶1
(a 0-form) we associate the (𝑘 + 1)-form d𝜔 — which is defined by

d𝜔 ≔

∑
𝐽

d 𝑓𝐽 ∧ d𝑥𝐽 .

Example A.10.9. Let 𝐸 ⊆ R𝑛
be an open set, and 𝛾: [0, 1] → 𝐸 be a 1-surface (that

is, a continuous differentiable curve). If we let 𝑓 :𝐸 → R be a 𝐶1
map, we have

from the definition that the integral over the curve 𝛾 of d 𝑓 is given by — recalling

Theorem A.3.21,∫
𝛾

d 𝑓 =

∫
1

0

𝑛∑
𝑗=1

𝜕𝑗 𝑓 (𝛾(𝑡))𝛾′𝑗(𝑡)d𝑡 =
∫

1

0

d( 𝑓 𝛾)(𝑡)d𝑡 = 𝑓 𝛾(1) − 𝑓 𝛾(0).

since 𝑓 𝛾: [0, 1] → R is a continuously differentiable map.

Theorem A.10.10. The following are properties of the differential operator on forms.

Let 𝐸 ⊆ R𝑛
be some open set.

(a) (Skew-product rule) Let 𝜔 be a 𝑘-form and 𝛾 be a 𝑚-form, both of class 𝐶1(𝐸).
Then

d(𝜔 ∧ 𝛾) = (d𝜔) ∧ 𝛾 + (−1)𝑘𝜔 ∧ d𝛾.

(b) If 𝜔 is a 𝑘-form of class 𝐶2(𝐸), then d(d𝜔) = 0.

Proof. (a) Let 𝜔 ≔
∑
𝐼 𝑓𝐼d𝑥𝐼 and 𝛾(𝑥) ≔ ∑

𝐽 𝑔𝐽d𝑥𝐽 for 𝐶1
coefficients 𝑓𝐼 , 𝑔𝐽 :𝐸 ⇒ R —

if 𝑘 or 𝑚 are zero, we just omit the 1-forms from the definitions. From the wedge

product we have

d(𝜔 ∧ 𝛾) =
∑
𝐼 ,𝐽

d

(
𝑓𝐼 · 𝑔𝐽 d𝑥𝐼 ∧ d𝑥𝐽

)
=

∑
𝐼 ,𝐽

d( 𝑓𝐼 · 𝑔𝐽) ∧ d𝑥𝐼 ∧ d𝑥𝐽 .
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Define, for each pair 𝐼 and 𝐽, the indexing sequence ((𝐼 , 𝐽)) consisting of the increas-

ing ordered union of the sequences 𝐼 and 𝐽. Moreover, for each ((𝐼 , 𝐽)), there will be

an associated sign

sign(𝐼 , 𝐽) ≔ |{ 𝑗 − 𝑖 : 𝑗 − 𝑖 < 0 for (𝑖 , 𝑗) ∈ 𝐼 × 𝐽}|, (A.53)

that is, the number of times the indices of 𝐽 is greater than the ones from 𝐼. From

the skew-commutativity property (Proposition 6.5.12),

d(𝜔 ∧ 𝛾) =
∑
𝐼 ,𝐽

sign(𝐼 , 𝐽)d( 𝑓𝐼 · 𝑔𝐽) ∧ d𝑥((𝐼 ,𝐽))

=

∑
(𝐼 ,𝐽)

sign(𝐼 , 𝐽)
(
d 𝑓𝐼 · 𝑔𝐽 + 𝑓𝐼 · d𝑔𝐽

)
∧ d𝑥((𝐼 ,𝐽))

=

∑
𝐼 ,𝐽

(
d 𝑓𝐼 · 𝑔𝐽 + 𝑓𝐼 · d𝑔𝐽

)
∧ d𝑥𝐼 ∧ d𝑥𝐽 .

From the distributive property, associativity and skew-commutativity we get

d(𝜔 ∧ 𝛾) =
∑
𝐼 ,𝐽

(𝑔𝐽 d 𝑓𝐼 ∧ d𝑥𝐼 ∧ d𝑥𝐽 + 𝑓𝐼 d𝑔𝐽 ∧ d𝑥𝐼 ∧ d𝑥𝐽)

=

∑
𝐼 ,𝐽

(d 𝑓𝐼 ∧ d𝑥𝐼) ∧ (𝑔𝐽 d𝑥𝐽) + (−1)𝑘( 𝑓𝐼 d𝑥𝐼) ∧ (d𝑔𝐽 ∧ d𝑥𝐽)

=

∑
𝐼 ,𝐽

(d 𝑓𝐼 ∧ d𝑥𝐼) ∧ (𝑔𝐽 d𝑥𝐽) + (−1)𝑘
∑
𝐼 ,𝐽

( 𝑓𝐼 d𝑥𝐼) ∧ (d𝑔𝐽 ∧ d𝑥𝐽)

=

(∑
𝐼

d 𝑓𝐼 ∧ d𝑥𝐼

)
∧

(∑
𝐽

𝑔𝐽 d𝑥𝐽

)
+ (−1)𝑘

(∑
𝐼

𝑓𝐼 d𝑥𝐼

)
∧

(∑
𝐽

d𝑔𝐽 ∧ d𝑥𝐽

)
= d𝜔 ∧ 𝜆 + (−1)𝑘𝜔 ∧ d𝜆.

(b) For the case of a zero form 𝑓 :𝐸→ R, of class 𝐶2
, we have

d(d 𝑓 ) = d

( 𝑛∑
𝑗=1

𝜕𝑗 𝑓 d𝑥 𝑗

)
=

𝑛∑
𝑗=1

d(𝜕𝑗 𝑓 )d𝑥 𝑗 =
𝑛∑

𝑖 , 𝑗=1

𝜕𝑖 𝑗 𝑓 d𝑥𝑖 ∧ d𝑥 𝑗

Notice however that 𝜕𝑖 𝑗 𝑓 = 𝜕𝑗𝑖 𝑓 for any 1 ⩽ 𝑖 , 𝑗 ⩽ 𝑛, thus each pair (𝑖 , 𝑗) and (𝑗 , 𝑖)
of the sum cancel with each other — since d𝑥𝑖 ∧d𝑥 𝑗 = −d𝑥 𝑗 ∧d𝑥𝑖 — which implies

in d(d 𝑓 ) = 0.

For the general case, if 𝜔 =
∑
𝐼 𝑓𝐼 d𝑥𝐼 is any 𝐶2 𝑘-form, since d

2𝜔 =
∑
𝐼 d

2 𝑓𝐼 d𝑥𝐼 and

d
2 𝑓𝐼 = 0, for all 𝐼, it follows immediately that d

2𝜔 = 0.

♮

Change of Variables — The Pullback Operation
Let 𝜔 ≔

∑
𝐼 𝑓𝐼 d𝑥𝐼 be a 𝑘-form in an open set 𝐸 ⊆ R𝑛

and 𝜙:𝑉 → 𝐸 be a 𝐶1
map from

another open set 𝑉 ⊆ R𝑚
. Notice that there arises a natural pullback operation 𝜙∗ that
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allows for a change of variables

𝜙∗(𝜔) =
∑
𝐼

𝑓𝐼𝜙 d𝑣𝐼 , (A.54)

where 𝑣𝐼 represents the coordinates coming from 𝑉 .

Proposition A.10.11 (Pullback properties). Let 𝜔 and 𝜆 be, respectively, a 𝑘-form and

an𝑚-form in the open set 𝐸 ⊆ R𝑛
. Let 𝜙:𝑉 → 𝐸 be a 𝐶1

map. The following properties

hold:

(a) If 𝑘 = 𝑚, then 𝜙∗(𝜔 + 𝜆) = 𝜙∗(𝜔) + 𝜙∗(𝜆).
(b) 𝜙∗(𝜔 ∧ 𝜆) = 𝜙∗(𝜔) ∧ 𝜙∗(𝜆).
(c) If 𝜔 is 𝐶1

and 𝜙 is of class 𝐶2
, then d(𝜙∗(𝜔)) = 𝜙∗(d𝜔).

Proof. Let 𝜔 ≔
∑
𝑓𝐼 d𝑥𝐼 and 𝜆 ≔

∑
𝑔𝐽 d𝑥𝐽 .

(a) If 𝑘 = 𝑚, then 𝜔 + 𝜆 is a 𝑘-form in 𝐸, and we have

𝜙∗(𝜔+𝜆) = 𝜙∗
(∑

𝑓𝐼 d𝑥𝐼 +
∑

𝑔𝐽 d𝑥𝐽

)
=

∑
𝑓𝐼𝜙 d𝑣𝐼 +

∑
𝑔𝐽𝜙 d𝑣𝐽 = 𝜙∗(𝜔)+𝜙∗(𝜆).

(b) Notice that

𝜙∗(𝜔 ∧ 𝜆) = 𝜙∗
(∑
𝐼 ,𝐽

𝑓𝐼 · 𝑔𝐽 d𝑥𝐼 ∧ d𝑥𝐽

)
=

∑
𝐼 ,𝐽

( 𝑓𝐼 · 𝑔𝐽)𝜙 d𝑣𝐼 ∧ d𝑣𝐽

=

∑
𝐼 ,𝐽

( 𝑓𝐼𝜙) · (𝑔𝐽𝜙)d𝑣𝐼 ∧ d𝑣𝐽 =
∑
𝐼 ,𝐽

( 𝑓𝐼𝜙 d𝑣𝐼) ∧ (𝑔𝐽𝜙 d𝑣𝐽)

= 𝜙∗(𝜔) ∧ 𝜙∗(𝜆).

(c) We first prove the equality for the base case of a 0-form. Let ℎ:𝐸→ R be a 0-form,

then

𝜙∗(dℎ) = 𝜙∗
( 𝑛∑
𝑖=1

𝜕𝑖ℎ d𝑥𝑖

)
=

𝑛∑
𝑖=1

(𝜕𝑖ℎ)𝜙 d𝑣𝑖

=

𝑛∑
𝑖=1

(𝜕𝑖ℎ)𝜙
( 𝑛∑
𝑗=1

𝜕𝑗𝑣𝑖 d𝑥 𝑗

)
=

𝑛∑
𝑗=1

𝜕𝑗(ℎ𝜙)d𝑥 𝑗

= d(𝜙∗(ℎ))

We now turn to the general case. Notice that𝜙∗(𝜔) = ∑
𝐼 𝜙
∗( 𝑓𝐼)d𝑣𝐼 =

∑
𝐼 𝜙
∗( 𝑓𝐼)𝜙∗(d𝑥𝐼),

since 𝜙∗(d𝑥𝐼) = d𝑣𝐼 . Therefore, assuming 𝜙 is of class 𝐶2
, we have

d(𝜙∗𝜔) =
∑
𝐼

d(𝜙∗ 𝑓𝐼) ∧ d𝑣𝐼 =
∑
𝐼

𝜙∗(d 𝑓𝐼) ∧ 𝜙∗(d𝑥𝐼)

=

∑
𝐼

𝜙∗(d 𝑓𝐼 ∧ d𝑥𝐼) = 𝜙∗
(∑

𝐼

d 𝑓𝐼 ∧ d𝑥𝐼

)
= 𝜙∗(d𝜔).
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The need for 𝜙 to be 𝐶2
comes from the fact that the first equality — by Theo-

rem A.10.10 — is obtained by noting that

d(𝜙∗( 𝑓 )d𝑣𝐼) = d(𝜙∗( 𝑓 )) ∧ d𝑣𝐼 + 𝜙∗( 𝑓 ) ∧ d(d𝑣𝐼)︸ ︷︷ ︸
0

= d(𝜙∗ 𝑓 ) ∧ d𝑣𝐼 .

♮

Lemma A.10.12 (Pullback composition). Let 𝜔 be a 𝑘-form in an open set 𝑊 ⊆ R𝑝
.

Consider two composable 𝐶1
maps 𝜙:𝐸 → 𝑉 and 𝜓:𝑉 → 𝑊 , where 𝑈 ⊆ R𝑛

and

𝑉 ⊆ R𝑚
. Then the following equality holds

𝜙∗(𝜓∗(𝜔)) = (𝜓𝜙)∗(𝜔).

Moreover, these are 𝑘-forms in𝑈 .

Proof. Define 𝜔 ≔
∑
𝐼 𝑓𝐼 d𝑤𝐼 . Thus

𝜙∗(𝜓∗(𝜔)) = 𝜙∗
(∑

𝐼

𝑓𝐼𝜓 d𝑣𝐼

)
=

∑
𝐼

( 𝑓𝐼𝜓)𝜙 d𝑢𝐼 =
∑
𝐼

𝑓𝐼(𝜓𝜙)d𝑢𝐼 = (𝜓𝜙)∗(𝜔).

♮

Lemma A.10.13. Let 𝜔 be a 𝑘-form in an open set 𝐸 ⊆ R𝑛
. We consider two 𝑘-surfaces

Φ:𝐷 → 𝐸 and id𝐷 :𝐷 → R𝑘
, with id𝐷(𝑡) ≔ 𝑡 — where 𝐷 ⊆ R𝑘

is a compact set. Then∫
Φ

𝜔 =

∫
id𝐷

Φ∗(𝜔).

Proof. Define 𝜔 ≔
∑
𝐼 𝑓𝐼 d𝑥𝐼 , and Φ𝑗 ≔ 𝜋 𝑗Φ as the 𝑗-th projection of the surface Φ —

that is

Φ∗(𝜔) =
∑
𝐼

𝑓𝐼ΦdΦ𝐼 .

Defining 𝐼 ≔ (𝑖𝑝)𝑘𝑝=1
, and since dΦ𝑖𝑝 =

∑𝑘
𝑞=1

𝜕𝑞Φ𝑖𝑝 d𝑡𝑞 for all 1 ⩽ 𝑝 ⩽ 𝑘, we see that

dΦ𝑖1 ∧ · · · ∧ dΦ𝑖𝑘 =

( 𝑘∑
𝑞=1

𝜕𝑞Φ𝑖1 d𝑡𝑞

)
∧ · · · ∧

( 𝑘∑
𝑞=1

𝜕𝑞Φ𝑖𝑘d𝑡𝑞

)
=

∑
1⩽𝑖1 ,...,𝑖𝑘⩽𝑘


𝑘∏
𝑞=1

𝜕𝑞Φ𝑖𝑞

 d𝑡𝑖1 ∧ · · · ∧ d𝑡𝑖𝑘

=

∑
1⩽𝑖1 ,...,𝑖𝑘⩽𝑘


𝑘∏
𝑞=1

𝜕𝑞Φ𝑖𝑞


(
sign(𝑖1, . . . , 𝑖𝑘)d𝑡1 ∧ · · · ∧ d𝑡𝑘

)
= det[𝜕𝑞Φ𝑖𝑝 ]𝑛𝑝,𝑞=1

d𝑡1 ∧ · · · ∧ d𝑡𝑘

= det(JacΦ)d𝑡1 ∧ · · · ∧ d𝑡𝑘 .
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Where the sign map is defined as in Eq. (A.53). Therefore, combining equations we

find

Φ∗(𝜔) =
∑
𝐼

𝑓𝐼Φ det(JacΦ)d𝑡1 ∧ · · · ∧ d𝑡𝑘 ,

thus indeed ∫
id𝐷

Φ∗(𝜔) =
∫

id𝐷

∑
𝐼

𝑓𝐼Φ(𝑡) det(JacΦ(𝑡))d𝑡1 ∧ · · · ∧ d𝑡𝑘

=

∫
𝐷

∑
𝐼

𝑓𝐼Φ(𝑡) det(JacΦ(𝑡))d𝑡

=

∫
Φ

𝜔.

♮

Theorem A.10.14. Let𝜓:𝑉 → 𝐸 be a map of class 𝐶1
on open sets𝑉 ⊆ R𝑚

, and 𝐸 ⊆ R𝑛
.

Consider a 𝑘-surface Φ:𝐷 → 𝑉 , where 𝐷 ⊆ R𝑘
is compact, and a 𝑘-form 𝜔 in 𝐸. Then

we have the following equality ∫
𝜓Φ

𝜔 =

∫
Φ

𝜓∗(𝜔).

Proof. The theorem is a direct consequence of the preceding lemmas — notice that∫
𝜓Φ

𝜔 =

∫
id𝐷

(𝜓Φ)∗𝜔 =

∫
id𝐷

Φ∗(𝜓∗(𝜔)) =
∫
Φ

𝜓∗(𝜔).

♮

Simplexes and Chains
Notation A.10.15. For the purposes of this section, we are going to define the collection

Δ𝑘
c
≔

(𝑡1, . . . , 𝑡𝑘) ∈ R𝑘
:

𝑘∑
𝑗=1

𝑡 𝑗 ⩽ 1, and 𝑡 𝑗 ⩾ 0 for all 1 ⩽ 𝑗 ⩽ 𝑘

 .
which represents the 𝑘-simplex obtained by the corner of a 𝑘-dimensional unit cube.

Definition A.10.16 (Affine map). Given vector spaces 𝑉 and 𝐿, we say that 𝑓 :𝑉 → 𝐿

is a affine map if 𝑓 (𝑥) = ℓ + 𝜙(𝑥) for all 𝑥 ∈ 𝑉 , where 𝜙:𝑉 → 𝐿 is a 𝑘-linear map and

ℓ = 𝑓 (0) ∈ 𝐿.

Definition A.10.17 (Oriented affine 𝑘-simplex). Let 𝑝0, . . . , 𝑝𝑘 ∈ R𝑛
be any points. We

define the oriented affine 𝑘-simplex induced by the points 𝑝0, . . . , 𝑝𝑘 in R𝑛
as an affine

map 𝜎:Δ𝑘
c
→ R𝑛

given by

𝜎(𝛼) ≔ 𝑝0 +
𝑘∑
𝑗=1

𝛼 𝑗(𝑝 𝑗 − 𝑝0), for all 𝛼 ∈ Δ𝑘
c
.

672



We can also denote 𝜎 by [𝑝0, . . . , 𝑝𝑘] as in Definition 6.6.12. If we define the R-linear

map 𝐴: R𝑘 → R𝑛
to be given by 𝐴(𝑒 𝑗) ≔ 𝑝 𝑗 − 𝑝0, then we can write 𝜎(𝛼) = 𝑝0 + 𝐴(𝛼).

If 𝜏 ∈ 𝑆𝑘+1 is a permutation on 𝑘 + 1 elements, and 𝜇 ≔ [𝑝𝜏(0), 𝑝𝜏(1), . . . , 𝑝𝜏(𝑘)] is an

oriented affine 𝑘-simplex, also induced by the points 𝑝0, . . . , 𝑝𝑘 , we say that

𝜏 = sign(𝜏)𝜎.

Moreover, 𝜇 is said to have the same orientation of 𝜎 if sign(𝜏) > 0, otherwise, if

sign(𝜏) < 0, then 𝜇 is said to have the opposite orientation of 𝜎.

In the special case where 𝑘 = 𝑛 and the collection {𝑝 𝑗−𝑝0}𝑘𝑗=1
is linearly independent,

we say that:

• 𝜎 is positively oriented if det𝐴 > 0.

• 𝜎 is negatively oriented if det𝐴 < 0.

In particular, the simplex idR𝑘 ≔ [0, 𝑒1, . . . , 𝑒𝑘] in R𝑘
is positively oriented.

Example A.10.18. A special example of an oriented affine 𝑘-simplex occurs for the case

𝑘 = 0, where we get a simplex induced by a single point 𝑝0 ∈ R𝑘
— in such case, two

0-simplexes are conceivable, 𝜎 = 𝑝0 or 𝜎 = −𝑝0.

Definition A.10.19. Let 𝜎 = 𝜀𝑝0 be an oriented affine 0-simplex — where 𝜀 ∈ {−1, 1}
and 𝑝0 ∈ R𝑘

. If 𝑓 :𝐸→ R is a 0-form in the open set 𝐸 ⊆ R𝑛
, we define its integral over

the 0-simplex 𝜎 as ∫
𝜎
𝑓 ≔ 𝜀 𝑓 (𝑝0).

Proposition A.10.20. Let 𝜎:Δ𝑘
c
→ 𝐸 be an oriented affine 𝑘-simplex in an open set

𝐸 ⊆ R𝑛
, and 𝜔 be any 𝑘-form in 𝐸. If 𝜇 = 𝜀𝜎 where 𝜀 ∈ {−1, 1}2, then∫

𝜇
𝜔 = 𝜀

∫
𝜎
𝜔.

Proof. For the base case 𝑘 = 0, we have Definition A.10.19. Now, let 𝑘 ⩾ 1 and define,

for each 1 ⩽ 𝑗0 ⩽ 𝑘, the transposition 𝜏𝑗0 ∈ 𝑆𝑘+1 given by 𝜏𝑗0(0) = 𝑗0 and 𝜏𝑗0(𝑗0) = 0 —

while 𝜏𝑗0(𝑖) = 𝑖 for all 𝑖 ≠ 0, 𝑗0. Suppose 𝜎 ≔ [𝑝0, . . . , 𝑝𝑘], then since sign(𝜏𝑗0) = −1, the

oriented affine 𝑘-simplex 𝜇 ≔ [𝑝𝜏𝑗
0

(0), . . . , 𝑝𝜏𝑗
0
(𝑘)] is such that 𝜇 = sign(𝜏𝑗0)𝜎 = −𝜎 —

moreover,

𝜇(𝑢) = 𝑝 𝑗0 +
𝑘∑
𝑗=1

𝑢𝑖(𝑝𝜏𝑗
0
(𝑖) − 𝑝 𝑗0) ≔ 𝑝 𝑗0 + 𝐵(𝑢), for all 𝑢 ∈ Δ𝑘

c
,

where 𝐵: R𝑘 → R𝑛
is a linear map with matrix representation 𝐵 = [𝑝𝜏𝑗

0
(𝑗) − 𝑝 𝑗0]𝑘𝑗=1

(notice we are disregarding the column with 𝑗 = 0), where each 𝑝𝜏𝑗
0
(𝑗) − 𝑝 𝑗0 = [𝜕𝑗𝜇𝑖]𝑛𝑖=1

2
If 𝜎 = [𝑝0 , . . . , 𝑝𝑘], we say that𝜇 = sign(𝜏)𝜎 if𝜇 = [𝑝𝜏(0) , . . . , 𝑝𝜏(𝑘)]— where 𝜏 ∈ 𝑆𝑘+1 is a permutation

on 𝑘 + 1 elements.
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is the 𝑗-th column of 𝐵. Therefore, if 𝜔 ≔
∑
𝐼 𝑓𝐼 d𝑥𝐼 and 𝐼 ≔ (𝑖𝑝)𝑘𝑝=1

for each 𝐼, we obtain∫
𝜇
𝜔 =

∫
Δ𝑘

c

∑
𝐼

𝑓𝐼𝜇(𝑡)det(𝐵)d𝑡.

If we let 𝐴: R𝑘 → R𝑛
be the linear map defined by 𝐴(𝑢) ≔ ∑𝑘

𝑖=1
𝑢𝑖(𝑝𝑖 − 𝑝0) for all

𝑢 ∈ R𝑘
, we can write 𝜎(𝑢) = 𝑝0 + 𝐴(𝑢). Notice however that, for each 1 ⩽ 𝑖 ⩽ 𝑘 with

𝑖 ≠ 𝑗0, we have the relation 𝐵(𝑒𝑖) = 𝐴(𝑒𝑖) − 𝐴(𝑒 𝑗0) (which does not affect the value of

the determinant) — while 𝐵(𝑒 𝑗0) = −𝐴(𝑒 𝑗0) (which multiplies the determinant by −1).

Therefore det 𝐵 = −det𝐴. Hence,∫
𝜇
𝜔 =

∫
Δ𝑘

c

∑
𝐼

𝑓𝐼𝜇(𝑡)(−det𝐴)d𝑡 =
∫
Δ𝑘

c

∑
𝐼

𝑓 𝜎(𝑡)det(𝐴)d𝑡 =
∫
𝜎
𝜔. (A.55)

For the case where we transpose a pair of indices 𝑖 and 𝑗, with 0 < 𝑖 < 𝑗 ⩽ 𝑘,

then 𝜇(𝑢) = 𝑝0 + 𝐶(𝑢) — where 𝐶 has all columns matching to those of 𝐴, except

the interchange between the 𝑖-th and 𝑗-th columns, which implies in det𝐶 = −det𝐴.

Therefore we get again the same as in Eq. (A.55), which finishes the proof. ♮

Definition A.10.21 (Affine 𝑘-chain). Let 𝐸 ⊆ R𝑛
be an open set. A finite collection of

oriented affine 𝑘-simplexes in 𝐸 is said to be an affine 𝑘-chain in 𝐸. It is to be noted that

the finite collection may contain some multiplicities — that is, some of the 𝑘-simplexes

can coincide.

If Γ ≔ (𝜎𝑗)𝑚𝑗=1
is an affine 𝑘-chain in 𝐸, we define∫

Γ

𝜔 ≔

𝑚∑
𝑗=1

∫
𝜎𝑗

𝜔.

We’ll usually denote Γ by the formal sum
∑𝑚
𝑗=1

𝜎𝑗 mapping 𝜔
Γ↦−→ ∑

𝑗

∫
𝜎𝑗
𝜔.

Definition A.10.22 (Boundary). Let 𝑘 ⩾ 1. Given an oriented affine 𝑘-simplex 𝜎 ≔

[𝑝0, . . . , 𝑝𝑘], we define the boundary of 𝜎 to be an affine (𝑘 − 1)-chain defined by

𝜕𝜎 ≔

𝑘∑
𝑗=0

(−1)𝑗[𝑝0, . . . , 𝑝 𝑗−1, 𝑝 𝑗+1, . . . , 𝑝𝑘].

Definition A.10.23 (Differentiable simplexes and chains). Let 𝐸 ⊆ R𝑛
and 𝑉 ⊆ R𝑚

be

open sets. If 𝜙:𝐸→ 𝑉 is a map of class 𝐶2
, and 𝜎 is an oriented affine 𝑘-simplex in 𝐸,

then the induced map

Φ ≔ 𝜙𝜎:Δ𝑘
c
−→ 𝑉

is a 𝑘-surface in 𝑉 . The surface Φ is said to be an oriented 𝑘-simplex of class 𝐶2
in 𝑉 .

Moreover, Φ has a boundary defined by

𝜕Φ ≔ 𝜙(𝜕𝜎),
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therefore, 𝜕Φ is a (𝑘 − 1)-chain of class 𝐶2
in 𝑉 .

A finite collection Ψ ≔ (Φ𝑗)𝑟𝑗=1
of oriented 𝑘-simplexes of class 𝐶2

in 𝑉 is said to be

a 𝑘-chain of class 𝐶2 in 𝑉 . Given a 𝑘-form 𝜔 in 𝑉 , we define∫
Ψ

𝜔 ≔

𝑟∑
𝑗=1

∫
Φ𝑗

𝜔.

As expected, the boundary of Ψ is defined to be the (𝑘 − 1)-chain of class 𝐶2
in𝑉 given

by 𝜕Ψ ≔
∑𝑟
𝑗=1

𝜕Φ𝑗 .

In the context of the last definition, given an affine 𝑘-chain Γ ≔
∑𝑟
𝑗=1

𝜎𝑗 in 𝐸, the

map 𝜙 induces a corresponding 𝑘-chain of class 𝐶2
in 𝑉 , namely,

∑𝑟
𝑗=1

𝜙𝜎𝑗 .

Oriented Boundaries on Sets
Definition A.10.24 (Positively oriented boundaries on a set). Let 𝜙:Δ𝑛

c
↣ R𝑛

be an

injective map of class 𝐶2
, whose Jacobian determinant is positive in the interior of

Δ𝑘
c
. Let 𝐸 ≔ 𝜙(Δ𝑛

c
)— then, by the inverse map theorem (see Theorem A.5.8), 𝐸 is the

closure of an open set of R𝑛
. We define the positively oriented boundary of the set 𝐸 to be

the (𝑛 − 1)-chain

𝜕𝐸 ≔ 𝜕𝜙 = 𝜙(𝜕 idR𝑛 ),
where idR𝑛 ≔ [0, 𝑒1, . . . , 𝑒𝑛]— that is to say that, for any (𝑛 − 1)-form 𝜔 in 𝐸, we have∫

𝜕𝐸
𝜔 ≔

∫
𝜕𝜙

𝜔.

If {𝐸 𝑗}𝑟𝑗=1
is a collection of subsets of R𝑛

with disjoint interior, let {𝜙 𝑗 : Δ𝑛
c
↣ R𝑛}𝑟

𝑗=1

be an associated collection of injective 𝐶2
-maps with positive Jacobian determinant

in the interior of Δ𝑛
c
, and such that 𝜙 𝑗(Δ𝑛c ) = 𝐸 𝑗 . We define the positively oriented

boundary of the set Ω ≔ 𝐸1 ∪ · · · ∪ 𝐸𝑟 as the (𝑛 − 1)-chain

𝜕Ω ≔ 𝜕𝜙1 + · · · + 𝜕𝜙𝑟 , that is

∫
𝜕Ω

𝜔 ≔

𝑟∑
𝑗=1

∫
𝜕𝜙 𝑗

𝜔,

where 𝜔 is any (𝑛 − 1)-form in Ω.

Proposition A.10.25. Let 𝜙,𝜓:Δ𝑛
c
⇒ R𝑛

be injective 𝐶2
-maps with positive Jacobian

determinant in the interior of Δ𝑛
c
. If 𝜙(Δ𝑛

c
) = 𝜓(Δ𝑛

c
), then 𝜕𝜙 = 𝜕𝜓 — that is, for every

(𝑛 − 1)-form 𝜔 in the image of the maps, we have∫
𝜕𝜙

𝜔 =

∫
𝜕𝜓

𝜔.

Proof.
Prove

♮
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Example A.10.26. Let 𝑆: [0,𝜋] × [0, 2𝜋] → R3
be a 2-surface in R3

, defined by

𝑆(𝑢, 𝑣) ≔ (sin(𝑢) cos(𝑣), sin(𝑢) sin(𝑣), cos(𝑢)).

Notice that the positively oriented boundary of 𝑆 corresponds to the 4 distinct curves

induced by 𝑆 under the positively oriented boundary of the rectangle [0,𝜋] × [0, 2𝜋]
— that is, 𝜕𝑆 =

∑
4

𝑗=1
𝛾𝑗 where we have

𝛾1:[0,𝜋] −→ R3

mapping 𝑢 ↦−→ 𝑆(𝑢, 0) = (sin(𝑢), 0, cos(𝑢));
𝛾2:[0, 2𝜋] −→ R3

mapping 𝑣 ↦−→ 𝑆(𝜋, 𝑣) = (0, 0,−1);
𝛾3:[0,𝜋] −→ R3

mapping 𝑢 ↦−→ 𝑆(𝜋 − 𝑢, 2𝜋) = (sin(𝑢), 0,− cos(𝑢));
𝛾4:[0, 2𝜋] −→ R3

mapping 𝑣 ↦−→ 𝑆(0, 2𝜋 − 𝑣) = (0, 0, 1).

Now, given any 1-form 𝜔 ≔ 𝑓1 d𝑥1 + 𝑓2 d𝑥2 + 𝑓3 d𝑥3 in R3
, we have∫

𝜕𝑆
𝜔 =

4∑
𝑗=1

∫
𝛾𝑗

𝜔

=

∫ 𝜋

0

3∑
𝑖=1

𝑓𝑖𝛾1(𝑥) 𝜕𝛾(𝑖)
1
(𝑥)︸  ︷︷  ︸

0

d𝑥 +
∫
𝛾2

𝜔 +
∫
𝛾3

𝜔 +
∫

2𝜋

0

3∑
𝑖=1

𝑓𝑖𝛾4(𝑥) 𝜕𝛾(𝑖)
4
(𝑥)︸  ︷︷  ︸

0

d𝑥

=

∫
𝛾2

𝜔 +
∫
𝛾3

𝜔.

Notice however that if we make the change of variables from 𝑥 to 𝜋 − 𝑥 in the integral∫
𝛾3

𝜔, we obtain∫
𝛾3

𝜔 =

∫ 𝜋

0

− 𝑓1𝛾3(𝑥) cos(𝑥) + 𝑓3𝛾3(𝑥) sin(𝑥)d𝑥

= −
∫

0

𝜋
− 𝑓1𝛾3(𝜋 − 𝑥) cos(𝑥) + 𝑓3𝛾3(𝜋 − 𝑥) sin(𝑥)d𝑥

=

∫ 𝜋

0

− 𝑓1𝛾2(𝑥) cos(𝑥) + 𝑓3𝛾2(𝑥) sin(𝑥)d𝑥

= −
∫
𝛾2

𝜔

Where the third equality may be obtained by noting that 𝛾3(𝜋−𝑥) = 𝛾2(𝑥). We conclude

that ∫
𝜕𝑆

𝜔 = 0,

and, more generally, 𝜕𝑆 = 0.

676



Stoke’s Theorem
Theorem A.10.27 (Stoke’s). Let Ψ be a 𝑘-chain of class 𝐶2

in an open set 𝑉 ⊆ R𝑛
, and

let 𝜔 be a (𝑘 − 1)-form of class 𝐶1
in 𝑉 . Then the following equality holds∫

Ψ

d𝜔 =

∫
𝜕Ψ

𝜔.

Proof. Since Ψ =
∑𝑟
𝑗=1

Φ𝑗 for some finite collection (Φ𝑗)𝑟𝑗=1
of oriented 𝑘-simplexes of

class 𝐶2
, it suffices to prove that the theorem holds for any oriented 𝑘-simplex of class

𝐶2
, since

∫
Ψ
𝛾 =

∑𝑟
𝑗=1

∫
Φ𝑗

𝛾 for any (𝑘 − 1)-form 𝛾 in 𝑉 .

LetΦbe any oriented 𝑘-simplex of class𝐶2
in𝑉 , and consider the positively oriented

affine 𝑘-simplex idR𝑘 ≔ [0, 𝑒1, . . . , 𝑒𝑘]:Δ𝑘c → R𝑘
. From Definition A.10.23, there must

exist an open set 𝐸 ⊆ R𝑘
with Δ𝑘

c
⊆ 𝐸, and a 𝐶2

-map 𝜙:𝐸 → 𝑉 such that Φ = 𝜙 idR𝑘 .

Therefore, given any (𝑘 − 1)-form 𝜔 in 𝑉 , we have∫
Φ

d𝜔 =

∫
𝜙 idR𝑘

d𝜔 =

∫
idR𝑘

𝜙∗(d𝜔) =
∫

idR𝑘

d(𝜙∗(𝜔)).

Moreover, we can also consider the positively oriented boundary of Φ, which yields∫
𝜕Φ

𝜔 =

∫
𝜕(𝜙 idR𝑘 )

𝜔 =

∫
𝜙(𝜕 idR𝑘 )

𝜔 =

∫
𝜕 idR𝑘

𝜙∗(𝜔).

Hence, our goal will be to prove that the theorem is true for any (𝑘 − 1)-form of the

type 𝜙∗(𝜔), that is, any (𝑘 − 1)-form 𝛾 in 𝐸 it should be true that∫
idR𝑘

d𝛾 =

∫
𝜕 idR𝑘

𝛾. (A.56)

Let’s first deal with the base case, 𝑘 = 1. Given any 0-form 𝛾:𝐸 → R of class 𝐶1
in

𝐸 ⊆ R, we have — by the fundamental theorem of calculus,∫
idR

d𝛾 =

∫
1

0

(d𝛾(𝑥))d𝑥 = 𝛾(1) − 𝛾(0) =
∫
𝜕 idR

𝛾

We now assume that 𝑘 > 1. Since any (𝑘 − 1)-form 𝛾 in 𝐸 can be written as a sum

𝛾 =

𝑘∑
𝑟=1

𝑓𝑟 d𝑥1 ∧ · · · ∧ d𝑥𝑟−1 ∧ d𝑥𝑟+1 ∧ · · · ∧ d𝑥𝑘 ≔

𝑘∑
𝑟=1

𝛾𝑟 ,

we may as well simply prove Eq. (A.56) for every 𝛾𝑟 , with 1 ⩽ 𝑟 ⩽ 𝑘 — this is now

what we’ll do, for each index 𝑟. The boundary of idR𝑘 is given by

𝜕 idR𝑘 = [𝑒1, . . . , 𝑒𝑘] +
𝑘∑
𝑗=1

(−1)𝑗𝜎𝑗 , (A.57)
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where we define each 𝜎𝑗 to be the oriented (𝑘−1)-simplex 𝜎𝑗 ≔ [0, 𝑒1, . . . , 𝑒 𝑗−1, 𝑒 𝑗+1, . . . , 𝑒𝑘]
— that is, removing the 𝑗-th component of idR𝑘 , for each 1 ⩽ 𝑗 ⩽ 𝑘. Moreover, to

facilitate our analysis, we’ll define another oriented (𝑘 − 1)-simplex, 𝜎0, defined by

transposing the 𝑟-th component of idR𝑘 an amount of 𝑟 − 1 times to the left, so that

𝜎0 ≔ [𝑒𝑟 , 𝑒1, . . . , 𝑒𝑟−1, 𝑒𝑟+1, . . . , 𝑒𝑘] = (−1)𝑟−1[𝑒1, . . . , 𝑒𝑘].

Therefore, we can rewrite Eq. (A.57) as

𝜕 idR𝑘 = (−1)𝑟−1𝜎0 +
𝑘∑
𝑗=1

(−1)𝑗𝜎𝑗 .

We can analyse each of the (𝑘 − 1)-simplexes 𝜎𝑗 :Δ𝑘−1

c
→ R𝑘

, for 0 ⩽ 𝑗 ⩽ 𝑘:

• For the special case 𝑗 = 0, given any 𝑡 ∈ Δ𝑘−1

c
, if 𝑥 ≔ 𝜎0(𝑡) ∈ R𝑘

, then

𝑥𝑖 =


𝑡𝑖 , 1 ⩽ 𝑖 < 𝑟

1 −∑𝑘−1

𝑖=1
𝑡𝑖 , 𝑖 = 𝑟

𝑡𝑖−1, 𝑟 < 𝑖 ⩽ 𝑘

(A.58)

Therefore, the matrix [𝜕𝑞𝜎(𝑝)
0
(𝑡)]𝑖 , 𝑗 , where 1 ⩽ 𝑝, 𝑞 ⩽ 𝑘 − 1 and 𝑝 ≠ 𝑟, corresponds

to the identity matrix on R𝑘−1
restricted to Δ𝑘

c
, therefore det[𝜕𝑞𝜎(𝑝)

0
] = 1 and thus∫

𝜎0

𝛾𝑟 =

∫
Δ𝑘−1

c

𝑓𝑟𝜎𝑟(𝑡)d𝑡. (A.59)

• For any 𝑗 ≠ 0, given any 𝑡 ∈ Δ𝑘
c
, if 𝑥 ≔ 𝜎𝑗(𝑡) ∈ R𝑘

, then

𝑥𝑖 =


𝑡𝑖 , 1 ⩽ 𝑖 < 𝑗

0, 𝑖 = 𝑗

𝑡𝑖−1, 𝑗 < 𝑖 ⩽ 𝑘

(A.60)

Moreover, since ∫
𝜎𝑗

𝛾𝑟 =

∫
Δ𝑘

c

𝑓𝑟𝜎𝑗(𝑡)det

[
𝜕𝑞𝜎

(𝑝)
𝑗
(𝑡)

] 𝑘−1

𝑝,𝑞=1

𝑝≠𝑟

d𝑡 ,

there are two possible cases, for any 𝑡 ∈ Δ𝑘
c
: if 𝑗 ≠ 𝑟, then the 𝑗-th row of

the Jacobian matrix is entirely composed of zeros, hence det[𝜕𝑞𝜎(𝑝)𝑗 (𝑡)]𝑝,𝑞 = 0,

otherwise, if 𝑗 = 𝑟, the matrix corresponds exactly to the identity matrix of R𝑘−1

restricted toΔ𝑘−1

c
— therefore det[𝜕𝑞𝜎(𝑝)𝑗 (𝑡)]𝑝,𝑞 = 1 for any 𝑡 ∈ Δ𝑘−1

c
, which implies

in ∫
𝜎𝑗

𝛾𝑟 =

{
0, 𝑗 ≠ 𝑟∫
Δ𝑘−1

c

𝑓𝑟𝜎𝑟(𝑡)d𝑡 , 𝑗 = 𝑟
(A.61)
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With Eq. (A.59) and Eq. (A.61) at hand, we obtain∫
𝜕 idR𝑘

𝛾𝑟 = (−1)𝑟−1

∫
𝜎0

𝛾𝑟 +
𝑟∑
𝑗=1

(−1)𝑗
∫
𝜎𝑗

𝛾𝑟

= (−1)𝑟−1

∫
𝜎0

𝛾𝑟 + (−1)𝑟
∫
𝜎𝑟

𝛾𝑟

= (−1)𝑟−1

∫
Δ𝑘−1

c

𝑓𝑟𝜎0(𝑡) − 𝑓𝑟𝜎𝑟(𝑡)d𝑡

Notice, on the other hand, that

d𝛾𝑟 = d 𝑓𝑟 ∧ d𝑥1 ∧ · · · ∧ d𝑥𝑟−1 ∧ d𝑥𝑟+1 ∧ · · · ∧ d𝑥𝑘

=

( 𝑘∑
𝑗=1

𝜕𝑗 𝑓𝑟 d𝑥 𝑗

)
∧ d𝑥1 ∧ · · · ∧ d𝑥𝑟−1 ∧ d𝑥𝑟+1 ∧ · · · ∧ d𝑥𝑘

= 𝜕𝑟 𝑓𝑟 d𝑥𝑟 ∧ d𝑥1 ∧ · · · ∧ d𝑥𝑟−1 ∧ d𝑥𝑟+1 ∧ · · · ∧ d𝑥𝑘

= (−1)𝑟−1𝜕𝑟 𝑓𝑟 d𝑥1 ∧ · · · ∧ d𝑥𝑘 .

Therefore, by Fubini’s theorem (see Theorem A.8.4),∫
idR𝑘

d𝛾 = (−1)𝑟−1

∫
Δ𝑘

c

𝜕𝑟 𝑓𝑟(𝑥)d𝑥

= (−1)𝑟−1

∫
Δ𝑘−1

c

[∫
1−𝑥1+···+𝑥𝑟−1+𝑥𝑟+1+𝑥𝑘−1

0

𝜕𝑟 𝑓𝑟(𝑥)d𝑥𝑟
]

d(𝑥1 , . . . , 𝑥𝑟−1 , 𝑥𝑟+1 , . . . , 𝑥𝑘)

= (−1)𝑟−1

∫
Δ𝑘−1

c

𝑓𝑟𝜎0(𝑡) − 𝑓𝑟𝜎𝑟(𝑡)d𝑡.

Where the last equality was obtained by means of Eq. (A.58) and Eq. (A.60) since the

variables are independent of each other. That is, we just proved that∫
idR𝑘

d𝛾𝑟 =

∫
𝜕 idR𝑘

𝛾𝑟 ,

which implies in Eq. (A.56) — thus the proof is complete! ♮
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Appendix B

Set Theory

B.1 ZFC
Theorem B.1.1 (Cantor). Let 𝐴 be a set and 𝑓 :𝐴→ 2

𝐴
be a map, then 𝑓 is not surjective

and hence |𝐴| < |2𝐴|.

Proof. Let 𝐵 ≔ {𝑥 ∈ 𝐴 : 𝑥 ∉ 𝑓 (𝑥)} be a set of 2
𝐴

and suppose, for the sake of

contradiction, that 𝑓 is surjective. That is, there must exist some 𝑦 ∈ 𝐴 for which

𝑓 (𝑦) = 𝐵 — notice however that this can’t be the case since by the law of excluded

middle if 𝑦 ∈ 𝐵 then 𝑦 ∉ 𝑓 (𝑦) thus 𝑓 (𝑦) ≠ 𝐵, while if 𝑦 ∉ 𝐵 then 𝑦 ∈ 𝑓 (𝑦) and thus

𝑓 (𝑦) ≠ 𝐵. Therefore 𝑓 cannot be surjective and thus |𝐴| < |2𝐴| since there exists an

injective mapping 𝑥 ↦→ {𝑥}. ♮

Theorem B.1.2. There is no set containing all sets as members.

Proof. For the sake of contradiction, let 𝐴 be a set containing every set as a member. In

particular 2
𝐴 ⊆ 𝐴 so that |2𝐴| ⩽ 𝐴 — this can’t be the case by Theorem B.1.1, thus 𝐴

cannot be a set. ♮

Definition B.1.3 (Cardinal numbers). A cardinal number is an isomorphism class of

sets, and the cardinality of a given set 𝑆 is its isomorphism class. The following are

properties pertaining to cardinal numbers:

(a) Every set has a unique cardinal number as its cardinality.

(b) Every cardinal number is the cardinality of some set.

(c) Two sets have the same cardinality if and only if they are isomorphic as sets.

Definition B.1.4 (Well ordering). A well-ordering on a set 𝑆 is a total ordering such that

every non-empty subset of 𝑆 has a least element. A set equipped with a well-order is

called a poset.

Definition B.1.5 (Ordinal). An ordinal number is an isomorphism class of well-ordered
sets, and the ordinal rank of a poset 𝑆 is its isomorphism class. The following are

properties satisfied by the ordinal numbers in its regard to ordinal ranks:
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(a) Every poset has a unique ordinal numbers as its ordinal rank.

(b) Every ordinal number is the ordinal rank of some poset.

(c) Two sets have the same ordinal rank if and only if they are isomorphic as posets.

Moreover, ordinals also have the following properties:

(d) Every ordinal 𝛼 has an immediate successor 𝛼+1 — this process entails the addition

of an element to the end of a chain of a well-ordering of type 𝛼.

(e) There is a natural well-ordering on the collection of all ordinals. Given two ordinals

𝛼 and 𝛽, we say that 𝛼 ⩽ 𝛽 if and only if there exists an initial segment of 𝛽 for

which 𝛼 is isomorphic to.

(f) The induced well-ordering on the set {𝛽 : 𝛽 < 𝛼} is the isomorphism class rep-

resented by 𝛼 — therefore, one can define an ordinal as a set containing all the

smaller ordinals as members.

(g) (Equivalent to the Axiom of Choice) Every set is well-orderable, hence bĳective to

some ordinal.

We denote by 𝜔 the natural numbers, so that every ordinal bĳective to 𝜔 is said to

be countable.

The cardinal numbers are well-ordered, and can be indexed by means of ordinals.

We denote the 𝛼-th cardinal number by ℵ𝛼 — hence ℵ0 = 𝜔, while ℵ1 = 𝜔1 (the first

uncountable ordinal), for instance.

Definition B.1.6 (Successor & limit ordinal). Given an ordinal 𝛼, we can classify it as a

successor ordinal, if there exists an ordinal 𝛽 such that 𝛼 = 𝛽 + 1, or as a limit ordinal —

in particular, every cardinal is a limit ordinal.

Definition B.1.7 (Successor & limit cardinal). A cardinal is said to be a successor cardinal
if its corresponding indexing ordinal is a successor ordinal, otherwise it is a limit
cardinal.
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